1 /* 2 * IP multicast routing support for mrouted 3.6/3.8 3 * 4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 5 * Linux Consultancy and Custom Driver Development 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 * 12 * Fixes: 13 * Michael Chastain : Incorrect size of copying. 14 * Alan Cox : Added the cache manager code 15 * Alan Cox : Fixed the clone/copy bug and device race. 16 * Mike McLagan : Routing by source 17 * Malcolm Beattie : Buffer handling fixes. 18 * Alexey Kuznetsov : Double buffer free and other fixes. 19 * SVR Anand : Fixed several multicast bugs and problems. 20 * Alexey Kuznetsov : Status, optimisations and more. 21 * Brad Parker : Better behaviour on mrouted upcall 22 * overflow. 23 * Carlos Picoto : PIMv1 Support 24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 25 * Relax this requirement to work with older peers. 26 * 27 */ 28 29 #include <asm/system.h> 30 #include <asm/uaccess.h> 31 #include <linux/types.h> 32 #include <linux/capability.h> 33 #include <linux/errno.h> 34 #include <linux/timer.h> 35 #include <linux/mm.h> 36 #include <linux/kernel.h> 37 #include <linux/fcntl.h> 38 #include <linux/stat.h> 39 #include <linux/socket.h> 40 #include <linux/in.h> 41 #include <linux/inet.h> 42 #include <linux/netdevice.h> 43 #include <linux/inetdevice.h> 44 #include <linux/igmp.h> 45 #include <linux/proc_fs.h> 46 #include <linux/seq_file.h> 47 #include <linux/mroute.h> 48 #include <linux/init.h> 49 #include <linux/if_ether.h> 50 #include <linux/slab.h> 51 #include <net/net_namespace.h> 52 #include <net/ip.h> 53 #include <net/protocol.h> 54 #include <linux/skbuff.h> 55 #include <net/route.h> 56 #include <net/sock.h> 57 #include <net/icmp.h> 58 #include <net/udp.h> 59 #include <net/raw.h> 60 #include <linux/notifier.h> 61 #include <linux/if_arp.h> 62 #include <linux/netfilter_ipv4.h> 63 #include <linux/compat.h> 64 #include <linux/export.h> 65 #include <net/ipip.h> 66 #include <net/checksum.h> 67 #include <net/netlink.h> 68 #include <net/fib_rules.h> 69 70 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 71 #define CONFIG_IP_PIMSM 1 72 #endif 73 74 struct mr_table { 75 struct list_head list; 76 #ifdef CONFIG_NET_NS 77 struct net *net; 78 #endif 79 u32 id; 80 struct sock __rcu *mroute_sk; 81 struct timer_list ipmr_expire_timer; 82 struct list_head mfc_unres_queue; 83 struct list_head mfc_cache_array[MFC_LINES]; 84 struct vif_device vif_table[MAXVIFS]; 85 int maxvif; 86 atomic_t cache_resolve_queue_len; 87 int mroute_do_assert; 88 int mroute_do_pim; 89 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 90 int mroute_reg_vif_num; 91 #endif 92 }; 93 94 struct ipmr_rule { 95 struct fib_rule common; 96 }; 97 98 struct ipmr_result { 99 struct mr_table *mrt; 100 }; 101 102 /* Big lock, protecting vif table, mrt cache and mroute socket state. 103 * Note that the changes are semaphored via rtnl_lock. 104 */ 105 106 static DEFINE_RWLOCK(mrt_lock); 107 108 /* 109 * Multicast router control variables 110 */ 111 112 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL) 113 114 /* Special spinlock for queue of unresolved entries */ 115 static DEFINE_SPINLOCK(mfc_unres_lock); 116 117 /* We return to original Alan's scheme. Hash table of resolved 118 * entries is changed only in process context and protected 119 * with weak lock mrt_lock. Queue of unresolved entries is protected 120 * with strong spinlock mfc_unres_lock. 121 * 122 * In this case data path is free of exclusive locks at all. 123 */ 124 125 static struct kmem_cache *mrt_cachep __read_mostly; 126 127 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 128 static int ip_mr_forward(struct net *net, struct mr_table *mrt, 129 struct sk_buff *skb, struct mfc_cache *cache, 130 int local); 131 static int ipmr_cache_report(struct mr_table *mrt, 132 struct sk_buff *pkt, vifi_t vifi, int assert); 133 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 134 struct mfc_cache *c, struct rtmsg *rtm); 135 static void ipmr_expire_process(unsigned long arg); 136 137 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 138 #define ipmr_for_each_table(mrt, net) \ 139 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list) 140 141 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 142 { 143 struct mr_table *mrt; 144 145 ipmr_for_each_table(mrt, net) { 146 if (mrt->id == id) 147 return mrt; 148 } 149 return NULL; 150 } 151 152 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 153 struct mr_table **mrt) 154 { 155 struct ipmr_result res; 156 struct fib_lookup_arg arg = { .result = &res, }; 157 int err; 158 159 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 160 flowi4_to_flowi(flp4), 0, &arg); 161 if (err < 0) 162 return err; 163 *mrt = res.mrt; 164 return 0; 165 } 166 167 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 168 int flags, struct fib_lookup_arg *arg) 169 { 170 struct ipmr_result *res = arg->result; 171 struct mr_table *mrt; 172 173 switch (rule->action) { 174 case FR_ACT_TO_TBL: 175 break; 176 case FR_ACT_UNREACHABLE: 177 return -ENETUNREACH; 178 case FR_ACT_PROHIBIT: 179 return -EACCES; 180 case FR_ACT_BLACKHOLE: 181 default: 182 return -EINVAL; 183 } 184 185 mrt = ipmr_get_table(rule->fr_net, rule->table); 186 if (mrt == NULL) 187 return -EAGAIN; 188 res->mrt = mrt; 189 return 0; 190 } 191 192 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 193 { 194 return 1; 195 } 196 197 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = { 198 FRA_GENERIC_POLICY, 199 }; 200 201 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 202 struct fib_rule_hdr *frh, struct nlattr **tb) 203 { 204 return 0; 205 } 206 207 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 208 struct nlattr **tb) 209 { 210 return 1; 211 } 212 213 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 214 struct fib_rule_hdr *frh) 215 { 216 frh->dst_len = 0; 217 frh->src_len = 0; 218 frh->tos = 0; 219 return 0; 220 } 221 222 static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = { 223 .family = RTNL_FAMILY_IPMR, 224 .rule_size = sizeof(struct ipmr_rule), 225 .addr_size = sizeof(u32), 226 .action = ipmr_rule_action, 227 .match = ipmr_rule_match, 228 .configure = ipmr_rule_configure, 229 .compare = ipmr_rule_compare, 230 .default_pref = fib_default_rule_pref, 231 .fill = ipmr_rule_fill, 232 .nlgroup = RTNLGRP_IPV4_RULE, 233 .policy = ipmr_rule_policy, 234 .owner = THIS_MODULE, 235 }; 236 237 static int __net_init ipmr_rules_init(struct net *net) 238 { 239 struct fib_rules_ops *ops; 240 struct mr_table *mrt; 241 int err; 242 243 ops = fib_rules_register(&ipmr_rules_ops_template, net); 244 if (IS_ERR(ops)) 245 return PTR_ERR(ops); 246 247 INIT_LIST_HEAD(&net->ipv4.mr_tables); 248 249 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 250 if (mrt == NULL) { 251 err = -ENOMEM; 252 goto err1; 253 } 254 255 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 256 if (err < 0) 257 goto err2; 258 259 net->ipv4.mr_rules_ops = ops; 260 return 0; 261 262 err2: 263 kfree(mrt); 264 err1: 265 fib_rules_unregister(ops); 266 return err; 267 } 268 269 static void __net_exit ipmr_rules_exit(struct net *net) 270 { 271 struct mr_table *mrt, *next; 272 273 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 274 list_del(&mrt->list); 275 kfree(mrt); 276 } 277 fib_rules_unregister(net->ipv4.mr_rules_ops); 278 } 279 #else 280 #define ipmr_for_each_table(mrt, net) \ 281 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 282 283 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 284 { 285 return net->ipv4.mrt; 286 } 287 288 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 289 struct mr_table **mrt) 290 { 291 *mrt = net->ipv4.mrt; 292 return 0; 293 } 294 295 static int __net_init ipmr_rules_init(struct net *net) 296 { 297 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 298 return net->ipv4.mrt ? 