xref: /linux/net/ipv4/ipmr.c (revision ef347a340b1a8507c22ee3cf981cd5cd64188431)
1 /*
2  *	IP multicast routing support for mrouted 3.6/3.8
3  *
4  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *	  Linux Consultancy and Custom Driver Development
6  *
7  *	This program is free software; you can redistribute it and/or
8  *	modify it under the terms of the GNU General Public License
9  *	as published by the Free Software Foundation; either version
10  *	2 of the License, or (at your option) any later version.
11  *
12  *	Fixes:
13  *	Michael Chastain	:	Incorrect size of copying.
14  *	Alan Cox		:	Added the cache manager code
15  *	Alan Cox		:	Fixed the clone/copy bug and device race.
16  *	Mike McLagan		:	Routing by source
17  *	Malcolm Beattie		:	Buffer handling fixes.
18  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
19  *	SVR Anand		:	Fixed several multicast bugs and problems.
20  *	Alexey Kuznetsov	:	Status, optimisations and more.
21  *	Brad Parker		:	Better behaviour on mrouted upcall
22  *					overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
25  *					Relax this requirement to work with older peers.
26  *
27  */
28 
29 #include <linux/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/cache.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/icmp.h>
56 #include <net/udp.h>
57 #include <net/raw.h>
58 #include <linux/notifier.h>
59 #include <linux/if_arp.h>
60 #include <linux/netfilter_ipv4.h>
61 #include <linux/compat.h>
62 #include <linux/export.h>
63 #include <linux/rhashtable.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69 #include <net/nexthop.h>
70 #include <net/switchdev.h>
71 
72 struct ipmr_rule {
73 	struct fib_rule		common;
74 };
75 
76 struct ipmr_result {
77 	struct mr_table		*mrt;
78 };
79 
80 /* Big lock, protecting vif table, mrt cache and mroute socket state.
81  * Note that the changes are semaphored via rtnl_lock.
82  */
83 
84 static DEFINE_RWLOCK(mrt_lock);
85 
86 /* Multicast router control variables */
87 
88 /* Special spinlock for queue of unresolved entries */
89 static DEFINE_SPINLOCK(mfc_unres_lock);
90 
91 /* We return to original Alan's scheme. Hash table of resolved
92  * entries is changed only in process context and protected
93  * with weak lock mrt_lock. Queue of unresolved entries is protected
94  * with strong spinlock mfc_unres_lock.
95  *
96  * In this case data path is free of exclusive locks at all.
97  */
98 
99 static struct kmem_cache *mrt_cachep __ro_after_init;
100 
101 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
102 static void ipmr_free_table(struct mr_table *mrt);
103 
104 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
105 			  struct net_device *dev, struct sk_buff *skb,
106 			  struct mfc_cache *cache, int local);
107 static int ipmr_cache_report(struct mr_table *mrt,
108 			     struct sk_buff *pkt, vifi_t vifi, int assert);
109 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
110 				 int cmd);
111 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
112 static void mroute_clean_tables(struct mr_table *mrt, bool all);
113 static void ipmr_expire_process(struct timer_list *t);
114 
115 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
116 #define ipmr_for_each_table(mrt, net) \
117 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
118 
119 static struct mr_table *ipmr_mr_table_iter(struct net *net,
120 					   struct mr_table *mrt)
121 {
122 	struct mr_table *ret;
123 
124 	if (!mrt)
125 		ret = list_entry_rcu(net->ipv4.mr_tables.next,
126 				     struct mr_table, list);
127 	else
128 		ret = list_entry_rcu(mrt->list.next,
129 				     struct mr_table, list);
130 
131 	if (&ret->list == &net->ipv4.mr_tables)
132 		return NULL;
133 	return ret;
134 }
135 
136 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
137 {
138 	struct mr_table *mrt;
139 
140 	ipmr_for_each_table(mrt, net) {
141 		if (mrt->id == id)
142 			return mrt;
143 	}
144 	return NULL;
145 }
146 
147 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
148 			   struct mr_table **mrt)
149 {
150 	int err;
151 	struct ipmr_result res;
152 	struct fib_lookup_arg arg = {
153 		.result = &res,
154 		.flags = FIB_LOOKUP_NOREF,
155 	};
156 
157 	/* update flow if oif or iif point to device enslaved to l3mdev */
158 	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
159 
160 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
161 			       flowi4_to_flowi(flp4), 0, &arg);
162 	if (err < 0)
163 		return err;
164 	*mrt = res.mrt;
165 	return 0;
166 }
167 
168 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
169 			    int flags, struct fib_lookup_arg *arg)
170 {
171 	struct ipmr_result *res = arg->result;
172 	struct mr_table *mrt;
173 
174 	switch (rule->action) {
175 	case FR_ACT_TO_TBL:
176 		break;
177 	case FR_ACT_UNREACHABLE:
178 		return -ENETUNREACH;
179 	case FR_ACT_PROHIBIT:
180 		return -EACCES;
181 	case FR_ACT_BLACKHOLE:
182 	default:
183 		return -EINVAL;
184 	}
185 
186 	arg->table = fib_rule_get_table(rule, arg);
187 
188 	mrt = ipmr_get_table(rule->fr_net, arg->table);
189 	if (!mrt)
190 		return -EAGAIN;
191 	res->mrt = mrt;
192 	return 0;
193 }
194 
195 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
196 {
197 	return 1;
198 }
199 
200 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
201 	FRA_GENERIC_POLICY,
202 };
203 
204 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
205 			       struct fib_rule_hdr *frh, struct nlattr **tb,
206 			       struct netlink_ext_ack *extack)
207 {
208 	return 0;
209 }
210 
211 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
212 			     struct nlattr **tb)
213 {
214 	return 1;
215 }
216 
217 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
218 			  struct fib_rule_hdr *frh)
219 {
220 	frh->dst_len = 0;
221 	frh->src_len = 0;
222 	frh->tos     = 0;
223 	return 0;
224 }
225 
226 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
227 	.family		= RTNL_FAMILY_IPMR,
228 	.rule_size	= sizeof(struct ipmr_rule),
229 	.addr_size	= sizeof(u32),
230 	.action		= ipmr_rule_action,
231 	.match		= ipmr_rule_match,
232 	.configure	= ipmr_rule_configure,
233 	.compare	= ipmr_rule_compare,
234 	.fill		= ipmr_rule_fill,
235 	.nlgroup	= RTNLGRP_IPV4_RULE,
236 	.policy		= ipmr_rule_policy,
237 	.owner		= THIS_MODULE,
238 };
239 
240 static int __net_init ipmr_rules_init(struct net *net)
241 {
242 	struct fib_rules_ops *ops;
243 	struct mr_table *mrt;
244 	int err;
245 
246 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
