1 /* 2 * IP multicast routing support for mrouted 3.6/3.8 3 * 4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 5 * Linux Consultancy and Custom Driver Development 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 * 12 * Fixes: 13 * Michael Chastain : Incorrect size of copying. 14 * Alan Cox : Added the cache manager code 15 * Alan Cox : Fixed the clone/copy bug and device race. 16 * Mike McLagan : Routing by source 17 * Malcolm Beattie : Buffer handling fixes. 18 * Alexey Kuznetsov : Double buffer free and other fixes. 19 * SVR Anand : Fixed several multicast bugs and problems. 20 * Alexey Kuznetsov : Status, optimisations and more. 21 * Brad Parker : Better behaviour on mrouted upcall 22 * overflow. 23 * Carlos Picoto : PIMv1 Support 24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 25 * Relax this requirement to work with older peers. 26 * 27 */ 28 29 #include <asm/uaccess.h> 30 #include <linux/types.h> 31 #include <linux/capability.h> 32 #include <linux/errno.h> 33 #include <linux/timer.h> 34 #include <linux/mm.h> 35 #include <linux/kernel.h> 36 #include <linux/fcntl.h> 37 #include <linux/stat.h> 38 #include <linux/socket.h> 39 #include <linux/in.h> 40 #include <linux/inet.h> 41 #include <linux/netdevice.h> 42 #include <linux/inetdevice.h> 43 #include <linux/igmp.h> 44 #include <linux/proc_fs.h> 45 #include <linux/seq_file.h> 46 #include <linux/mroute.h> 47 #include <linux/init.h> 48 #include <linux/if_ether.h> 49 #include <linux/slab.h> 50 #include <net/net_namespace.h> 51 #include <net/ip.h> 52 #include <net/protocol.h> 53 #include <linux/skbuff.h> 54 #include <net/route.h> 55 #include <net/sock.h> 56 #include <net/icmp.h> 57 #include <net/udp.h> 58 #include <net/raw.h> 59 #include <linux/notifier.h> 60 #include <linux/if_arp.h> 61 #include <linux/netfilter_ipv4.h> 62 #include <linux/compat.h> 63 #include <linux/export.h> 64 #include <net/ip_tunnels.h> 65 #include <net/checksum.h> 66 #include <net/netlink.h> 67 #include <net/fib_rules.h> 68 #include <linux/netconf.h> 69 70 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 71 #define CONFIG_IP_PIMSM 1 72 #endif 73 74 struct mr_table { 75 struct list_head list; 76 #ifdef CONFIG_NET_NS 77 struct net *net; 78 #endif 79 u32 id; 80 struct sock __rcu *mroute_sk; 81 struct timer_list ipmr_expire_timer; 82 struct list_head mfc_unres_queue; 83 struct list_head mfc_cache_array[MFC_LINES]; 84 struct vif_device vif_table[MAXVIFS]; 85 int maxvif; 86 atomic_t cache_resolve_queue_len; 87 bool mroute_do_assert; 88 bool mroute_do_pim; 89 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 90 int mroute_reg_vif_num; 91 #endif 92 }; 93 94 struct ipmr_rule { 95 struct fib_rule common; 96 }; 97 98 struct ipmr_result { 99 struct mr_table *mrt; 100 }; 101 102 /* Big lock, protecting vif table, mrt cache and mroute socket state. 103 * Note that the changes are semaphored via rtnl_lock. 104 */ 105 106 static DEFINE_RWLOCK(mrt_lock); 107 108 /* 109 * Multicast router control variables 110 */ 111 112 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL) 113 114 /* Special spinlock for queue of unresolved entries */ 115 static DEFINE_SPINLOCK(mfc_unres_lock); 116 117 /* We return to original Alan's scheme. Hash table of resolved 118 * entries is changed only in process context and protected 119 * with weak lock mrt_lock. Queue of unresolved entries is protected 120 * with strong spinlock mfc_unres_lock. 121 * 122 * In this case data path is free of exclusive locks at all. 123 */ 124 125 static struct kmem_cache *mrt_cachep __read_mostly; 126 127 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 128 static void ipmr_free_table(struct mr_table *mrt); 129 130 static int ip_mr_forward(struct net *net, struct mr_table *mrt, 131 struct sk_buff *skb, struct mfc_cache *cache, 132 int local); 133 static int ipmr_cache_report(struct mr_table *mrt, 134 struct sk_buff *pkt, vifi_t vifi, int assert); 135 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 136 struct mfc_cache *c, struct rtmsg *rtm); 137 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 138 int cmd); 139 static void mroute_clean_tables(struct mr_table *mrt); 140 static void ipmr_expire_process(unsigned long arg); 141 142 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 143 #define ipmr_for_each_table(mrt, net) \ 144 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list) 145 146 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 147 { 148 struct mr_table *mrt; 149 150 ipmr_for_each_table(mrt, net) { 151 if (mrt->id == id) 152 return mrt; 153 } 154 return NULL; 155 } 156 157 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 158 struct mr_table **mrt) 159 { 160 struct ipmr_result res; 161 struct fib_lookup_arg arg = { .result = &res, }; 162 int err; 163 164 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 165 flowi4_to_flowi(flp4), 0, &arg); 166 if (err < 0) 167 return err; 168 *mrt = res.mrt; 169 return 0; 170 } 171 172 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 173 int flags, struct fib_lookup_arg *arg) 174 { 175 struct ipmr_result *res = arg->result; 176 struct mr_table *mrt; 177 178 switch (rule->action) { 179 case FR_ACT_TO_TBL: 180 break; 181 case FR_ACT_UNREACHABLE: 182 return -ENETUNREACH; 183 case FR_ACT_PROHIBIT: 184 return -EACCES; 185 case FR_ACT_BLACKHOLE: 186 default: 187 return -EINVAL; 188 } 189 190 mrt = ipmr_get_table(rule->fr_net, rule->table); 191 if (mrt == NULL) 192 return -EAGAIN; 193 res->mrt = mrt; 194 return 0; 195 } 196 197 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 198 { 199 return 1; 200 } 201 202 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = { 203 FRA_GENERIC_POLICY, 204 }; 205 206 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 207 struct fib_rule_hdr *frh, struct nlattr **tb) 208 { 209 return 0; 210 } 211 212 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 213 struct nlattr **tb) 214 { 215 return 1; 216 } 217 218 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 219 struct fib_rule_hdr *frh) 220 { 221 frh->dst_len = 0; 222 frh->src_len = 0; 223 frh->tos = 0; 224 return 0; 225 } 226 227 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { 228 .family = RTNL_FAMILY_IPMR, 229 .rule_size = sizeof(struct ipmr_rule), 230 .addr_size = sizeof(u32), 231 .action = ipmr_rule_action, 232 .match = ipmr_rule_match, 233 .configure = ipmr_rule_configure, 234 .compare = ipmr_rule_compare, 235 .default_pref = fib_default_rule_pref, 236 .fill = ipmr_rule_fill, 237 .nlgroup = RTNLGRP_IPV4_RULE, 238 .policy = ipmr_rule_policy, 239 .owner = THIS_MODULE, 240 }; 241 242 static int __net_init ipmr_rules_init(struct net *net) 243 { 244 struct fib_rules_ops *ops; 245 struct mr_table *mrt; 246 int err; 247 248 ops = fib_rules_register(&ipmr_rules_ops_template, net); 249 if (IS_ERR(ops)) 250 return PTR_ERR(ops); 251 252 INIT_LIST_HEAD(&net->ipv4.mr_tables); 253 254 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 255 if (mrt == NULL) { 256 err = -ENOMEM; 257 goto err1; 258 } 259 260 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 261 if (err < 0) 262 goto err2; 263 264 net->ipv4.mr_rules_ops = ops; 265 return 0; 266 267 err2: 268 kfree(mrt); 269 err1: 270 fib_rules_unregister(ops); 271 return err; 272 } 273 274 static void __net_exit ipmr_rules_exit(struct net *net) 275 { 276 struct mr_table *mrt, *next; 277 278 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 279 list_del(&mrt->list); 280 ipmr_free_table(mrt); 281 } 282 fib_rules_unregister(net->ipv4.mr_rules_ops); 283 } 284 #else 285 #define ipmr_for_each_table(mrt, net) \ 286 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 287 288 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 289 { 290 return net->ipv4.mrt; 291 } 292 293 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 294 struct mr_table **mrt) 295 { 296 *mrt = net->ipv4.mrt; 297 return 0; 298 } 299 300 static int __net_init ipmr_rules_init(struct net *net) 301 { 302 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 303 return net->ipv4.mrt ? 