0 : -ENOMEM; 299 } 300 301 static void __net_exit ipmr_rules_exit(struct net *net) 302 { 303 kfree(net->ipv4.mrt); 304 } 305 #endif 306 307 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 308 { 309 struct mr_table *mrt; 310 unsigned int i; 311 312 mrt = ipmr_get_table(net, id); 313 if (mrt != NULL) 314 return mrt; 315 316 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL); 317 if (mrt == NULL) 318 return NULL; 319 write_pnet(&mrt->net, net); 320 mrt->id = id; 321 322 /* Forwarding cache */ 323 for (i = 0; i < MFC_LINES; i++) 324 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]); 325 326 INIT_LIST_HEAD(&mrt->mfc_unres_queue); 327 328 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process, 329 (unsigned long)mrt); 330 331 #ifdef CONFIG_IP_PIMSM 332 mrt->mroute_reg_vif_num = -1; 333 #endif 334 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 335 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 336 #endif 337 return mrt; 338 } 339 340 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 341 342 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v) 343 { 344 struct net *net = dev_net(dev); 345 346 dev_close(dev); 347 348 dev = __dev_get_by_name(net, "tunl0"); 349 if (dev) { 350 const struct net_device_ops *ops = dev->netdev_ops; 351 struct ifreq ifr; 352 struct ip_tunnel_parm p; 353 354 memset(&p, 0, sizeof(p)); 355 p.iph.daddr = v->vifc_rmt_addr.s_addr; 356 p.iph.saddr = v->vifc_lcl_addr.s_addr; 357 p.iph.version = 4; 358 p.iph.ihl = 5; 359 p.iph.protocol = IPPROTO_IPIP; 360 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 361 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 362 363 if (ops->ndo_do_ioctl) { 364 mm_segment_t oldfs = get_fs(); 365 366 set_fs(KERNEL_DS); 367 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL); 368 set_fs(oldfs); 369 } 370 } 371 } 372 373 static 374 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 375 { 376 struct net_device *dev; 377 378 dev = __dev_get_by_name(net, "tunl0"); 379 380 if (dev) { 381 const struct net_device_ops *ops = dev->netdev_ops; 382 int err; 383 struct ifreq ifr; 384 struct ip_tunnel_parm p; 385 struct in_device *in_dev; 386 387 memset(&p, 0, sizeof(p)); 388 p.iph.daddr = v->vifc_rmt_addr.s_addr; 389 p.iph.saddr = v->vifc_lcl_addr.s_addr; 390 p.iph.version = 4; 391 p.iph.ihl = 5; 392 p.iph.protocol = IPPROTO_IPIP; 393 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 394 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 395 396 if (ops->ndo_do_ioctl) { 397 mm_segment_t oldfs = get_fs(); 398 399 set_fs(KERNEL_DS); 400 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL); 401 set_fs(oldfs); 402 } else { 403 err = -EOPNOTSUPP; 404 } 405 dev = NULL; 406 407 if (err == 0 && 408 (dev = __dev_get_by_name(net, p.name)) != NULL) { 409 dev->flags |= IFF_MULTICAST; 410 411 in_dev = __in_dev_get_rtnl(dev); 412 if (in_dev == NULL) 413 goto failure; 414 415 ipv4_devconf_setall(in_dev); 416 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 417 418 if (dev_open(dev)) 419 goto failure; 420 dev_hold(dev); 421 } 422 } 423 return dev; 424 425 failure: 426 /* allow the register to be completed before unregistering. */ 427 rtnl_unlock(); 428 rtnl_lock(); 429 430 unregister_netdevice(dev); 431 return NULL; 432 } 433 434 #ifdef CONFIG_IP_PIMSM 435 436 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 437 { 438 struct net *net = dev_net(dev); 439 struct mr_table *mrt; 440 struct flowi4 fl4 = { 441 .flowi4_oif = dev->ifindex, 442 .flowi4_iif = skb->skb_iif, 443 .flowi4_mark = skb->mark, 444 }; 445 int err; 446 447 err = ipmr_fib_lookup(net, &fl4, &mrt); 448 if (err < 0) { 449 kfree_skb(skb); 450 return err; 451 } 452 453 read_lock(&mrt_lock); 454 dev->stats.tx_bytes += skb->len; 455 dev->stats.tx_packets++; 456 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT); 457 read_unlock(&mrt_lock); 458 kfree_skb(skb); 459 return NETDEV_TX_OK; 460 } 461 462 static const struct net_device_ops reg_vif_netdev_ops = { 463 .ndo_start_xmit = reg_vif_xmit, 464 }; 465 466 static void reg_vif_setup(struct net_device *dev) 467 { 468 dev->type = ARPHRD_PIMREG; 469 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 470 dev->flags = IFF_NOARP; 471 dev->netdev_ops = ®_vif_netdev_ops, 472 dev->destructor = free_netdev; 473 dev->features |= NETIF_F_NETNS_LOCAL; 474 } 475 476 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 477 { 478 struct net_device *dev; 479 struct in_device *in_dev; 480 char name[IFNAMSIZ]; 481 482 if (mrt->id == RT_TABLE_DEFAULT) 483 sprintf(name, "pimreg"); 484 else 485 sprintf(name, "pimreg%u", mrt->id); 486 487 dev = alloc_netdev(0, name, reg_vif_setup); 488 489 if (dev == NULL) 490 return NULL; 491 492 dev_net_set(dev, net); 493 494 if (register_netdevice(dev)) { 495 free_netdev(dev); 496 return NULL; 497 } 498 dev->iflink = 0; 499 500 rcu_read_lock(); 501 in_dev = __in_dev_get_rcu(dev); 502 if (!in_dev) { 503 rcu_read_unlock(); 504 goto failure; 505 } 506 507 ipv4_devconf_setall(in_dev); 508 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 509 rcu_read_unlock(); 510 511 if (dev_open(dev)) 512 goto failure; 513 514 dev_hold(dev); 515 516 return dev; 517 518 failure: 519 /* allow the register to be completed before unregistering. */ 520 rtnl_unlock(); 521 rtnl_lock(); 522 523 unregister_netdevice(dev); 524 return NULL; 525 } 526 #endif 527 528 /* 529 * Delete a VIF entry 530 * @notify: Set to 1, if the caller is a notifier_call 531 */ 532 533 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 534 struct list_head *head) 535 { 536 struct vif_device *v; 537 struct net_device *dev; 538 struct in_device *in_dev; 539 540 if (vifi < 0 || vifi >= mrt->maxvif) 541 return -EADDRNOTAVAIL; 542 543 v = &mrt->vif_table[vifi]; 544 545 write_lock_bh(&mrt_lock); 546 dev = v->dev; 547 v->dev = NULL; 548 549 if (!dev) { 550 write_unlock_bh(&mrt_lock); 551 return -EADDRNOTAVAIL; 552 } 553 554 #ifdef CONFIG_IP_PIMSM 555 if (vifi == mrt->mroute_reg_vif_num) 556 mrt->mroute_reg_vif_num = -1; 557 #endif 558 559 if (vifi + 1 == mrt->maxvif) { 560 int tmp; 561 562 for (tmp = vifi - 1; tmp >= 0; tmp--) { 563 if (VIF_EXISTS(mrt, tmp)) 564 break; 565 } 566 mrt->maxvif = tmp+1; 567 } 568 569 write_unlock_bh(&mrt_lock); 570 571 dev_set_allmulti(dev, -1); 572 573 in_dev = __in_dev_get_rtnl(dev); 574 if (in_dev) { 575 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 576 ip_rt_multicast_event(in_dev); 577 } 578 579 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 580 unregister_netdevice_queue(dev, head); 581 582 dev_put(dev); 583 return 0; 584 } 585 586 static void ipmr_cache_free_rcu(struct rcu_head *head) 587 { 588 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu); 589 590 kmem_cache_free(mrt_cachep, c); 591 } 592 593 static inline void ipmr_cache_free(struct mfc_cache *c) 594 { 595 call_rcu(&c->rcu, ipmr_cache_free_rcu); 596 } 597 598 /* Destroy an unresolved cache entry, killing queued skbs 599 * and reporting error to netlink readers. 600 */ 601 602 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 603 { 604 struct net *net = read_pnet(&mrt->net); 605 struct sk_buff *skb; 606 struct nlmsgerr *e; 607 608 atomic_dec(&mrt->cache_resolve_queue_len); 609 610 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) { 611 if (ip_hdr(skb)->version == 0) { 612 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 613 nlh->nlmsg_type = NLMSG_ERROR; 614 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr)); 615 skb_trim(skb, nlh->nlmsg_len); 616 e = NLMSG_DATA(nlh); 617 e->error = -ETIMEDOUT; 618 memset(&e->msg, 0, sizeof(e->msg)); 619 620 rtnl_unicast(skb, net, NETLINK_CB(skb).pid); 621 } else { 622 kfree_skb(skb); 623 } 624 } 625 626 ipmr_cache_free(c); 627 } 628 629 630 /* Timer process for the unresolved queue. */ 631 632 static void ipmr_expire_process(unsigned long arg) 633 { 634 struct mr_table *mrt = (struct mr_table *)arg; 635 unsigned long now; 636 unsigned long expires; 637 struct mfc_cache *c, *next; 638 639 if (!spin_trylock(&mfc_unres_lock)) { 640 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 641 return; 642 } 643 644 if (list_empty(&mrt->mfc_unres_queue)) 645 goto out; 646 647 now = jiffies; 648 expires = 10*HZ; 649 650 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 651 if (time_after(c->mfc_un.unres.expires, now)) { 652 unsigned long interval = c->mfc_un.unres.expires - now; 653 if (interval < expires) 654 expires = interval; 655 continue; 656 } 657 658 list_del(&c->list); 659 ipmr_destroy_unres(mrt, c); 660 } 661 662 if (!list_empty(&mrt->mfc_unres_queue)) 663 