247 	if (IS_ERR(ops))
248 		return PTR_ERR(ops);
249 
250 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
251 
252 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
253 	if (IS_ERR(mrt)) {
254 		err = PTR_ERR(mrt);
255 		goto err1;
256 	}
257 
258 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
259 	if (err < 0)
260 		goto err2;
261 
262 	net->ipv4.mr_rules_ops = ops;
263 	return 0;
264 
265 err2:
266 	ipmr_free_table(mrt);
267 err1:
268 	fib_rules_unregister(ops);
269 	return err;
270 }
271 
272 static void __net_exit ipmr_rules_exit(struct net *net)
273 {
274 	struct mr_table *mrt, *next;
275 
276 	rtnl_lock();
277 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
278 		list_del(&mrt->list);
279 		ipmr_free_table(mrt);
280 	}
281 	fib_rules_unregister(net->ipv4.mr_rules_ops);
282 	rtnl_unlock();
283 }
284 
285 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
286 {
287 	return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR);
288 }
289 
290 static unsigned int ipmr_rules_seq_read(struct net *net)
291 {
292 	return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
293 }
294 
295 bool ipmr_rule_default(const struct fib_rule *rule)
296 {
297 	return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
298 }
299 EXPORT_SYMBOL(ipmr_rule_default);
300 #else
301 #define ipmr_for_each_table(mrt, net) \
302 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
303 
304 static struct mr_table *ipmr_mr_table_iter(struct net *net,
305 					   struct mr_table *mrt)
306 {
307 	if (!mrt)
308 		return net->ipv4.mrt;
309 	return NULL;
310 }
311 
312 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
313 {
314 	return net->ipv4.mrt;
315 }
316 
317 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
318 			   struct mr_table **mrt)
319 {
320 	*mrt = net->ipv4.mrt;
321 	return 0;
322 }
323 
324 static int __net_init ipmr_rules_init(struct net *net)
325 {
326 	struct mr_table *mrt;
327 
328 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
329 	if (IS_ERR(mrt))
330 		return PTR_ERR(mrt);
331 	net->ipv4.mrt = mrt;
332 	return 0;
333 }
334 
335 static void __net_exit ipmr_rules_exit(struct net *net)
336 {
337 	rtnl_lock();
338 	ipmr_free_table(net->ipv4.mrt);
339 	net->ipv4.mrt = NULL;
340 	rtnl_unlock();
341 }
342 
343 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
344 {
345 	return 0;
346 }
347 
348 static unsigned int ipmr_rules_seq_read(struct net *net)
349 {
350 	return 0;
351 }
352 
353 bool ipmr_rule_default(const struct fib_rule *rule)
354 {
355 	return true;
356 }
357 EXPORT_SYMBOL(ipmr_rule_default);
358 #endif
359 
360 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
361 				const void *ptr)
362 {
363 	const struct mfc_cache_cmp_arg *cmparg = arg->key;
364 	struct mfc_cache *c = (struct mfc_cache *)ptr;
365 
366 	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
367 	       cmparg->mfc_origin != c->mfc_origin;
368 }
369 
370 static const struct rhashtable_params ipmr_rht_params = {
371 	.head_offset = offsetof(struct mr_mfc, mnode),
372 	.key_offset = offsetof(struct mfc_cache, cmparg),
373 	.key_len = sizeof(struct mfc_cache_cmp_arg),
374 	.nelem_hint = 3,
375 	.locks_mul = 1,
376 	.obj_cmpfn = ipmr_hash_cmp,
377 	.automatic_shrinking = true,
378 };
379 
380 static void ipmr_new_table_set(struct mr_table *mrt,
381 			       struct net *net)
382 {
383 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
384 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
385 #endif
386 }
387 
388 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
389 	.mfc_mcastgrp = htonl(INADDR_ANY),
390 	.mfc_origin = htonl(INADDR_ANY),
391 };
392 
393 static struct mr_table_ops ipmr_mr_table_ops = {
394 	.rht_params = &ipmr_rht_params,
395 	.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
396 };
397 
398 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
399 {
400 	struct mr_table *mrt;
401 
402 	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
403 	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
404 		return ERR_PTR(-EINVAL);
405 
406 	mrt = ipmr_get_table(net, id);
407 	if (mrt)
408 		return mrt;
409 
410 	return mr_table_alloc(net, id, &ipmr_mr_table_ops,
411 			      ipmr_expire_process, ipmr_new_table_set);
412 }
413 
414 static void ipmr_free_table(struct mr_table *mrt)
415 {
416 	del_timer_sync(&mrt->ipmr_expire_timer);
417 	mroute_clean_tables(mrt, true);
418 	rhltable_destroy(&mrt->mfc_hash);
419 	kfree(mrt);
420 }
421 
422 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
423 
424 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
425 {
426 	struct net *net = dev_net(dev);
427 
428 	dev_close(dev);
429 
430 	dev = __dev_get_by_name(net, "tunl0");
431 	if (dev) {
432 		const struct net_device_ops *ops = dev->netdev_ops;
433 		struct ifreq ifr;
434 		struct ip_tunnel_parm p;
435 
436 		memset(&p, 0, sizeof(p));
437 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
438 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
439 		p.iph.version = 4;
440 		p.iph.ihl = 5;
441 		p.iph.protocol = IPPROTO_IPIP;
442 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
443 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
444 
445 		if (ops->ndo_do_ioctl) {
446 			mm_segment_t oldfs = get_fs();
447 
448 			set_fs(KERNEL_DS);
449 			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
450 			set_fs(oldfs);
451 		}
452 	}
453 }
454 
455 /* Initialize ipmr pimreg/tunnel in_device */
456 static bool ipmr_init_vif_indev(const struct net_device *dev)
457 {
458 	struct in_device *in_dev;
459 
460 	ASSERT_RTNL();
461 
462 	in_dev = __in_dev_get_rtnl(dev);
463 	if (!in_dev)
464 		return false;
465 	ipv4_devconf_setall(in_dev);
466 	neigh_parms_data_state_setall(in_dev->arp_parms);
467 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
468 
469 	return true;
470 }
471 
472 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
473 {
474 	struct net_device  *dev;
475 
476 	dev = __dev_get_by_name(net, "tunl0");
477 
478 	if (dev) {
479 		const struct net_device_ops *ops = dev->netdev_ops;
480 		int err;
481 		struct ifreq ifr;
482 		struct ip_tunnel_parm p;
483 
484 		memset(&p, 0, sizeof(p));
485 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
486 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
487 		p.iph.version = 4;
488 		p.iph.ihl = 5;
489 		p.iph.protocol = IPPROTO_IPIP;
490 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
491 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