0 : -ENOMEM; 304 } 305 306 static void __net_exit ipmr_rules_exit(struct net *net) 307 { 308 ipmr_free_table(net->ipv4.mrt); 309 } 310 #endif 311 312 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 313 { 314 struct mr_table *mrt; 315 unsigned int i; 316 317 mrt = ipmr_get_table(net, id); 318 if (mrt != NULL) 319 return mrt; 320 321 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL); 322 if (mrt == NULL) 323 return NULL; 324 write_pnet(&mrt->net, net); 325 mrt->id = id; 326 327 /* Forwarding cache */ 328 for (i = 0; i < MFC_LINES; i++) 329 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]); 330 331 INIT_LIST_HEAD(&mrt->mfc_unres_queue); 332 333 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process, 334 (unsigned long)mrt); 335 336 #ifdef CONFIG_IP_PIMSM 337 mrt->mroute_reg_vif_num = -1; 338 #endif 339 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 340 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 341 #endif 342 return mrt; 343 } 344 345 static void ipmr_free_table(struct mr_table *mrt) 346 { 347 del_timer_sync(&mrt->ipmr_expire_timer); 348 mroute_clean_tables(mrt); 349 kfree(mrt); 350 } 351 352 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 353 354 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v) 355 { 356 struct net *net = dev_net(dev); 357 358 dev_close(dev); 359 360 dev = __dev_get_by_name(net, "tunl0"); 361 if (dev) { 362 const struct net_device_ops *ops = dev->netdev_ops; 363 struct ifreq ifr; 364 struct ip_tunnel_parm p; 365 366 memset(&p, 0, sizeof(p)); 367 p.iph.daddr = v->vifc_rmt_addr.s_addr; 368 p.iph.saddr = v->vifc_lcl_addr.s_addr; 369 p.iph.version = 4; 370 p.iph.ihl = 5; 371 p.iph.protocol = IPPROTO_IPIP; 372 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 373 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 374 375 if (ops->ndo_do_ioctl) { 376 mm_segment_t oldfs = get_fs(); 377 378 set_fs(KERNEL_DS); 379 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL); 380 set_fs(oldfs); 381 } 382 } 383 } 384 385 static 386 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 387 { 388 struct net_device *dev; 389 390 dev = __dev_get_by_name(net, "tunl0"); 391 392 if (dev) { 393 const struct net_device_ops *ops = dev->netdev_ops; 394 int err; 395 struct ifreq ifr; 396 struct ip_tunnel_parm p; 397 struct in_device *in_dev; 398 399 memset(&p, 0, sizeof(p)); 400 p.iph.daddr = v->vifc_rmt_addr.s_addr; 401 p.iph.saddr = v->vifc_lcl_addr.s_addr; 402 p.iph.version = 4; 403 p.iph.ihl = 5; 404 p.iph.protocol = IPPROTO_IPIP; 405 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 406 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 407 408 if (ops->ndo_do_ioctl) { 409 mm_segment_t oldfs = get_fs(); 410 411 set_fs(KERNEL_DS); 412 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL); 413 set_fs(oldfs); 414 } else { 415 err = -EOPNOTSUPP; 416 } 417 dev = NULL; 418 419 if (err == 0 && 420 (dev = __dev_get_by_name(net, p.name)) != NULL) { 421 dev->flags |= IFF_MULTICAST; 422 423 in_dev = __in_dev_get_rtnl(dev); 424 if (in_dev == NULL) 425 goto failure; 426 427 ipv4_devconf_setall(in_dev); 428 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 429 430 if (dev_open(dev)) 431 goto failure; 432 dev_hold(dev); 433 } 434 } 435 return dev; 436 437 failure: 438 /* allow the register to be completed before unregistering. */ 439 rtnl_unlock(); 440 rtnl_lock(); 441 442 unregister_netdevice(dev); 443 return NULL; 444 } 445 446 #ifdef CONFIG_IP_PIMSM 447 448 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 449 { 450 struct net *net = dev_net(dev); 451 struct mr_table *mrt; 452 struct flowi4 fl4 = { 453 .flowi4_oif = dev->ifindex, 454 .flowi4_iif = skb->skb_iif, 455 .flowi4_mark = skb->mark, 456 }; 457 int err; 458 459 err = ipmr_fib_lookup(net, &fl4, &mrt); 460 if (err < 0) { 461 kfree_skb(skb); 462 return err; 463 } 464 465 read_lock(&mrt_lock); 466 dev->stats.tx_bytes += skb->len; 467 dev->stats.tx_packets++; 468 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT); 469 read_unlock(&mrt_lock); 470 kfree_skb(skb); 471 return NETDEV_TX_OK; 472 } 473 474 static const struct net_device_ops reg_vif_netdev_ops = { 475 .ndo_start_xmit = reg_vif_xmit, 476 }; 477 478 static void reg_vif_setup(struct net_device *dev) 479 { 480 dev->type = ARPHRD_PIMREG; 481 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 482 dev->flags = IFF_NOARP; 483 dev->netdev_ops = ®_vif_netdev_ops, 484 dev->destructor = free_netdev; 485 dev->features |= NETIF_F_NETNS_LOCAL; 486 } 487 488 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 489 { 490 struct net_device *dev; 491 struct in_device *in_dev; 492 char name[IFNAMSIZ]; 493 494 if (mrt->id == RT_TABLE_DEFAULT) 495 sprintf(name, "pimreg"); 496 else 497 sprintf(name, "pimreg%u", mrt->id); 498 499 dev = alloc_netdev(0, name, reg_vif_setup); 500 501 if (dev == NULL) 502 return NULL; 503 504 dev_net_set(dev, net); 505 506 if (register_netdevice(dev)) { 507 free_netdev(dev); 508 return NULL; 509 } 510 dev->iflink = 0; 511 512 rcu_read_lock(); 513 in_dev = __in_dev_get_rcu(dev); 514 if (!in_dev) { 515 rcu_read_unlock(); 516 goto failure; 517 } 518 519 ipv4_devconf_setall(in_dev); 520 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 521 rcu_read_unlock(); 522 523 if (dev_open(dev)) 524 goto failure; 525 526 dev_hold(dev); 527 528 return dev; 529 530 failure: 531 /* allow the register to be completed before unregistering. */ 532 rtnl_unlock(); 533 rtnl_lock(); 534 535 unregister_netdevice(dev); 536 return NULL; 537 } 538 #endif 539 540 /** 541 * vif_delete - Delete a VIF entry 542 * @notify: Set to 1, if the caller is a notifier_call 543 */ 544 545 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 546 struct list_head *head) 547 { 548 struct vif_device *v; 549 struct net_device *dev; 550 struct in_device *in_dev; 551 552 if (vifi < 0 || vifi >= mrt->maxvif) 553 return -EADDRNOTAVAIL; 554 555 v = &mrt->vif_table[vifi]; 556 557 write_lock_bh(&mrt_lock); 558 dev = v->dev; 559 v->dev = NULL; 560 561 if (!dev) { 562 write_unlock_bh(&mrt_lock); 563 return -EADDRNOTAVAIL; 564 } 565 566 #ifdef CONFIG_IP_PIMSM 567 if (vifi == mrt->mroute_reg_vif_num) 568 mrt->mroute_reg_vif_num = -1; 569 #endif 570 571 if (vifi + 1 == mrt->maxvif) { 572 int tmp; 573 574 for (tmp = vifi - 1; tmp >= 0; tmp--) { 575 if (VIF_EXISTS(mrt, tmp)) 576 break; 577 } 578 mrt->maxvif = tmp+1; 579 } 580 581 write_unlock_bh(&mrt_lock); 582 583 dev_set_allmulti(dev, -1); 584 585 in_dev = __in_dev_get_rtnl(dev); 586 if (in_dev) { 587 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 588 inet_netconf_notify_devconf(dev_net(dev), 589 NETCONFA_MC_FORWARDING, 590 dev->ifindex, &in_dev->cnf); 591 ip_rt_multicast_event(in_dev); 592 } 593 594 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 595 unregister_netdevice_queue(dev, head); 596 597 dev_put(dev); 598 return 0; 599 } 600 601 static void ipmr_cache_free_rcu(struct rcu_head *head) 602 { 603 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu); 604 605 kmem_cache_free(mrt_cachep, c); 606 } 607 608 static inline void ipmr_cache_free(struct mfc_cache *c) 609 { 610 call_rcu(&c->rcu, ipmr_cache_free_rcu); 611 } 612 613 /* Destroy an unresolved cache entry, killing queued skbs 614 * and reporting error to netlink readers. 615 */ 616 617 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 618 { 619 struct net *net = read_pnet(&mrt->net); 620 struct sk_buff *skb; 621 struct nlmsgerr *e; 622 623 atomic_dec(&mrt->cache_resolve_queue_len); 624 625 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) { 626 if (ip_hdr(skb)->version == 0) { 627 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 628 nlh->nlmsg_type = NLMSG_ERROR; 629 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 630 skb_trim(skb, nlh->nlmsg_len); 631 e = nlmsg_data(nlh); 632 e->error = -ETIMEDOUT; 633 memset(&e->msg, 0, sizeof(e->msg)); 634 635 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 636 } else { 637 kfree_skb(skb); 638 } 639 } 640 641 ipmr_cache_free(c); 642 } 643 644 645 /* Timer process for the unresolved queue. */ 646 647 static void ipmr_expire_process(unsigned long arg) 648 { 649 struct mr_table *mrt = (struct mr_table *)arg; 650 unsigned long now; 651 unsigned long expires; 652 struct mfc_cache *c, *next; 653 654 if (!spin_trylock(&mfc_unres_lock)) { 655 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 656 return; 657 } 658 659 if (list_empty(&mrt->mfc_unres_queue)) 660 goto out; 661 662 now = jiffies; 663 expires = 10*HZ; 664 665 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 666 if (time_after(c->mfc_un.unres.expires, now)) { 667 unsigned long interval = c->mfc_un.unres.expires - now; 668 if (interval < expires) 669 expires = interval; 670 continue; 671 } 672 673 list_del(&c->list); 674 mroute_netlink_event(mrt, c, RTM_DELROUTE); 675 ipmr_destroy_unres(mrt, c); 676 } 677 678 if (!list_empty(&mrt->mfc_unres_queue)) 679 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 680 681 out: 682 spin_unlock(&mfc_unres_lock); 683 } 684 685 /* Fill oifs list. It is called under write locked mrt_lock. */ 686 687 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache, 688 unsigned char *ttls) 689 { 690 int vifi; 691 692 cache->mfc_un.res.minvif = MAXVIFS; 693 cache->mfc_un.res.maxvif = 0; 694 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 695 696 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 697 if (VIF_EXISTS(mrt, vifi) && 698 ttls[vifi] && ttls[vifi] < 255) { 699 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 700 if (cache->mfc_un.res.minvif > vifi) 701 cache->mfc_un.res.minvif = vifi; 702 if (cache->mfc_un.res.maxvif <= vifi) 703 cache->mfc_un.res.maxvif = vifi + 1; 704 } 705 } 706 } 707 708 static int vif_add(struct net *net, struct mr_table *mrt, 709 struct vifctl *vifc, int mrtsock) 710 { 711 int vifi = vifc->vifc_vifi; 712 struct vif_device *v = &mrt->vif_table[vifi]; 713 struct net_device *dev; 714 struct in_device *in_dev; 715 int err; 716 717 /* Is vif busy ? */ 718 if (VIF_EXISTS(mrt, vifi)) 719 return -EADDRINUSE; 