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 664 665 out: 666 spin_unlock(&mfc_unres_lock); 667 } 668 669 /* Fill oifs list. It is called under write locked mrt_lock. */ 670 671 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache, 672 unsigned char *ttls) 673 { 674 int vifi; 675 676 cache->mfc_un.res.minvif = MAXVIFS; 677 cache->mfc_un.res.maxvif = 0; 678 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 679 680 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 681 if (VIF_EXISTS(mrt, vifi) && 682 ttls[vifi] && ttls[vifi] < 255) { 683 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 684 if (cache->mfc_un.res.minvif > vifi) 685 cache->mfc_un.res.minvif = vifi; 686 if (cache->mfc_un.res.maxvif <= vifi) 687 cache->mfc_un.res.maxvif = vifi + 1; 688 } 689 } 690 } 691 692 static int vif_add(struct net *net, struct mr_table *mrt, 693 struct vifctl *vifc, int mrtsock) 694 { 695 int vifi = vifc->vifc_vifi; 696 struct vif_device *v = &mrt->vif_table[vifi]; 697 struct net_device *dev; 698 struct in_device *in_dev; 699 int err; 700 701 /* Is vif busy ? */ 702 if (VIF_EXISTS(mrt, vifi)) 703 return -EADDRINUSE; 704 705 switch (vifc->vifc_flags) { 706 #ifdef CONFIG_IP_PIMSM 707 case VIFF_REGISTER: 708 /* 709 * Special Purpose VIF in PIM 710 * All the packets will be sent to the daemon 711 */ 712 if (mrt->mroute_reg_vif_num >= 0) 713 return -EADDRINUSE; 714 dev = ipmr_reg_vif(net, mrt); 715 if (!dev) 716 return -ENOBUFS; 717 err = dev_set_allmulti(dev, 1); 718 if (err) { 719 unregister_netdevice(dev); 720 dev_put(dev); 721 return err; 722 } 723 break; 724 #endif 725 case VIFF_TUNNEL: 726 dev = ipmr_new_tunnel(net, vifc); 727 if (!dev) 728 return -ENOBUFS; 729 err = dev_set_allmulti(dev, 1); 730 if (err) { 731 ipmr_del_tunnel(dev, vifc); 732 dev_put(dev); 733 return err; 734 } 735 break; 736 737 case VIFF_USE_IFINDEX: 738 case 0: 739 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 740 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 741 if (dev && __in_dev_get_rtnl(dev) == NULL) { 742 dev_put(dev); 743 return -EADDRNOTAVAIL; 744 } 745 } else { 746 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 747 } 748 if (!dev) 749 return -EADDRNOTAVAIL; 750 err = dev_set_allmulti(dev, 1); 751 if (err) { 752 dev_put(dev); 753 return err; 754 } 755 break; 756 default: 757 return -EINVAL; 758 } 759 760 in_dev = __in_dev_get_rtnl(dev); 761 if (!in_dev) { 762 dev_put(dev); 763 return -EADDRNOTAVAIL; 764 } 765 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 766 ip_rt_multicast_event(in_dev); 767 768 /* Fill in the VIF structures */ 769 770 v->rate_limit = vifc->vifc_rate_limit; 771 v->local = vifc->vifc_lcl_addr.s_addr; 772 v->remote = vifc->vifc_rmt_addr.s_addr; 773 v->flags = vifc->vifc_flags; 774 if (!mrtsock) 775 v->flags |= VIFF_STATIC; 776 v->threshold = vifc->vifc_threshold; 777 v->bytes_in = 0; 778 v->bytes_out = 0; 779 v->pkt_in = 0; 780 v->pkt_out = 0; 781 v->link = dev->ifindex; 782 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER)) 783 v->link = dev->iflink; 784 785 /* And finish update writing critical data */ 786 write_lock_bh(&mrt_lock); 787 v->dev = dev; 788 #ifdef CONFIG_IP_PIMSM 789 if (v->flags & VIFF_REGISTER) 790 mrt->mroute_reg_vif_num = vifi; 791 #endif 792 if (vifi+1 > mrt->maxvif) 793 mrt->maxvif = vifi+1; 794 write_unlock_bh(&mrt_lock); 795 return 0; 796 } 797 798 /* called with rcu_read_lock() */ 799 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 800 __be32 origin, 801 __be32 mcastgrp) 802 { 803 int line = MFC_HASH(mcastgrp, origin); 804 struct mfc_cache *c; 805 806 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) { 807 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp) 808 return c; 809 } 810 return NULL; 811 } 812 813 /* 814 * Allocate a multicast cache entry 815 */ 816 static struct mfc_cache *ipmr_cache_alloc(void) 817 { 818 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 819 820 if (c) 821 c->mfc_un.res.minvif = MAXVIFS; 822 return c; 823 } 824 825 static struct mfc_cache *ipmr_cache_alloc_unres(void) 826 { 827 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 828 829 if (c) { 830 skb_queue_head_init(&c->mfc_un.unres.unresolved); 831 c->mfc_un.unres.expires = jiffies + 10*HZ; 832 } 833 return c; 834 } 835 836 /* 837 * A cache entry has gone into a resolved state from queued 838 */ 839 840 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 841 struct mfc_cache *uc, struct mfc_cache *c) 842 { 843 struct sk_buff *skb; 844 struct nlmsgerr *e; 845 846 /* Play the pending entries through our router */ 847 848 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) { 849 if (ip_hdr(skb)->version == 0) { 850 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 851 852 if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) { 853 nlh->nlmsg_len = skb_tail_pointer(skb) - 854 (u8 *)nlh; 855 } else { 856 nlh->nlmsg_type = NLMSG_ERROR; 857 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr)); 858 skb_trim(skb, nlh->nlmsg_len); 859 e = NLMSG_DATA(nlh); 860 e->error = -EMSGSIZE; 861 memset(&e->msg, 0, sizeof(e->msg)); 862 } 863 864 rtnl_unicast(skb, net, NETLINK_CB(skb).pid); 865 } else { 866 ip_mr_forward(net, mrt, skb, c, 0); 867 } 868 } 869 } 870 871 /* 872 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted 873 * expects the following bizarre scheme. 874 * 875 * Called under mrt_lock. 876 */ 877 878 static int ipmr_cache_report(struct mr_table *mrt, 879 struct sk_buff *pkt, vifi_t vifi, int assert) 880 { 881 struct sk_buff *skb; 882 const int ihl = ip_hdrlen(pkt); 883 struct igmphdr *igmp; 884 struct igmpmsg *msg; 885 struct sock *mroute_sk; 886 int ret; 887 888 #ifdef CONFIG_IP_PIMSM 889 if (assert == IGMPMSG_WHOLEPKT) 890 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 891 else 892 #endif 893 skb = alloc_skb(128, GFP_ATOMIC); 894 895 if (!skb) 896 return -ENOBUFS; 897 898 #ifdef CONFIG_IP_PIMSM 899 if (assert == IGMPMSG_WHOLEPKT) { 900 /* Ugly, but we have no choice with this interface. 901 * Duplicate old header, fix ihl, length etc. 902 * And all this only to mangle msg->im_msgtype and 903 * to set msg->im_mbz to "mbz" :-) 904 */ 905 skb_push(skb, sizeof(struct iphdr)); 906 skb_reset_network_header(skb); 907 skb_reset_transport_header(skb); 908 msg = (struct igmpmsg *)skb_network_header(skb); 909 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 910 msg->im_msgtype = IGMPMSG_WHOLEPKT; 911 msg->im_mbz = 0; 912 msg->im_vif = mrt->mroute_reg_vif_num; 913 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 914 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 915 sizeof(struct iphdr)); 916 } else 917 #endif 918 { 919 920 /* Copy the IP header */ 921 922 skb->network_header = skb->tail; 923 skb_put(skb, ihl); 924 skb_copy_to_linear_data(skb, pkt->data, ihl); 925 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */ 926 msg = (struct igmpmsg *)skb_network_header(skb); 927 msg->im_vif = vifi; 928 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 929 930 /* Add our header */ 931 932 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr)); 933 igmp->type = 934 msg->im_msgtype = assert; 935 igmp->code = 0; 936 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 937 skb->transport_header = skb->network_header; 938 } 939 940 rcu_read_lock(); 941 mroute_sk = rcu_dereference(mrt->mroute_sk); 942 if (mroute_sk == NULL) { 943 rcu_read_unlock(); 944 kfree_skb(skb); 945 return -EINVAL; 946 } 947 948 /* Deliver to mrouted */ 949 950 ret = sock_queue_rcv_skb(mroute_sk, skb); 951 rcu_read_unlock(); 952 if (ret < 0) { 953 if (net_ratelimit()) 954 printk(KERN_WARNING "mroute: pending queue full, dropping entries.\n"); 955 kfree_skb(skb); 956 } 957 958 return ret; 959 } 960 961 /* 962 * Queue a packet for resolution. It gets locked cache entry! 