492 
493 		if (ops->ndo_do_ioctl) {
494 			mm_segment_t oldfs = get_fs();
495 
496 			set_fs(KERNEL_DS);
497 			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
498 			set_fs(oldfs);
499 		} else {
500 			err = -EOPNOTSUPP;
501 		}
502 		dev = NULL;
503 
504 		if (err == 0 &&
505 		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
506 			dev->flags |= IFF_MULTICAST;
507 			if (!ipmr_init_vif_indev(dev))
508 				goto failure;
509 			if (dev_open(dev))
510 				goto failure;
511 			dev_hold(dev);
512 		}
513 	}
514 	return dev;
515 
516 failure:
517 	unregister_netdevice(dev);
518 	return NULL;
519 }
520 
521 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
522 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
523 {
524 	struct net *net = dev_net(dev);
525 	struct mr_table *mrt;
526 	struct flowi4 fl4 = {
527 		.flowi4_oif	= dev->ifindex,
528 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
529 		.flowi4_mark	= skb->mark,
530 	};
531 	int err;
532 
533 	err = ipmr_fib_lookup(net, &fl4, &mrt);
534 	if (err < 0) {
535 		kfree_skb(skb);
536 		return err;
537 	}
538 
539 	read_lock(&mrt_lock);
540 	dev->stats.tx_bytes += skb->len;
541 	dev->stats.tx_packets++;
542 	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
543 	read_unlock(&mrt_lock);
544 	kfree_skb(skb);
545 	return NETDEV_TX_OK;
546 }
547 
548 static int reg_vif_get_iflink(const struct net_device *dev)
549 {
550 	return 0;
551 }
552 
553 static const struct net_device_ops reg_vif_netdev_ops = {
554 	.ndo_start_xmit	= reg_vif_xmit,
555 	.ndo_get_iflink = reg_vif_get_iflink,
556 };
557 
558 static void reg_vif_setup(struct net_device *dev)
559 {
560 	dev->type		= ARPHRD_PIMREG;
561 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
562 	dev->flags		= IFF_NOARP;
563 	dev->netdev_ops		= &reg_vif_netdev_ops;
564 	dev->needs_free_netdev	= true;
565 	dev->features		|= NETIF_F_NETNS_LOCAL;
566 }
567 
568 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
569 {
570 	struct net_device *dev;
571 	char name[IFNAMSIZ];
572 
573 	if (mrt->id == RT_TABLE_DEFAULT)
574 		sprintf(name, "pimreg");
575 	else
576 		sprintf(name, "pimreg%u", mrt->id);
577 
578 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
579 
580 	if (!dev)
581 		return NULL;
582 
583 	dev_net_set(dev, net);
584 
585 	if (register_netdevice(dev)) {
586 		free_netdev(dev);
587 		return NULL;
588 	}
589 
590 	if (!ipmr_init_vif_indev(dev))
591 		goto failure;
592 	if (dev_open(dev))
593 		goto failure;
594 
595 	dev_hold(dev);
596 
597 	return dev;
598 
599 failure:
600 	unregister_netdevice(dev);
601 	return NULL;
602 }
603 
604 /* called with rcu_read_lock() */
605 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
606 		     unsigned int pimlen)
607 {
608 	struct net_device *reg_dev = NULL;
609 	struct iphdr *encap;
610 
611 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
612 	/* Check that:
613 	 * a. packet is really sent to a multicast group
614 	 * b. packet is not a NULL-REGISTER
615 	 * c. packet is not truncated
616 	 */
617 	if (!ipv4_is_multicast(encap->daddr) ||
618 	    encap->tot_len == 0 ||
619 	    ntohs(encap->tot_len) + pimlen > skb->len)
620 		return 1;
621 
622 	read_lock(&mrt_lock);
623 	if (mrt->mroute_reg_vif_num >= 0)
624 		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
625 	read_unlock(&mrt_lock);
626 
627 	if (!reg_dev)
628 		return 1;
629 
630 	skb->mac_header = skb->network_header;
631 	skb_pull(skb, (u8 *)encap - skb->data);
632 	skb_reset_network_header(skb);
633 	skb->protocol = htons(ETH_P_IP);
634 	skb->ip_summed = CHECKSUM_NONE;
635 
636 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
637 
638 	netif_rx(skb);
639 
640 	return NET_RX_SUCCESS;
641 }
642 #else
643 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
644 {
645 	return NULL;
646 }
647 #endif
648 
649 static int call_ipmr_vif_entry_notifiers(struct net *net,
650 					 enum fib_event_type event_type,
651 					 struct vif_device *vif,
652 					 vifi_t vif_index, u32 tb_id)
653 {
654 	return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
655 				     vif, vif_index, tb_id,
656 				     &net->ipv4.ipmr_seq);
657 }
658 
659 static int call_ipmr_mfc_entry_notifiers(struct net *net,
660 					 enum fib_event_type event_type,
661 					 struct mfc_cache *mfc, u32 tb_id)
662 {
663 	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
664 				     &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
665 }
666 
667 /**
668  *	vif_delete - Delete a VIF entry
669  *	@notify: Set to 1, if the caller is a notifier_call
670  */
671 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
672 		      struct list_head *head)
673 {
674 	struct net *net = read_pnet(&mrt->net);
675 	struct vif_device *v;
676 	struct net_device *dev;
677 	struct in_device *in_dev;
678 
679 	if (vifi < 0 || vifi >= mrt->maxvif)
680 		return -EADDRNOTAVAIL;
681 
682 	v = &mrt->vif_table[vifi];
683 
684 	if (VIF_EXISTS(mrt, vifi))
685 		call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi,
686 					      mrt->id);
687 
688 	write_lock_bh(&mrt_lock);
689 	dev = v->dev;
690 	v->dev = NULL;
691 
692 	if (!dev) {
693 		write_unlock_bh(&mrt_lock);
694 		return -EADDRNOTAVAIL;
695 	}
696 
697 	if (vifi == mrt->mroute_reg_vif_num)
698 		mrt->mroute_reg_vif_num = -1;
699 
700 	if (vifi + 1 == mrt->maxvif) {
701 		int tmp;
702 
703 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
704 			if (VIF_EXISTS(mrt, tmp))
705 				break;
706 		}
707 		mrt->maxvif = tmp+1;
708 	}
709 
710 	write_unlock_bh(&mrt_lock);
711 
712 	dev_set_allmulti(dev, -1);
713 
714 	in_dev = __in_dev_get_rtnl(dev);
715 	if (in_dev) {
716 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
717 		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
718 					    NETCONFA_MC_FORWARDING,
719 					    dev->ifindex, &in_dev->cnf);
720 		ip_rt_multicast_event(in_dev);
721 	}
722 
723 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
724 		unregister_netdevice_queue(dev, head);
725 
726 	dev_put(dev);
727 	return 0;
728 }
729 
730 static void ipmr_cache_free_rcu(struct rcu_head *head)
731 {
732 	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
733 
734 	kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
735 }
736 
737 static void ipmr_cache_free(struct mfc_cache *c)
738 {
739 	call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
740 }
741 
742 /* Destroy an unresolved cache entry, killing queued skbs
743  * and reporting error to netlink readers.
