1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * IP multicast routing support for mrouted 3.6/3.8 4 * 5 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 6 * Linux Consultancy and Custom Driver Development 7 * 8 * Fixes: 9 * Michael Chastain : Incorrect size of copying. 10 * Alan Cox : Added the cache manager code 11 * Alan Cox : Fixed the clone/copy bug and device race. 12 * Mike McLagan : Routing by source 13 * Malcolm Beattie : Buffer handling fixes. 14 * Alexey Kuznetsov : Double buffer free and other fixes. 15 * SVR Anand : Fixed several multicast bugs and problems. 16 * Alexey Kuznetsov : Status, optimisations and more. 17 * Brad Parker : Better behaviour on mrouted upcall 18 * overflow. 19 * Carlos Picoto : PIMv1 Support 20 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 21 * Relax this requirement to work with older peers. 22 */ 23 24 #include <linux/uaccess.h> 25 #include <linux/types.h> 26 #include <linux/cache.h> 27 #include <linux/capability.h> 28 #include <linux/errno.h> 29 #include <linux/mm.h> 30 #include <linux/kernel.h> 31 #include <linux/fcntl.h> 32 #include <linux/stat.h> 33 #include <linux/socket.h> 34 #include <linux/in.h> 35 #include <linux/inet.h> 36 #include <linux/netdevice.h> 37 #include <linux/inetdevice.h> 38 #include <linux/igmp.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 #include <linux/mroute.h> 42 #include <linux/init.h> 43 #include <linux/if_ether.h> 44 #include <linux/slab.h> 45 #include <net/net_namespace.h> 46 #include <net/ip.h> 47 #include <net/protocol.h> 48 #include <linux/skbuff.h> 49 #include <net/route.h> 50 #include <net/icmp.h> 51 #include <net/udp.h> 52 #include <net/raw.h> 53 #include <linux/notifier.h> 54 #include <linux/if_arp.h> 55 #include <linux/netfilter_ipv4.h> 56 #include <linux/compat.h> 57 #include <linux/export.h> 58 #include <linux/rhashtable.h> 59 #include <net/ip_tunnels.h> 60 #include <net/checksum.h> 61 #include <net/netlink.h> 62 #include <net/fib_rules.h> 63 #include <linux/netconf.h> 64 #include <net/rtnh.h> 65 66 #include <linux/nospec.h> 67 68 struct ipmr_rule { 69 struct fib_rule common; 70 }; 71 72 struct ipmr_result { 73 struct mr_table *mrt; 74 }; 75 76 /* Big lock, protecting vif table, mrt cache and mroute socket state. 77 * Note that the changes are semaphored via rtnl_lock. 78 */ 79 80 static DEFINE_RWLOCK(mrt_lock); 81 82 /* Multicast router control variables */ 83 84 /* Special spinlock for queue of unresolved entries */ 85 static DEFINE_SPINLOCK(mfc_unres_lock); 86 87 /* We return to original Alan's scheme. Hash table of resolved 88 * entries is changed only in process context and protected 89 * with weak lock mrt_lock. Queue of unresolved entries is protected 90 * with strong spinlock mfc_unres_lock. 91 * 92 * In this case data path is free of exclusive locks at all. 93 */ 94 95 static struct kmem_cache *mrt_cachep __ro_after_init; 96 97 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 98 static void ipmr_free_table(struct mr_table *mrt); 99 100 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 101 struct net_device *dev, struct sk_buff *skb, 102 struct mfc_cache *cache, int local); 103 static int ipmr_cache_report(struct mr_table *mrt, 104 struct sk_buff *pkt, vifi_t vifi, int assert); 105 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 106 int cmd); 107 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt); 108 static void mroute_clean_tables(struct mr_table *mrt, int flags); 109 static void ipmr_expire_process(struct timer_list *t); 110 111 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 112 #define ipmr_for_each_table(mrt, net) \ 113 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list, \ 114 lockdep_rtnl_is_held() || \ 115 list_empty(&net->ipv4.mr_tables)) 116 117 static struct mr_table *ipmr_mr_table_iter(struct net *net, 118 struct mr_table *mrt) 119 { 120 struct mr_table *ret; 121 122 if (!mrt) 123 ret = list_entry_rcu(net->ipv4.mr_tables.next, 124 struct mr_table, list); 125 else 126 ret = list_entry_rcu(mrt->list.next, 127 struct mr_table, list); 128 129 if (&ret->list == &net->ipv4.mr_tables) 130 return NULL; 131 return ret; 132 } 133 134 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 135 { 136 struct mr_table *mrt; 137 138 ipmr_for_each_table(mrt, net) { 139 if (mrt->id == id) 140 return mrt; 141 } 142 return NULL; 143 } 144 145 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 146 struct mr_table **mrt) 147 { 148 int err; 149 struct ipmr_result res; 150 struct fib_lookup_arg arg = { 151 .result = &res, 152 .flags = FIB_LOOKUP_NOREF, 153 }; 154 155 /* update flow if oif or iif point to device enslaved to l3mdev */ 156 l3mdev_update_flow(net, flowi4_to_flowi(flp4)); 157 158 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 159 flowi4_to_flowi(flp4), 0, &arg); 160 if (err < 0) 161 return err; 162 *mrt = res.mrt; 163 return 0; 164 } 165 166 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 167 int flags, struct fib_lookup_arg *arg) 168 { 169 struct ipmr_result *res = arg->result; 170 struct mr_table *mrt; 171 172 switch (rule->action) { 173 case FR_ACT_TO_TBL: 174 break; 175 case FR_ACT_UNREACHABLE: 176 return -ENETUNREACH; 177 case FR_ACT_PROHIBIT: 178 return -EACCES; 179 case FR_ACT_BLACKHOLE: 180 default: 181 return -EINVAL; 182 } 183 184 arg->table = fib_rule_get_table(rule, arg); 185 186 mrt = ipmr_get_table(rule->fr_net, arg->table); 187 if (!mrt) 188 return -EAGAIN; 189 res->mrt = mrt; 190 return 0; 191 } 192 193 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 194 { 195 return 1; 196 } 197 198 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 199 struct fib_rule_hdr *frh, struct nlattr **tb, 200 struct netlink_ext_ack *extack) 201 { 202 return 0; 203 } 204 205 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 206 struct nlattr **tb) 207 { 208 return 1; 209 } 210 211 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 212 struct fib_rule_hdr *frh) 213 { 214 frh->dst_len = 0; 215 frh->src_len = 0; 216 frh->tos = 0; 217 return 0; 218 } 219 220 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { 221 .family = RTNL_FAMILY_IPMR, 222 .rule_size = sizeof(struct ipmr_rule), 223 .addr_size = sizeof(u32), 224 .action = ipmr_rule_action, 225 .match = ipmr_rule_match, 226 .configure = ipmr_rule_configure, 227 .compare = ipmr_rule_compare, 228 .fill = ipmr_rule_fill, 229 .nlgroup = RTNLGRP_IPV4_RULE, 230 .owner = THIS_MODULE, 231 }; 232 233 static int __net_init ipmr_rules_init(struct net *net) 234 { 235 struct fib_rules_ops *ops; 236 struct mr_table *mrt; 237 int err; 238 239 ops = fib_rules_register(&ipmr_rules_ops_template, net); 240 if (IS_ERR(ops)) 241 return PTR_ERR(ops); 242 243 INIT_LIST_HEAD(&net->ipv4.mr_tables); 244 245 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 246 if (IS_ERR(mrt)) { 247 err = PTR_ERR(mrt); 248 goto err1; 249 } 250 251 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 252 if (err < 0) 253 goto err2; 254 255 net->ipv4.mr_rules_ops = ops; 256 return 0; 257 258 err2: 259 rtnl_lock(); 260 ipmr_free_table(mrt); 261 rtnl_unlock(); 262 err1: 263 fib_rules_unregister(ops); 264 return err; 265 } 266 267 static void __net_exit ipmr_rules_exit(struct net *net) 268 { 269 struct mr_table *mrt, *next; 270 271 ASSERT_RTNL(); 272 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 273 list_del(&mrt->list); 274 ipmr_free_table(mrt); 275 } 276 fib_rules_unregister(net->ipv4.mr_rules_ops); 277 } 278 279 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb, 280 struct netlink_ext_ack *extack) 281 { 282 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack); 283 } 284 285 static unsigned int ipmr_rules_seq_read(struct net *net) 286 { 287 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR); 288 } 289 290 bool ipmr_rule_default(const struct fib_rule *rule) 291 { 292 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT; 293 } 294 EXPORT_SYMBOL(ipmr_rule_default); 295 #else 296 #define ipmr_for_each_table(mrt, net) \ 297 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 298 299 static struct mr_table *ipmr_mr_table_iter(struct net *net, 300 struct mr_table *mrt) 301 { 302 if (!mrt) 303 return net->ipv4.mrt; 304 return NULL; 305 } 306 307 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 308 { 309 return net->ipv4.mrt; 310 } 311 312 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 313 struct mr_table **mrt) 314 { 315 *mrt = net->ipv4.mrt; 316 return 0; 317 } 318 319 static int __net_init ipmr_rules_init(struct net *net) 320 { 321 struct mr_table *mrt; 322 323 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 324 if (IS_ERR(mrt)) 325 return PTR_ERR(mrt); 326 net->ipv4.mrt = mrt; 327 return 0; 328 } 329 330 static void __net_exit ipmr_rules_exit(struct net *net) 331 { 332 ASSERT_RTNL(); 333 ipmr_free_table(net->ipv4.mrt); 334 net->ipv4.mrt = NULL; 335 } 336 337 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb, 338 struct netlink_ext_ack *extack) 339 { 340 return 0; 341 } 342 343 static unsigned int ipmr_rules_seq_read(struct net *net) 344 { 345 return 0; 346 } 347 348 bool ipmr_rule_default(const struct fib_rule *rule) 349 { 350 return true; 351 } 352 EXPORT_SYMBOL(ipmr_rule_default); 353 #endif 354 355 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg, 356 const void *ptr) 357 { 358 const struct mfc_cache_cmp_arg *cmparg = arg->key; 359 struct mfc_cache *c = (struct mfc_cache *)ptr; 360 361 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp || 362 cmparg->mfc_origin != c->mfc_origin; 363 } 364 365 static const struct rhashtable_params ipmr_rht_params = { 366 .head_offset = offsetof(struct mr_mfc, mnode), 367 .key_offset = offsetof(struct mfc_cache, cmparg), 368 .key_len = sizeof(struct mfc_cache_cmp_arg), 369 .nelem_hint = 3, 370 .obj_cmpfn = ipmr_hash_cmp, 371 .automatic_shrinking = true, 372 }; 373 374 static void ipmr_new_table_set(struct mr_table *mrt, 375 struct net *net) 376 { 377 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 378 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 379 #endif 380 } 381 382 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = { 383 .mfc_mcastgrp = htonl(INADDR_ANY), 384 .mfc_origin = htonl(INADDR_ANY), 385 }; 386 387 static struct mr_table_ops ipmr_mr_table_ops = { 388 .rht_params = &ipmr_rht_params, 389 .cmparg_any = &ipmr_mr_table_ops_cmparg_any, 390 }; 391 392 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 393 { 394 struct mr_table *mrt; 395 396 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ 397 if (id != RT_TABLE_DEFAULT && id >= 1000000000) 398 return ERR_PTR(-EINVAL); 399 400 mrt = ipmr_get_table(net, id); 401 if (mrt) 402 return mrt; 403 404 return mr_table_alloc(net, id, &ipmr_mr_table_ops, 405 ipmr_expire_process, ipmr_new_table_set); 