963 */ 964 965 static int 966 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb) 967 { 968 bool found = false; 969 int err; 970 struct mfc_cache *c; 971 const struct iphdr *iph = ip_hdr(skb); 972 973 spin_lock_bh(&mfc_unres_lock); 974 list_for_each_entry(c, &mrt->mfc_unres_queue, list) { 975 if (c->mfc_mcastgrp == iph->daddr && 976 c->mfc_origin == iph->saddr) { 977 found = true; 978 break; 979 } 980 } 981 982 if (!found) { 983 /* Create a new entry if allowable */ 984 985 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 986 (c = ipmr_cache_alloc_unres()) == NULL) { 987 spin_unlock_bh(&mfc_unres_lock); 988 989 kfree_skb(skb); 990 return -ENOBUFS; 991 } 992 993 /* Fill in the new cache entry */ 994 995 c->mfc_parent = -1; 996 c->mfc_origin = iph->saddr; 997 c->mfc_mcastgrp = iph->daddr; 998 999 /* Reflect first query at mrouted. */ 1000 1001 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1002 if (err < 0) { 1003 /* If the report failed throw the cache entry 1004 out - Brad Parker 1005 */ 1006 spin_unlock_bh(&mfc_unres_lock); 1007 1008 ipmr_cache_free(c); 1009 kfree_skb(skb); 1010 return err; 1011 } 1012 1013 atomic_inc(&mrt->cache_resolve_queue_len); 1014 list_add(&c->list, &mrt->mfc_unres_queue); 1015 1016 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1017 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires); 1018 } 1019 1020 /* See if we can append the packet */ 1021 1022 if (c->mfc_un.unres.unresolved.qlen > 3) { 1023 kfree_skb(skb); 1024 err = -ENOBUFS; 1025 } else { 1026 skb_queue_tail(&c->mfc_un.unres.unresolved, skb); 1027 err = 0; 1028 } 1029 1030 spin_unlock_bh(&mfc_unres_lock); 1031 return err; 1032 } 1033 1034 /* 1035 * MFC cache manipulation by user space mroute daemon 1036 */ 1037 1038 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc) 1039 { 1040 int line; 1041 struct mfc_cache *c, *next; 1042 1043 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1044 1045 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) { 1046 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1047 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) { 1048 list_del_rcu(&c->list); 1049 1050 ipmr_cache_free(c); 1051 return 0; 1052 } 1053 } 1054 return -ENOENT; 1055 } 1056 1057 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1058 struct mfcctl *mfc, int mrtsock) 1059 { 1060 bool found = false; 1061 int line; 1062 struct mfc_cache *uc, *c; 1063 1064 if (mfc->mfcc_parent >= MAXVIFS) 1065 return -ENFILE; 1066 1067 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1068 1069 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) { 1070 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1071 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) { 1072 found = true; 1073 break; 1074 } 1075 } 1076 1077 if (found) { 1078 write_lock_bh(&mrt_lock); 1079 c->mfc_parent = mfc->mfcc_parent; 1080 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1081 if (!mrtsock) 1082 c->mfc_flags |= MFC_STATIC; 1083 write_unlock_bh(&mrt_lock); 1084 return 0; 1085 } 1086 1087 if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1088 return -EINVAL; 1089 1090 c = ipmr_cache_alloc(); 1091 if (c == NULL) 1092 return -ENOMEM; 1093 1094 c->mfc_origin = mfc->mfcc_origin.s_addr; 1095 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1096 c->mfc_parent = mfc->mfcc_parent; 1097 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1098 if (!mrtsock) 1099 c->mfc_flags |= MFC_STATIC; 1100 1101 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]); 1102 1103 /* 1104 * Check to see if we resolved a queued list. If so we 1105 * need to send on the frames and tidy up. 1106 */ 1107 found = false; 1108 spin_lock_bh(&mfc_unres_lock); 1109 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) { 1110 if (uc->mfc_origin == c->mfc_origin && 1111 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1112 list_del(&uc->list); 1113 atomic_dec(&mrt->cache_resolve_queue_len); 1114 found = true; 1115 break; 1116 } 1117 } 1118 if (list_empty(&mrt->mfc_unres_queue)) 1119 del_timer(&mrt->ipmr_expire_timer); 1120 spin_unlock_bh(&mfc_unres_lock); 1121 1122 if (found) { 1123 ipmr_cache_resolve(net, mrt, uc, c); 1124 ipmr_cache_free(uc); 1125 } 1126 return 0; 1127 } 1128 1129 /* 1130 * Close the multicast socket, and clear the vif tables etc 1131 */ 1132 1133 static void mroute_clean_tables(struct mr_table *mrt) 1134 { 1135 int i; 1136 LIST_HEAD(list); 1137 struct mfc_cache *c, *next; 1138 1139 /* Shut down all active vif entries */ 1140 1141 for (i = 0; i < mrt->maxvif; i++) { 1142 if (!(mrt->vif_table[i].flags & VIFF_STATIC)) 1143 vif_delete(mrt, i, 0, &list); 1144 } 1145 unregister_netdevice_many(&list); 1146 1147 /* Wipe the cache */ 1148 1149 for (i = 0; i < MFC_LINES; i++) { 1150 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) { 1151 if (c->mfc_flags & MFC_STATIC) 1152 continue; 1153 list_del_rcu(&c->list); 1154 ipmr_cache_free(c); 1155 } 1156 } 1157 1158 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1159 spin_lock_bh(&mfc_unres_lock); 1160 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 1161 list_del(&c->list); 1162 ipmr_destroy_unres(mrt, c); 1163 } 1164 spin_unlock_bh(&mfc_unres_lock); 1165 } 1166 } 1167 1168 /* called from ip_ra_control(), before an RCU grace period, 1169 * we dont need to call synchronize_rcu() here 1170 */ 1171 static void mrtsock_destruct(struct sock *sk) 1172 { 1173 struct net *net = sock_net(sk); 1174 struct mr_table *mrt; 1175 1176 rtnl_lock(); 1177 ipmr_for_each_table(mrt, net) { 1178 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1179 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1180 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1181 mroute_clean_tables(mrt); 1182 } 1183 } 1184 rtnl_unlock(); 1185 } 1186 1187 /* 1188 * Socket options and virtual interface manipulation. The whole 1189 * virtual interface system is a complete heap, but unfortunately 1190 * that's how BSD mrouted happens to think. Maybe one day with a proper 1191 * MOSPF/PIM router set up we can clean this up. 1192 */ 1193 1194 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen) 1195 { 1196 int ret; 1197 struct vifctl vif; 1198 struct mfcctl mfc; 1199 struct net *net = sock_net(sk); 1200 struct mr_table *mrt; 1201 1202 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1203 if (mrt == NULL) 1204 return -ENOENT; 1205 1206 if (optname != MRT_INIT) { 1207 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1208 !capable(CAP_NET_ADMIN)) 1209 return -EACCES; 1210 } 1211 1212 switch (optname) { 1213 case MRT_INIT: 1214 if (sk->sk_type != SOCK_RAW || 1215 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1216 return -EOPNOTSUPP; 1217 if (optlen != sizeof(int)) 1218 return -ENOPROTOOPT; 1219 1220 rtnl_lock(); 1221 if (rtnl_dereference(mrt->mroute_sk)) { 1222 rtnl_unlock(); 1223 return -EADDRINUSE; 1224 } 1225 1226 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1227 if (ret == 0) { 1228 RCU_INIT_POINTER(mrt->mroute_sk, sk); 1229 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1230 } 1231 rtnl_unlock(); 1232 return ret; 1233 case MRT_DONE: 1234 if (sk != rcu_access_pointer(mrt->mroute_sk)) 1235 return -EACCES; 1236 return ip_ra_control(sk, 0, NULL); 1237 case MRT_ADD_VIF: 1238 case MRT_DEL_VIF: 1239 if (optlen != sizeof(vif)) 1240 return -EINVAL; 1241 if (copy_from_user(&vif, optval, sizeof(vif))) 1242 return -EFAULT; 1243 if (vif.vifc_vifi >= MAXVIFS) 1244 return -ENFILE; 1245 rtnl_lock(); 1246 if (optname == MRT_ADD_VIF) { 1247 ret = vif_add(net, mrt, &vif, 1248 sk == rtnl_dereference(mrt->mroute_sk)); 1249 } else { 1250 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1251 } 1252 rtnl_unlock(); 1253 return ret; 1254 1255 /* 1256 * Manipulate the forwarding caches. These live 1257 * in a sort of kernel/user symbiosis. 1258 */ 1259 case MRT_ADD_MFC: 1260 case MRT_DEL_MFC: 1261 if (optlen != sizeof(mfc)) 1262 return -EINVAL; 1263 if (copy_from_user(&mfc, optval, sizeof(mfc))) 1264 return -EFAULT; 1265 rtnl_lock(); 1266 if (optname == MRT_DEL_MFC) 1267 ret = ipmr_mfc_delete(mrt, &mfc); 1268 else 1269 ret = ipmr_mfc_add(net, mrt, &mfc, 1270 sk == rtnl_dereference(mrt->mroute_sk)); 1271 rtnl_unlock(); 1272 return ret; 1273 /* 1274 * Control PIM assert. 1275 */ 1276 case MRT_ASSERT: 1277 { 1278 int v; 1279 if (get_user(v, (int __user *)optval)) 1280 return -EFAULT; 1281 mrt->mroute_do_assert = (v) ? 1 : 0; 1282 return 0; 1283 } 1284 #ifdef CONFIG_IP_PIMSM 1285 case MRT_PIM: 1286 { 1287 int v; 1288 1289 if (get_user(v, (int __user *)optval)) 1290 return -EFAULT; 1291 v = (v) ? 