720 721 switch (vifc->vifc_flags) { 722 #ifdef CONFIG_IP_PIMSM 723 case VIFF_REGISTER: 724 /* 725 * Special Purpose VIF in PIM 726 * All the packets will be sent to the daemon 727 */ 728 if (mrt->mroute_reg_vif_num >= 0) 729 return -EADDRINUSE; 730 dev = ipmr_reg_vif(net, mrt); 731 if (!dev) 732 return -ENOBUFS; 733 err = dev_set_allmulti(dev, 1); 734 if (err) { 735 unregister_netdevice(dev); 736 dev_put(dev); 737 return err; 738 } 739 break; 740 #endif 741 case VIFF_TUNNEL: 742 dev = ipmr_new_tunnel(net, vifc); 743 if (!dev) 744 return -ENOBUFS; 745 err = dev_set_allmulti(dev, 1); 746 if (err) { 747 ipmr_del_tunnel(dev, vifc); 748 dev_put(dev); 749 return err; 750 } 751 break; 752 753 case VIFF_USE_IFINDEX: 754 case 0: 755 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 756 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 757 if (dev && __in_dev_get_rtnl(dev) == NULL) { 758 dev_put(dev); 759 return -EADDRNOTAVAIL; 760 } 761 } else { 762 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 763 } 764 if (!dev) 765 return -EADDRNOTAVAIL; 766 err = dev_set_allmulti(dev, 1); 767 if (err) { 768 dev_put(dev); 769 return err; 770 } 771 break; 772 default: 773 return -EINVAL; 774 } 775 776 in_dev = __in_dev_get_rtnl(dev); 777 if (!in_dev) { 778 dev_put(dev); 779 return -EADDRNOTAVAIL; 780 } 781 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 782 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex, 783 &in_dev->cnf); 784 ip_rt_multicast_event(in_dev); 785 786 /* Fill in the VIF structures */ 787 788 v->rate_limit = vifc->vifc_rate_limit; 789 v->local = vifc->vifc_lcl_addr.s_addr; 790 v->remote = vifc->vifc_rmt_addr.s_addr; 791 v->flags = vifc->vifc_flags; 792 if (!mrtsock) 793 v->flags |= VIFF_STATIC; 794 v->threshold = vifc->vifc_threshold; 795 v->bytes_in = 0; 796 v->bytes_out = 0; 797 v->pkt_in = 0; 798 v->pkt_out = 0; 799 v->link = dev->ifindex; 800 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER)) 801 v->link = dev->iflink; 802 803 /* And finish update writing critical data */ 804 write_lock_bh(&mrt_lock); 805 v->dev = dev; 806 #ifdef CONFIG_IP_PIMSM 807 if (v->flags & VIFF_REGISTER) 808 mrt->mroute_reg_vif_num = vifi; 809 #endif 810 if (vifi+1 > mrt->maxvif) 811 mrt->maxvif = vifi+1; 812 write_unlock_bh(&mrt_lock); 813 return 0; 814 } 815 816 /* called with rcu_read_lock() */ 817 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 818 __be32 origin, 819 __be32 mcastgrp) 820 { 821 int line = MFC_HASH(mcastgrp, origin); 822 struct mfc_cache *c; 823 824 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) { 825 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp) 826 return c; 827 } 828 return NULL; 829 } 830 831 /* Look for a (*,*,oif) entry */ 832 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt, 833 int vifi) 834 { 835 int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY)); 836 struct mfc_cache *c; 837 838 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) 839 if (c->mfc_origin == htonl(INADDR_ANY) && 840 c->mfc_mcastgrp == htonl(INADDR_ANY) && 841 c->mfc_un.res.ttls[vifi] < 255) 842 return c; 843 844 return NULL; 845 } 846 847 /* Look for a (*,G) entry */ 848 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, 849 __be32 mcastgrp, int vifi) 850 { 851 int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY)); 852 struct mfc_cache *c, *proxy; 853 854 if (mcastgrp == htonl(INADDR_ANY)) 855 goto skip; 856 857 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) 858 if (c->mfc_origin == htonl(INADDR_ANY) && 859 c->mfc_mcastgrp == mcastgrp) { 860 if (c->mfc_un.res.ttls[vifi] < 255) 861 return c; 862 863 /* It's ok if the vifi is part of the static tree */ 864 proxy = ipmr_cache_find_any_parent(mrt, 865 c->mfc_parent); 866 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255) 867 return c; 868 } 869 870 skip: 871 return ipmr_cache_find_any_parent(mrt, vifi); 872 } 873 874 /* 875 * Allocate a multicast cache entry 876 */ 877 static struct mfc_cache *ipmr_cache_alloc(void) 878 { 879 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 880 881 if (c) 882 c->mfc_un.res.minvif = MAXVIFS; 883 return c; 884 } 885 886 static struct mfc_cache *ipmr_cache_alloc_unres(void) 887 { 888 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 889 890 if (c) { 891 skb_queue_head_init(&c->mfc_un.unres.unresolved); 892 c->mfc_un.unres.expires = jiffies + 10*HZ; 893 } 894 return c; 895 } 896 897 /* 898 * A cache entry has gone into a resolved state from queued 899 */ 900 901 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 902 struct mfc_cache *uc, struct mfc_cache *c) 903 { 904 struct sk_buff *skb; 905 struct nlmsgerr *e; 906 907 /* Play the pending entries through our router */ 908 909 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) { 910 if (ip_hdr(skb)->version == 0) { 911 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 912 913 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) { 914 nlh->nlmsg_len = skb_tail_pointer(skb) - 915 (u8 *)nlh; 916 } else { 917 nlh->nlmsg_type = NLMSG_ERROR; 918 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 919 skb_trim(skb, nlh->nlmsg_len); 920 e = nlmsg_data(nlh); 921 e->error = -EMSGSIZE; 922 memset(&e->msg, 0, sizeof(e->msg)); 923 } 924 925 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 926 } else { 927 ip_mr_forward(net, mrt, skb, c, 0); 928 } 929 } 930 } 931 932 /* 933 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted 934 * expects the following bizarre scheme. 935 * 936 * Called under mrt_lock. 937 */ 938 939 static int ipmr_cache_report(struct mr_table *mrt, 940 struct sk_buff *pkt, vifi_t vifi, int assert) 941 { 942 struct sk_buff *skb; 943 const int ihl = ip_hdrlen(pkt); 944 struct igmphdr *igmp; 945 struct igmpmsg *msg; 946 struct sock *mroute_sk; 947 int ret; 948 949 #ifdef CONFIG_IP_PIMSM 950 if (assert == IGMPMSG_WHOLEPKT) 951 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 952 else 953 #endif 954 skb = alloc_skb(128, GFP_ATOMIC); 955 956 if (!skb) 957 return -ENOBUFS; 958 959 #ifdef CONFIG_IP_PIMSM 960 if (assert == IGMPMSG_WHOLEPKT) { 961 /* Ugly, but we have no choice with this interface. 962 * Duplicate old header, fix ihl, length etc. 963 * And all this only to mangle msg->im_msgtype and 964 * to set msg->im_mbz to "mbz" :-) 965 */ 966 skb_push(skb, sizeof(struct iphdr)); 967 skb_reset_network_header(skb); 968 skb_reset_transport_header(skb); 969 msg = (struct igmpmsg *)skb_network_header(skb); 970 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 971 msg->im_msgtype = IGMPMSG_WHOLEPKT; 972 msg->im_mbz = 0; 973 msg->im_vif = mrt->mroute_reg_vif_num; 974 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 975 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 976 sizeof(struct iphdr)); 977 } else 978 #endif 979 { 980 981 /* Copy the IP header */ 982 983 skb_set_network_header(skb, skb->len); 984 skb_put(skb, ihl); 985 skb_copy_to_linear_data(skb, pkt->data, ihl); 986 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */ 987 msg = (struct igmpmsg *)skb_network_header(skb); 988 msg->im_vif = vifi; 989 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 990 991 /* Add our header */ 992 993 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr)); 994 igmp->type = 995 msg->im_msgtype = assert; 996 igmp->code = 0; 997 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 998 skb->transport_header = skb->network_header; 999 } 1000 1001 rcu_read_lock(); 1002 mroute_sk = rcu_dereference(mrt->mroute_sk); 1003 if (mroute_sk == NULL) { 1004 rcu_read_unlock(); 1005 kfree_skb(skb); 1006 return -EINVAL; 1007 } 1008 1009 /* Deliver to mrouted */ 1010 1011 ret = sock_queue_rcv_skb(mroute_sk, skb); 1012 rcu_read_unlock(); 1013 if (ret < 0) { 1014 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 1015 kfree_skb(skb); 1016 } 1017 1018 return ret; 1019 } 1020 1021 /* 1022 * Queue a packet for resolution. It gets locked cache entry! 