406 } 407 408 static void ipmr_free_table(struct mr_table *mrt) 409 { 410 del_timer_sync(&mrt->ipmr_expire_timer); 411 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC | 412 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC); 413 rhltable_destroy(&mrt->mfc_hash); 414 kfree(mrt); 415 } 416 417 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 418 419 /* Initialize ipmr pimreg/tunnel in_device */ 420 static bool ipmr_init_vif_indev(const struct net_device *dev) 421 { 422 struct in_device *in_dev; 423 424 ASSERT_RTNL(); 425 426 in_dev = __in_dev_get_rtnl(dev); 427 if (!in_dev) 428 return false; 429 ipv4_devconf_setall(in_dev); 430 neigh_parms_data_state_setall(in_dev->arp_parms); 431 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 432 433 return true; 434 } 435 436 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 437 { 438 struct net_device *tunnel_dev, *new_dev; 439 struct ip_tunnel_parm p = { }; 440 int err; 441 442 tunnel_dev = __dev_get_by_name(net, "tunl0"); 443 if (!tunnel_dev) 444 goto out; 445 446 p.iph.daddr = v->vifc_rmt_addr.s_addr; 447 p.iph.saddr = v->vifc_lcl_addr.s_addr; 448 p.iph.version = 4; 449 p.iph.ihl = 5; 450 p.iph.protocol = IPPROTO_IPIP; 451 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 452 453 if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl) 454 goto out; 455 err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p, 456 SIOCADDTUNNEL); 457 if (err) 458 goto out; 459 460 new_dev = __dev_get_by_name(net, p.name); 461 if (!new_dev) 462 goto out; 463 464 new_dev->flags |= IFF_MULTICAST; 465 if (!ipmr_init_vif_indev(new_dev)) 466 goto out_unregister; 467 if (dev_open(new_dev, NULL)) 468 goto out_unregister; 469 dev_hold(new_dev); 470 err = dev_set_allmulti(new_dev, 1); 471 if (err) { 472 dev_close(new_dev); 473 tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p, 474 SIOCDELTUNNEL); 475 dev_put(new_dev); 476 new_dev = ERR_PTR(err); 477 } 478 return new_dev; 479 480 out_unregister: 481 unregister_netdevice(new_dev); 482 out: 483 return ERR_PTR(-ENOBUFS); 484 } 485 486 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 487 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 488 { 489 struct net *net = dev_net(dev); 490 struct mr_table *mrt; 491 struct flowi4 fl4 = { 492 .flowi4_oif = dev->ifindex, 493 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 494 .flowi4_mark = skb->mark, 495 }; 496 int err; 497 498 err = ipmr_fib_lookup(net, &fl4, &mrt); 499 if (err < 0) { 500 kfree_skb(skb); 501 return err; 502 } 503 504 read_lock(&mrt_lock); 505 dev->stats.tx_bytes += skb->len; 506 dev->stats.tx_packets++; 507 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT); 508 read_unlock(&mrt_lock); 509 kfree_skb(skb); 510 return NETDEV_TX_OK; 511 } 512 513 static int reg_vif_get_iflink(const struct net_device *dev) 514 { 515 return 0; 516 } 517 518 static const struct net_device_ops reg_vif_netdev_ops = { 519 .ndo_start_xmit = reg_vif_xmit, 520 .ndo_get_iflink = reg_vif_get_iflink, 521 }; 522 523 static void reg_vif_setup(struct net_device *dev) 524 { 525 dev->type = ARPHRD_PIMREG; 526 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 527 dev->flags = IFF_NOARP; 528 dev->netdev_ops = ®_vif_netdev_ops; 529 dev->needs_free_netdev = true; 530 dev->features |= NETIF_F_NETNS_LOCAL; 531 } 532 533 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 534 { 535 struct net_device *dev; 536 char name[IFNAMSIZ]; 537 538 if (mrt->id == RT_TABLE_DEFAULT) 539 sprintf(name, "pimreg"); 540 else 541 sprintf(name, "pimreg%u", mrt->id); 542 543 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 544 545 if (!dev) 546 return NULL; 547 548 dev_net_set(dev, net); 549 550 if (register_netdevice(dev)) { 551 free_netdev(dev); 552 return NULL; 553 } 554 555 if (!ipmr_init_vif_indev(dev)) 556 goto failure; 557 if (dev_open(dev, NULL)) 558 goto failure; 559 560 dev_hold(dev); 561 562 return dev; 563 564 failure: 565 unregister_netdevice(dev); 566 return NULL; 567 } 568 569 /* called with rcu_read_lock() */ 570 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 571 unsigned int pimlen) 572 { 573 struct net_device *reg_dev = NULL; 574 struct iphdr *encap; 575 576 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 577 /* Check that: 578 * a. packet is really sent to a multicast group 579 * b. packet is not a NULL-REGISTER 580 * c. packet is not truncated 581 */ 582 if (!ipv4_is_multicast(encap->daddr) || 583 encap->tot_len == 0 || 584 ntohs(encap->tot_len) + pimlen > skb->len) 585 return 1; 586 587 read_lock(&mrt_lock); 588 if (mrt->mroute_reg_vif_num >= 0) 589 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev; 590 read_unlock(&mrt_lock); 591 592 if (!reg_dev) 593 return 1; 594 595 skb->mac_header = skb->network_header; 596 skb_pull(skb, (u8 *)encap - skb->data); 597 skb_reset_network_header(skb); 598 skb->protocol = htons(ETH_P_IP); 599 skb->ip_summed = CHECKSUM_NONE; 600 601 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 602 603 netif_rx(skb); 604 605 return NET_RX_SUCCESS; 606 } 607 #else 608 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 609 { 610 return NULL; 611 } 612 #endif 613 614 static int call_ipmr_vif_entry_notifiers(struct net *net, 615 enum fib_event_type event_type, 616 struct vif_device *vif, 617 vifi_t vif_index, u32 tb_id) 618 { 619 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type, 620 vif, vif_index, tb_id, 621 &net->ipv4.ipmr_seq); 622 } 623 624 static int call_ipmr_mfc_entry_notifiers(struct net *net, 625 enum fib_event_type event_type, 626 struct mfc_cache *mfc, u32 tb_id) 627 { 628 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type, 629 &mfc->_c, tb_id, &net->ipv4.ipmr_seq); 630 } 631 632 /** 633 * vif_delete - Delete a VIF entry 634 * @mrt: Table to delete from 635 * @vifi: VIF identifier to delete 636 * @notify: Set to 1, if the caller is a notifier_call 637 * @head: if unregistering the VIF, place it on this queue 638 */ 639 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 640 struct list_head *head) 641 { 642 struct net *net = read_pnet(&mrt->net); 643 struct vif_device *v; 644 struct net_device *dev; 645 struct in_device *in_dev; 646 647 if (vifi < 0 || vifi >= mrt->maxvif) 648 return -EADDRNOTAVAIL; 649 650 v = &mrt->vif_table[vifi]; 651 652 if (VIF_EXISTS(mrt, vifi)) 653 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi, 654 mrt->id); 655 656 write_lock_bh(&mrt_lock); 657 dev = v->dev; 658 v->dev = NULL; 659 660 if (!dev) { 661 write_unlock_bh(&mrt_lock); 662 return -EADDRNOTAVAIL; 663 } 664 665 if (vifi == mrt->mroute_reg_vif_num) 666 mrt->mroute_reg_vif_num = -1; 667 668 if (vifi + 1 == mrt->maxvif) { 669 int tmp; 670 671 for (tmp = vifi - 1; tmp >= 0; tmp--) { 672 if (VIF_EXISTS(mrt, tmp)) 673 break; 674 } 675 mrt->maxvif = tmp+1; 676 } 677 678 write_unlock_bh(&mrt_lock); 679 680 dev_set_allmulti(dev, -1); 681 682 in_dev = __in_dev_get_rtnl(dev); 683 if (in_dev) { 684 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 685 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, 686 NETCONFA_MC_FORWARDING, 687 dev->ifindex, &in_dev->cnf); 688 ip_rt_multicast_event(in_dev); 689 } 690 691 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 692 unregister_netdevice_queue(dev, head); 693 694 dev_put_track(dev, &v->dev_tracker); 695 return 0; 696 } 697 698 static void ipmr_cache_free_rcu(struct rcu_head *head) 699 { 700 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu); 701 702 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c); 703 } 704 705 static void ipmr_cache_free(struct mfc_cache *c) 706 { 707 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu); 708 } 709 710 /* Destroy an unresolved cache entry, killing queued skbs 711 * and reporting error to netlink readers. 712 */ 713 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 714 { 715 struct net *net = read_pnet(&mrt->net); 716 struct sk_buff *skb; 717 struct nlmsgerr *e; 718 719 atomic_dec(&mrt->cache_resolve_queue_len); 720 721 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) { 722 if (ip_hdr(skb)->version == 0) { 723 struct nlmsghdr *nlh = skb_pull(skb, 724 sizeof(struct iphdr)); 725 nlh->nlmsg_type = NLMSG_ERROR; 726 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 727 skb_trim(skb, nlh->nlmsg_len); 728 e = nlmsg_data(nlh); 729 e->error = -ETIMEDOUT; 730 memset(&e->msg, 0, sizeof(e->msg)); 731 732 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 733 } else { 734 kfree_skb(skb); 735 } 736 } 737 738 ipmr_cache_free(c); 739 } 740 741 /* Timer process for the unresolved queue. */ 742 static void ipmr_expire_process(struct timer_list *t) 743 { 744 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer); 745 struct mr_mfc *c, *next; 746 unsigned long expires; 747 unsigned long now; 748 749 if (!spin_trylock(&mfc_unres_lock)) { 750 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 751 return; 752 } 753 754 if (list_empty(&mrt->mfc_unres_queue)) 755 goto out; 756 757 now = jiffies; 758 expires = 10*HZ; 759 760 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 761 if (time_after(c->mfc_un.unres.expires, now)) { 762 unsigned long interval = c->mfc_un.unres.expires - now; 763 if (interval < expires) 764 expires = interval; 765 continue; 766 } 767 768 list_del(&c->list); 769 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE); 770 ipmr_destroy_unres(mrt, (struct mfc_cache *)c); 771 } 772 773 if (!list_empty(&mrt->mfc_unres_queue)) 774 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 775 776 out: 777 spin_unlock(&mfc_unres_lock); 778 } 779 780 /* Fill oifs list. It is called under write locked mrt_lock. */ 781 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache, 782 unsigned char *ttls) 783 { 784 int vifi; 785 786 cache->mfc_un.res.minvif = MAXVIFS; 787 cache->mfc_un.res.maxvif = 0; 788 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 789 790 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 791 if (VIF_EXISTS(mrt, vifi) && 792 ttls[vifi] && ttls[vifi] < 255) { 793 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 794 if (cache->mfc_un.res.minvif > vifi) 795 cache->mfc_un.res.minvif = vifi; 796 if (cache->mfc_un.res.maxvif <= vifi) 797 cache->mfc_un.res.maxvif = vifi + 1; 798 } 799 } 800 cache->mfc_un.res.lastuse = jiffies; 801 } 802 803 static int vif_add(struct net *net, struct mr_table *mrt, 804 struct vifctl *vifc, int mrtsock) 805 { 806 struct netdev_phys_item_id ppid = { }; 807 int vifi = vifc->vifc_vifi; 808 struct vif_device *v = &mrt->vif_table[vifi]; 809 struct net_device *dev; 810 struct in_device *in_dev; 811 int err; 812 813 /* Is vif busy ? */ 814 if (VIF_EXISTS(mrt, vifi)) 815 return -EADDRINUSE; 816 817 switch (vifc->vifc_flags) { 818 case VIFF_REGISTER: 819 if (!ipmr_pimsm_enabled()) 820 return -EINVAL; 821 /* Special Purpose VIF in PIM 822 * All the packets will be sent to the daemon 823 */ 824 if (mrt->mroute_reg_vif_num >= 0) 825 return -EADDRINUSE; 826 dev = ipmr_reg_vif(net, mrt); 827 if (!dev) 828 return -ENOBUFS; 829 err = dev_set_allmulti(dev, 1); 830 if (err) { 831 unregister_netdevice(dev); 832 dev_put(dev); 833 return err; 834 } 835 break; 836 case VIFF_TUNNEL: 837 dev = ipmr_new_tunnel(net, vifc); 838 if (IS_ERR(dev)) 839 return PTR_ERR(dev); 840 break; 841 case VIFF_USE_IFINDEX: 842 case 0: 843 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 844 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 845 if (dev && !