744  */
745 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
746 {
747 	struct net *net = read_pnet(&mrt->net);
748 	struct sk_buff *skb;
749 	struct nlmsgerr *e;
750 
751 	atomic_dec(&mrt->cache_resolve_queue_len);
752 
753 	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
754 		if (ip_hdr(skb)->version == 0) {
755 			struct nlmsghdr *nlh = skb_pull(skb,
756 							sizeof(struct iphdr));
757 			nlh->nlmsg_type = NLMSG_ERROR;
758 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
759 			skb_trim(skb, nlh->nlmsg_len);
760 			e = nlmsg_data(nlh);
761 			e->error = -ETIMEDOUT;
762 			memset(&e->msg, 0, sizeof(e->msg));
763 
764 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
765 		} else {
766 			kfree_skb(skb);
767 		}
768 	}
769 
770 	ipmr_cache_free(c);
771 }
772 
773 /* Timer process for the unresolved queue. */
774 static void ipmr_expire_process(struct timer_list *t)
775 {
776 	struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
777 	struct mr_mfc *c, *next;
778 	unsigned long expires;
779 	unsigned long now;
780 
781 	if (!spin_trylock(&mfc_unres_lock)) {
782 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
783 		return;
784 	}
785 
786 	if (list_empty(&mrt->mfc_unres_queue))
787 		goto out;
788 
789 	now = jiffies;
790 	expires = 10*HZ;
791 
792 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
793 		if (time_after(c->mfc_un.unres.expires, now)) {
794 			unsigned long interval = c->mfc_un.unres.expires - now;
795 			if (interval < expires)
796 				expires = interval;
797 			continue;
798 		}
799 
800 		list_del(&c->list);
801 		mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
802 		ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
803 	}
804 
805 	if (!list_empty(&mrt->mfc_unres_queue))
806 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
807 
808 out:
809 	spin_unlock(&mfc_unres_lock);
810 }
811 
812 /* Fill oifs list. It is called under write locked mrt_lock. */
813 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
814 				   unsigned char *ttls)
815 {
816 	int vifi;
817 
818 	cache->mfc_un.res.minvif = MAXVIFS;
819 	cache->mfc_un.res.maxvif = 0;
820 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
821 
822 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
823 		if (VIF_EXISTS(mrt, vifi) &&
824 		    ttls[vifi] && ttls[vifi] < 255) {
825 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
826 			if (cache->mfc_un.res.minvif > vifi)
827 				cache->mfc_un.res.minvif = vifi;
828 			if (cache->mfc_un.res.maxvif <= vifi)
829 				cache->mfc_un.res.maxvif = vifi + 1;
830 		}
831 	}
832 	cache->mfc_un.res.lastuse = jiffies;
833 }
834 
835 static int vif_add(struct net *net, struct mr_table *mrt,
836 		   struct vifctl *vifc, int mrtsock)
837 {
838 	int vifi = vifc->vifc_vifi;
839 	struct switchdev_attr attr = {
840 		.id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
841 	};
842 	struct vif_device *v = &mrt->vif_table[vifi];
843 	struct net_device *dev;
844 	struct in_device *in_dev;
845 	int err;
846 
847 	/* Is vif busy ? */
848 	if (VIF_EXISTS(mrt, vifi))
849 		return -EADDRINUSE;
850 
851 	switch (vifc->vifc_flags) {
852 	case VIFF_REGISTER:
853 		if (!ipmr_pimsm_enabled())
854 			return -EINVAL;
855 		/* Special Purpose VIF in PIM
856 		 * All the packets will be sent to the daemon
857 		 */
858 		if (mrt->mroute_reg_vif_num >= 0)
859 			return -EADDRINUSE;
860 		dev = ipmr_reg_vif(net, mrt);
861 		if (!dev)
862 			return -ENOBUFS;
863 		err = dev_set_allmulti(dev, 1);
864 		if (err) {
865 			unregister_netdevice(dev);
866 			dev_put(dev);
867 			return err;
868 		}
869 		break;
870 	case VIFF_TUNNEL:
871 		dev = ipmr_new_tunnel(net, vifc);
872 		if (!dev)
873 			return -ENOBUFS;
874 		err = dev_set_allmulti(dev, 1);
875 		if (err) {
876 			ipmr_del_tunnel(dev, vifc);
877 			dev_put(dev);
878 			return err;
879 		}
880 		break;
881 	case VIFF_USE_IFINDEX:
882 	case 0:
883 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
884 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
885 			if (dev && !__in_dev_get_rtnl(dev)) {
886 				dev_put(dev);
887 				return -EADDRNOTAVAIL;
888 			}
889 		} else {
890 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
891 		}
892 		if (!dev)
893 			return -EADDRNOTAVAIL;
894 		err = dev_set_allmulti(dev, 1);
895 		if (err) {
896 			dev_put(dev);
897 			return err;
898 		}
899 		break;
900 	default:
901 		return -EINVAL;
902 	}
903 
904 	in_dev = __in_dev_get_rtnl(dev);
905 	if (!in_dev) {
906 		dev_put(dev);
907 		return -EADDRNOTAVAIL;
908 	}
909 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
910 	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