1023 */ 1024 1025 static int 1026 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb) 1027 { 1028 bool found = false; 1029 int err; 1030 struct mfc_cache *c; 1031 const struct iphdr *iph = ip_hdr(skb); 1032 1033 spin_lock_bh(&mfc_unres_lock); 1034 list_for_each_entry(c, &mrt->mfc_unres_queue, list) { 1035 if (c->mfc_mcastgrp == iph->daddr && 1036 c->mfc_origin == iph->saddr) { 1037 found = true; 1038 break; 1039 } 1040 } 1041 1042 if (!found) { 1043 /* Create a new entry if allowable */ 1044 1045 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 1046 (c = ipmr_cache_alloc_unres()) == NULL) { 1047 spin_unlock_bh(&mfc_unres_lock); 1048 1049 kfree_skb(skb); 1050 return -ENOBUFS; 1051 } 1052 1053 /* Fill in the new cache entry */ 1054 1055 c->mfc_parent = -1; 1056 c->mfc_origin = iph->saddr; 1057 c->mfc_mcastgrp = iph->daddr; 1058 1059 /* Reflect first query at mrouted. */ 1060 1061 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1062 if (err < 0) { 1063 /* If the report failed throw the cache entry 1064 out - Brad Parker 1065 */ 1066 spin_unlock_bh(&mfc_unres_lock); 1067 1068 ipmr_cache_free(c); 1069 kfree_skb(skb); 1070 return err; 1071 } 1072 1073 atomic_inc(&mrt->cache_resolve_queue_len); 1074 list_add(&c->list, &mrt->mfc_unres_queue); 1075 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1076 1077 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1078 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires); 1079 } 1080 1081 /* See if we can append the packet */ 1082 1083 if (c->mfc_un.unres.unresolved.qlen > 3) { 1084 kfree_skb(skb); 1085 err = -ENOBUFS; 1086 } else { 1087 skb_queue_tail(&c->mfc_un.unres.unresolved, skb); 1088 err = 0; 1089 } 1090 1091 spin_unlock_bh(&mfc_unres_lock); 1092 return err; 1093 } 1094 1095 /* 1096 * MFC cache manipulation by user space mroute daemon 1097 */ 1098 1099 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) 1100 { 1101 int line; 1102 struct mfc_cache *c, *next; 1103 1104 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1105 1106 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) { 1107 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1108 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr && 1109 (parent == -1 || parent == c->mfc_parent)) { 1110 list_del_rcu(&c->list); 1111 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1112 ipmr_cache_free(c); 1113 return 0; 1114 } 1115 } 1116 return -ENOENT; 1117 } 1118 1119 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1120 struct mfcctl *mfc, int mrtsock, int parent) 1121 { 1122 bool found = false; 1123 int line; 1124 struct mfc_cache *uc, *c; 1125 1126 if (mfc->mfcc_parent >= MAXVIFS) 1127 return -ENFILE; 1128 1129 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1130 1131 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) { 1132 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1133 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr && 1134 (parent == -1 || parent == c->mfc_parent)) { 1135 found = true; 1136 break; 1137 } 1138 } 1139 1140 if (found) { 1141 write_lock_bh(&mrt_lock); 1142 c->mfc_parent = mfc->mfcc_parent; 1143 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1144 if (!mrtsock) 1145 c->mfc_flags |= MFC_STATIC; 1146 write_unlock_bh(&mrt_lock); 1147 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1148 return 0; 1149 } 1150 1151 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && 1152 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1153 return -EINVAL; 1154 1155 c = ipmr_cache_alloc(); 1156 if (c == NULL) 1157 return -ENOMEM; 1158 1159 c->mfc_origin = mfc->mfcc_origin.s_addr; 1160 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1161 c->mfc_parent = mfc->mfcc_parent; 1162 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1163 if (!mrtsock) 1164 c->mfc_flags |= MFC_STATIC; 1165 1166 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]); 1167 1168 /* 1169 * Check to see if we resolved a queued list. If so we 1170 * need to send on the frames and tidy up. 1171 */ 1172 found = false; 1173 spin_lock_bh(&mfc_unres_lock); 1174 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) { 1175 if (uc->mfc_origin == c->mfc_origin && 1176 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1177 list_del(&uc->list); 1178 atomic_dec(&mrt->cache_resolve_queue_len); 1179 found = true; 1180 break; 1181 } 1182 } 1183 if (list_empty(&mrt->mfc_unres_queue)) 1184 del_timer(&mrt->ipmr_expire_timer); 1185 spin_unlock_bh(&mfc_unres_lock); 1186 1187 if (found) { 1188 ipmr_cache_resolve(net, mrt, uc, c); 1189 ipmr_cache_free(uc); 1190 } 1191 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1192 return 0; 1193 } 1194 1195 /* 1196 * Close the multicast socket, and clear the vif tables etc 1197 */ 1198 1199 static void mroute_clean_tables(struct mr_table *mrt) 1200 { 1201 int i; 1202 LIST_HEAD(list); 1203 struct mfc_cache *c, *next; 1204 1205 /* Shut down all active vif entries */ 1206 1207 for (i = 0; i < mrt->maxvif; i++) { 1208 if (!(mrt->vif_table[i].flags & VIFF_STATIC)) 1209 vif_delete(mrt, i, 0, &list); 1210 } 1211 unregister_netdevice_many(&list); 1212 1213 /* Wipe the cache */ 1214 1215 for (i = 0; i < MFC_LINES; i++) { 1216 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) { 1217 if (c->mfc_flags & MFC_STATIC) 1218 continue; 1219 list_del_rcu(&c->list); 1220 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1221 ipmr_cache_free(c); 1222 } 1223 } 1224 1225 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1226 spin_lock_bh(&mfc_unres_lock); 1227 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 1228 list_del(&c->list); 1229 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1230 ipmr_destroy_unres(mrt, c); 1231 } 1232 spin_unlock_bh(&mfc_unres_lock); 1233 } 1234 } 1235 1236 /* called from ip_ra_control(), before an RCU grace period, 1237 * we dont need to call synchronize_rcu() here 1238 */ 1239 static void mrtsock_destruct(struct sock *sk) 1240 { 1241 struct net *net = sock_net(sk); 1242 struct mr_table *mrt; 1243 1244 rtnl_lock(); 1245 ipmr_for_each_table(mrt, net) { 1246 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1247 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1248 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, 1249 NETCONFA_IFINDEX_ALL, 1250 net->ipv4.devconf_all); 1251 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1252 mroute_clean_tables(mrt); 1253 } 1254 } 1255 rtnl_unlock(); 1256 } 1257 1258 /* 1259 * Socket options and virtual interface manipulation. The whole 1260 * virtual interface system is a complete heap, but unfortunately 1261 * that's how BSD mrouted happens to think. Maybe one day with a proper 1262 * MOSPF/PIM router set up we can clean this up. 1263 */ 1264 1265 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen) 1266 { 1267 int ret, parent = 0; 1268 struct vifctl vif; 1269 struct mfcctl mfc; 1270 struct net *net = sock_net(sk); 1271 struct mr_table *mrt; 1272 1273 if (sk->sk_type != SOCK_RAW || 1274 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1275 return -EOPNOTSUPP; 1276 1277 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1278 if (mrt == NULL) 1279 return -ENOENT; 1280 1281 if (optname != MRT_INIT) { 1282 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1283 !ns_capable(net->user_ns, CAP_NET_ADMIN)) 1284 return -EACCES; 1285 } 1286 1287 switch (optname) { 1288 case MRT_INIT: 1289 if (optlen != sizeof(int)) 1290 return -EINVAL; 1291 1292 rtnl_lock(); 1293 if (rtnl_dereference(mrt->mroute_sk)) { 1294 rtnl_unlock(); 1295 return -EADDRINUSE; 1296 } 1297 1298 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1299 if (ret == 0) { 1300 rcu_assign_pointer(mrt->mroute_sk, sk); 1301 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1302 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, 1303 NETCONFA_IFINDEX_ALL, 1304 net->ipv4.devconf_all); 1305 } 1306 rtnl_unlock(); 1307 return ret; 1308 case MRT_DONE: 1309 if (sk != rcu_access_pointer(mrt->mroute_sk)) 1310 return -EACCES; 1311 return ip_ra_control(sk, 0, NULL); 1312 case MRT_ADD_VIF: 1313 case MRT_DEL_VIF: 1314 if (optlen != sizeof(vif)) 1315 return -EINVAL; 1316 if (copy_from_user(&vif, optval, sizeof(vif))) 1317 return -EFAULT; 1318 if (vif.vifc_vifi >= MAXVIFS) 1319 return -ENFILE; 1320 rtnl_lock(); 1321 if (optname == MRT_ADD_VIF) { 1322 ret = vif_add(net, mrt, &vif, 1323 sk == rtnl_dereference(mrt->mroute_sk)); 1324 } else { 1325 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1326 } 1327 rtnl_unlock(); 1328 return ret; 1329 1330 /* 1331 * Manipulate the forwarding caches. These live 1332 * in a sort of kernel/user symbiosis. 1333 */ 1334 case MRT_ADD_MFC: 1335 case MRT_DEL_MFC: 1336 parent = -1; 1337 case MRT_ADD_MFC_PROXY: 1338 case MRT_DEL_MFC_PROXY: 1339 if (optlen != sizeof(mfc)) 1340 return -EINVAL; 1341 if (copy_from_user(&mfc, optval, sizeof(mfc))) 1342 return -EFAULT; 1343 if (parent == 0) 1344 parent = mfc.mfcc_parent; 1345 rtnl_lock(); 1346 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) 1347 ret = ipmr_mfc_delete(mrt, &mfc, parent); 1348 else 1349 ret = ipmr_mfc_add(net, mrt, &mfc, 1350 sk == rtnl_dereference(mrt->mroute_sk), 1351 parent); 1352 rtnl_unlock(); 1353 return ret; 1354 /* 1355 * Control PIM assert. 1356 */ 1357 case MRT_ASSERT: 1358 { 1359 int v; 1360 if (optlen != sizeof(v)) 1361 return -EINVAL; 1362 if (get_user(v, (int __user *)optval)) 1363 return -EFAULT; 1364 mrt->mroute_do_assert = v; 1365 return 0; 1366 } 1367 #ifdef CONFIG_IP_PIMSM 1368 case MRT_PIM: 1369 { 1370 int v; 1371 1372 if (optlen != sizeof(v)) 1373 return -EINVAL; 1374 if (get_user(v, (int __user *)optval)) 1375 return -EFAULT; 1376 v = !!v; 1377 1378 rtnl_lock(); 1379 ret = 0; 1380 if (v != mrt->mroute_do_pim) { 1381 mrt->mroute_do_pim = v; 1382 mrt->mroute_do_assert = v; 1383 } 1384 rtnl_unlock(); 1385 return ret; 1386 } 1387 #endif 1388 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 1389 case MRT_TABLE: 1390 { 1391 u32 v; 1392 1393 if (optlen != sizeof(u32)) 1394 return -EINVAL; 1395 if (get_user(v, (u32 __user *)optval)) 1396 return -EFAULT; 1397 1398 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ 1399 if (v != RT_TABLE_DEFAULT && v >= 1000000000) 1400 return -EINVAL; 1401 1402 rtnl_lock(); 1403 ret = 0; 1404 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1405 ret = -EBUSY; 1406 } else { 1407 if (!ipmr_new_table(net, v)) 1408 ret = -ENOMEM; 1409 else 1410 raw_sk(sk)->ipmr_table = v; 1411 } 1412 rtnl_unlock(); 1413 return ret; 1414 } 1415 #endif 1416 /* 1417 * Spurious command, or MRT_VERSION which you cannot 1418 * set. 1419 */ 1420 default: 1421 return -ENOPROTOOPT; 1422 } 1423 } 1424 1425 /* 1426 * Getsock opt support for the multicast routing system. 