__in_dev_get_rtnl(dev)) { 846 dev_put(dev); 847 return -EADDRNOTAVAIL; 848 } 849 } else { 850 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 851 } 852 if (!dev) 853 return -EADDRNOTAVAIL; 854 err = dev_set_allmulti(dev, 1); 855 if (err) { 856 dev_put(dev); 857 return err; 858 } 859 break; 860 default: 861 return -EINVAL; 862 } 863 864 in_dev = __in_dev_get_rtnl(dev); 865 if (!in_dev) { 866 dev_put(dev); 867 return -EADDRNOTAVAIL; 868 } 869 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 870 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, 871 dev->ifindex, &in_dev->cnf); 872 ip_rt_multicast_event(in_dev); 873 874 /* Fill in the VIF structures */ 875 vif_device_init(v, dev, vifc->vifc_rate_limit, 876 vifc->vifc_threshold, 877 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0), 878 (VIFF_TUNNEL | VIFF_REGISTER)); 879 880 err = dev_get_port_parent_id(dev, &ppid, true); 881 if (err == 0) { 882 memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len); 883 v->dev_parent_id.id_len = ppid.id_len; 884 } else { 885 v->dev_parent_id.id_len = 0; 886 } 887 888 v->local = vifc->vifc_lcl_addr.s_addr; 889 v->remote = vifc->vifc_rmt_addr.s_addr; 890 891 /* And finish update writing critical data */ 892 write_lock_bh(&mrt_lock); 893 v->dev = dev; 894 netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC); 895 if (v->flags & VIFF_REGISTER) 896 mrt->mroute_reg_vif_num = vifi; 897 if (vifi+1 > mrt->maxvif) 898 mrt->maxvif = vifi+1; 899 write_unlock_bh(&mrt_lock); 900 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id); 901 return 0; 902 } 903 904 /* called with rcu_read_lock() */ 905 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 906 __be32 origin, 907 __be32 mcastgrp) 908 { 909 struct mfc_cache_cmp_arg arg = { 910 .mfc_mcastgrp = mcastgrp, 911 .mfc_origin = origin 912 }; 913 914 return mr_mfc_find(mrt, &arg); 915 } 916 917 /* Look for a (*,G) entry */ 918 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, 919 __be32 mcastgrp, int vifi) 920 { 921 struct mfc_cache_cmp_arg arg = { 922 .mfc_mcastgrp = mcastgrp, 923 .mfc_origin = htonl(INADDR_ANY) 924 }; 925 926 if (mcastgrp == htonl(INADDR_ANY)) 927 return mr_mfc_find_any_parent(mrt, vifi); 928 return mr_mfc_find_any(mrt, vifi, &arg); 929 } 930 931 /* Look for a (S,G,iif) entry if parent != -1 */ 932 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt, 933 __be32 origin, __be32 mcastgrp, 934 int parent) 935 { 936 struct mfc_cache_cmp_arg arg = { 937 .mfc_mcastgrp = mcastgrp, 938 .mfc_origin = origin, 939 }; 940 941 return mr_mfc_find_parent(mrt, &arg, parent); 942 } 943 944 /* Allocate a multicast cache entry */ 945 static struct mfc_cache *ipmr_cache_alloc(void) 946 { 947 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 948 949 if (c) { 950 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1; 951 c->_c.mfc_un.res.minvif = MAXVIFS; 952 c->_c.free = ipmr_cache_free_rcu; 953 refcount_set(&c->_c.mfc_un.res.refcount, 1); 954 } 955 return c; 956 } 957 958 static struct mfc_cache *ipmr_cache_alloc_unres(void) 959 { 960 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 961 962 if (c) { 963 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved); 964 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ; 965 } 966 return c; 967 } 968 969 /* A cache entry has gone into a resolved state from queued */ 970 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 971 struct mfc_cache *uc, struct mfc_cache *c) 972 { 973 struct sk_buff *skb; 974 struct nlmsgerr *e; 975 976 /* Play the pending entries through our router */ 977 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) { 978 if (ip_hdr(skb)->version == 0) { 979 struct nlmsghdr *nlh = skb_pull(skb, 980 sizeof(struct iphdr)); 981 982 if (mr_fill_mroute(mrt, skb, &c->_c, 983 nlmsg_data(nlh)) > 0) { 984 nlh->nlmsg_len = skb_tail_pointer(skb) - 985 (u8 *)nlh; 986 } else { 987 nlh->nlmsg_type = NLMSG_ERROR; 988 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 989 skb_trim(skb, nlh->nlmsg_len); 990 e = nlmsg_data(nlh); 991 e->error = -EMSGSIZE; 992 memset(&e->msg, 0, sizeof(e->msg)); 993 } 994 995 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 996 } else { 997 ip_mr_forward(net, mrt, skb->dev, skb, c, 0); 998 } 999 } 1000 } 1001 1002 /* Bounce a cache query up to mrouted and netlink. 1003 * 1004 * Called under mrt_lock. 1005 */ 1006 static int ipmr_cache_report(struct mr_table *mrt, 1007 struct sk_buff *pkt, vifi_t vifi, int assert) 1008 { 1009 const int ihl = ip_hdrlen(pkt); 1010 struct sock *mroute_sk; 1011 struct igmphdr *igmp; 1012 struct igmpmsg *msg; 1013 struct sk_buff *skb; 1014 int ret; 1015 1016 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) 1017 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 1018 else 1019 skb = alloc_skb(128, GFP_ATOMIC); 1020 1021 if (!skb) 1022 return -ENOBUFS; 1023 1024 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) { 1025 /* Ugly, but we have no choice with this interface. 1026 * Duplicate old header, fix ihl, length etc. 1027 * And all this only to mangle msg->im_msgtype and 1028 * to set msg->im_mbz to "mbz" :-) 1029 */ 1030 skb_push(skb, sizeof(struct iphdr)); 1031 skb_reset_network_header(skb); 1032 skb_reset_transport_header(skb); 1033 msg = (struct igmpmsg *)skb_network_header(skb); 1034 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 1035 msg->im_msgtype = assert; 1036 msg->im_mbz = 0; 1037 if (assert == IGMPMSG_WRVIFWHOLE) { 1038 msg->im_vif = vifi; 1039 msg->im_vif_hi = vifi >> 8; 1040 } else { 1041 msg->im_vif = mrt->mroute_reg_vif_num; 1042 msg->im_vif_hi = mrt->mroute_reg_vif_num >> 8; 1043 } 1044 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 1045 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 1046 sizeof(struct iphdr)); 1047 } else { 1048 /* Copy the IP header */ 1049 skb_set_network_header(skb, skb->len); 1050 skb_put(skb, ihl); 1051 skb_copy_to_linear_data(skb, pkt->data, ihl); 1052 /* Flag to the kernel this is a route add */ 1053 ip_hdr(skb)->protocol = 0; 1054 msg = (struct igmpmsg *)skb_network_header(skb); 1055 msg->im_vif = vifi; 1056 msg->im_vif_hi = vifi >> 8; 1057 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 1058 /* Add our header */ 1059 igmp = skb_put(skb, sizeof(struct igmphdr)); 1060 igmp->type = assert; 1061 msg->im_msgtype = assert; 1062 igmp->code = 0; 1063 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 1064 skb->transport_header = skb->network_header; 1065 } 1066 1067 rcu_read_lock(); 1068 mroute_sk = rcu_dereference(mrt->mroute_sk); 1069 if (!mroute_sk) { 1070 rcu_read_unlock(); 1071 kfree_skb(skb); 1072 return -EINVAL; 1073 } 1074 1075 igmpmsg_netlink_event(mrt, skb); 1076 1077 /* Deliver to mrouted */ 1078 ret = sock_queue_rcv_skb(mroute_sk, skb); 1079 rcu_read_unlock(); 1080 if (ret < 0) { 1081 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 1082 kfree_skb(skb); 1083 } 1084 1085 return ret; 1086 } 1087 1088 /* Queue a packet for resolution. It gets locked cache entry! */ 1089 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, 1090 struct sk_buff *skb, struct net_device *dev) 1091 { 1092 const struct iphdr *iph = ip_hdr(skb); 1093 struct mfc_cache *c; 1094 bool found = false; 1095 int err; 1096 1097 spin_lock_bh(&mfc_unres_lock); 1098 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) { 1099 if (c->mfc_mcastgrp == iph->daddr && 1100 c->mfc_origin == iph->saddr) { 1101 found = true; 1102 break; 1103 } 1104 } 1105 1106 if (!found) { 1107 /* Create a new entry if allowable */ 1108 c = ipmr_cache_alloc_unres(); 1109 if (!c) { 1110 spin_unlock_bh(&mfc_unres_lock); 1111 1112 kfree_skb(skb); 1113 return -ENOBUFS; 1114 } 1115 1116 /* Fill in the new cache entry */ 1117 c->_c.mfc_parent = -1; 1118 c->mfc_origin = iph->saddr; 1119 c->mfc_mcastgrp = iph->daddr; 1120 1121 /* Reflect first query at mrouted. */ 1122 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1123 1124 if (err < 0) { 1125 /* If the report failed throw the cache entry 1126 out - Brad Parker 1127 */ 1128 spin_unlock_bh(&mfc_unres_lock); 1129 1130 ipmr_cache_free(c); 1131 kfree_skb(skb); 1132 return err; 1133 } 1134 1135 atomic_inc(&mrt->cache_resolve_queue_len); 1136 list_add(&c->_c.list, &mrt->mfc_unres_queue); 1137 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1138 1139 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1140 mod_timer(&mrt->ipmr_expire_timer, 1141 c->_c.mfc_un.unres.expires); 1142 } 1143 1144 /* See if we can append the packet */ 1145 if (c->_c.mfc_un.unres.unresolved.qlen > 3) { 1146 kfree_skb(skb); 1147 err = -ENOBUFS; 1148 } else { 1149 if (dev) { 1150 skb->dev = dev; 1151 skb->skb_iif = dev->ifindex; 1152 } 1153 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb); 1154 err = 0; 1155 } 1156 1157 spin_unlock_bh(&mfc_unres_lock); 1158 return err; 1159 } 1160 1161 /* MFC cache manipulation by user space mroute daemon */ 1162 1163 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) 1164 { 1165 struct net *net = read_pnet(&mrt->net); 1166 struct mfc_cache *c; 1167 1168 /* The entries are added/deleted only under RTNL */ 1169 rcu_read_lock(); 1170 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1171 mfc->mfcc_mcastgrp.s_addr, parent); 1172 rcu_read_unlock(); 1173 if (!c) 1174 return -ENOENT; 1175 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params); 1176 list_del_rcu(&c->_c.list); 1177 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id); 1178 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1179 mr_cache_put(&c->_c); 1180 1181 return 0; 1182 } 1183 1184 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1185 struct mfcctl *mfc, int mrtsock, int parent) 1186 { 1187 struct mfc_cache *uc, *c; 1188 struct mr_mfc *_uc; 1189 bool found; 1190 int ret; 1191 1192 if (mfc->mfcc_parent >= MAXVIFS) 1193 return -ENFILE; 1194 1195 /* The entries are added/deleted only under RTNL */ 1196 rcu_read_lock(); 1197 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1198 mfc->mfcc_mcastgrp.s_addr, parent); 1199 rcu_read_unlock(); 1200 if (c) { 1201 write_lock_bh(&mrt_lock); 1202 c->_c.mfc_parent = mfc->mfcc_parent; 1203 