911 				    dev->ifindex, &in_dev->cnf);
912 	ip_rt_multicast_event(in_dev);
913 
914 	/* Fill in the VIF structures */
915 	vif_device_init(v, dev, vifc->vifc_rate_limit,
916 			vifc->vifc_threshold,
917 			vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
918 			(VIFF_TUNNEL | VIFF_REGISTER));
919 
920 	attr.orig_dev = dev;
921 	if (!switchdev_port_attr_get(dev, &attr)) {
922 		memcpy(v->dev_parent_id.id, attr.u.ppid.id, attr.u.ppid.id_len);
923 		v->dev_parent_id.id_len = attr.u.ppid.id_len;
924 	} else {
925 		v->dev_parent_id.id_len = 0;
926 	}
927 
928 	v->local = vifc->vifc_lcl_addr.s_addr;
929 	v->remote = vifc->vifc_rmt_addr.s_addr;
930 
931 	/* And finish update writing critical data */
932 	write_lock_bh(&mrt_lock);
933 	v->dev = dev;
934 	if (v->flags & VIFF_REGISTER)
935 		mrt->mroute_reg_vif_num = vifi;
936 	if (vifi+1 > mrt->maxvif)
937 		mrt->maxvif = vifi+1;
938 	write_unlock_bh(&mrt_lock);
939 	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id);
940 	return 0;
941 }
942 
943 /* called with rcu_read_lock() */
944 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
945 					 __be32 origin,
946 					 __be32 mcastgrp)
947 {
948 	struct mfc_cache_cmp_arg arg = {
949 			.mfc_mcastgrp = mcastgrp,
950 			.mfc_origin = origin
951 	};
952 
953 	return mr_mfc_find(mrt, &arg);
954 }
955 
956 /* Look for a (*,G) entry */
957 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
958 					     __be32 mcastgrp, int vifi)
959 {
960 	struct mfc_cache_cmp_arg arg = {
961 			.mfc_mcastgrp = mcastgrp,
962 			.mfc_origin = htonl(INADDR_ANY)
963 	};
964 
965 	if (mcastgrp == htonl(INADDR_ANY))
966 		return mr_mfc_find_any_parent(mrt, vifi);
967 	return mr_mfc_find_any(mrt, vifi, &arg);
968 }
969 
970 /* Look for a (S,G,iif) entry if parent != -1 */
971 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
972 						__be32 origin, __be32 mcastgrp,
973 						int parent)
974 {
975 	struct mfc_cache_cmp_arg arg = {
976 			.mfc_mcastgrp = mcastgrp,
977 			.mfc_origin = origin,
978 	};
979 
980 	return mr_mfc_find_parent(mrt, &arg, parent);
981 }
982 
983 /* Allocate a multicast cache entry */
984 static struct mfc_cache *ipmr_cache_alloc(void)
985 {
986 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
987 
988 	if (c) {
989 		c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
990 		c->_c.mfc_un.res.minvif = MAXVIFS;
991 		c->_c.free = ipmr_cache_free_rcu;
992 		refcount_set(&c->_c.mfc_un.res.refcount, 1);
993 	}
994 	return c;
995 }
996 
997 static struct mfc_cache *ipmr_cache_alloc_unres(void)
998 {
999 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
1000 
1001 	if (c) {
1002 		skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
1003 		c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
1004 	}
1005 	return c;
1006 }
1007 
1008 /* A cache entry has gone into a resolved state from queued */
1009 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
1010 			       struct mfc_cache *uc, struct mfc_cache *c)
1011 {
1012 	struct sk_buff *skb;
1013 	struct nlmsgerr *e;
1014 
1015 	/* Play the pending entries through our router */
1016 	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1017 		if (ip_hdr(skb)->version == 0) {
1018 			struct nlmsghdr *nlh = skb_pull(skb,
1019 							sizeof(struct iphdr));
1020 
1021 			if (mr_fill_mroute(mrt, skb, &c->_c,
1022 					   nlmsg_data(nlh)) > 0) {
1023 				nlh->nlmsg_len = skb_tail_pointer(skb) -
1024 						 (u8 *)nlh;
1025 			} else {
1026 				nlh->nlmsg_type = NLMSG_ERROR;
1027 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1028 				skb_trim(skb, nlh->nlmsg_len);
1029 				e = nlmsg_data(nlh);
1030 				e->error = -EMSGSIZE;
1031 				memset(&e->msg, 0, sizeof(e->msg));
1032 			}
1033 
1034 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1035 		} else {
1036 			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1037 		}
1038 	}
1039 }
1040 
1041 /* Bounce a cache query up to mrouted and netlink.
1042  *
1043  * Called under mrt_lock.
1044  */
1045 static int ipmr_cache_report(struct mr_table *mrt,
1046 			     struct sk_buff *pkt, vifi_t vifi, int assert)
1047 {
1048 	const int ihl = ip_hdrlen(pkt);
1049 	struct sock *mroute_sk;
1050 	struct igmphdr *igmp;
1051 	struct igmpmsg *msg;
1052 	struct sk_buff *skb;
1053 	int ret;
1054 
1055 	if (assert == IGMPMSG_WHOLEPKT)
1056 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1057 	else
1058 		skb = alloc_skb(128, GFP_ATOMIC);
1059 
1060 	if (!skb)
1061 		return -ENOBUFS;
1062 
1063 	if (assert == IGMPMSG_WHOLEPKT) {
1064 		/* Ugly, but we have no choice with this interface.
1065 		 * Duplicate old header, fix ihl, length etc.