1427 */ 1428 1429 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) 1430 { 1431 int olr; 1432 int val; 1433 struct net *net = sock_net(sk); 1434 struct mr_table *mrt; 1435 1436 if (sk->sk_type != SOCK_RAW || 1437 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1438 return -EOPNOTSUPP; 1439 1440 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1441 if (mrt == NULL) 1442 return -ENOENT; 1443 1444 if (optname != MRT_VERSION && 1445 #ifdef CONFIG_IP_PIMSM 1446 optname != MRT_PIM && 1447 #endif 1448 optname != MRT_ASSERT) 1449 return -ENOPROTOOPT; 1450 1451 if (get_user(olr, optlen)) 1452 return -EFAULT; 1453 1454 olr = min_t(unsigned int, olr, sizeof(int)); 1455 if (olr < 0) 1456 return -EINVAL; 1457 1458 if (put_user(olr, optlen)) 1459 return -EFAULT; 1460 if (optname == MRT_VERSION) 1461 val = 0x0305; 1462 #ifdef CONFIG_IP_PIMSM 1463 else if (optname == MRT_PIM) 1464 val = mrt->mroute_do_pim; 1465 #endif 1466 else 1467 val = mrt->mroute_do_assert; 1468 if (copy_to_user(optval, &val, olr)) 1469 return -EFAULT; 1470 return 0; 1471 } 1472 1473 /* 1474 * The IP multicast ioctl support routines. 1475 */ 1476 1477 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) 1478 { 1479 struct sioc_sg_req sr; 1480 struct sioc_vif_req vr; 1481 struct vif_device *vif; 1482 struct mfc_cache *c; 1483 struct net *net = sock_net(sk); 1484 struct mr_table *mrt; 1485 1486 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1487 if (mrt == NULL) 1488 return -ENOENT; 1489 1490 switch (cmd) { 1491 case SIOCGETVIFCNT: 1492 if (copy_from_user(&vr, arg, sizeof(vr))) 1493 return -EFAULT; 1494 if (vr.vifi >= mrt->maxvif) 1495 return -EINVAL; 1496 read_lock(&mrt_lock); 1497 vif = &mrt->vif_table[vr.vifi]; 1498 if (VIF_EXISTS(mrt, vr.vifi)) { 1499 vr.icount = vif->pkt_in; 1500 vr.ocount = vif->pkt_out; 1501 vr.ibytes = vif->bytes_in; 1502 vr.obytes = vif->bytes_out; 1503 read_unlock(&mrt_lock); 1504 1505 if (copy_to_user(arg, &vr, sizeof(vr))) 1506 return -EFAULT; 1507 return 0; 1508 } 1509 read_unlock(&mrt_lock); 1510 return -EADDRNOTAVAIL; 1511 case SIOCGETSGCNT: 1512 if (copy_from_user(&sr, arg, sizeof(sr))) 1513 return -EFAULT; 1514 1515 rcu_read_lock(); 1516 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1517 if (c) { 1518 sr.pktcnt = c->mfc_un.res.pkt; 1519 sr.bytecnt = c->mfc_un.res.bytes; 1520 sr.wrong_if = c->mfc_un.res.wrong_if; 1521 rcu_read_unlock(); 1522 1523 if (copy_to_user(arg, &sr, sizeof(sr))) 1524 return -EFAULT; 1525 return 0; 1526 } 1527 rcu_read_unlock(); 1528 return -EADDRNOTAVAIL; 1529 default: 1530 return -ENOIOCTLCMD; 1531 } 1532 } 1533 1534 #ifdef CONFIG_COMPAT 1535 struct compat_sioc_sg_req { 1536 struct in_addr src; 1537 struct in_addr grp; 1538 compat_ulong_t pktcnt; 1539 compat_ulong_t bytecnt; 1540 compat_ulong_t wrong_if; 1541 }; 1542 1543 struct compat_sioc_vif_req { 1544 vifi_t vifi; /* Which iface */ 1545 compat_ulong_t icount; 1546 compat_ulong_t ocount; 1547 compat_ulong_t ibytes; 1548 compat_ulong_t obytes; 1549 }; 1550 1551 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1552 { 1553 struct compat_sioc_sg_req sr; 1554 struct compat_sioc_vif_req vr; 1555 struct vif_device *vif; 1556 struct mfc_cache *c; 1557 struct net *net = sock_net(sk); 1558 struct mr_table *mrt; 1559 1560 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1561 if (mrt == NULL) 1562 return -ENOENT; 1563 1564 switch (cmd) { 1565 case SIOCGETVIFCNT: 1566 if (copy_from_user(&vr, arg, sizeof(vr))) 1567 return -EFAULT; 1568 if (vr.vifi >= mrt->maxvif) 1569 return -EINVAL; 1570 read_lock(&mrt_lock); 1571 vif = &mrt->vif_table[vr.vifi]; 1572 if (VIF_EXISTS(mrt, vr.vifi)) { 1573 vr.icount = vif->pkt_in; 1574 vr.ocount = vif->pkt_out; 1575 vr.ibytes = vif->bytes_in; 1576 vr.obytes = vif->bytes_out; 1577 read_unlock(&mrt_lock); 1578 1579 if (copy_to_user(arg, &vr, sizeof(vr))) 1580 return -EFAULT; 1581 return 0; 1582 } 1583 read_unlock(&mrt_lock); 1584 return -EADDRNOTAVAIL; 1585 case SIOCGETSGCNT: 1586 if (copy_from_user(&sr, arg, sizeof(sr))) 1587 return -EFAULT; 1588 1589 rcu_read_lock(); 1590 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1591 if (c) { 1592 sr.pktcnt = c->mfc_un.res.pkt; 1593 sr.bytecnt = c->mfc_un.res.bytes; 1594 sr.wrong_if = c->mfc_un.res.wrong_if; 1595 rcu_read_unlock(); 1596 1597 if (copy_to_user(arg, &sr, sizeof(sr))) 1598 return -EFAULT; 1599 return 0; 1600 } 1601 rcu_read_unlock(); 1602 return -EADDRNOTAVAIL; 1603 default: 1604 return -ENOIOCTLCMD; 1605 } 1606 } 1607 #endif 1608 1609 1610 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1611 { 1612 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1613 struct net *net = dev_net(dev); 1614 struct mr_table *mrt; 1615 struct vif_device *v; 1616 int ct; 1617 1618 if (event != NETDEV_UNREGISTER) 1619 return NOTIFY_DONE; 1620 1621 ipmr_for_each_table(mrt, net) { 1622 v = &mrt->vif_table[0]; 1623 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1624 if (v->dev == dev) 1625 vif_delete(mrt, ct, 1, NULL); 1626 } 1627 } 1628 return NOTIFY_DONE; 1629 } 1630 1631 1632 static struct notifier_block ip_mr_notifier = { 1633 .notifier_call = ipmr_device_event, 1634 }; 1635 1636 /* 1637 * Encapsulate a packet by attaching a valid IPIP header to it. 1638 * This avoids tunnel drivers and other mess and gives us the speed so 1639 * important for multicast video. 1640 */ 1641 1642 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr) 1643 { 1644 struct iphdr *iph; 1645 const struct iphdr *old_iph = ip_hdr(skb); 1646 1647 skb_push(skb, sizeof(struct iphdr)); 1648 skb->transport_header = skb->network_header; 1649 skb_reset_network_header(skb); 1650 iph = ip_hdr(skb); 1651 1652 iph->version = 4; 1653 iph->tos = old_iph->tos; 1654 iph->ttl = old_iph->ttl; 1655 iph->frag_off = 0; 1656 iph->daddr = daddr; 1657 iph->saddr = saddr; 1658 iph->protocol = IPPROTO_IPIP; 1659 iph->ihl = 5; 1660 iph->tot_len = htons(skb->len); 1661 ip_select_ident(iph, skb_dst(skb), NULL); 1662 ip_send_check(iph); 1663 1664 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1665 nf_reset(skb); 1666 } 1667 1668 static inline int ipmr_forward_finish(struct sk_buff *skb) 1669 { 1670 struct ip_options *opt = &(IPCB(skb)->opt); 1671 1672 IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS); 1673 IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len); 1674 1675 if (unlikely(opt->optlen)) 1676 ip_forward_options(skb); 1677 1678 return dst_output(skb); 1679 } 1680 1681 /* 1682 * Processing handlers for ipmr_forward 1683 */ 1684 1685 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1686 struct sk_buff *skb, struct mfc_cache *c, int vifi) 1687 { 1688 const struct iphdr *iph = ip_hdr(skb); 1689 struct vif_device *vif = &mrt->vif_table[vifi]; 1690 struct net_device *dev; 1691 struct rtable *rt; 1692 struct flowi4 fl4; 1693 int encap = 0; 1694 1695 if (vif->dev == NULL) 1696 goto out_free; 1697 1698 #ifdef CONFIG_IP_PIMSM 1699 if (vif->flags & VIFF_REGISTER) { 1700 vif->pkt_out++; 1701 vif->bytes_out += skb->len; 1702 vif->dev->stats.tx_bytes += skb->len; 1703 vif->dev->stats.tx_packets++; 1704 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1705 goto out_free; 1706 } 1707 #endif 1708 1709 if (vif->flags & VIFF_TUNNEL) { 1710 rt = ip_route_output_ports(net, &fl4, NULL, 1711 vif->remote, vif->local, 1712 0, 0, 1713 IPPROTO_IPIP, 1714 RT_TOS(iph->tos), vif->link); 1715 if (IS_ERR(rt)) 1716 goto out_free; 1717 encap = sizeof(struct iphdr); 1718 } else { 1719 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1720 0, 0, 1721 IPPROTO_IPIP, 1722 RT_TOS(iph->tos), vif->link); 1723 if (IS_ERR(rt)) 1724 goto out_free; 1725 } 1726 1727 dev = rt->dst.dev; 1728 1729 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1730 /* Do not fragment multicasts. Alas, IPv4 does not 1731 * allow to send ICMP, so that packets will disappear 1732 * to blackhole. 1733 */ 1734 1735 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS); 1736 ip_rt_put(rt); 1737 goto out_free; 1738 } 1739 1740 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1741 1742 if (skb_cow(skb, encap)) { 1743 ip_rt_put(rt); 1744 goto out_free; 1745 } 1746 1747 vif->pkt_out++; 1748 vif->bytes_out += skb->len; 1749 1750 skb_dst_drop(skb); 1751 skb_dst_set(skb, &rt->dst); 1752 ip_decrease_ttl(ip_hdr(skb)); 1753 1754 /* FIXME: forward and output firewalls used to be called here. 1755 * What do we do with netfilter? -- RR 1756 */ 1757 if (vif->flags & VIFF_TUNNEL) { 1758 ip_encap(skb, vif->local, vif->remote); 1759 /* FIXME: extra output firewall step used to be here. --RR */ 1760 vif->dev->stats.tx_packets++; 1761 vif->dev->stats.tx_bytes += skb->len; 1762 } 1763 1764 IPCB(skb)->flags |= IPSKB_FORWARDED; 1765 1766 /* 1767 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1768 * not only before forwarding, but after forwarding on all output 1769 * interfaces. It is clear, if mrouter runs a multicasting 1770 * program, it should receive packets not depending to what interface 1771 * program is joined. 