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1204 if (!mrtsock) 1205 c->_c.mfc_flags |= MFC_STATIC; 1206 write_unlock_bh(&mrt_lock); 1207 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c, 1208 mrt->id); 1209 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1210 return 0; 1211 } 1212 1213 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && 1214 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1215 return -EINVAL; 1216 1217 c = ipmr_cache_alloc(); 1218 if (!c) 1219 return -ENOMEM; 1220 1221 c->mfc_origin = mfc->mfcc_origin.s_addr; 1222 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1223 c->_c.mfc_parent = mfc->mfcc_parent; 1224 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1225 if (!mrtsock) 1226 c->_c.mfc_flags |= MFC_STATIC; 1227 1228 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode, 1229 ipmr_rht_params); 1230 if (ret) { 1231 pr_err("ipmr: rhtable insert error %d\n", ret); 1232 ipmr_cache_free(c); 1233 return ret; 1234 } 1235 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list); 1236 /* Check to see if we resolved a queued list. If so we 1237 * need to send on the frames and tidy up. 1238 */ 1239 found = false; 1240 spin_lock_bh(&mfc_unres_lock); 1241 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) { 1242 uc = (struct mfc_cache *)_uc; 1243 if (uc->mfc_origin == c->mfc_origin && 1244 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1245 list_del(&_uc->list); 1246 atomic_dec(&mrt->cache_resolve_queue_len); 1247 found = true; 1248 break; 1249 } 1250 } 1251 if (list_empty(&mrt->mfc_unres_queue)) 1252 del_timer(&mrt->ipmr_expire_timer); 1253 spin_unlock_bh(&mfc_unres_lock); 1254 1255 if (found) { 1256 ipmr_cache_resolve(net, mrt, uc, c); 1257 ipmr_cache_free(uc); 1258 } 1259 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id); 1260 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1261 return 0; 1262 } 1263 1264 /* Close the multicast socket, and clear the vif tables etc */ 1265 static void mroute_clean_tables(struct mr_table *mrt, int flags) 1266 { 1267 struct net *net = read_pnet(&mrt->net); 1268 struct mr_mfc *c, *tmp; 1269 struct mfc_cache *cache; 1270 LIST_HEAD(list); 1271 int i; 1272 1273 /* Shut down all active vif entries */ 1274 if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) { 1275 for (i = 0; i < mrt->maxvif; i++) { 1276 if (((mrt->vif_table[i].flags & VIFF_STATIC) && 1277 !(flags & MRT_FLUSH_VIFS_STATIC)) || 1278 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS))) 1279 continue; 1280 vif_delete(mrt, i, 0, &list); 1281 } 1282 unregister_netdevice_many(&list); 1283 } 1284 1285 /* Wipe the cache */ 1286 if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) { 1287 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) { 1288 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) || 1289 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC))) 1290 continue; 1291 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params); 1292 list_del_rcu(&c->list); 1293 cache = (struct mfc_cache *)c; 1294 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache, 1295 mrt->id); 1296 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1297 mr_cache_put(c); 1298 } 1299 } 1300 1301 if (flags & MRT_FLUSH_MFC) { 1302 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1303 spin_lock_bh(&mfc_unres_lock); 1304 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) { 1305 list_del(&c->list); 1306 cache = (struct mfc_cache *)c; 1307 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1308 ipmr_destroy_unres(mrt, cache); 1309 } 1310 spin_unlock_bh(&mfc_unres_lock); 1311 } 1312 } 1313 } 1314 1315 /* called from ip_ra_control(), before an RCU grace period, 1316 * we don't need to call synchronize_rcu() here 1317 */ 1318 static void mrtsock_destruct(struct sock *sk) 1319 { 1320 struct net *net = sock_net(sk); 1321 struct mr_table *mrt; 1322 1323 rtnl_lock(); 1324 ipmr_for_each_table(mrt, net) { 1325 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1326 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1327 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1328 NETCONFA_MC_FORWARDING, 1329 NETCONFA_IFINDEX_ALL, 1330 net->ipv4.devconf_all); 1331 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1332 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC); 1333 } 1334 } 1335 rtnl_unlock(); 1336 } 1337 1338 /* Socket options and virtual interface manipulation. The whole 1339 * virtual interface system is a complete heap, but unfortunately 1340 * that's how BSD mrouted happens to think. Maybe one day with a proper 1341 * MOSPF/PIM router set up we can clean this up. 1342 */ 1343 1344 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval, 1345 unsigned int optlen) 1346 { 1347 struct net *net = sock_net(sk); 1348 int val, ret = 0, parent = 0; 1349 struct mr_table *mrt; 1350 struct vifctl vif; 1351 struct mfcctl mfc; 1352 bool do_wrvifwhole; 1353 u32 uval; 1354 1355 /* There's one exception to the lock - MRT_DONE which needs to unlock */ 1356 rtnl_lock(); 1357 if (sk->sk_type != SOCK_RAW || 1358 inet_sk(sk)->inet_num != IPPROTO_IGMP) { 1359 ret = -EOPNOTSUPP; 1360 goto out_unlock; 1361 } 1362 1363 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1364 if (!mrt) { 1365 ret = -ENOENT; 1366 goto out_unlock; 1367 } 1368 if (optname != MRT_INIT) { 1369 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1370 !ns_capable(net->user_ns, CAP_NET_ADMIN)) { 1371 ret = -EACCES; 1372 goto out_unlock; 1373 } 1374 } 1375 1376 switch (optname) { 1377 case MRT_INIT: 1378 if (optlen != sizeof(int)) { 1379 ret = -EINVAL; 1380 break; 1381 } 1382 if (rtnl_dereference(mrt->mroute_sk)) { 1383 ret = -EADDRINUSE; 1384 break; 1385 } 1386 1387 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1388 if (ret == 0) { 1389 rcu_assign_pointer(mrt->mroute_sk, sk); 1390 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1391 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1392 NETCONFA_MC_FORWARDING, 1393 NETCONFA_IFINDEX_ALL, 1394 net->ipv4.devconf_all); 1395 } 1396 break; 1397 case MRT_DONE: 1398 if (sk != rcu_access_pointer(mrt->mroute_sk)) { 1399 ret = -EACCES; 1400 } else { 1401 /* We need to unlock here because mrtsock_destruct takes 1402 * care of rtnl itself and we can't change that due to 1403 * the IP_ROUTER_ALERT setsockopt which runs without it. 1404 */ 1405 rtnl_unlock(); 1406 ret = ip_ra_control(sk, 0, NULL); 1407 goto out; 1408 } 1409 break; 1410 case MRT_ADD_VIF: 1411 case MRT_DEL_VIF: 1412 if (optlen != sizeof(vif)) { 1413 ret = -EINVAL; 1414 break; 1415 } 1416 if (copy_from_sockptr(&vif, optval, sizeof(vif))) { 1417 ret = -EFAULT; 1418 break; 1419 } 1420 if (vif.vifc_vifi >= MAXVIFS) { 1421 ret = -ENFILE; 1422 break; 1423 } 1424 if (optname == MRT_ADD_VIF) { 1425 ret = vif_add(net, mrt, &vif, 1426 sk == rtnl_dereference(mrt->mroute_sk)); 1427 } else { 1428 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1429 } 1430 break; 1431 /* Manipulate the forwarding caches. These live 1432 * in a sort of kernel/user symbiosis. 1433 */ 1434 case MRT_ADD_MFC: 1435 case MRT_DEL_MFC: 1436 parent = -1; 1437 fallthrough; 1438 case MRT_ADD_MFC_PROXY: 1439 case MRT_DEL_MFC_PROXY: 1440 if (optlen != sizeof(mfc)) { 1441 ret = -EINVAL; 1442 break; 1443 } 1444 if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) { 1445 ret = -EFAULT; 1446 break; 1447 } 1448 if (parent == 0) 1449 parent = mfc.mfcc_parent; 1450 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) 1451 ret = ipmr_mfc_delete(mrt, &mfc, parent); 1452 else 1453 ret = ipmr_mfc_add(net, mrt, &mfc, 1454 sk == rtnl_dereference(mrt->mroute_sk), 1455 parent); 1456 break; 1457 case MRT_FLUSH: 1458 if (optlen != sizeof(val)) { 1459 ret = -EINVAL; 1460 break; 1461 } 1462 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1463 ret = -EFAULT; 1464 break; 1465 } 1466 mroute_clean_tables(mrt, val); 1467 break; 1468 /* Control PIM assert. */ 1469 case MRT_ASSERT: 1470 if (optlen != sizeof(val)) { 1471 ret = -EINVAL; 1472 break; 1473 } 1474 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1475 ret = -EFAULT; 1476 break; 1477 } 1478 mrt->mroute_do_assert = val; 1479 break; 1480 case MRT_PIM: 1481 if (!ipmr_pimsm_enabled()) { 1482 ret = -ENOPROTOOPT; 1483 break; 1484 } 1485 if (optlen != sizeof(val)) { 1486 ret = -EINVAL; 1487 break; 1488 } 1489 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1490 ret = -EFAULT; 1491 break; 1492 } 1493 1494 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE); 1495 val = !!val; 1496 if (val != mrt->mroute_do_pim) { 1497 mrt->mroute_do_pim = val; 1498 mrt->mroute_do_assert = val; 1499 mrt->mroute_do_wrvifwhole = do_wrvifwhole; 1500 } 1501 break; 1502 case MRT_TABLE: 1503 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) { 1504 ret = -ENOPROTOOPT; 1505 break; 1506 } 1507 if (optlen != sizeof(uval)) { 1508 ret = -EINVAL; 1509 break; 1510 } 1511 if (copy_from_sockptr(&uval, optval, sizeof(uval))) { 1512 ret = -EFAULT; 1513 break; 1514 } 1515 1516 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1517 ret = -EBUSY; 1518 } else { 1519 mrt = ipmr_new_table(net, uval); 1520 if (IS_ERR(mrt)) 1521 ret = PTR_ERR(mrt); 1522 else 1523 raw_sk(sk)->ipmr_table = uval; 1524 } 1525 break; 1526 /* Spurious command, or MRT_VERSION which you cannot set. */ 1527 default: 1528 ret = -ENOPROTOOPT; 1529 } 1530 out_unlock: 1531 rtnl_unlock(); 1532 out: 1533 return ret; 1534 } 1535 1536 /* Getsock opt support for the multicast routing system. */ 1537 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) 1538 { 1539 int olr; 1540 int val; 1541 struct net *net = sock_net(sk); 1542 struct mr_table *mrt; 1543 1544 if (sk->sk_type != SOCK_RAW || 1545 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1546 return -EOPNOTSUPP; 1547 1548 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1549 if (!mrt) 1550 return -ENOENT; 1551 1552 switch (optname) { 1553 case MRT_VERSION: 1554 val = 0x0305; 1555 break; 1556 case MRT_PIM: 1557 if (!ipmr_pimsm_enabled()) 1558 return -ENOPROTOOPT; 1559 val = mrt->mroute_do_pim; 1560 break; 1561 case MRT_ASSERT: 1562 val = mrt->mroute_do_assert; 1563 break; 1564 default: 1565 return -ENOPROTOOPT; 1566 } 1567 1568 if (get_user(olr, optlen)) 1569 return -EFAULT; 1570 olr = min_t(unsigned int, olr, sizeof(int)); 1571 if (olr < 0) 1572 return -EINVAL; 1573 if (put_user(olr, optlen)) 1574 return -EFAULT; 1575 if (copy_to_user(optval, &val, olr)) 1576 return -EFAULT; 1577 return 0; 1578 } 1579 1580 /* The IP multicast ioctl support routines. */ 1581 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) 1582 { 1583 struct sioc_sg_req sr; 1584 struct sioc_vif_req vr; 1585 struct vif_device *vif; 1586 struct mfc_cache *c; 1587 struct net *net = sock_net(sk); 1588 struct mr_table *mrt; 1589 