1066 		 * And all this only to mangle msg->im_msgtype and
1067 		 * to set msg->im_mbz to "mbz" :-)
1068 		 */
1069 		skb_push(skb, sizeof(struct iphdr));
1070 		skb_reset_network_header(skb);
1071 		skb_reset_transport_header(skb);
1072 		msg = (struct igmpmsg *)skb_network_header(skb);
1073 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1074 		msg->im_msgtype = IGMPMSG_WHOLEPKT;
1075 		msg->im_mbz = 0;
1076 		msg->im_vif = mrt->mroute_reg_vif_num;
1077 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1078 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1079 					     sizeof(struct iphdr));
1080 	} else {
1081 		/* Copy the IP header */
1082 		skb_set_network_header(skb, skb->len);
1083 		skb_put(skb, ihl);
1084 		skb_copy_to_linear_data(skb, pkt->data, ihl);
1085 		/* Flag to the kernel this is a route add */
1086 		ip_hdr(skb)->protocol = 0;
1087 		msg = (struct igmpmsg *)skb_network_header(skb);
1088 		msg->im_vif = vifi;
1089 		skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1090 		/* Add our header */
1091 		igmp = skb_put(skb, sizeof(struct igmphdr));
1092 		igmp->type = assert;
1093 		msg->im_msgtype = assert;
1094 		igmp->code = 0;
1095 		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1096 		skb->transport_header = skb->network_header;
1097 	}
1098 
1099 	rcu_read_lock();
1100 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1101 	if (!mroute_sk) {
1102 		rcu_read_unlock();
1103 		kfree_skb(skb);
1104 		return -EINVAL;
1105 	}
1106 
1107 	igmpmsg_netlink_event(mrt, skb);
1108 
1109 	/* Deliver to mrouted */
1110 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1111 	rcu_read_unlock();
1112 	if (ret < 0) {
1113 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1114 		kfree_skb(skb);
1115 	}
1116 
1117 	return ret;
1118 }
1119 
1120 /* Queue a packet for resolution. It gets locked cache entry! */
1121 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1122 				 struct sk_buff *skb, struct net_device *dev)
1123 {
1124 	const struct iphdr *iph = ip_hdr(skb);
1125 	struct mfc_cache *c;
1126 	bool found = false;
1127 	int err;
1128 
1129 	spin_lock_bh(&mfc_unres_lock);
1130 	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1131 		if (c->mfc_mcastgrp == iph->daddr &&
1132 		    c->mfc_origin == iph->saddr) {
1133 			found = true;
1134 			break;
1135 		}
1136 	}
1137 
1138 	if (!found) {
1139 		/* Create a new entry if allowable */
1140 		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1141 		    (c = ipmr_cache_alloc_unres()) == NULL) {
1142 			spin_unlock_bh(&mfc_unres_lock);
1143 
1144 			kfree_skb(skb);
1145 			return -ENOBUFS;
1146 		}
1147 
1148 		/* Fill in the new cache entry */
1149 		c->_c.mfc_parent = -1;
1150 		c->mfc_origin	= iph->saddr;
1151 		c->mfc_mcastgrp	= iph->daddr;
1152 
1153 		/* Reflect first query at mrouted. */
1154 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1155 
1156 		if (err < 0) {
1157 			/* If the report failed throw the cache entry
1158 			   out - Brad Parker
1159 			 */
1160 			spin_unlock_bh(&mfc_unres_lock);
1161 
1162 			ipmr_cache_free(c);
1163 			kfree_skb(skb);
1164 			return err;
1165 		}
1166 
1167 		atomic_inc(&mrt->cache_resolve_queue_len);
1168 		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1169 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1170 
1171 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1172 			mod_timer(&mrt->ipmr_expire_timer,
1173 				  c->_c.mfc_un.unres.expires);
1174 	}
1175 
1176 	/* See if we can append the packet */
1177 	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1178 		kfree_skb(skb);
1179 		err = -ENOBUFS;
1180 	} else {
1181 		if (dev) {
1182 			skb->dev = dev;
1183 			skb->skb_iif = dev->ifindex;
1184 		}
1185 		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1186 		err = 0;
1187 	}
1188 
1189 	spin_unlock_bh(&mfc_unres_lock);
1190 	return err;
1191 }
1192 
1193 /* MFC cache manipulation by user space mroute daemon */
1194 
1195 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1196 {
1197 	struct net *net = read_pnet(&mrt->net);
1198 	struct mfc_cache *c;
1199 
1200 	/* The entries are added/deleted only under RTNL */
1201 	rcu_read_lock();
1202 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1203 				   mfc->mfcc_mcastgrp.s_addr, parent);
1204 	rcu_read_unlock();
1205 	if (!c)
1206 		return -ENOENT;
1207 	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1208 	list_del_rcu(&c->_c.list);
1209 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1210 	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1211 	mr_cache_put(&c->_c);
1212 
1213 	return 0;
1214 }
1215 
1216 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1217 			struct mfcctl *mfc, int mrtsock, int parent)
1218 {
1219 	struct mfc_cache *uc, *c;
1220 	struct mr_mfc *_uc;
1221 	bool found;
1222 	int ret;
1223 
1224 	if (mfc->mfcc_parent >= MAXVIFS)
1225 		return -ENFILE;
1226 
1227 	/* The entries are added/deleted only under RTNL */
1228 	rcu_read_lock();
1229 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1230 				   mfc->mfcc_mcastgrp.s_addr, parent);
1231 	rcu_read_unlock();
1232 	if (c) {
1233 		write_lock_bh(&mrt_lock);
1234 		c->_c.mfc_parent = mfc->mfcc_parent;
1235 		ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1236 		if (!mrtsock)
1237 			c->_c.mfc_flags |= MFC_STATIC;
1238 		write_unlock_bh(&mrt_lock);
1239 		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1240 					      mrt->id);
1241 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1242 		return 0;
1243 	}
1244 
1245 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1246 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1247 		return -EINVAL;
1248 
1249 	c = ipmr_cache_alloc();
1250 	if (!c)
1251 		return -ENOMEM;
1252 
1253 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1254 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1255 	c->_c.mfc_parent = mfc->mfcc_parent;
1256 	ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1257 	if (!mrtsock)
1258 		c->_c.mfc_flags |= MFC_STATIC;
1259 
1260 	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1261 				  ipmr_rht_params);
1262 	if (ret) {
1263 		pr_err("ipmr: rhtable insert error %d\n", ret);
1264 		ipmr_cache_free(c);
1265 		return ret;
1266 	}
1267 	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1268 	/* Check to see if we resolved a queued list. If so we
1269 	 * need to send on the frames and tidy up.