1772 * If we will not make it, the program will have to join on all 1773 * interfaces. On the other hand, multihoming host (or router, but 1774 * not mrouter) cannot join to more than one interface - it will 1775 * result in receiving multiple packets. 1776 */ 1777 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev, 1778 ipmr_forward_finish); 1779 return; 1780 1781 out_free: 1782 kfree_skb(skb); 1783 } 1784 1785 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev) 1786 { 1787 int ct; 1788 1789 for (ct = mrt->maxvif-1; ct >= 0; ct--) { 1790 if (mrt->vif_table[ct].dev == dev) 1791 break; 1792 } 1793 return ct; 1794 } 1795 1796 /* "local" means that we should preserve one skb (for local delivery) */ 1797 1798 static int ip_mr_forward(struct net *net, struct mr_table *mrt, 1799 struct sk_buff *skb, struct mfc_cache *cache, 1800 int local) 1801 { 1802 int psend = -1; 1803 int vif, ct; 1804 int true_vifi = ipmr_find_vif(mrt, skb->dev); 1805 1806 vif = cache->mfc_parent; 1807 cache->mfc_un.res.pkt++; 1808 cache->mfc_un.res.bytes += skb->len; 1809 1810 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { 1811 struct mfc_cache *cache_proxy; 1812 1813 /* For an (*,G) entry, we only check that the incomming 1814 * interface is part of the static tree. 1815 */ 1816 cache_proxy = ipmr_cache_find_any_parent(mrt, vif); 1817 if (cache_proxy && 1818 cache_proxy->mfc_un.res.ttls[true_vifi] < 255) 1819 goto forward; 1820 } 1821 1822 /* 1823 * Wrong interface: drop packet and (maybe) send PIM assert. 1824 */ 1825 if (mrt->vif_table[vif].dev != skb->dev) { 1826 if (rt_is_output_route(skb_rtable(skb))) { 1827 /* It is our own packet, looped back. 1828 * Very complicated situation... 1829 * 1830 * The best workaround until routing daemons will be 1831 * fixed is not to redistribute packet, if it was 1832 * send through wrong interface. It means, that 1833 * multicast applications WILL NOT work for 1834 * (S,G), which have default multicast route pointing 1835 * to wrong oif. In any case, it is not a good 1836 * idea to use multicasting applications on router. 1837 */ 1838 goto dont_forward; 1839 } 1840 1841 cache->mfc_un.res.wrong_if++; 1842 1843 if (true_vifi >= 0 && mrt->mroute_do_assert && 1844 /* pimsm uses asserts, when switching from RPT to SPT, 1845 * so that we cannot check that packet arrived on an oif. 1846 * It is bad, but otherwise we would need to move pretty 1847 * large chunk of pimd to kernel. Ough... --ANK 1848 */ 1849 (mrt->mroute_do_pim || 1850 cache->mfc_un.res.ttls[true_vifi] < 255) && 1851 time_after(jiffies, 1852 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) { 1853 cache->mfc_un.res.last_assert = jiffies; 1854 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 1855 } 1856 goto dont_forward; 1857 } 1858 1859 forward: 1860 mrt->vif_table[vif].pkt_in++; 1861 mrt->vif_table[vif].bytes_in += skb->len; 1862 1863 /* 1864 * Forward the frame 1865 */ 1866 if (cache->mfc_origin == htonl(INADDR_ANY) && 1867 cache->mfc_mcastgrp == htonl(INADDR_ANY)) { 1868 if (true_vifi >= 0 && 1869 true_vifi != cache->mfc_parent && 1870 ip_hdr(skb)->ttl > 1871 cache->mfc_un.res.ttls[cache->mfc_parent]) { 1872 /* It's an (*,*) entry and the packet is not coming from 1873 * the upstream: forward the packet to the upstream 1874 * only. 1875 */ 1876 psend = cache->mfc_parent; 1877 goto last_forward; 1878 } 1879 goto dont_forward; 1880 } 1881 for (ct = cache->mfc_un.res.maxvif - 1; 1882 ct >= cache->mfc_un.res.minvif; ct--) { 1883 /* For (*,G) entry, don't forward to the incoming interface */ 1884 if ((cache->mfc_origin != htonl(INADDR_ANY) || 1885 ct != true_vifi) && 1886 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) { 1887 if (psend != -1) { 1888 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1889 1890 if (skb2) 1891 ipmr_queue_xmit(net, mrt, skb2, cache, 1892 psend); 1893 } 1894 psend = ct; 1895 } 1896 } 1897 last_forward: 1898 if (psend != -1) { 1899 if (local) { 1900 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1901 1902 if (skb2) 1903 ipmr_queue_xmit(net, mrt, skb2, cache, psend); 1904 } else { 1905 ipmr_queue_xmit(net, mrt, skb, cache, psend); 1906 return 0; 1907 } 1908 } 1909 1910 dont_forward: 1911 if (!local) 1912 kfree_skb(skb); 1913 return 0; 1914 } 1915 1916 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 1917 { 1918 struct rtable *rt = skb_rtable(skb); 1919 struct iphdr *iph = ip_hdr(skb); 1920 struct flowi4 fl4 = { 1921 .daddr = iph->daddr, 1922 .saddr = iph->saddr, 1923 .flowi4_tos = RT_TOS(iph->tos), 1924 .flowi4_oif = (rt_is_output_route(rt) ? 1925 skb->dev->ifindex : 0), 1926 .flowi4_iif = (rt_is_output_route(rt) ? 1927 LOOPBACK_IFINDEX : 1928 skb->dev->ifindex), 1929 .flowi4_mark = skb->mark, 1930 }; 1931 struct mr_table *mrt; 1932 int err; 1933 1934 err = ipmr_fib_lookup(net, &fl4, &mrt); 1935 if (err) 1936 return ERR_PTR(err); 1937 return mrt; 1938 } 1939 1940 /* 1941 * Multicast packets for forwarding arrive here 1942 * Called with rcu_read_lock(); 1943 */ 1944 1945 int ip_mr_input(struct sk_buff *skb) 1946 { 1947 struct mfc_cache *cache; 1948 struct net *net = dev_net(skb->dev); 1949 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 1950 struct mr_table *mrt; 1951 1952 /* Packet is looped back after forward, it should not be 1953 * forwarded second time, but still can be delivered locally. 1954 */ 1955 if (IPCB(skb)->flags & IPSKB_FORWARDED) 1956 goto dont_forward; 1957 1958 mrt = ipmr_rt_fib_lookup(net, skb); 1959 if (IS_ERR(mrt)) { 1960 kfree_skb(skb); 1961 return PTR_ERR(mrt); 1962 } 1963 if (!local) { 1964 if (IPCB(skb)->opt.router_alert) { 1965 if (ip_call_ra_chain(skb)) 1966 return 0; 1967 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 1968 /* IGMPv1 (and broken IGMPv2 implementations sort of 1969 * Cisco IOS <= 11.2(8)) do not put router alert 1970 * option to IGMP packets destined to routable 1971 * groups. It is very bad, because it means 1972 * that we can forward NO IGMP messages. 1973 */ 1974 struct sock *mroute_sk; 1975 1976 mroute_sk = rcu_dereference(mrt->mroute_sk); 1977 if (mroute_sk) { 1978 nf_reset(skb); 1979 raw_rcv(mroute_sk, skb); 1980 return 0; 1981 } 1982 } 1983 } 1984 1985 /* already under rcu_read_lock() */ 1986 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 1987 if (cache == NULL) { 1988 int vif = ipmr_find_vif(mrt, skb->dev); 1989 1990 if (vif >= 0) 1991 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 1992 vif); 1993 } 1994 1995 /* 1996 * No usable cache entry 1997 */ 1998 if (cache == NULL) { 1999 int vif; 2000 2001 if (local) { 2002 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2003 ip_local_deliver(skb); 2004 if (skb2 == NULL) 2005 return -ENOBUFS; 2006 skb = skb2; 2007 } 2008 2009 read_lock(&mrt_lock); 2010 vif = ipmr_find_vif(mrt, skb->dev); 2011 if (vif >= 0) { 2012 int err2 = ipmr_cache_unresolved(mrt, vif, skb); 2013 read_unlock(&mrt_lock); 2014 2015 return err2; 2016 } 2017 read_unlock(&mrt_lock); 2018 kfree_skb(skb); 2019 return -ENODEV; 2020 } 2021 2022 read_lock(&mrt_lock); 2023 ip_mr_forward(net, mrt, skb, cache, local); 2024 read_unlock(&mrt_lock); 2025 2026 if (local) 2027 return ip_local_deliver(skb); 2028 2029 return 0; 2030 2031 dont_forward: 2032 if (local) 2033 return ip_local_deliver(skb); 2034 kfree_skb(skb); 2035 return 0; 2036 } 2037 2038 #ifdef CONFIG_IP_PIMSM 2039 /* called with rcu_read_lock() */ 2040 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 2041 unsigned int pimlen) 2042 { 2043 struct net_device *reg_dev = NULL; 2044 struct iphdr *encap; 2045 2046 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 2047 /* 2048 * Check that: 2049 * a. packet is really sent to a multicast group 2050 * b. packet is not a NULL-REGISTER 2051 * c. packet is not truncated 2052 */ 2053 if (!ipv4_is_multicast(encap->daddr) || 2054 encap->tot_len == 0 || 2055 ntohs(encap->tot_len) + pimlen > skb->len) 2056 return 1; 2057 2058 read_lock(&mrt_lock); 2059 if (mrt->mroute_reg_vif_num >= 0) 2060 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev; 2061 read_unlock(&mrt_lock); 2062 2063 if (reg_dev == NULL) 2064 return 1; 2065 2066 skb->mac_header = skb->network_header; 2067 skb_pull(skb, (u8 *)encap - skb->data); 2068 skb_reset_network_header(skb); 2069 skb->protocol = htons(ETH_P_IP); 2070 skb->ip_summed = CHECKSUM_NONE; 2071 skb->pkt_type = PACKET_HOST; 2072 2073 skb_tunnel_rx(skb, reg_dev); 2074 2075 netif_rx(skb); 2076 2077 return NET_RX_SUCCESS; 2078 } 2079 #endif 2080 2081 #ifdef CONFIG_IP_PIMSM_V1 2082 /* 2083 * Handle IGMP messages of PIMv1 