1590 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1591 if (!mrt) 1592 return -ENOENT; 1593 1594 switch (cmd) { 1595 case SIOCGETVIFCNT: 1596 if (copy_from_user(&vr, arg, sizeof(vr))) 1597 return -EFAULT; 1598 if (vr.vifi >= mrt->maxvif) 1599 return -EINVAL; 1600 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif); 1601 read_lock(&mrt_lock); 1602 vif = &mrt->vif_table[vr.vifi]; 1603 if (VIF_EXISTS(mrt, vr.vifi)) { 1604 vr.icount = vif->pkt_in; 1605 vr.ocount = vif->pkt_out; 1606 vr.ibytes = vif->bytes_in; 1607 vr.obytes = vif->bytes_out; 1608 read_unlock(&mrt_lock); 1609 1610 if (copy_to_user(arg, &vr, sizeof(vr))) 1611 return -EFAULT; 1612 return 0; 1613 } 1614 read_unlock(&mrt_lock); 1615 return -EADDRNOTAVAIL; 1616 case SIOCGETSGCNT: 1617 if (copy_from_user(&sr, arg, sizeof(sr))) 1618 return -EFAULT; 1619 1620 rcu_read_lock(); 1621 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1622 if (c) { 1623 sr.pktcnt = c->_c.mfc_un.res.pkt; 1624 sr.bytecnt = c->_c.mfc_un.res.bytes; 1625 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1626 rcu_read_unlock(); 1627 1628 if (copy_to_user(arg, &sr, sizeof(sr))) 1629 return -EFAULT; 1630 return 0; 1631 } 1632 rcu_read_unlock(); 1633 return -EADDRNOTAVAIL; 1634 default: 1635 return -ENOIOCTLCMD; 1636 } 1637 } 1638 1639 #ifdef CONFIG_COMPAT 1640 struct compat_sioc_sg_req { 1641 struct in_addr src; 1642 struct in_addr grp; 1643 compat_ulong_t pktcnt; 1644 compat_ulong_t bytecnt; 1645 compat_ulong_t wrong_if; 1646 }; 1647 1648 struct compat_sioc_vif_req { 1649 vifi_t vifi; /* Which iface */ 1650 compat_ulong_t icount; 1651 compat_ulong_t ocount; 1652 compat_ulong_t ibytes; 1653 compat_ulong_t obytes; 1654 }; 1655 1656 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1657 { 1658 struct compat_sioc_sg_req sr; 1659 struct compat_sioc_vif_req vr; 1660 struct vif_device *vif; 1661 struct mfc_cache *c; 1662 struct net *net = sock_net(sk); 1663 struct mr_table *mrt; 1664 1665 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1666 if (!mrt) 1667 return -ENOENT; 1668 1669 switch (cmd) { 1670 case SIOCGETVIFCNT: 1671 if (copy_from_user(&vr, arg, sizeof(vr))) 1672 return -EFAULT; 1673 if (vr.vifi >= mrt->maxvif) 1674 return -EINVAL; 1675 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif); 1676 read_lock(&mrt_lock); 1677 vif = &mrt->vif_table[vr.vifi]; 1678 if (VIF_EXISTS(mrt, vr.vifi)) { 1679 vr.icount = vif->pkt_in; 1680 vr.ocount = vif->pkt_out; 1681 vr.ibytes = vif->bytes_in; 1682 vr.obytes = vif->bytes_out; 1683 read_unlock(&mrt_lock); 1684 1685 if (copy_to_user(arg, &vr, sizeof(vr))) 1686 return -EFAULT; 1687 return 0; 1688 } 1689 read_unlock(&mrt_lock); 1690 return -EADDRNOTAVAIL; 1691 case SIOCGETSGCNT: 1692 if (copy_from_user(&sr, arg, sizeof(sr))) 1693 return -EFAULT; 1694 1695 rcu_read_lock(); 1696 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1697 if (c) { 1698 sr.pktcnt = c->_c.mfc_un.res.pkt; 1699 sr.bytecnt = c->_c.mfc_un.res.bytes; 1700 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1701 rcu_read_unlock(); 1702 1703 if (copy_to_user(arg, &sr, sizeof(sr))) 1704 return -EFAULT; 1705 return 0; 1706 } 1707 rcu_read_unlock(); 1708 return -EADDRNOTAVAIL; 1709 default: 1710 return -ENOIOCTLCMD; 1711 } 1712 } 1713 #endif 1714 1715 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1716 { 1717 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1718 struct net *net = dev_net(dev); 1719 struct mr_table *mrt; 1720 struct vif_device *v; 1721 int ct; 1722 1723 if (event != NETDEV_UNREGISTER) 1724 return NOTIFY_DONE; 1725 1726 ipmr_for_each_table(mrt, net) { 1727 v = &mrt->vif_table[0]; 1728 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1729 if (v->dev == dev) 1730 vif_delete(mrt, ct, 1, NULL); 1731 } 1732 } 1733 return NOTIFY_DONE; 1734 } 1735 1736 static struct notifier_block ip_mr_notifier = { 1737 .notifier_call = ipmr_device_event, 1738 }; 1739 1740 /* Encapsulate a packet by attaching a valid IPIP header to it. 1741 * This avoids tunnel drivers and other mess and gives us the speed so 1742 * important for multicast video. 1743 */ 1744 static void ip_encap(struct net *net, struct sk_buff *skb, 1745 __be32 saddr, __be32 daddr) 1746 { 1747 struct iphdr *iph; 1748 const struct iphdr *old_iph = ip_hdr(skb); 1749 1750 skb_push(skb, sizeof(struct iphdr)); 1751 skb->transport_header = skb->network_header; 1752 skb_reset_network_header(skb); 1753 iph = ip_hdr(skb); 1754 1755 iph->version = 4; 1756 iph->tos = old_iph->tos; 1757 iph->ttl = old_iph->ttl; 1758 iph->frag_off = 0; 1759 iph->daddr = daddr; 1760 iph->saddr = saddr; 1761 iph->protocol = IPPROTO_IPIP; 1762 iph->ihl = 5; 1763 iph->tot_len = htons(skb->len); 1764 ip_select_ident(net, skb, NULL); 1765 ip_send_check(iph); 1766 1767 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1768 nf_reset_ct(skb); 1769 } 1770 1771 static inline int ipmr_forward_finish(struct net *net, struct sock *sk, 1772 struct sk_buff *skb) 1773 { 1774 struct ip_options *opt = &(IPCB(skb)->opt); 1775 1776 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS); 1777 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len); 1778 1779 if (unlikely(opt->optlen)) 1780 ip_forward_options(skb); 1781 1782 return dst_output(net, sk, skb); 1783 } 1784 1785 #ifdef CONFIG_NET_SWITCHDEV 1786 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1787 int in_vifi, int out_vifi) 1788 { 1789 struct vif_device *out_vif = &mrt->vif_table[out_vifi]; 1790 struct vif_device *in_vif = &mrt->vif_table[in_vifi]; 1791 1792 if (!skb->offload_l3_fwd_mark) 1793 return false; 1794 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len) 1795 return false; 1796 return netdev_phys_item_id_same(&out_vif->dev_parent_id, 1797 &in_vif->dev_parent_id); 1798 } 1799 #else 1800 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1801 int in_vifi, int out_vifi) 1802 { 1803 return false; 1804 } 1805 #endif 1806 1807 /* Processing handlers for ipmr_forward */ 1808 1809 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1810 int in_vifi, struct sk_buff *skb, int vifi) 1811 { 1812 const struct iphdr *iph = ip_hdr(skb); 1813 struct vif_device *vif = &mrt->vif_table[vifi]; 1814 struct net_device *dev; 1815 struct rtable *rt; 1816 struct flowi4 fl4; 1817 int encap = 0; 1818 1819 if (!vif->dev) 1820 goto out_free; 1821 1822 if (vif->flags & VIFF_REGISTER) { 1823 vif->pkt_out++; 1824 vif->bytes_out += skb->len; 1825 vif->dev->stats.tx_bytes += skb->len; 1826 vif->dev->stats.tx_packets++; 1827 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1828 goto out_free; 1829 } 1830 1831 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi)) 1832 goto out_free; 1833 1834 if (vif->flags & VIFF_TUNNEL) { 1835 rt = ip_route_output_ports(net, &fl4, NULL, 1836 vif->remote, vif->local, 1837 0, 0, 1838 IPPROTO_IPIP, 1839 RT_TOS(iph->tos), vif->link); 1840 if (IS_ERR(rt)) 1841 goto out_free; 1842 encap = sizeof(struct iphdr); 1843 } else { 1844 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1845 0, 0, 1846 IPPROTO_IPIP, 1847 RT_TOS(iph->tos), vif->link); 1848 if (IS_ERR(rt)) 1849 goto out_free; 1850 } 1851 1852 dev = rt->dst.dev; 1853 1854 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1855 /* Do not fragment multicasts. Alas, IPv4 does not 1856 * allow to send ICMP, so that packets will disappear 1857 * to blackhole. 1858 */ 1859 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 1860 ip_rt_put(rt); 1861 goto out_free; 1862 } 1863 1864 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1865 1866 if (skb_cow(skb, encap)) { 1867 ip_rt_put(rt); 1868 goto out_free; 1869 } 1870 1871 vif->pkt_out++; 1872 vif->bytes_out += skb->len; 1873 1874 skb_dst_drop(skb); 1875 skb_dst_set(skb, &rt->dst); 1876 ip_decrease_ttl(ip_hdr(skb)); 1877 1878 /* FIXME: forward and output firewalls used to be called here. 1879 * What do we do with netfilter? -- RR 1880 */ 1881 if (vif->flags & VIFF_TUNNEL) { 1882 ip_encap(net, skb, vif->local, vif->remote); 1883 /* FIXME: extra output firewall step used to be here. --RR */ 1884 vif->dev->stats.tx_packets++; 1885 vif->dev->stats.tx_bytes += skb->len; 1886 } 1887 1888 IPCB(skb)->flags |= IPSKB_FORWARDED; 1889 1890 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1891 * not only before forwarding, but after forwarding on all output 1892 * interfaces. It is clear, if mrouter runs a multicasting 1893 * program, it should receive packets not depending to what interface 1894 * program is joined. 1895 * If we will not make it, the program will have to join on all 1896 * interfaces. On the other hand, multihoming host (or router, but 1897 * not mrouter) cannot join to more than one interface - it will 1898 * result in receiving multiple packets. 1899 */ 1900 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, 1901 net, NULL, skb, skb->dev, dev, 1902 ipmr_forward_finish); 1903 return; 1904 1905 out_free: 1906 kfree_skb(skb); 1907 } 1908 1909 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev) 1910 { 1911 int ct; 1912 1913 for (ct = mrt->maxvif-1; ct >= 0; ct--) { 1914 if (mrt->vif_table[ct].dev == dev) 1915 break; 1916 } 1917 return ct; 1918 } 1919 1920 /* "local" means that we should preserve one skb (for local delivery) */ 1921 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 1922 struct net_device *dev, struct sk_buff *skb, 1923 struct mfc_cache *c, int local) 1924 { 1925 int true_vifi = ipmr_find_vif(mrt, dev); 1926 int psend = -1; 1927 int vif, ct; 1928 1929 vif = c->_c.mfc_parent; 1930 c->_c.mfc_un.res.pkt++; 1931 c->_c.mfc_un.res.bytes += skb->len; 1932 c->_c.mfc_un.res.lastuse = jiffies; 1933 1934 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { 1935 struct mfc_cache *cache_proxy; 1936 1937 /* For an (*,G) entry, we only check that the incoming 1938 * interface is part of the static tree. 1939 */ 1940 cache_proxy = mr_mfc_find_any_parent(mrt, vif); 1941 if (cache_proxy && 1942 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255) 1943 goto forward; 1944 } 1945 1946 /* Wrong interface: drop packet and (maybe) send PIM assert. */ 1947 if (mrt->vif_table[vif].dev != dev) { 1948 if (rt_is_output_route(skb_rtable(skb))) { 1949 /* It is our own packet, looped back. 1950 * Very complicated situation... 1951 * 1952 * The best workaround until routing daemons will be 1953 * fixed is not to redistribute packet, if it was 1954 * send through wrong interface. It means, that 1955 * multicast applications WILL NOT work for 1956 * (S,G), which have default multicast route pointing 1957 * to wrong oif. In any case, it is not a good 1958 * idea to use multicasting applications on router. 