1270 	 */
1271 	found = false;
1272 	spin_lock_bh(&mfc_unres_lock);
1273 	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1274 		uc = (struct mfc_cache *)_uc;
1275 		if (uc->mfc_origin == c->mfc_origin &&
1276 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1277 			list_del(&_uc->list);
1278 			atomic_dec(&mrt->cache_resolve_queue_len);
1279 			found = true;
1280 			break;
1281 		}
1282 	}
1283 	if (list_empty(&mrt->mfc_unres_queue))
1284 		del_timer(&mrt->ipmr_expire_timer);
1285 	spin_unlock_bh(&mfc_unres_lock);
1286 
1287 	if (found) {
1288 		ipmr_cache_resolve(net, mrt, uc, c);
1289 		ipmr_cache_free(uc);
1290 	}
1291 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1292 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1293 	return 0;
1294 }
1295 
1296 /* Close the multicast socket, and clear the vif tables etc */
1297 static void mroute_clean_tables(struct mr_table *mrt, bool all)
1298 {
1299 	struct net *net = read_pnet(&mrt->net);
1300 	struct mr_mfc *c, *tmp;
1301 	struct mfc_cache *cache;
1302 	LIST_HEAD(list);
1303 	int i;
1304 
1305 	/* Shut down all active vif entries */
1306 	for (i = 0; i < mrt->maxvif; i++) {
1307 		if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1308 			continue;
1309 		vif_delete(mrt, i, 0, &list);
1310 	}
1311 	unregister_netdevice_many(&list);
1312 
1313 	/* Wipe the cache */
1314 	list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1315 		if (!all && (c->mfc_flags & MFC_STATIC))
1316 			continue;
1317 		rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1318 		list_del_rcu(&c->list);
1319 		cache = (struct mfc_cache *)c;
1320 		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1321 					      mrt->id);
1322 		mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1323 		mr_cache_put(c);
1324 	}
1325 
1326 	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1327 		spin_lock_bh(&mfc_unres_lock);
1328 		list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1329 			list_del(&c->list);
1330 			cache = (struct mfc_cache *)c;
1331 			mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1332 			ipmr_destroy_unres(mrt, cache);
1333 		}
1334 		spin_unlock_bh(&mfc_unres_lock);
1335 	}
1336 }
1337 
1338 /* called from ip_ra_control(), before an RCU grace period,
1339  * we dont need to call synchronize_rcu() here
1340  */
1341 static void mrtsock_destruct(struct sock *sk)
1342 {
1343 	struct net *net = sock_net(sk);
1344 	struct mr_table *mrt;
1345 
1346 	rtnl_lock();
1347 	ipmr_for_each_table(mrt, net) {
1348 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1349 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1350 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1351 						    NETCONFA_MC_FORWARDING,
1352 						    NETCONFA_IFINDEX_ALL,
1353 						    net->ipv4.devconf_all);
1354 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1355 			mroute_clean_tables(mrt, false);
1356 		}
1357 	}
1358 	rtnl_unlock();
1359 }
1360 
1361 /* Socket options and virtual interface manipulation. The whole
1362  * virtual interface system is a complete heap, but unfortunately
1363  * that's how BSD mrouted happens to think. Maybe one day with a proper
1364  * MOSPF/PIM router set up we can clean this up.
1365  */
1366 
1367 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1368 			 unsigned int optlen)
1369 {
1370 	struct net *net = sock_net(sk);
1371 	int val, ret = 0, parent = 0;
1372 	struct mr_table *mrt;
1373 	struct vifctl vif;
1374 	struct mfcctl mfc;
1375 	u32 uval;
1376 
1377 	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1378 	rtnl_lock();
1379 	if (sk->sk_type != SOCK_RAW ||
1380 	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1381 		ret = -EOPNOTSUPP;
1382 		goto out_unlock;
1383 	}
1384 
1385 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1386 	if (!mrt) {
1387 		ret = -ENOENT;
1388 		goto out_unlock;
1389 	}
1390 	if (optname != MRT_INIT) {
1391 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1392 		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1393 			ret = -EACCES;
1394 			goto out_unlock;
1395 		}
1396 	}
1397 
1398 	switch (optname) {
1399 	case MRT_INIT:
1400 		if (optlen != sizeof(int)) {
1401 			ret = -EINVAL;
1402 			break;
1403 		}
1404 		if (rtnl_dereference(mrt->mroute_sk)) {
1405 			ret = -EADDRINUSE;
1406 			break;
1407 		}
1408 
1409 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1410 		if (ret == 0) {
1411 			rcu_assign_pointer(mrt->mroute_sk, sk);
1412 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1413 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1414 						    NETCONFA_MC_FORWARDING,
1415 						    NETCONFA_IFINDEX_ALL,
1416 						    net->ipv4.devconf_all);
1417 		}
1418 		break;
1419 	case MRT_DONE:
1420 		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1421 			ret = -EACCES;
1422 		} else {
1423 			/* We need to unlock here because mrtsock_destruct takes
1424 			 * care of rtnl itself and we can't change that due to
1425 			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1426 			 */
1427 			rtnl_unlock();
1428 			ret = ip_ra_control(sk, 0, NULL);
1429 			goto out;
1430 		}
1431 		break;
1432 	case MRT_ADD_VIF:
1433 	case MRT_DEL_VIF:
1434 		if (optlen != sizeof(vif)) {
1435 			ret = -EINVAL;
1436 			break;
1437 		}
1438 		if (copy_from_user(&vif, optval, sizeof(vif))) {
1439 			ret = -EFAULT;
1440 			break;
1441 		}
1442 		if (vif.vifc_vifi >= MAXVIFS) {
1443 			ret = -ENFILE;
1444 			break;
1445 		}
1446 		if (optname == MRT_ADD_VIF) {
1447 			ret = vif_add(net, mrt, &vif,
1448 				      sk == rtnl_dereference(mrt->mroute_sk));
1449 		} else {
1450 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1451 		}
1452 		break;
1453 	/* Manipulate the forwarding caches. These live
1454 	 * in a sort of kernel/user symbiosis.