1 : 0; 1292 1293 rtnl_lock(); 1294 ret = 0; 1295 if (v != mrt->mroute_do_pim) { 1296 mrt->mroute_do_pim = v; 1297 mrt->mroute_do_assert = v; 1298 } 1299 rtnl_unlock(); 1300 return ret; 1301 } 1302 #endif 1303 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 1304 case MRT_TABLE: 1305 { 1306 u32 v; 1307 1308 if (optlen != sizeof(u32)) 1309 return -EINVAL; 1310 if (get_user(v, (u32 __user *)optval)) 1311 return -EFAULT; 1312 1313 rtnl_lock(); 1314 ret = 0; 1315 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1316 ret = -EBUSY; 1317 } else { 1318 if (!ipmr_new_table(net, v)) 1319 ret = -ENOMEM; 1320 raw_sk(sk)->ipmr_table = v; 1321 } 1322 rtnl_unlock(); 1323 return ret; 1324 } 1325 #endif 1326 /* 1327 * Spurious command, or MRT_VERSION which you cannot 1328 * set. 1329 */ 1330 default: 1331 return -ENOPROTOOPT; 1332 } 1333 } 1334 1335 /* 1336 * Getsock opt support for the multicast routing system. 1337 */ 1338 1339 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) 1340 { 1341 int olr; 1342 int val; 1343 struct net *net = sock_net(sk); 1344 struct mr_table *mrt; 1345 1346 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1347 if (mrt == NULL) 1348 return -ENOENT; 1349 1350 if (optname != MRT_VERSION && 1351 #ifdef CONFIG_IP_PIMSM 1352 optname != MRT_PIM && 1353 #endif 1354 optname != MRT_ASSERT) 1355 return -ENOPROTOOPT; 1356 1357 if (get_user(olr, optlen)) 1358 return -EFAULT; 1359 1360 olr = min_t(unsigned int, olr, sizeof(int)); 1361 if (olr < 0) 1362 return -EINVAL; 1363 1364 if (put_user(olr, optlen)) 1365 return -EFAULT; 1366 if (optname == MRT_VERSION) 1367 val = 0x0305; 1368 #ifdef CONFIG_IP_PIMSM 1369 else if (optname == MRT_PIM) 1370 val = mrt->mroute_do_pim; 1371 #endif 1372 else 1373 val = mrt->mroute_do_assert; 1374 if (copy_to_user(optval, &val, olr)) 1375 return -EFAULT; 1376 return 0; 1377 } 1378 1379 /* 1380 * The IP multicast ioctl support routines. 1381 */ 1382 1383 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) 1384 { 1385 struct sioc_sg_req sr; 1386 struct sioc_vif_req vr; 1387 struct vif_device *vif; 1388 struct mfc_cache *c; 1389 struct net *net = sock_net(sk); 1390 struct mr_table *mrt; 1391 1392 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1393 if (mrt == NULL) 1394 return -ENOENT; 1395 1396 switch (cmd) { 1397 case SIOCGETVIFCNT: 1398 if (copy_from_user(&vr, arg, sizeof(vr))) 1399 return -EFAULT; 1400 if (vr.vifi >= mrt->maxvif) 1401 return -EINVAL; 1402 read_lock(&mrt_lock); 1403 vif = &mrt->vif_table[vr.vifi]; 1404 if (VIF_EXISTS(mrt, vr.vifi)) { 1405 vr.icount = vif->pkt_in; 1406 vr.ocount = vif->pkt_out; 1407 vr.ibytes = vif->bytes_in; 1408 vr.obytes = vif->bytes_out; 1409 read_unlock(&mrt_lock); 1410 1411 if (copy_to_user(arg, &vr, sizeof(vr))) 1412 return -EFAULT; 1413 return 0; 1414 } 1415 read_unlock(&mrt_lock); 1416 return -EADDRNOTAVAIL; 1417 case SIOCGETSGCNT: 1418 if (copy_from_user(&sr, arg, sizeof(sr))) 1419 return -EFAULT; 1420 1421 rcu_read_lock(); 1422 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1423 if (c) { 1424 sr.pktcnt = c->mfc_un.res.pkt; 1425 sr.bytecnt = c->mfc_un.res.bytes; 1426 sr.wrong_if = c->mfc_un.res.wrong_if; 1427 rcu_read_unlock(); 1428 1429 if (copy_to_user(arg, &sr, sizeof(sr))) 1430 return -EFAULT; 1431 return 0; 1432 } 1433 rcu_read_unlock(); 1434 return -EADDRNOTAVAIL; 1435 default: 1436 return -ENOIOCTLCMD; 1437 } 1438 } 1439 1440 #ifdef CONFIG_COMPAT 1441 struct compat_sioc_sg_req { 1442 struct in_addr src; 1443 struct in_addr grp; 1444 compat_ulong_t pktcnt; 1445 compat_ulong_t bytecnt; 1446 compat_ulong_t wrong_if; 1447 }; 1448 1449 struct compat_sioc_vif_req { 1450 vifi_t vifi; /* Which iface */ 1451 compat_ulong_t icount; 1452 compat_ulong_t ocount; 1453 compat_ulong_t ibytes; 1454 compat_ulong_t obytes; 1455 }; 1456 1457 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1458 { 1459 struct compat_sioc_sg_req sr; 1460 struct compat_sioc_vif_req vr; 1461 struct vif_device *vif; 1462 struct mfc_cache *c; 1463 struct net *net = sock_net(sk); 1464 struct mr_table *mrt; 1465 1466 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1467 if (mrt == NULL) 1468 return -ENOENT; 1469 1470 switch (cmd) { 1471 case SIOCGETVIFCNT: 1472 if (copy_from_user(&vr, arg, sizeof(vr))) 1473 return -EFAULT; 1474 if (vr.vifi >= mrt->maxvif) 1475 return -EINVAL; 1476 read_lock(&mrt_lock); 1477 vif = &mrt->vif_table[vr.vifi]; 1478 if (VIF_EXISTS(mrt, vr.vifi)) { 1479 vr.icount = vif->pkt_in; 1480 vr.ocount = vif->pkt_out; 1481 vr.ibytes = vif->bytes_in; 1482 vr.obytes = vif->bytes_out; 1483 read_unlock(&mrt_lock); 1484 1485 if (copy_to_user(arg, &vr, sizeof(vr))) 1486 return -EFAULT; 1487 return 0; 1488 } 1489 read_unlock(&mrt_lock); 1490 return -EADDRNOTAVAIL; 1491 case SIOCGETSGCNT: 1492 if (copy_from_user(&sr, arg, sizeof(sr))) 1493 return -EFAULT; 1494 1495 rcu_read_lock(); 1496 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1497 if (c) { 1498 sr.pktcnt = c->mfc_un.res.pkt; 1499 sr.bytecnt = c->mfc_un.res.bytes; 1500 sr.wrong_if = c->mfc_un.res.wrong_if; 1501 rcu_read_unlock(); 1502 1503 if (copy_to_user(arg, &sr, sizeof(sr))) 1504 return -EFAULT; 1505 return 0; 1506 } 1507 rcu_read_unlock(); 1508 return -EADDRNOTAVAIL; 1509 default: 1510 return -ENOIOCTLCMD; 1511 } 1512 } 1513 #endif 1514 1515 1516 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1517 { 1518 struct net_device *dev = ptr; 1519 struct net *net = dev_net(dev); 1520 struct mr_table *mrt; 1521 struct vif_device *v; 1522 int ct; 1523 LIST_HEAD(list); 1524 1525 if (event != NETDEV_UNREGISTER) 1526 return NOTIFY_DONE; 1527 1528 ipmr_for_each_table(mrt, net) { 1529 v = &mrt->vif_table[0]; 1530 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1531 if (v->dev == dev) 1532 vif_delete(mrt, ct, 1, &list); 1533 } 1534 } 1535 unregister_netdevice_many(&list); 1536 return NOTIFY_DONE; 1537 } 1538 1539 1540 static struct notifier_block ip_mr_notifier = { 1541 .notifier_call = ipmr_device_event, 1542 }; 1543 1544 /* 1545 * Encapsulate a packet by attaching a valid IPIP header to it. 1546 * This avoids tunnel drivers and other mess and gives us the speed so 1547 * important for multicast video. 1548 */ 1549 1550 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr) 1551 { 1552 struct iphdr *iph; 1553 const struct iphdr *old_iph = ip_hdr(skb); 1554 1555 skb_push(skb, sizeof(struct iphdr)); 1556 skb->transport_header = skb->network_header; 1557 skb_reset_network_header(skb); 1558 iph = ip_hdr(skb); 1559 1560 iph->version = 4; 1561 iph->tos = old_iph->tos; 1562 iph->ttl = old_iph->ttl; 1563 iph->frag_off = 0; 1564 iph->daddr = daddr; 1565 iph->saddr = saddr; 1566 iph->protocol = IPPROTO_IPIP; 1567 iph->ihl = 5; 1568 iph->tot_len = htons(skb->len); 1569 ip_select_ident(iph, skb_dst(skb), NULL); 1570 ip_send_check(iph); 1571 1572 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1573 nf_reset(skb); 1574 } 1575 1576 static inline int ipmr_forward_finish(struct sk_buff *skb) 1577 { 1578 struct ip_options *opt = &(IPCB(skb)->opt); 1579 1580 IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS); 1581 1582 if (unlikely(opt->optlen)) 1583 ip_forward_options(skb); 1584 1585 return dst_output(skb); 1586 } 1587 1588 /* 1589 * Processing handlers for ipmr_forward 1590 */ 1591 1592 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1593 struct sk_buff *skb, struct mfc_cache *c, int vifi) 1594 { 1595 const struct iphdr *iph = ip_hdr(skb); 1596 struct vif_device *vif = &mrt->vif_table[vifi]; 1597 struct net_device *dev; 1598 struct rtable *rt; 1599 struct flowi4 fl4; 1600 int encap = 0; 1601 1602 if (vif->dev == NULL) 1603 goto out_free; 1604 1605 #ifdef CONFIG_IP_PIMSM 1606 if (vif->flags & VIFF_REGISTER) { 1607 vif->pkt_out++; 1608 vif->bytes_out += skb->len; 1609 vif->dev->stats.tx_bytes += skb->len; 1610 vif->dev->stats.tx_packets++; 1611 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1612 goto out_free; 1613 } 1614 #endif 1615 1616 if (vif->flags & VIFF_TUNNEL) { 1617 rt = ip_route_output_ports(net, &fl4, NULL, 1618 vif->remote, vif->local, 1619 0, 0, 1620 IPPROTO_IPIP, 1621 RT_TOS(iph->tos), vif->link); 1622 if (IS_ERR(rt)) 1623 goto out_free; 1624 encap = sizeof(struct iphdr); 1625 } else { 1626 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1627 0, 0, 1628 IPPROTO_IPIP, 1629 RT_TOS(iph->tos), vif->link); 1630 if (IS_ERR(rt)) 1631 goto out_free; 1632 } 1633 1634 dev = rt->dst.dev; 1635 1636 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1637 /* Do not fragment multicasts. Alas, IPv4 does not 1638 * allow to send ICMP, so that packets will disappear 1639 * to blackhole. 