1959 */ 1960 goto dont_forward; 1961 } 1962 1963 c->_c.mfc_un.res.wrong_if++; 1964 1965 if (true_vifi >= 0 && mrt->mroute_do_assert && 1966 /* pimsm uses asserts, when switching from RPT to SPT, 1967 * so that we cannot check that packet arrived on an oif. 1968 * It is bad, but otherwise we would need to move pretty 1969 * large chunk of pimd to kernel. Ough... --ANK 1970 */ 1971 (mrt->mroute_do_pim || 1972 c->_c.mfc_un.res.ttls[true_vifi] < 255) && 1973 time_after(jiffies, 1974 c->_c.mfc_un.res.last_assert + 1975 MFC_ASSERT_THRESH)) { 1976 c->_c.mfc_un.res.last_assert = jiffies; 1977 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 1978 if (mrt->mroute_do_wrvifwhole) 1979 ipmr_cache_report(mrt, skb, true_vifi, 1980 IGMPMSG_WRVIFWHOLE); 1981 } 1982 goto dont_forward; 1983 } 1984 1985 forward: 1986 mrt->vif_table[vif].pkt_in++; 1987 mrt->vif_table[vif].bytes_in += skb->len; 1988 1989 /* Forward the frame */ 1990 if (c->mfc_origin == htonl(INADDR_ANY) && 1991 c->mfc_mcastgrp == htonl(INADDR_ANY)) { 1992 if (true_vifi >= 0 && 1993 true_vifi != c->_c.mfc_parent && 1994 ip_hdr(skb)->ttl > 1995 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) { 1996 /* It's an (*,*) entry and the packet is not coming from 1997 * the upstream: forward the packet to the upstream 1998 * only. 1999 */ 2000 psend = c->_c.mfc_parent; 2001 goto last_forward; 2002 } 2003 goto dont_forward; 2004 } 2005 for (ct = c->_c.mfc_un.res.maxvif - 1; 2006 ct >= c->_c.mfc_un.res.minvif; ct--) { 2007 /* For (*,G) entry, don't forward to the incoming interface */ 2008 if ((c->mfc_origin != htonl(INADDR_ANY) || 2009 ct != true_vifi) && 2010 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) { 2011 if (psend != -1) { 2012 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2013 2014 if (skb2) 2015 ipmr_queue_xmit(net, mrt, true_vifi, 2016 skb2, psend); 2017 } 2018 psend = ct; 2019 } 2020 } 2021 last_forward: 2022 if (psend != -1) { 2023 if (local) { 2024 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2025 2026 if (skb2) 2027 ipmr_queue_xmit(net, mrt, true_vifi, skb2, 2028 psend); 2029 } else { 2030 ipmr_queue_xmit(net, mrt, true_vifi, skb, psend); 2031 return; 2032 } 2033 } 2034 2035 dont_forward: 2036 if (!local) 2037 kfree_skb(skb); 2038 } 2039 2040 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 2041 { 2042 struct rtable *rt = skb_rtable(skb); 2043 struct iphdr *iph = ip_hdr(skb); 2044 struct flowi4 fl4 = { 2045 .daddr = iph->daddr, 2046 .saddr = iph->saddr, 2047 .flowi4_tos = RT_TOS(iph->tos), 2048 .flowi4_oif = (rt_is_output_route(rt) ? 2049 skb->dev->ifindex : 0), 2050 .flowi4_iif = (rt_is_output_route(rt) ? 2051 LOOPBACK_IFINDEX : 2052 skb->dev->ifindex), 2053 .flowi4_mark = skb->mark, 2054 }; 2055 struct mr_table *mrt; 2056 int err; 2057 2058 err = ipmr_fib_lookup(net, &fl4, &mrt); 2059 if (err) 2060 return ERR_PTR(err); 2061 return mrt; 2062 } 2063 2064 /* Multicast packets for forwarding arrive here 2065 * Called with rcu_read_lock(); 2066 */ 2067 int ip_mr_input(struct sk_buff *skb) 2068 { 2069 struct mfc_cache *cache; 2070 struct net *net = dev_net(skb->dev); 2071 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 2072 struct mr_table *mrt; 2073 struct net_device *dev; 2074 2075 /* skb->dev passed in is the loX master dev for vrfs. 2076 * As there are no vifs associated with loopback devices, 2077 * get the proper interface that does have a vif associated with it. 2078 */ 2079 dev = skb->dev; 2080 if (netif_is_l3_master(skb->dev)) { 2081 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif); 2082 if (!dev) { 2083 kfree_skb(skb); 2084 return -ENODEV; 2085 } 2086 } 2087 2088 /* Packet is looped back after forward, it should not be 2089 * forwarded second time, but still can be delivered locally. 2090 */ 2091 if (IPCB(skb)->flags & IPSKB_FORWARDED) 2092 goto dont_forward; 2093 2094 mrt = ipmr_rt_fib_lookup(net, skb); 2095 if (IS_ERR(mrt)) { 2096 kfree_skb(skb); 2097 return PTR_ERR(mrt); 2098 } 2099 if (!local) { 2100 if (IPCB(skb)->opt.router_alert) { 2101 if (ip_call_ra_chain(skb)) 2102 return 0; 2103 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 2104 /* IGMPv1 (and broken IGMPv2 implementations sort of 2105 * Cisco IOS <= 11.2(8)) do not put router alert 2106 * option to IGMP packets destined to routable 2107 * groups. It is very bad, because it means 2108 * that we can forward NO IGMP messages. 2109 */ 2110 struct sock *mroute_sk; 2111 2112 mroute_sk = rcu_dereference(mrt->mroute_sk); 2113 if (mroute_sk) { 2114 nf_reset_ct(skb); 2115 raw_rcv(mroute_sk, skb); 2116 return 0; 2117 } 2118 } 2119 } 2120 2121 /* already under rcu_read_lock() */ 2122 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 2123 if (!cache) { 2124 int vif = ipmr_find_vif(mrt, dev); 2125 2126 if (vif >= 0) 2127 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 2128 vif); 2129 } 2130 2131 /* No usable cache entry */ 2132 if (!cache) { 2133 int vif; 2134 2135 if (local) { 2136 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2137 ip_local_deliver(skb); 2138 if (!skb2) 2139 return -ENOBUFS; 2140 skb = skb2; 2141 } 2142 2143 read_lock(&mrt_lock); 2144 vif = ipmr_find_vif(mrt, dev); 2145 if (vif >= 0) { 2146 int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev); 2147 read_unlock(&mrt_lock); 2148 2149 return err2; 2150 } 2151 read_unlock(&mrt_lock); 2152 kfree_skb(skb); 2153 return -ENODEV; 2154 } 2155 2156 read_lock(&mrt_lock); 2157 ip_mr_forward(net, mrt, dev, skb, cache, local); 2158 read_unlock(&mrt_lock); 2159 2160 if (local) 2161 return ip_local_deliver(skb); 2162 2163 return 0; 2164 2165 dont_forward: 2166 if (local) 2167 return ip_local_deliver(skb); 2168 kfree_skb(skb); 2169 return 0; 2170 } 2171 2172 #ifdef CONFIG_IP_PIMSM_V1 2173 /* Handle IGMP messages of PIMv1 */ 2174 int pim_rcv_v1(struct sk_buff *skb) 2175 { 2176 struct igmphdr *pim; 2177 struct net *net = dev_net(skb->dev); 2178 struct mr_table *mrt; 2179 2180 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2181 goto drop; 2182 2183 pim = igmp_hdr(skb); 2184 2185 mrt = ipmr_rt_fib_lookup(net, skb); 2186 if (IS_ERR(mrt)) 2187 goto drop; 2188 if (!mrt->mroute_do_pim || 2189 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 2190 goto drop; 2191 2192 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2193 drop: 2194 kfree_skb(skb); 2195 } 2196 return 0; 2197 } 2198 #endif 2199 2200 #ifdef CONFIG_IP_PIMSM_V2 2201 static int pim_rcv(struct sk_buff *skb) 2202 { 2203 struct pimreghdr *pim; 2204 struct net *net = dev_net(skb->dev); 2205 struct mr_table *mrt; 2206 2207 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2208 goto drop; 2209 2210 pim = (struct pimreghdr *)skb_transport_header(skb); 2211 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) || 2212 (pim->flags & PIM_NULL_REGISTER) || 2213 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 2214 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 2215 goto drop; 2216 2217 mrt = ipmr_rt_fib_lookup(net, skb); 2218 if (IS_ERR(mrt)) 2219 goto drop; 2220 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2221 drop: 2222 kfree_skb(skb); 2223 } 2224 return 0; 2225 } 2226 #endif 2227 2228 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2229 __be32 saddr, __be32 daddr, 2230 struct rtmsg *rtm, u32 portid) 2231 { 2232 struct mfc_cache *cache; 2233 struct mr_table *mrt; 2234 int err; 2235 2236 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2237 if (!mrt) 2238 return -ENOENT; 2239 2240 rcu_read_lock(); 2241 cache = ipmr_cache_find(mrt, saddr, daddr); 2242 if (!cache && skb->dev) { 2243 int vif = ipmr_find_vif(mrt, skb->dev); 2244 2245 if (vif >= 0) 2246 cache = ipmr_cache_find_any(mrt, daddr, vif); 2247 } 2248 if (!cache) { 2249 struct sk_buff *skb2; 2250 struct iphdr *iph; 2251 struct net_device *dev; 2252 int vif = -1; 2253 2254 dev = skb->dev; 2255 read_lock(&mrt_lock); 2256 if (dev) 2257 vif = ipmr_find_vif(mrt, dev); 2258 if (vif < 0) { 2259 read_unlock(&mrt_lock); 2260 rcu_read_unlock(); 2261 return -ENODEV; 2262 } 2263 2264 skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr)); 2265 if (!skb2) { 2266 read_unlock(&mrt_lock); 2267 rcu_read_unlock(); 2268 return -ENOMEM; 2269 } 2270 2271 NETLINK_CB(skb2).portid = portid; 2272 skb_push(skb2, sizeof(struct iphdr)); 2273 skb_reset_network_header(skb2); 2274 iph = ip_hdr(skb2); 2275 iph->ihl = sizeof(struct iphdr) >> 2; 2276 iph->saddr = saddr; 2277 iph->daddr = daddr; 2278 iph->version = 0; 2279 err = ipmr_cache_unresolved(mrt, vif, skb2, dev); 2280 read_unlock(&mrt_lock); 2281 rcu_read_unlock(); 2282 return err; 2283 } 2284 2285 read_lock(&mrt_lock); 2286 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm); 2287 read_unlock(&mrt_lock); 2288 rcu_read_unlock(); 2289 return err; 2290 } 2291 2292 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2293 u32 portid, u32 seq, struct mfc_cache *c, int cmd, 2294 int flags) 2295 { 2296 struct nlmsghdr *nlh; 2297 struct rtmsg *rtm; 2298 int err; 2299 2300 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2301 if (!nlh) 2302 return -EMSGSIZE; 2303 2304 rtm = nlmsg_data(nlh); 2305 rtm->rtm_family = RTNL_FAMILY_IPMR; 2306 rtm->rtm_dst_len = 32; 2307 rtm->rtm_src_len = 32; 2308 rtm->rtm_tos = 0; 2309 rtm->rtm_table = mrt->id; 2310 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2311 goto nla_put_failure; 2312 rtm->rtm_type = RTN_MULTICAST; 2313 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2314 if (c->_c.mfc_flags & MFC_STATIC) 2315 rtm->rtm_protocol = RTPROT_STATIC; 2316 else 2317 rtm->rtm_protocol = RTPROT_MROUTED; 2318 rtm->rtm_flags = 0; 2319 2320 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) || 2321 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp)) 2322 goto nla_put_failure; 2323 err = mr_fill_mroute(mrt, skb, &c->_c, rtm); 2324 /* do not break the dump if cache is unresolved */ 2325 if (err < 0 && err != -ENOENT) 2326 goto nla_put_failure; 2327 2328 nlmsg_end(skb, nlh); 2329 return 0; 2330 2331 nla_put_failure: 2332 nlmsg_cancel(skb, nlh); 2333 return -EMSGSIZE; 2334 } 2335 2336 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2337 u32 portid, u32 seq, struct mr_mfc *c, int cmd, 2338 int flags) 2339 { 2340 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c, 2341 cmd, flags); 2342 } 2343 2344 static size_t mroute_msgsize(bool unresolved, int maxvif) 2345 { 2346 size_t len = 2347 NLMSG_ALIGN(sizeof(struct rtmsg)) 2348 + nla_total_size(4) /* RTA_TABLE */ 2349 + nla_total_size(4) /* RTA_SRC */ 2350 + nla_total_size(4) /* RTA_DST */ 2351 ; 2352 2353 if (!unresolved) 2354 len = len 2355 + nla_total_size(4) /* RTA_IIF */ 2356 + nla_total_size(0) /* RTA_MULTIPATH */ 2357 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2358 /* RTA_MFC_STATS */ 2359 + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) 2360 ; 2361 2362 return len; 2363 } 2364 2365 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 2366 int cmd) 2367 { 2368 struct