2084 */ 2085 2086 int pim_rcv_v1(struct sk_buff *skb) 2087 { 2088 struct igmphdr *pim; 2089 struct net *net = dev_net(skb->dev); 2090 struct mr_table *mrt; 2091 2092 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2093 goto drop; 2094 2095 pim = igmp_hdr(skb); 2096 2097 mrt = ipmr_rt_fib_lookup(net, skb); 2098 if (IS_ERR(mrt)) 2099 goto drop; 2100 if (!mrt->mroute_do_pim || 2101 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 2102 goto drop; 2103 2104 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2105 drop: 2106 kfree_skb(skb); 2107 } 2108 return 0; 2109 } 2110 #endif 2111 2112 #ifdef CONFIG_IP_PIMSM_V2 2113 static int pim_rcv(struct sk_buff *skb) 2114 { 2115 struct pimreghdr *pim; 2116 struct net *net = dev_net(skb->dev); 2117 struct mr_table *mrt; 2118 2119 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2120 goto drop; 2121 2122 pim = (struct pimreghdr *)skb_transport_header(skb); 2123 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) || 2124 (pim->flags & PIM_NULL_REGISTER) || 2125 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 2126 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 2127 goto drop; 2128 2129 mrt = ipmr_rt_fib_lookup(net, skb); 2130 if (IS_ERR(mrt)) 2131 goto drop; 2132 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2133 drop: 2134 kfree_skb(skb); 2135 } 2136 return 0; 2137 } 2138 #endif 2139 2140 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2141 struct mfc_cache *c, struct rtmsg *rtm) 2142 { 2143 int ct; 2144 struct rtnexthop *nhp; 2145 struct nlattr *mp_attr; 2146 struct rta_mfc_stats mfcs; 2147 2148 /* If cache is unresolved, don't try to parse IIF and OIF */ 2149 if (c->mfc_parent >= MAXVIFS) 2150 return -ENOENT; 2151 2152 if (VIF_EXISTS(mrt, c->mfc_parent) && 2153 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0) 2154 return -EMSGSIZE; 2155 2156 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH))) 2157 return -EMSGSIZE; 2158 2159 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) { 2160 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) { 2161 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) { 2162 nla_nest_cancel(skb, mp_attr); 2163 return -EMSGSIZE; 2164 } 2165 2166 nhp->rtnh_flags = 0; 2167 nhp->rtnh_hops = c->mfc_un.res.ttls[ct]; 2168 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex; 2169 nhp->rtnh_len = sizeof(*nhp); 2170 } 2171 } 2172 2173 nla_nest_end(skb, mp_attr); 2174 2175 mfcs.mfcs_packets = c->mfc_un.res.pkt; 2176 mfcs.mfcs_bytes = c->mfc_un.res.bytes; 2177 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if; 2178 if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0) 2179 return -EMSGSIZE; 2180 2181 rtm->rtm_type = RTN_MULTICAST; 2182 return 1; 2183 } 2184 2185 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2186 __be32 saddr, __be32 daddr, 2187 struct rtmsg *rtm, int nowait) 2188 { 2189 struct mfc_cache *cache; 2190 struct mr_table *mrt; 2191 int err; 2192 2193 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2194 if (mrt == NULL) 2195 return -ENOENT; 2196 2197 rcu_read_lock(); 2198 cache = ipmr_cache_find(mrt, saddr, daddr); 2199 if (cache == NULL && skb->dev) { 2200 int vif = ipmr_find_vif(mrt, skb->dev); 2201 2202 if (vif >= 0) 2203 cache = ipmr_cache_find_any(mrt, daddr, vif); 2204 } 2205 if (cache == NULL) { 2206 struct sk_buff *skb2; 2207 struct iphdr *iph; 2208 struct net_device *dev; 2209 int vif = -1; 2210 2211 if (nowait) { 2212 rcu_read_unlock(); 2213 return -EAGAIN; 2214 } 2215 2216 dev = skb->dev; 2217 read_lock(&mrt_lock); 2218 if (dev) 2219 vif = ipmr_find_vif(mrt, dev); 2220 if (vif < 0) { 2221 read_unlock(&mrt_lock); 2222 rcu_read_unlock(); 2223 return -ENODEV; 2224 } 2225 skb2 = skb_clone(skb, GFP_ATOMIC); 2226 if (!skb2) { 2227 read_unlock(&mrt_lock); 2228 rcu_read_unlock(); 2229 return -ENOMEM; 2230 } 2231 2232 skb_push(skb2, sizeof(struct iphdr)); 2233 skb_reset_network_header(skb2); 2234 iph = ip_hdr(skb2); 2235 iph->ihl = sizeof(struct iphdr) >> 2; 2236 iph->saddr = saddr; 2237 iph->daddr = daddr; 2238 iph->version = 0; 2239 err = ipmr_cache_unresolved(mrt, vif, skb2); 2240 read_unlock(&mrt_lock); 2241 rcu_read_unlock(); 2242 return err; 2243 } 2244 2245 read_lock(&mrt_lock); 2246 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY)) 2247 cache->mfc_flags |= MFC_NOTIFY; 2248 err = __ipmr_fill_mroute(mrt, skb, cache, rtm); 2249 read_unlock(&mrt_lock); 2250 rcu_read_unlock(); 2251 return err; 2252 } 2253 2254 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2255 u32 portid, u32 seq, struct mfc_cache *c, int cmd) 2256 { 2257 struct nlmsghdr *nlh; 2258 struct rtmsg *rtm; 2259 int err; 2260 2261 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), NLM_F_MULTI); 2262 if (nlh == NULL) 2263 return -EMSGSIZE; 2264 2265 rtm = nlmsg_data(nlh); 2266 rtm->rtm_family = RTNL_FAMILY_IPMR; 2267 rtm->rtm_dst_len = 32; 2268 rtm->rtm_src_len = 32; 2269 rtm->rtm_tos = 0; 2270 rtm->rtm_table = mrt->id; 2271 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2272 goto nla_put_failure; 2273 rtm->rtm_type = RTN_MULTICAST; 2274 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2275 if (c->mfc_flags & MFC_STATIC) 2276 rtm->rtm_protocol = RTPROT_STATIC; 2277 else 2278 rtm->rtm_protocol = RTPROT_MROUTED; 2279 rtm->rtm_flags = 0; 2280 2281 if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) || 2282 nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp)) 2283 goto nla_put_failure; 2284 err = __ipmr_fill_mroute(mrt, skb, c, rtm); 2285 /* do not break the dump if cache is unresolved */ 2286 if (err < 0 && err != -ENOENT) 2287 goto nla_put_failure; 2288 2289 return nlmsg_end(skb, nlh); 2290 2291 nla_put_failure: 2292 nlmsg_cancel(skb, nlh); 2293 return -EMSGSIZE; 2294 } 2295 2296 static size_t mroute_msgsize(bool unresolved, int maxvif) 2297 { 2298 size_t len = 2299 NLMSG_ALIGN(sizeof(struct rtmsg)) 2300 + nla_total_size(4) /* RTA_TABLE */ 2301 + nla_total_size(4) /* RTA_SRC */ 2302 + nla_total_size(4) /* RTA_DST */ 2303 ; 2304 2305 if (!unresolved) 2306 len = len 2307 + nla_total_size(4) /* RTA_IIF */ 2308 + nla_total_size(0) /* RTA_MULTIPATH */ 2309 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2310 /* RTA_MFC_STATS */ 2311 + nla_total_size(sizeof(struct rta_mfc_stats)) 2312 ; 2313 2314 return len; 2315 } 2316 2317 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 2318 int cmd) 2319 { 2320 struct net *net = read_pnet(&mrt->net); 2321 struct sk_buff *skb; 2322 int err = -ENOBUFS; 2323 2324 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif), 2325 GFP_ATOMIC); 2326 if (skb == NULL) 2327 goto errout; 2328 2329 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd); 2330 if (err < 0) 2331 goto errout; 2332 2333 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); 2334 return; 2335 2336 errout: 2337 kfree_skb(skb); 2338 if (err < 0) 2339 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); 2340 } 2341 2342 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2343 { 2344 struct net *net = sock_net(skb->sk); 2345 struct mr_table *mrt; 2346 struct mfc_cache *mfc; 2347 unsigned int t = 0, s_t; 2348 unsigned int h = 0, s_h; 2349 unsigned int e = 0, s_e; 2350 2351 s_t = cb->args[0]; 2352 s_h = cb->args[1]; 2353 s_e = cb->args[2]; 2354 2355 rcu_read_lock(); 2356 ipmr_for_each_table(mrt, net) { 2357 if (t < s_t) 2358 goto next_table; 2359 if (t > s_t) 2360 s_h = 0; 2361 for (h = s_h; h < MFC_LINES; h++) { 2362 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) { 2363 if (e < s_e) 2364 goto next_entry; 2365 if (ipmr_fill_mroute(mrt, skb, 2366 NETLINK_CB(cb->skb).portid, 2367 cb->nlh->nlmsg_seq, 2368 mfc, RTM_NEWROUTE) < 0) 2369 goto done; 2370 next_entry: 2371 e++; 2372 } 2373 e = s_e = 0; 2374 } 2375 spin_lock_bh(&mfc_unres_lock); 2376 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) { 2377 if (e < s_e) 2378 goto next_entry2; 2379 if (ipmr_fill_mroute(mrt, skb, 2380 NETLINK_CB(cb->skb).portid, 2381 cb->nlh->nlmsg_seq, 2382 mfc, RTM_NEWROUTE) < 0) { 2383 spin_unlock_bh(&mfc_unres_lock); 2384 goto done; 2385 } 2386 next_entry2: 2387 e++; 2388 } 2389 spin_unlock_bh(&mfc_unres_lock); 2390 e = s_e = 0; 2391 s_h = 0; 2392 next_table: 2393 t++; 2394 } 2395 done: 2396 rcu_read_unlock(); 2397 2398 cb->args[2] = e; 2399 cb->args[1] = h; 2400 cb->args[0] = t; 2401 2402 return skb->len; 2403 } 2404 2405 #ifdef CONFIG_PROC_FS 2406 /* 2407 * The /proc interfaces to multicast routing : 2408 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2409 */ 2410 struct ipmr_vif_iter { 2411 struct seq_net_private p; 2412 struct mr_table *mrt; 2413 int ct; 2414 }; 2415 2416 static struct vif_device *ipmr_vif_seq_idx(struct net *net, 2417 struct ipmr_vif_iter *iter, 2418 loff_t pos) 2419 { 2420 struct mr_table *mrt = iter->mrt; 2421 2422 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) { 2423 if (!VIF_EXISTS(mrt, iter->ct)) 2424 continue; 2425 if (pos-- == 0) 2426 return &mrt->vif_table[iter->ct]; 2427 } 2428 return NULL; 2429 } 2430 2431 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2432 __acquires(mrt_lock) 2433 { 2434 struct ipmr_vif_iter *iter = seq->private; 2435 struct net *net = seq_file_net(seq); 2436 struct mr_table *mrt; 2437 2438 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2439 if (mrt == NULL) 2440 return ERR_PTR(-ENOENT); 2441 2442 iter->mrt = mrt; 2443 2444 read_lock(&mrt_lock); 2445 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1) 2446 : SEQ_START_TOKEN; 2447 } 2448 2449 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2450 { 2451 struct ipmr_vif_iter *iter = seq->private; 2452 struct net *net = seq_file_net(seq); 2453 struct mr_table *mrt = iter->mrt; 2454 2455 ++*pos; 2456 if (v == SEQ_START_TOKEN) 2457 return ipmr_vif_seq_idx(net, iter, 0); 2458 2459 while (++iter->ct < mrt->maxvif) { 2460 if (!VIF_EXISTS(mrt, iter->ct)) 2461 continue; 2462 return &mrt->vif_table[iter->ct]; 2463 } 2464 return NULL; 2465 } 2466 2467 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2468 __releases(mrt_lock) 2469 { 2470 read_unlock(&mrt_lock); 2471 } 2472 2473 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2474 { 2475 struct ipmr_vif_iter *iter = seq->private; 2476 struct mr_table *mrt = iter->mrt; 2477 2478 if (v == SEQ_START_TOKEN) { 2479 seq_puts(seq, 2480 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2481 } else { 2482 const struct vif_device *vif = v; 2483 const char *name = vif->dev ? vif->dev->name : "none"; 2484 2485 seq_printf(seq, 2486 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2487 vif - mrt->vif_table, 2488 name, vif->bytes_in, vif->pkt_in, 2489 vif->bytes_out, vif->pkt_out, 2490 vif->flags, vif->local, vif->remote); 2491 } 2492 return 0; 2493 } 2494 2495 static const struct seq_operations ipmr_vif_seq_ops = { 2496 .start = ipmr_vif_seq_start, 2497 .next = ipmr_vif_seq_next, 2498 .stop = ipmr_vif_seq_stop, 2499 .show = ipmr_vif_seq_show, 2500 }; 2501 2502 static int ipmr_vif_open(struct inode *inode, struct file *file) 2503 { 2504 return seq_open_net(inode, file, &ipmr_vif_seq_ops, 2505 sizeof(struct ipmr_vif_iter)); 2506 } 2507 2508 static const struct file_operations ipmr_vif_fops = { 2509 .owner = THIS_MODULE, 2510 .open = ipmr_vif_open, 2511 .read = seq_read, 2512 .llseek = seq_lseek, 2513 .release = seq_release_net, 2514 }; 2515 2516 struct ipmr_mfc_iter { 2517 struct seq_net_private p; 2518 struct mr_table *mrt; 2519 struct list_head *cache; 2520 int ct; 2521 }; 2522 2523 2524 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net, 2525 struct ipmr_mfc_iter *it, loff_t pos) 2526 { 2527 struct mr_table *mrt = it->mrt; 2528 struct mfc_cache *mfc; 2529 2530 rcu_read_lock(); 2531 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) { 2532 it->cache = &mrt->mfc_cache_array[it->ct]; 2533 list_for_each_entry_rcu(mfc, it->cache, list) 2534 if (pos-- == 0) 2535 return mfc; 2536 } 2537 rcu_read_unlock(); 2538 2539 spin_lock_bh(&mfc_unres_lock); 2540 it->cache = &mrt->mfc_unres_queue; 2541 list_for_each_entry(mfc, it->cache, list) 2542 if (pos-- == 0) 2543 return mfc; 2544 spin_unlock_bh(&mfc_unres_lock); 2545 2546 it->cache = NULL; 2547 return NULL; 2548 } 2549 2550 2551 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2552 { 2553 struct ipmr_mfc_iter *it = seq->private; 2554 struct net *net = seq_file_net(seq); 2555 struct mr_table *mrt; 2556 2557 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2558 if (mrt == NULL) 2559 return ERR_PTR(-ENOENT); 2560 2561 it->mrt = mrt; 2562 it->cache = NULL; 2563 it->ct = 0; 2564 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1) 2565 : SEQ_START_TOKEN; 2566 } 2567 2568 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2569 { 2570 struct mfc_cache *mfc = v; 2571 struct ipmr_mfc_iter *it = seq->private; 2572 struct net *net = seq_file_net(seq); 2573 struct mr_table *mrt = it->mrt; 2574 2575 ++*pos; 2576 2577 if (v == SEQ_START_TOKEN) 2578 return ipmr_mfc_seq_idx(net, seq->private, 0); 2579 2580 if (mfc->list.next != it->cache) 2581 return list_entry(mfc->list.next, struct mfc_cache, list); 2582 2583 if (it->cache == &mrt->mfc_unres_queue) 2584 goto end_of_list; 2585 2586 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]); 2587 2588 while (++it->ct < MFC_LINES) { 2589 it->cache = &mrt->mfc_cache_array[it->ct]; 2590 if (list_empty(it->cache)) 2591 continue; 2592 return list_first_entry(it->cache, struct mfc_cache, list); 2593 } 2594 2595 /* exhausted cache_array, show unresolved */ 2596 rcu_read_unlock(); 2597 it->cache = &mrt->mfc_unres_queue; 2598 it->ct = 0; 2599 2600 spin_lock_bh(&mfc_unres_lock); 2601 if (!list_empty(it->cache)) 2602 return list_first_entry(it->cache, struct mfc_cache, list); 2603 2604 end_of_list: 2605 spin_unlock_bh(&mfc_unres_lock); 2606 it->cache = NULL; 2607 2608 return NULL; 2609 } 2610 2611 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v) 2612 { 2613 struct ipmr_mfc_iter *it = seq->private; 2614 struct mr_table *mrt = it->mrt; 2615 2616 if (it->cache == &mrt->mfc_unres_queue) 2617 spin_unlock_bh(&mfc_unres_lock); 2618 else if (it->cache == &mrt->mfc_cache_array[it->ct]) 2619 rcu_read_unlock(); 2620 } 2621 2622 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2623 { 2624 int n; 2625 2626 if (v == SEQ_START_TOKEN) { 2627 seq_puts(seq, 2628 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2629 } else { 2630 const struct mfc_cache *mfc = v; 2631 const struct ipmr_mfc_iter *it = seq->private; 2632 const struct mr_table *mrt = it->mrt; 2633 2634 seq_printf(seq, "%08X %08X %-3hd", 2635 (__force u32) mfc->mfc_mcastgrp, 2636 (__force u32) mfc->mfc_origin, 2637 mfc->mfc_parent); 2638 2639 if (it->cache != &mrt->mfc_unres_queue) { 2640 seq_printf(seq, " %8lu %8lu %8lu", 2641 mfc->mfc_un.res.pkt, 2642 mfc->mfc_un.res.bytes, 2643 mfc->mfc_un.res.wrong_if); 2644 for (n = mfc->mfc_un.res.minvif; 2645 n < mfc->mfc_un.res.maxvif; n++) { 2646 if (VIF_EXISTS(mrt, n) && 2647 mfc->mfc_un.res.ttls[n] < 255) 2648 seq_printf(seq, 2649 " %2d:%-3d", 2650 n, mfc->mfc_un.res.ttls[n]); 2651 } 2652 } else { 2653 /* unresolved mfc_caches don't contain 2654 * pkt, bytes and wrong_if values 2655 */ 2656 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 2657 } 2658 seq_putc(seq, '\n'); 2659 } 2660 return 0; 2661 } 2662 2663 static const struct seq_operations ipmr_mfc_seq_ops = { 2664 .start = ipmr_mfc_seq_start, 2665 .next = ipmr_mfc_seq_next, 2666 .stop = ipmr_mfc_seq_stop, 2667 .show = ipmr_mfc_seq_show, 2668 }; 2669 2670 static int ipmr_mfc_open(struct inode *inode, struct file *file) 2671 { 2672 return seq_open_net(inode, file, &ipmr_mfc_seq_ops, 2673 sizeof(struct ipmr_mfc_iter)); 2674 } 2675 2676 static const struct file_operations ipmr_mfc_fops = { 2677 .owner = THIS_MODULE, 2678 .open = ipmr_mfc_open, 2679 .read = seq_read, 2680 .llseek = seq_lseek, 2681 .release = seq_release_net, 2682 }; 2683 #endif 2684 2685 #ifdef CONFIG_IP_PIMSM_V2 2686 static const struct net_protocol pim_protocol = { 2687 .handler = pim_rcv, 2688 .netns_ok = 1, 2689 }; 2690 #endif 2691 2692 2693 /* 2694 * Setup for IP multicast routing 2695 */ 2696 static int __net_init ipmr_net_init(struct net *net) 2697 { 2698 int err; 2699 2700 err = ipmr_rules_init(net); 2701 if (err < 0) 2702 goto fail; 2703 2704 #ifdef CONFIG_PROC_FS 2705 err = -ENOMEM; 2706 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops)) 2707 goto proc_vif_fail; 2708 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops)) 2709 goto proc_cache_fail; 2710 #endif 2711 return 0; 2712 2713 #ifdef CONFIG_PROC_FS 2714 proc_cache_fail: 2715 remove_proc_entry("ip_mr_vif", net->proc_net); 2716 proc_vif_fail: 2717 ipmr_rules_exit(net); 2718 #endif 2719 fail: 2720 return err; 2721 } 2722 2723 static void __net_exit ipmr_net_exit(struct net *net) 2724 { 2725 #ifdef CONFIG_PROC_FS 2726 remove_proc_entry("ip_mr_cache", net->proc_net); 2727 remove_proc_entry("ip_mr_vif", net->proc_net); 2728 #endif 2729 ipmr_rules_exit(net); 2730 } 2731 2732 static struct pernet_operations ipmr_net_ops = { 2733 .init = ipmr_net_init, 2734 .exit = ipmr_net_exit, 2735 }; 2736 2737 int __init ip_mr_init(void) 2738 { 2739 int err; 2740 2741 mrt_cachep = kmem_cache_create("ip_mrt_cache", 2742 sizeof(struct mfc_cache), 2743 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 2744 NULL); 2745 if (!mrt_cachep) 2746 return -ENOMEM; 2747 2748 err = register_pernet_subsys(&ipmr_net_ops); 2749 if (err) 2750 goto reg_pernet_fail; 2751 2752 err = register_netdevice_notifier(&ip_mr_notifier); 2753 if (err) 2754 goto reg_notif_fail; 2755 #ifdef CONFIG_IP_PIMSM_V2 2756 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 2757 pr_err("%s: can't add PIM protocol\n", __func__); 2758 err = -EAGAIN; 2759 goto add_proto_fail; 2760 } 2761 #endif 2762 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 2763 NULL, ipmr_rtm_dumproute, NULL); 2764 return 0; 2765 2766 #ifdef CONFIG_IP_PIMSM_V2 2767 add_proto_fail: 2768 unregister_netdevice_notifier(&ip_mr_notifier); 2769 #endif 2770 reg_notif_fail: 2771 unregister_pernet_subsys(&ipmr_net_ops); 2772 reg_pernet_fail: 2773 kmem_cache_destroy(mrt_cachep); 2774 return err; 2775 } 2776