1640 */ 1641 1642 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS); 1643 ip_rt_put(rt); 1644 goto out_free; 1645 } 1646 1647 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1648 1649 if (skb_cow(skb, encap)) { 1650 ip_rt_put(rt); 1651 goto out_free; 1652 } 1653 1654 vif->pkt_out++; 1655 vif->bytes_out += skb->len; 1656 1657 skb_dst_drop(skb); 1658 skb_dst_set(skb, &rt->dst); 1659 ip_decrease_ttl(ip_hdr(skb)); 1660 1661 /* FIXME: forward and output firewalls used to be called here. 1662 * What do we do with netfilter? -- RR 1663 */ 1664 if (vif->flags & VIFF_TUNNEL) { 1665 ip_encap(skb, vif->local, vif->remote); 1666 /* FIXME: extra output firewall step used to be here. --RR */ 1667 vif->dev->stats.tx_packets++; 1668 vif->dev->stats.tx_bytes += skb->len; 1669 } 1670 1671 IPCB(skb)->flags |= IPSKB_FORWARDED; 1672 1673 /* 1674 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1675 * not only before forwarding, but after forwarding on all output 1676 * interfaces. It is clear, if mrouter runs a multicasting 1677 * program, it should receive packets not depending to what interface 1678 * program is joined. 1679 * If we will not make it, the program will have to join on all 1680 * interfaces. On the other hand, multihoming host (or router, but 1681 * not mrouter) cannot join to more than one interface - it will 1682 * result in receiving multiple packets. 1683 */ 1684 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev, 1685 ipmr_forward_finish); 1686 return; 1687 1688 out_free: 1689 kfree_skb(skb); 1690 } 1691 1692 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev) 1693 { 1694 int ct; 1695 1696 for (ct = mrt->maxvif-1; ct >= 0; ct--) { 1697 if (mrt->vif_table[ct].dev == dev) 1698 break; 1699 } 1700 return ct; 1701 } 1702 1703 /* "local" means that we should preserve one skb (for local delivery) */ 1704 1705 static int ip_mr_forward(struct net *net, struct mr_table *mrt, 1706 struct sk_buff *skb, struct mfc_cache *cache, 1707 int local) 1708 { 1709 int psend = -1; 1710 int vif, ct; 1711 1712 vif = cache->mfc_parent; 1713 cache->mfc_un.res.pkt++; 1714 cache->mfc_un.res.bytes += skb->len; 1715 1716 /* 1717 * Wrong interface: drop packet and (maybe) send PIM assert. 1718 */ 1719 if (mrt->vif_table[vif].dev != skb->dev) { 1720 int true_vifi; 1721 1722 if (rt_is_output_route(skb_rtable(skb))) { 1723 /* It is our own packet, looped back. 1724 * Very complicated situation... 1725 * 1726 * The best workaround until routing daemons will be 1727 * fixed is not to redistribute packet, if it was 1728 * send through wrong interface. It means, that 1729 * multicast applications WILL NOT work for 1730 * (S,G), which have default multicast route pointing 1731 * to wrong oif. In any case, it is not a good 1732 * idea to use multicasting applications on router. 1733 */ 1734 goto dont_forward; 1735 } 1736 1737 cache->mfc_un.res.wrong_if++; 1738 true_vifi = ipmr_find_vif(mrt, skb->dev); 1739 1740 if (true_vifi >= 0 && mrt->mroute_do_assert && 1741 /* pimsm uses asserts, when switching from RPT to SPT, 1742 * so that we cannot check that packet arrived on an oif. 1743 * It is bad, but otherwise we would need to move pretty 1744 * large chunk of pimd to kernel. Ough... --ANK 1745 */ 1746 (mrt->mroute_do_pim || 1747 cache->mfc_un.res.ttls[true_vifi] < 255) && 1748 time_after(jiffies, 1749 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) { 1750 cache->mfc_un.res.last_assert = jiffies; 1751 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 1752 } 1753 goto dont_forward; 1754 } 1755 1756 mrt->vif_table[vif].pkt_in++; 1757 mrt->vif_table[vif].bytes_in += skb->len; 1758 1759 /* 1760 * Forward the frame 1761 */ 1762 for (ct = cache->mfc_un.res.maxvif - 1; 1763 ct >= cache->mfc_un.res.minvif; ct--) { 1764 if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) { 1765 if (psend != -1) { 1766 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1767 1768 if (skb2) 1769 ipmr_queue_xmit(net, mrt, skb2, cache, 1770 psend); 1771 } 1772 psend = ct; 1773 } 1774 } 1775 if (psend != -1) { 1776 if (local) { 1777 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1778 1779 if (skb2) 1780 ipmr_queue_xmit(net, mrt, skb2, cache, psend); 1781 } else { 1782 ipmr_queue_xmit(net, mrt, skb, cache, psend); 1783 return 0; 1784 } 1785 } 1786 1787 dont_forward: 1788 if (!local) 1789 kfree_skb(skb); 1790 return 0; 1791 } 1792 1793 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 1794 { 1795 struct rtable *rt = skb_rtable(skb); 1796 struct iphdr *iph = ip_hdr(skb); 1797 struct flowi4 fl4 = { 1798 .daddr = iph->daddr, 1799 .saddr = iph->saddr, 1800 .flowi4_tos = RT_TOS(iph->tos), 1801 .flowi4_oif = rt->rt_oif, 1802 .flowi4_iif = rt->rt_iif, 1803 .flowi4_mark = rt->rt_mark, 1804 }; 1805 struct mr_table *mrt; 1806 int err; 1807 1808 err = ipmr_fib_lookup(net, &fl4, &mrt); 1809 if (err) 1810 return ERR_PTR(err); 1811 return mrt; 1812 } 1813 1814 /* 1815 * Multicast packets for forwarding arrive here 1816 * Called with rcu_read_lock(); 1817 */ 1818 1819 int ip_mr_input(struct sk_buff *skb) 1820 { 1821 struct mfc_cache *cache; 1822 struct net *net = dev_net(skb->dev); 1823 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 1824 struct mr_table *mrt; 1825 1826 /* Packet is looped back after forward, it should not be 1827 * forwarded second time, but still can be delivered locally. 1828 */ 1829 if (IPCB(skb)->flags & IPSKB_FORWARDED) 1830 goto dont_forward; 1831 1832 mrt = ipmr_rt_fib_lookup(net, skb); 1833 if (IS_ERR(mrt)) { 1834 kfree_skb(skb); 1835 return PTR_ERR(mrt); 1836 } 1837 if (!local) { 1838 if (IPCB(skb)->opt.router_alert) { 1839 if (ip_call_ra_chain(skb)) 1840 return 0; 1841 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 1842 /* IGMPv1 (and broken IGMPv2 implementations sort of 1843 * Cisco IOS <= 11.2(8)) do not put router alert 1844 * option to IGMP packets destined to routable 1845 * groups. It is very bad, because it means 1846 * that we can forward NO IGMP messages. 1847 */ 1848 struct sock *mroute_sk; 1849 1850 mroute_sk = rcu_dereference(mrt->mroute_sk); 1851 if (mroute_sk) { 1852 nf_reset(skb); 1853 raw_rcv(mroute_sk, skb); 1854 return 0; 1855 } 1856 } 1857 } 1858 1859 /* already under rcu_read_lock() */ 1860 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 1861 1862 /* 1863 * No usable cache entry 1864 */ 1865 if (cache == NULL) { 1866 int vif; 1867 1868 if (local) { 1869 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1870 ip_local_deliver(skb); 1871 if (skb2 == NULL) 1872 return -ENOBUFS; 1873 skb = skb2; 1874 } 1875 1876 read_lock(&mrt_lock); 1877 vif = ipmr_find_vif(mrt, skb->dev); 1878 if (vif >= 0) { 1879 int err2 = ipmr_cache_unresolved(mrt, vif, skb); 1880 read_unlock(&mrt_lock); 1881 1882 return err2; 1883 } 1884 read_unlock(&mrt_lock); 1885 kfree_skb(skb); 1886 return -ENODEV; 1887 } 1888 1889 read_lock(&mrt_lock); 1890 ip_mr_forward(net, mrt, skb, cache, local); 1891 read_unlock(&mrt_lock); 1892 1893 if (local) 1894 return ip_local_deliver(skb); 1895 1896 return 0; 1897 1898 dont_forward: 1899 if (local) 1900 return ip_local_deliver(skb); 1901 kfree_skb(skb); 1902 return 0; 1903 } 1904 1905 #ifdef CONFIG_IP_PIMSM 1906 /* called with rcu_read_lock() */ 1907 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 1908 unsigned int pimlen) 1909 { 1910 struct net_device *reg_dev = NULL; 1911 struct iphdr *encap; 1912 1913 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 1914 /* 1915 * Check that: 1916 * a. packet is really sent to a multicast group 1917 * b. packet is not a NULL-REGISTER 1918 * c. packet is not truncated 1919 */ 1920 if (!ipv4_is_multicast(encap->daddr) || 1921 encap->tot_len == 0 || 1922 ntohs(encap->tot_len) + pimlen > skb->len) 1923 return 1; 1924 1925 read_lock(&mrt_lock); 1926 if (mrt->mroute_reg_vif_num >= 0) 1927 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev; 