net *net = read_pnet(&mrt->net); 2369 struct sk_buff *skb; 2370 int err = -ENOBUFS; 2371 2372 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS, 2373 mrt->maxvif), 2374 GFP_ATOMIC); 2375 if (!skb) 2376 goto errout; 2377 2378 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2379 if (err < 0) 2380 goto errout; 2381 2382 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); 2383 return; 2384 2385 errout: 2386 kfree_skb(skb); 2387 if (err < 0) 2388 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); 2389 } 2390 2391 static size_t igmpmsg_netlink_msgsize(size_t payloadlen) 2392 { 2393 size_t len = 2394 NLMSG_ALIGN(sizeof(struct rtgenmsg)) 2395 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */ 2396 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */ 2397 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */ 2398 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */ 2399 + nla_total_size(4) /* IPMRA_CREPORT_TABLE */ 2400 /* IPMRA_CREPORT_PKT */ 2401 + nla_total_size(payloadlen) 2402 ; 2403 2404 return len; 2405 } 2406 2407 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt) 2408 { 2409 struct net *net = read_pnet(&mrt->net); 2410 struct nlmsghdr *nlh; 2411 struct rtgenmsg *rtgenm; 2412 struct igmpmsg *msg; 2413 struct sk_buff *skb; 2414 struct nlattr *nla; 2415 int payloadlen; 2416 2417 payloadlen = pkt->len - sizeof(struct igmpmsg); 2418 msg = (struct igmpmsg *)skb_network_header(pkt); 2419 2420 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC); 2421 if (!skb) 2422 goto errout; 2423 2424 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT, 2425 sizeof(struct rtgenmsg), 0); 2426 if (!nlh) 2427 goto errout; 2428 rtgenm = nlmsg_data(nlh); 2429 rtgenm->rtgen_family = RTNL_FAMILY_IPMR; 2430 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) || 2431 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) || 2432 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR, 2433 msg->im_src.s_addr) || 2434 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR, 2435 msg->im_dst.s_addr) || 2436 nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id)) 2437 goto nla_put_failure; 2438 2439 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen); 2440 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg), 2441 nla_data(nla), payloadlen)) 2442 goto nla_put_failure; 2443 2444 nlmsg_end(skb, nlh); 2445 2446 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC); 2447 return; 2448 2449 nla_put_failure: 2450 nlmsg_cancel(skb, nlh); 2451 errout: 2452 kfree_skb(skb); 2453 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS); 2454 } 2455 2456 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb, 2457 const struct nlmsghdr *nlh, 2458 struct nlattr **tb, 2459 struct netlink_ext_ack *extack) 2460 { 2461 struct rtmsg *rtm; 2462 int i, err; 2463 2464 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) { 2465 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request"); 2466 return -EINVAL; 2467 } 2468 2469 if (!netlink_strict_get_check(skb)) 2470 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 2471 rtm_ipv4_policy, extack); 2472 2473 rtm = nlmsg_data(nlh); 2474 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) || 2475 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) || 2476 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol || 2477 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) { 2478 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request"); 2479 return -EINVAL; 2480 } 2481 2482 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, 2483 rtm_ipv4_policy, extack); 2484 if (err) 2485 return err; 2486 2487 if ((tb[RTA_SRC] && !rtm->rtm_src_len) || 2488 (tb[RTA_DST] && !rtm->rtm_dst_len)) { 2489 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4"); 2490 return -EINVAL; 2491 } 2492 2493 for (i = 0; i <= RTA_MAX; i++) { 2494 if (!tb[i]) 2495 continue; 2496 2497 switch (i) { 2498 case RTA_SRC: 2499 case RTA_DST: 2500 case RTA_TABLE: 2501 break; 2502 default: 2503 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request"); 2504 return -EINVAL; 2505 } 2506 } 2507 2508 return 0; 2509 } 2510 2511 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 2512 struct netlink_ext_ack *extack) 2513 { 2514 struct net *net = sock_net(in_skb->sk); 2515 struct nlattr *tb[RTA_MAX + 1]; 2516 struct sk_buff *skb = NULL; 2517 struct mfc_cache *cache; 2518 struct mr_table *mrt; 2519 __be32 src, grp; 2520 u32 tableid; 2521 int err; 2522 2523 err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack); 2524 if (err < 0) 2525 goto errout; 2526 2527 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0; 2528 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0; 2529 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0; 2530 2531 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT); 2532 if (!mrt) { 2533 err = -ENOENT; 2534 goto errout_free; 2535 } 2536 2537 /* entries are added/deleted only under RTNL */ 2538 rcu_read_lock(); 2539 cache = ipmr_cache_find(mrt, src, grp); 2540 rcu_read_unlock(); 2541 if (!cache) { 2542 err = -ENOENT; 2543 goto errout_free; 2544 } 2545 2546 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL); 2547 if (!skb) { 2548 err = -ENOBUFS; 2549 goto errout_free; 2550 } 2551 2552 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid, 2553 nlh->nlmsg_seq, cache, 2554 RTM_NEWROUTE, 0); 2555 if (err < 0) 2556 goto errout_free; 2557 2558 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 2559 2560 errout: 2561 return err; 2562 2563 errout_free: 2564 kfree_skb(skb); 2565 goto errout; 2566 } 2567 2568 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2569 { 2570 struct fib_dump_filter filter = {}; 2571 int err; 2572 2573 if (cb->strict_check) { 2574 err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh, 2575 &filter, cb); 2576 if (err < 0) 2577 return err; 2578 } 2579 2580 if (filter.table_id) { 2581 struct mr_table *mrt; 2582 2583 mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id); 2584 if (!mrt) { 2585 if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR) 2586 return skb->len; 2587 2588 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist"); 2589 return -ENOENT; 2590 } 2591 err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute, 2592 &mfc_unres_lock, &filter); 2593 return skb->len ? : err; 2594 } 2595 2596 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter, 2597 _ipmr_fill_mroute, &mfc_unres_lock, &filter); 2598 } 2599 2600 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = { 2601 [RTA_SRC] = { .type = NLA_U32 }, 2602 [RTA_DST] = { .type = NLA_U32 }, 2603 [RTA_IIF] = { .type = NLA_U32 }, 2604 [RTA_TABLE] = { .type = NLA_U32 }, 2605 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 2606 }; 2607 2608 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol) 2609 { 2610 switch (rtm_protocol) { 2611 case RTPROT_STATIC: 2612 case RTPROT_MROUTED: 2613 return true; 2614 } 2615 return false; 2616 } 2617 2618 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc) 2619 { 2620 struct rtnexthop *rtnh = nla_data(nla); 2621 int remaining = nla_len(nla), vifi = 0; 2622 2623 while (rtnh_ok(rtnh, remaining)) { 2624 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops; 2625 if (++vifi == MAXVIFS) 2626 break; 2627 rtnh = rtnh_next(rtnh, &remaining); 2628 } 2629 2630 return remaining > 0 ? -EINVAL : vifi; 2631 } 2632 2633 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */ 2634 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh, 2635 struct mfcctl *mfcc, int *mrtsock, 2636 struct mr_table **mrtret, 2637 struct netlink_ext_ack *extack) 2638 { 2639 struct net_device *dev = NULL; 2640 u32 tblid = RT_TABLE_DEFAULT; 2641 struct mr_table *mrt; 2642 struct nlattr *attr; 2643 struct rtmsg *rtm; 2644 int ret, rem; 2645 2646 ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX, 2647 rtm_ipmr_policy, extack); 2648 if (ret < 0) 2649 goto out; 2650 rtm = nlmsg_data(nlh); 2651 2652 ret = -EINVAL; 2653 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 || 2654 rtm->rtm_type != RTN_MULTICAST || 2655 rtm->rtm_scope != RT_SCOPE_UNIVERSE || 2656 !ipmr_rtm_validate_proto(rtm->rtm_protocol)) 2657 goto out; 2658 2659 memset(mfcc, 0, sizeof(*mfcc)); 2660 mfcc->mfcc_parent = -1; 2661 ret = 0; 2662 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) { 2663 switch (nla_type(attr)) { 2664 case RTA_SRC: 2665 mfcc->mfcc_origin.s_addr = nla_get_be32(attr); 2666 break; 2667 case RTA_DST: 2668 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr); 2669 break; 2670 case RTA_IIF: 2671 dev = __dev_get_by_index(net, nla_get_u32(attr)); 2672 if (!dev) { 2673 ret = -ENODEV; 2674 goto out; 2675 } 2676 break; 2677 case RTA_MULTIPATH: 2678 if (ipmr_nla_get_ttls(attr, mfcc) < 0) { 2679 ret = -EINVAL; 2680 goto out; 2681 } 2682 break; 2683 case RTA_PREFSRC: 2684 ret = 1; 2685 break; 2686 case RTA_TABLE: 2687 tblid = nla_get_u32(attr); 2688 break; 2689 } 2690 } 2691 mrt = ipmr_get_table(net, tblid); 2692 if (!mrt) { 2693 ret = -ENOENT; 2694 goto out; 2695 } 2696 *mrtret = mrt; 2697 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0; 2698 if (dev) 2699 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev); 2700 2701 out: 2702 return ret; 2703 } 2704 2705 /* takes care of both newroute and delroute */ 2706 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh, 2707 struct netlink_ext_ack *extack) 2708 { 2709 struct net *net = sock_net(skb->sk); 2710 int ret, mrtsock, parent; 2711 struct mr_table *tbl; 2712 struct mfcctl mfcc; 2713 2714 mrtsock = 0; 2715 tbl = NULL; 2716 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack); 2717 if (ret < 0) 2718 return ret; 2719 2720 parent = ret ? mfcc.mfcc_parent : -1; 2721 if (nlh->nlmsg_type == RTM_NEWROUTE) 2722 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent); 2723 else 2724 return ipmr_mfc_delete(tbl, &mfcc, parent); 2725 } 2726 2727 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb) 2728 { 2729 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len); 2730 2731 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) || 2732 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) || 2733 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM, 2734 mrt->mroute_reg_vif_num) || 2735 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT, 2736 mrt->mroute_do_assert) || 2737 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) || 2738 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE, 2739 mrt->mroute_do_wrvifwhole)) 2740 return false; 2741 2742 return true; 2743 } 2744 2745 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb) 2746 { 2747 struct nlattr *vif_nest; 2748 struct vif_device *vif; 2749 2750 /* if the VIF doesn't exist just continue */ 2751 if (!VIF_EXISTS(mrt, vifid)) 2752 return true; 2753 