1928 read_unlock(&mrt_lock); 1929 1930 if (reg_dev == NULL) 1931 return 1; 1932 1933 skb->mac_header = skb->network_header; 1934 skb_pull(skb, (u8 *)encap - skb->data); 1935 skb_reset_network_header(skb); 1936 skb->protocol = htons(ETH_P_IP); 1937 skb->ip_summed = CHECKSUM_NONE; 1938 skb->pkt_type = PACKET_HOST; 1939 1940 skb_tunnel_rx(skb, reg_dev); 1941 1942 netif_rx(skb); 1943 1944 return NET_RX_SUCCESS; 1945 } 1946 #endif 1947 1948 #ifdef CONFIG_IP_PIMSM_V1 1949 /* 1950 * Handle IGMP messages of PIMv1 1951 */ 1952 1953 int pim_rcv_v1(struct sk_buff *skb) 1954 { 1955 struct igmphdr *pim; 1956 struct net *net = dev_net(skb->dev); 1957 struct mr_table *mrt; 1958 1959 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 1960 goto drop; 1961 1962 pim = igmp_hdr(skb); 1963 1964 mrt = ipmr_rt_fib_lookup(net, skb); 1965 if (IS_ERR(mrt)) 1966 goto drop; 1967 if (!mrt->mroute_do_pim || 1968 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 1969 goto drop; 1970 1971 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 1972 drop: 1973 kfree_skb(skb); 1974 } 1975 return 0; 1976 } 1977 #endif 1978 1979 #ifdef CONFIG_IP_PIMSM_V2 1980 static int pim_rcv(struct sk_buff *skb) 1981 { 1982 struct pimreghdr *pim; 1983 struct net *net = dev_net(skb->dev); 1984 struct mr_table *mrt; 1985 1986 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 1987 goto drop; 1988 1989 pim = (struct pimreghdr *)skb_transport_header(skb); 1990 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) || 1991 (pim->flags & PIM_NULL_REGISTER) || 1992 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 1993 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 1994 goto drop; 1995 1996 mrt = ipmr_rt_fib_lookup(net, skb); 1997 if (IS_ERR(mrt)) 1998 goto drop; 1999 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2000 drop: 2001 kfree_skb(skb); 2002 } 2003 return 0; 2004 } 2005 #endif 2006 2007 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2008 struct mfc_cache *c, struct rtmsg *rtm) 2009 { 2010 int ct; 2011 struct rtnexthop *nhp; 2012 u8 *b = skb_tail_pointer(skb); 2013 struct rtattr *mp_head; 2014 2015 /* If cache is unresolved, don't try to parse IIF and OIF */ 2016 if (c->mfc_parent >= MAXVIFS) 2017 return -ENOENT; 2018 2019 if (VIF_EXISTS(mrt, c->mfc_parent)) 2020 RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex); 2021 2022 mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0)); 2023 2024 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) { 2025 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) { 2026 if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4)) 2027 goto rtattr_failure; 2028 nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp))); 2029 nhp->rtnh_flags = 0; 2030 nhp->rtnh_hops = c->mfc_un.res.ttls[ct]; 2031 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex; 2032 nhp->rtnh_len = sizeof(*nhp); 2033 } 2034 } 2035 mp_head->rta_type = RTA_MULTIPATH; 2036 mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head; 2037 rtm->rtm_type = RTN_MULTICAST; 2038 return 1; 2039 2040 rtattr_failure: 2041 nlmsg_trim(skb, b); 2042 return -EMSGSIZE; 2043 } 2044 2045 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2046 __be32 saddr, __be32 daddr, 2047 struct rtmsg *rtm, int nowait) 2048 { 2049 struct mfc_cache *cache; 2050 struct mr_table *mrt; 2051 int err; 2052 2053 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2054 if (mrt == NULL) 2055 return -ENOENT; 2056 2057 rcu_read_lock(); 2058 cache = ipmr_cache_find(mrt, saddr, daddr); 2059 2060 if (cache == NULL) { 2061 struct sk_buff *skb2; 2062 struct iphdr *iph; 2063 struct net_device *dev; 2064 int vif = -1; 2065 2066 if (nowait) { 2067 rcu_read_unlock(); 2068 return -EAGAIN; 2069 } 2070 2071 dev = skb->dev; 2072 read_lock(&mrt_lock); 2073 if (dev) 2074 vif = ipmr_find_vif(mrt, dev); 2075 if (vif < 0) { 2076 read_unlock(&mrt_lock); 2077 rcu_read_unlock(); 2078 return -ENODEV; 2079 } 2080 skb2 = skb_clone(skb, GFP_ATOMIC); 2081 if (!skb2) { 2082 read_unlock(&mrt_lock); 2083 rcu_read_unlock(); 2084 return -ENOMEM; 2085 } 2086 2087 skb_push(skb2, sizeof(struct iphdr)); 2088 skb_reset_network_header(skb2); 2089 iph = ip_hdr(skb2); 2090 iph->ihl = sizeof(struct iphdr) >> 2; 2091 iph->saddr = saddr; 2092 iph->daddr = daddr; 2093 iph->version = 0; 2094 err = ipmr_cache_unresolved(mrt, vif, skb2); 2095 read_unlock(&mrt_lock); 2096 rcu_read_unlock(); 2097 return err; 2098 } 2099 2100 read_lock(&mrt_lock); 2101 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY)) 2102 cache->mfc_flags |= MFC_NOTIFY; 2103 err = __ipmr_fill_mroute(mrt, skb, cache, rtm); 2104 read_unlock(&mrt_lock); 2105 rcu_read_unlock(); 2106 return err; 2107 } 2108 2109 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2110 u32 pid, u32 seq, struct mfc_cache *c) 2111 { 2112 struct nlmsghdr *nlh; 2113 struct rtmsg *rtm; 2114 2115 nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI); 2116 if (nlh == NULL) 2117 return -EMSGSIZE; 2118 2119 rtm = nlmsg_data(nlh); 2120 rtm->rtm_family = RTNL_FAMILY_IPMR; 2121 rtm->rtm_dst_len = 32; 2122 rtm->rtm_src_len = 32; 2123 rtm->rtm_tos = 0; 2124 rtm->rtm_table = mrt->id; 2125 NLA_PUT_U32(skb, RTA_TABLE, mrt->id); 2126 rtm->rtm_type = RTN_MULTICAST; 2127 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2128 rtm->rtm_protocol = RTPROT_UNSPEC; 2129 rtm->rtm_flags = 0; 2130 2131 NLA_PUT_BE32(skb, RTA_SRC, c->mfc_origin); 2132 NLA_PUT_BE32(skb, RTA_DST, c->mfc_mcastgrp); 2133 2134 if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0) 2135 goto nla_put_failure; 2136 2137 return nlmsg_end(skb, nlh); 2138 2139 nla_put_failure: 2140 nlmsg_cancel(skb, nlh); 2141 return -EMSGSIZE; 2142 } 2143 2144 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2145 { 2146 struct net *net = sock_net(skb->sk); 2147 struct mr_table *mrt; 2148 struct mfc_cache *mfc; 2149 unsigned int t = 0, s_t; 2150 unsigned int h = 0, s_h; 2151 unsigned int e = 0, s_e; 2152 2153 s_t = cb->args[0]; 2154 s_h = cb->args[1]; 2155 s_e = cb->args[2]; 2156 2157 rcu_read_lock(); 2158 ipmr_for_each_table(mrt, net) { 2159 if (t < s_t) 2160 goto next_table; 2161 if (t > s_t) 2162 s_h = 0; 2163 for (h = s_h; h < MFC_LINES; h++) { 2164 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) { 2165 if (e < s_e) 2166 goto next_entry; 2167 if (ipmr_fill_mroute(mrt, skb, 2168 NETLINK_CB(cb->skb).pid, 2169 cb->nlh->nlmsg_seq, 2170 mfc) < 0) 2171 goto done; 2172 next_entry: 2173 e++; 2174 } 2175 e = s_e = 0; 2176 } 2177 s_h = 0; 2178 next_table: 2179 t++; 2180 } 2181 done: 2182 rcu_read_unlock(); 2183 2184 cb->args[2] = e; 2185 cb->args[1] = h; 2186 cb->args[0] = t; 2187 2188 return skb->len; 2189 } 2190 2191 #ifdef CONFIG_PROC_FS 2192 /* 2193 * The /proc interfaces to multicast routing : 2194 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2195 */ 2196 struct ipmr_vif_iter { 2197 struct seq_net_private p; 2198 struct mr_table *mrt; 2199 int ct; 2200 }; 2201 2202 static struct vif_device *ipmr_vif_seq_idx(struct net *net, 2203 struct ipmr_vif_iter *iter, 2204 loff_t pos) 2205 { 2206 struct mr_table *mrt = iter->mrt; 2207 2208 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) { 2209 if (!VIF_EXISTS(mrt, iter->ct)) 2210 continue; 2211 if (pos-- == 0) 2212 return &mrt->vif_table[iter->ct]; 2213 } 2214 return NULL; 2215 } 2216 2217 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2218 __acquires(mrt_lock) 2219 { 2220 struct ipmr_vif_iter *iter = seq->private; 2221 struct net *net = seq_file_net(seq); 2222 struct mr_table *mrt; 2223 2224 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2225 if (mrt == NULL) 2226 return ERR_PTR(-ENOENT); 2227 2228 iter->mrt = mrt; 2229 2230 read_lock(&mrt_lock); 2231 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1) 2232 : SEQ_START_TOKEN; 2233 } 2234 2235 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2236 { 2237 struct ipmr_vif_iter *iter = seq->private; 2238 struct net *net = seq_file_net(seq); 2239 struct mr_table *mrt = iter->mrt; 2240 2241 ++*pos; 2242 if (v == SEQ_START_TOKEN) 2243 return ipmr_vif_seq_idx(net, iter, 0); 2244 2245 while (++iter->ct < mrt->maxvif) { 2246 if (!VIF_EXISTS(mrt, iter->ct)) 2247 continue; 2248 return &mrt->vif_table[iter->ct]; 2249 } 2250 return NULL; 2251 } 2252 2253 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2254 __releases(mrt_lock) 2255 { 2256 read_unlock(&mrt_lock); 2257 } 2258 2259 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2260 { 2261 struct ipmr_vif_iter *iter = seq->private; 2262 struct mr_table *mrt = iter->mrt; 2263 2264 if (v == SEQ_START_TOKEN) { 2265 seq_puts(seq, 2266 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2267 } else { 2268 const struct vif_device *vif = v; 2269 const char *name = vif->dev ? vif->dev->name : "none"; 2270 2271 seq_printf(seq, 2272 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2273 vif - mrt->vif_table, 2274 name, vif->bytes_in, vif->pkt_in, 2275 vif->bytes_out, vif->pkt_out, 2276 vif->flags, vif->local, vif->remote); 2277 } 2278 return 0; 2279 } 2280 2281 static const struct seq_operations ipmr_vif_seq_ops = { 2282 .start = ipmr_vif_seq_start, 2283 .next = ipmr_vif_seq_next, 2284 .stop = ipmr_vif_seq_stop, 2285 .show = ipmr_vif_seq_show, 2286 }; 2287 2288 static int ipmr_vif_open(struct inode *inode, struct file *file) 2289 { 2290 return seq_open_net(inode, file, &ipmr_vif_seq_ops, 2291 sizeof(struct ipmr_vif_iter)); 2292 } 2293 2294 static const struct file_operations ipmr_vif_fops = { 2295 .owner = THIS_MODULE, 2296 .open = ipmr_vif_open, 2297 .read = seq_read, 2298 .llseek = seq_lseek, 2299 .release = seq_release_net, 2300 }; 2301 2302 struct ipmr_mfc_iter { 2303 struct seq_net_private p; 2304 struct mr_table *mrt; 2305 struct list_head *cache; 2306 int ct; 2307 }; 2308 2309 2310 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net, 2311 struct ipmr_mfc_iter *it, loff_t pos) 2312 { 2313 struct mr_table *mrt = it->mrt; 2314 struct mfc_cache *mfc; 2315 2316 rcu_read_lock(); 2317 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) { 2318 it->cache = &mrt->mfc_cache_array[it->ct]; 2319 list_for_each_entry_rcu(mfc, it->cache, list) 2320 if (pos-- == 0) 2321 return mfc; 2322 } 2323 rcu_read_unlock(); 2324 2325 spin_lock_bh(&mfc_unres_lock); 2326 it->cache = &mrt->mfc_unres_queue; 2327 list_for_each_entry(mfc, it->cache, list) 2328 if (pos-- == 0) 2329 return mfc; 2330 spin_unlock_bh(&mfc_unres_lock); 2331 2332 it->cache = NULL; 2333 return NULL; 2334 } 2335 2336 2337 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2338 { 2339 struct ipmr_mfc_iter *it = seq->private; 2340 struct net *net = seq_file_net(seq); 2341 struct mr_table *mrt; 2342 2343 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2344 if (mrt == NULL) 2345 return ERR_PTR(-ENOENT); 2346 2347 it->mrt = mrt; 2348 it->cache = NULL; 2349 it->ct = 0; 2350 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1) 2351 : SEQ_START_TOKEN; 2352 } 2353 2354 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2355 { 2356 struct mfc_cache *mfc = v; 2357 struct ipmr_mfc_iter *it = seq->private; 2358 struct net *net = seq_file_net(seq); 2359 struct mr_table *mrt = it->mrt; 2360 2361 ++*pos; 2362 2363 if (v == SEQ_START_TOKEN) 2364 return ipmr_mfc_seq_idx(net, seq->private, 0); 2365 2366 if (mfc->list.next != it->cache) 2367 return list_entry(mfc->list.next, struct mfc_cache, list); 2368 2369 if (it->cache == &mrt->mfc_unres_queue) 2370 goto end_of_list; 2371 2372 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]); 2373 2374 while (++it->ct < MFC_LINES) { 2375 it->cache = &mrt->mfc_cache_array[it->ct]; 2376 if (list_empty(it->cache)) 2377 continue; 2378 return list_first_entry(it->cache, struct mfc_cache, list); 2379 } 2380 2381 /* exhausted cache_array, show unresolved */ 2382 rcu_read_unlock(); 2383 it->cache = &mrt->mfc_unres_queue; 2384 it->ct = 0; 2385 2386 spin_lock_bh(&mfc_unres_lock); 2387 if (!list_empty(it->cache)) 2388 return list_first_entry(it->cache, struct mfc_cache, list); 2389 2390 end_of_list: 2391 spin_unlock_bh(&mfc_unres_lock); 2392 it->cache = NULL; 2393 2394 return NULL; 2395 } 2396 2397 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v) 2398 { 2399 struct ipmr_mfc_iter *it = seq->private; 2400 struct mr_table *mrt = it->mrt; 2401 2402 if (it->cache == &mrt->mfc_unres_queue) 2403 spin_unlock_bh(&mfc_unres_lock); 2404 else if (it->cache == &mrt->mfc_cache_array[it->ct]) 2405 rcu_read_unlock(); 2406 } 2407 2408 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2409 { 2410 int n; 2411 2412 if (v == SEQ_START_TOKEN) { 2413 seq_puts(seq, 2414 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2415 } else { 2416 const struct mfc_cache *mfc = v; 2417 const struct ipmr_mfc_iter *it = seq->private; 2418 const struct mr_table *mrt = it->mrt; 2419 2420 seq_printf(seq, "%08X %08X %-3hd", 2421 (__force u32) mfc->mfc_mcastgrp, 2422 (__force u32) mfc->mfc_origin, 2423 mfc->mfc_parent); 2424 2425 if (it->cache != &mrt->mfc_unres_queue) { 2426 seq_printf(seq, " %8lu %8lu %8lu", 2427 mfc->mfc_un.res.pkt, 2428 mfc->mfc_un.res.bytes, 2429 mfc->mfc_un.res.wrong_if); 2430 for (n = mfc->mfc_un.res.minvif; 2431 n < mfc->mfc_un.res.maxvif; n++) { 2432 if (VIF_EXISTS(mrt, n) && 2433 mfc->mfc_un.res.ttls[n] < 255) 2434 seq_printf(seq, 2435 " %2d:%-3d", 2436 n, mfc->mfc_un.res.ttls[n]); 2437 } 2438 } else { 2439 /* unresolved mfc_caches don't contain 2440 * pkt, bytes and wrong_if values 2441 */ 2442 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 2443 } 2444 seq_putc(seq, '\n'); 2445 } 2446 return 0; 2447 } 2448 2449 static const struct seq_operations ipmr_mfc_seq_ops = { 2450 .start = ipmr_mfc_seq_start, 2451 .next = ipmr_mfc_seq_next, 2452 .stop = ipmr_mfc_seq_stop, 2453 .show = ipmr_mfc_seq_show, 2454 }; 2455 2456 static int ipmr_mfc_open(struct inode *inode, struct file *file) 2457 { 2458 return seq_open_net(inode, file, &ipmr_mfc_seq_ops, 2459 sizeof(struct ipmr_mfc_iter)); 2460 } 2461 2462 static const struct file_operations ipmr_mfc_fops = { 2463 .owner = THIS_MODULE, 2464 .open = ipmr_mfc_open, 2465 .read = seq_read, 2466 .llseek = seq_lseek, 2467 .release = seq_release_net, 2468 }; 2469 #endif 2470 2471 #ifdef CONFIG_IP_PIMSM_V2 2472 static const struct net_protocol pim_protocol = { 2473 .handler = pim_rcv, 2474 .netns_ok = 1, 2475 }; 2476 #endif 2477 2478 2479 /* 2480 * Setup for IP multicast routing 2481 */ 2482 static int __net_init ipmr_net_init(struct net *net) 2483 { 2484 int err; 2485 2486 err = ipmr_rules_init(net); 2487 if (err < 0) 2488 goto fail; 2489 2490 #ifdef CONFIG_PROC_FS 2491 err = -ENOMEM; 2492 if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops)) 2493 goto proc_vif_fail; 2494 if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops)) 2495 goto proc_cache_fail; 2496 #endif 2497 return 0; 2498 2499 #ifdef CONFIG_PROC_FS 2500 proc_cache_fail: 2501 proc_net_remove(net, "ip_mr_vif"); 2502 proc_vif_fail: 2503 ipmr_rules_exit(net); 2504 #endif 2505 fail: 2506 return err; 2507 } 2508 2509 static void __net_exit ipmr_net_exit(struct net *net) 2510 { 2511 #ifdef CONFIG_PROC_FS 2512 proc_net_remove(net, "ip_mr_cache"); 2513 proc_net_remove(net, "ip_mr_vif"); 2514 #endif 2515 ipmr_rules_exit(net); 2516 } 2517 2518 static struct pernet_operations ipmr_net_ops = { 2519 .init = ipmr_net_init, 2520 .exit = ipmr_net_exit, 2521 }; 2522 2523 int __init ip_mr_init(void) 2524 { 2525 int err; 2526 2527 mrt_cachep = kmem_cache_create("ip_mrt_cache", 2528 sizeof(struct mfc_cache), 2529 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 2530 NULL); 2531 if (!mrt_cachep) 2532 return -ENOMEM; 2533 2534 err = register_pernet_subsys(&ipmr_net_ops); 2535 if (err) 2536 goto reg_pernet_fail; 2537 2538 err = register_netdevice_notifier(&ip_mr_notifier); 2539 if (err) 2540 goto reg_notif_fail; 2541 #ifdef CONFIG_IP_PIMSM_V2 2542 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 2543 printk(KERN_ERR "ip_mr_init: can't add PIM protocol\n"); 2544 err = -EAGAIN; 2545 goto add_proto_fail; 2546 } 2547 #endif 2548 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 2549 NULL, ipmr_rtm_dumproute, NULL); 2550 return 0; 2551 2552 #ifdef CONFIG_IP_PIMSM_V2 2553 add_proto_fail: 2554 unregister_netdevice_notifier(&ip_mr_notifier); 2555 #endif 2556 reg_notif_fail: 2557 unregister_pernet_subsys(&ipmr_net_ops); 2558 reg_pernet_fail: 2559 kmem_cache_destroy(mrt_cachep); 2560 return err; 2561 } 2562