2754 vif = &mrt->vif_table[vifid]; 2755 vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF); 2756 if (!vif_nest) 2757 return false; 2758 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) || 2759 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) || 2760 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) || 2761 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in, 2762 IPMRA_VIFA_PAD) || 2763 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out, 2764 IPMRA_VIFA_PAD) || 2765 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in, 2766 IPMRA_VIFA_PAD) || 2767 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out, 2768 IPMRA_VIFA_PAD) || 2769 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) || 2770 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) { 2771 nla_nest_cancel(skb, vif_nest); 2772 return false; 2773 } 2774 nla_nest_end(skb, vif_nest); 2775 2776 return true; 2777 } 2778 2779 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh, 2780 struct netlink_ext_ack *extack) 2781 { 2782 struct ifinfomsg *ifm; 2783 2784 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) { 2785 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump"); 2786 return -EINVAL; 2787 } 2788 2789 if (nlmsg_attrlen(nlh, sizeof(*ifm))) { 2790 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump"); 2791 return -EINVAL; 2792 } 2793 2794 ifm = nlmsg_data(nlh); 2795 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags || 2796 ifm->ifi_change || ifm->ifi_index) { 2797 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request"); 2798 return -EINVAL; 2799 } 2800 2801 return 0; 2802 } 2803 2804 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb) 2805 { 2806 struct net *net = sock_net(skb->sk); 2807 struct nlmsghdr *nlh = NULL; 2808 unsigned int t = 0, s_t; 2809 unsigned int e = 0, s_e; 2810 struct mr_table *mrt; 2811 2812 if (cb->strict_check) { 2813 int err = ipmr_valid_dumplink(cb->nlh, cb->extack); 2814 2815 if (err < 0) 2816 return err; 2817 } 2818 2819 s_t = cb->args[0]; 2820 s_e = cb->args[1]; 2821 2822 ipmr_for_each_table(mrt, net) { 2823 struct nlattr *vifs, *af; 2824 struct ifinfomsg *hdr; 2825 u32 i; 2826 2827 if (t < s_t) 2828 goto skip_table; 2829 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, 2830 cb->nlh->nlmsg_seq, RTM_NEWLINK, 2831 sizeof(*hdr), NLM_F_MULTI); 2832 if (!nlh) 2833 break; 2834 2835 hdr = nlmsg_data(nlh); 2836 memset(hdr, 0, sizeof(*hdr)); 2837 hdr->ifi_family = RTNL_FAMILY_IPMR; 2838 2839 af = nla_nest_start_noflag(skb, IFLA_AF_SPEC); 2840 if (!af) { 2841 nlmsg_cancel(skb, nlh); 2842 goto out; 2843 } 2844 2845 if (!ipmr_fill_table(mrt, skb)) { 2846 nlmsg_cancel(skb, nlh); 2847 goto out; 2848 } 2849 2850 vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS); 2851 if (!vifs) { 2852 nla_nest_end(skb, af); 2853 nlmsg_end(skb, nlh); 2854 goto out; 2855 } 2856 for (i = 0; i < mrt->maxvif; i++) { 2857 if (e < s_e) 2858 goto skip_entry; 2859 if (!ipmr_fill_vif(mrt, i, skb)) { 2860 nla_nest_end(skb, vifs); 2861 nla_nest_end(skb, af); 2862 nlmsg_end(skb, nlh); 2863 goto out; 2864 } 2865 skip_entry: 2866 e++; 2867 } 2868 s_e = 0; 2869 e = 0; 2870 nla_nest_end(skb, vifs); 2871 nla_nest_end(skb, af); 2872 nlmsg_end(skb, nlh); 2873 skip_table: 2874 t++; 2875 } 2876 2877 out: 2878 cb->args[1] = e; 2879 cb->args[0] = t; 2880 2881 return skb->len; 2882 } 2883 2884 #ifdef CONFIG_PROC_FS 2885 /* The /proc interfaces to multicast routing : 2886 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2887 */ 2888 2889 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2890 __acquires(mrt_lock) 2891 { 2892 struct mr_vif_iter *iter = seq->private; 2893 struct net *net = seq_file_net(seq); 2894 struct mr_table *mrt; 2895 2896 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2897 if (!mrt) 2898 return ERR_PTR(-ENOENT); 2899 2900 iter->mrt = mrt; 2901 2902 read_lock(&mrt_lock); 2903 return mr_vif_seq_start(seq, pos); 2904 } 2905 2906 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2907 __releases(mrt_lock) 2908 { 2909 read_unlock(&mrt_lock); 2910 } 2911 2912 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2913 { 2914 struct mr_vif_iter *iter = seq->private; 2915 struct mr_table *mrt = iter->mrt; 2916 2917 if (v == SEQ_START_TOKEN) { 2918 seq_puts(seq, 2919 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2920 } else { 2921 const struct vif_device *vif = v; 2922 const char *name = vif->dev ? 2923 vif->dev->name : "none"; 2924 2925 seq_printf(seq, 2926 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2927 vif - mrt->vif_table, 2928 name, vif->bytes_in, vif->pkt_in, 2929 vif->bytes_out, vif->pkt_out, 2930 vif->flags, vif->local, vif->remote); 2931 } 2932 return 0; 2933 } 2934 2935 static const struct seq_operations ipmr_vif_seq_ops = { 2936 .start = ipmr_vif_seq_start, 2937 .next = mr_vif_seq_next, 2938 .stop = ipmr_vif_seq_stop, 2939 .show = ipmr_vif_seq_show, 2940 }; 2941 2942 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2943 { 2944 struct net *net = seq_file_net(seq); 2945 struct mr_table *mrt; 2946 2947 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2948 if (!mrt) 2949 return ERR_PTR(-ENOENT); 2950 2951 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock); 2952 } 2953 2954 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2955 { 2956 int n; 2957 2958 if (v == SEQ_START_TOKEN) { 2959 seq_puts(seq, 2960 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2961 } else { 2962 const struct mfc_cache *mfc = v; 2963 const struct mr_mfc_iter *it = seq->private; 2964 const struct mr_table *mrt = it->mrt; 2965 2966 seq_printf(seq, "%08X %08X %-3hd", 2967 (__force u32) mfc->mfc_mcastgrp, 2968 (__force u32) mfc->mfc_origin, 2969 mfc->_c.mfc_parent); 2970 2971 if (it->cache != &mrt->mfc_unres_queue) { 2972 seq_printf(seq, " %8lu %8lu %8lu", 2973 mfc->_c.mfc_un.res.pkt, 2974 mfc->_c.mfc_un.res.bytes, 2975 mfc->_c.mfc_un.res.wrong_if); 2976 for (n = mfc->_c.mfc_un.res.minvif; 2977 n < mfc->_c.mfc_un.res.maxvif; n++) { 2978 if (VIF_EXISTS(mrt, n) && 2979 mfc->_c.mfc_un.res.ttls[n] < 255) 2980 seq_printf(seq, 2981 " %2d:%-3d", 2982 n, mfc->_c.mfc_un.res.ttls[n]); 2983 } 2984 } else { 2985 /* unresolved mfc_caches don't contain 2986 * pkt, bytes and wrong_if values 2987 */ 2988 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 2989 } 2990 seq_putc(seq, '\n'); 2991 } 2992 return 0; 2993 } 2994 2995 static const struct seq_operations ipmr_mfc_seq_ops = { 2996 .start = ipmr_mfc_seq_start, 2997 .next = mr_mfc_seq_next, 2998 .stop = mr_mfc_seq_stop, 2999 .show = ipmr_mfc_seq_show, 3000 }; 3001 #endif 3002 3003 #ifdef CONFIG_IP_PIMSM_V2 3004 static const struct net_protocol pim_protocol = { 3005 .handler = pim_rcv, 3006 }; 3007 #endif 3008 3009 static unsigned int ipmr_seq_read(struct net *net) 3010 { 3011 ASSERT_RTNL(); 3012 3013 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net); 3014 } 3015 3016 static int ipmr_dump(struct net *net, struct notifier_block *nb, 3017 struct netlink_ext_ack *extack) 3018 { 3019 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump, 3020 ipmr_mr_table_iter, &mrt_lock, extack); 3021 } 3022 3023 static const struct fib_notifier_ops ipmr_notifier_ops_template = { 3024 .family = RTNL_FAMILY_IPMR, 3025 .fib_seq_read = ipmr_seq_read, 3026 .fib_dump = ipmr_dump, 3027 .owner = THIS_MODULE, 3028 }; 3029 3030 static int __net_init ipmr_notifier_init(struct net *net) 3031 { 3032 struct fib_notifier_ops *ops; 3033 3034 net->ipv4.ipmr_seq = 0; 3035 3036 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net); 3037 if (IS_ERR(ops)) 3038 return PTR_ERR(ops); 3039 net->ipv4.ipmr_notifier_ops = ops; 3040 3041 return 0; 3042 } 3043 3044 static void __net_exit ipmr_notifier_exit(struct net *net) 3045 { 3046 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops); 3047 net->ipv4.ipmr_notifier_ops = NULL; 3048 } 3049 3050 /* Setup for IP multicast routing */ 3051 static int __net_init ipmr_net_init(struct net *net) 3052 { 3053 int err; 3054 3055 err = ipmr_notifier_init(net); 3056 if (err) 3057 goto ipmr_notifier_fail; 3058 3059 err = ipmr_rules_init(net); 3060 if (err < 0) 3061 goto ipmr_rules_fail; 3062 3063 #ifdef CONFIG_PROC_FS 3064 err = -ENOMEM; 3065 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops, 3066 sizeof(struct mr_vif_iter))) 3067 goto proc_vif_fail; 3068 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops, 3069 sizeof(struct mr_mfc_iter))) 3070 goto proc_cache_fail; 3071 #endif 3072 return 0; 3073 3074 #ifdef CONFIG_PROC_FS 3075 proc_cache_fail: 3076 remove_proc_entry("ip_mr_vif", net->proc_net); 3077 proc_vif_fail: 3078 rtnl_lock(); 3079 ipmr_rules_exit(net); 3080 rtnl_unlock(); 3081 #endif 3082 ipmr_rules_fail: 3083 ipmr_notifier_exit(net); 3084 ipmr_notifier_fail: 3085 return err; 3086 } 3087 3088 static void __net_exit ipmr_net_exit(struct net *net) 3089 { 3090 #ifdef CONFIG_PROC_FS 3091 remove_proc_entry("ip_mr_cache", net->proc_net); 3092 remove_proc_entry("ip_mr_vif", net->proc_net); 3093 #endif 3094 ipmr_notifier_exit(net); 3095 } 3096 3097 static void __net_exit ipmr_net_exit_batch(struct list_head *net_list) 3098 { 3099 struct net *net; 3100 3101 rtnl_lock(); 3102 list_for_each_entry(net, net_list, exit_list) 3103 ipmr_rules_exit(net); 3104 rtnl_unlock(); 3105 } 3106 3107 static struct pernet_operations ipmr_net_ops = { 3108 .init = ipmr_net_init, 3109 .exit = ipmr_net_exit, 3110 .exit_batch = ipmr_net_exit_batch, 3111 }; 3112 3113 int __init ip_mr_init(void) 3114 { 3115 int err; 3116 3117 mrt_cachep = kmem_cache_create("ip_mrt_cache", 3118 sizeof(struct mfc_cache), 3119 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 3120 NULL); 3121 3122 err = register_pernet_subsys(&ipmr_net_ops); 3123 if (err) 3124 goto reg_pernet_fail; 3125 3126 err = register_netdevice_notifier(&ip_mr_notifier); 3127 if (err) 3128 goto reg_notif_fail; 3129 #ifdef CONFIG_IP_PIMSM_V2 3130 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 3131 pr_err("%s: can't add PIM protocol\n", __func__); 3132 err = -EAGAIN; 3133 goto add_proto_fail; 3134 } 3135 #endif 3136 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 3137 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0); 3138 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE, 3139 ipmr_rtm_route, NULL, 0); 3140 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE, 3141 ipmr_rtm_route, NULL, 0); 3142 3143 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK, 3144 NULL, ipmr_rtm_dumplink, 0); 3145 return 0; 3146 3147 #ifdef CONFIG_IP_PIMSM_V2 3148 add_proto_fail: 3149 unregister_netdevice_notifier(&ip_mr_notifier); 3150 #endif 3151 reg_notif_fail: 3152 unregister_pernet_subsys(&ipmr_net_ops); 3153 reg_pernet_fail: 3154 kmem_cache_destroy(mrt_cachep); 3155 return err; 3156 } 3157