1455 	 */
1456 	case MRT_ADD_MFC:
1457 	case MRT_DEL_MFC:
1458 		parent = -1;
1459 		/* fall through */
1460 	case MRT_ADD_MFC_PROXY:
1461 	case MRT_DEL_MFC_PROXY:
1462 		if (optlen != sizeof(mfc)) {
1463 			ret = -EINVAL;
1464 			break;
1465 		}
1466 		if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1467 			ret = -EFAULT;
1468 			break;
1469 		}
1470 		if (parent == 0)
1471 			parent = mfc.mfcc_parent;
1472 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1473 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1474 		else
1475 			ret = ipmr_mfc_add(net, mrt, &mfc,
1476 					   sk == rtnl_dereference(mrt->mroute_sk),
1477 					   parent);
1478 		break;
1479 	/* Control PIM assert. */
1480 	case MRT_ASSERT:
1481 		if (optlen != sizeof(val)) {
1482 			ret = -EINVAL;
1483 			break;
1484 		}
1485 		if (get_user(val, (int __user *)optval)) {
1486 			ret = -EFAULT;
1487 			break;
1488 		}
1489 		mrt->mroute_do_assert = val;
1490 		break;
1491 	case MRT_PIM:
1492 		if (!ipmr_pimsm_enabled()) {
1493 			ret = -ENOPROTOOPT;
1494 			break;
1495 		}
1496 		if (optlen != sizeof(val)) {
1497 			ret = -EINVAL;
1498 			break;
1499 		}
1500 		if (get_user(val, (int __user *)optval)) {
1501 			ret = -EFAULT;
1502 			break;
1503 		}
1504 
1505 		val = !!val;
1506 		if (val != mrt->mroute_do_pim) {
1507 			mrt->mroute_do_pim = val;
1508 			mrt->mroute_do_assert = val;
1509 		}
1510 		break;
1511 	case MRT_TABLE:
1512 		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1513 			ret = -ENOPROTOOPT;
1514 			break;
1515 		}
1516 		if (optlen != sizeof(uval)) {
1517 			ret = -EINVAL;
1518 			break;
1519 		}
1520 		if (get_user(uval, (u32 __user *)optval)) {
1521 			ret = -EFAULT;
1522 			break;
1523 		}
1524 
1525 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1526 			ret = -EBUSY;
1527 		} else {
1528 			mrt = ipmr_new_table(net, uval);
1529 			if (IS_ERR(mrt))
1530 				ret = PTR_ERR(mrt);
1531 			else
1532 				raw_sk(sk)->ipmr_table = uval;
1533 		}
1534 		break;
1535 	/* Spurious command, or MRT_VERSION which you cannot set. */
1536 	default:
1537 		ret = -ENOPROTOOPT;
1538 	}
1539 out_unlock:
1540 	rtnl_unlock();
1541 out:
1542 	return ret;
1543 }
1544 
1545 /* Getsock opt support for the multicast routing system. */
1546 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1547 {
1548 	int olr;
1549 	int val;
1550 	struct net *net = sock_net(sk);
1551 	struct mr_table *mrt;
1552 
1553 	if (sk->sk_type != SOCK_RAW ||
1554 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1555 		return -EOPNOTSUPP;
1556 
1557 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1558 	if (!mrt)
1559 		return -ENOENT;
1560 
1561 	switch (optname) {
1562 	case MRT_VERSION:
1563 		val = 0x0305;
1564 		break;
1565 	case MRT_PIM:
1566 		if (!ipmr_pimsm_enabled())
1567 			return -ENOPROTOOPT;
1568 		val = mrt->mroute_do_pim;
1569 		break;
1570 	case MRT_ASSERT:
1571 		val = mrt->mroute_do_assert;
1572 		break;
1573 	default:
1574 		return -ENOPROTOOPT;
1575 	}
1576 
1577 	if (get_user(olr, optlen))
1578 		return -EFAULT;
1579 	olr = min_t(unsigned int, olr, sizeof(int));
1580 	if (olr < 0)
1581 		return -EINVAL;
1582 	if (put_user(olr, optlen))
1583 		return -EFAULT;
1584 	if (copy_to_user(optval, &val, olr))
1585 		return -EFAULT;
1586 	return 0;
1587 }
1588 
1589 /* The IP multicast ioctl support routines. */
1590 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1591 {
1592 	struct sioc_sg_req sr;
1593 	struct sioc_vif_req vr;
1594 	struct vif_device *vif;
1595 	struct mfc_cache *c;
1596 	struct net *net = sock_net(sk);
1597 	struct mr_table *mrt;
1598 
1599 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1600 	if (!mrt)
1601 		return -ENOENT;
1602 
1603 	switch (cmd) {
1604 	case SIOCGETVIFCNT:
1605 		if (copy_from_user(&vr, arg, sizeof(vr)))
1606 			return -EFAULT;
1607 		if (vr.vifi >= mrt->maxvif)
1608 			return -EINVAL;
1609 		read_lock(&mrt_lock);
1610 		vif = &mrt->vif_table[vr.vifi];
1611 		if (VIF_EXISTS(mrt, vr.vifi)) {
1612 			vr.icount = vif->pkt_in;
1613 			vr.ocount = vif->pkt_out;
1614 			vr.ibytes = vif->bytes_in;
1615 			vr.obytes = vif->bytes_out;
1616 			read_unlock(&mrt_lock);
1617 
1618 			if (copy_to_user(arg, &vr, sizeof(vr)))
1619 				return -EFAULT;
1620 			return 0;
1621 		}
1622 		read_unlock(&mrt_lock);
1623 		return -EADDRNOTAVAIL;
1624 	case SIOCGETSGCNT:
1625 		if (copy_from_user(&sr, arg, sizeof(sr)))
1626 			return -EFAULT;
1627 
1628 		rcu_read_lock();
1629 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1630 		if (c) {
1631 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1632 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1633 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1634 			rcu_read_unlock();
1635 
1636 			if (copy_to_user(arg, &sr, sizeof(sr)))
1637 				return -EFAULT;
1638 			return 0;
1639 		}
1640 		rcu_read_unlock();
1641 		return -EADDRNOTAVAIL;
1642 	default:
1643 		return -ENOIOCTLCMD;
1644 	}
1645 }
1646 
1647 #ifdef CONFIG_COMPAT
1648 struct compat_sioc_sg_req {
1649 	struct in_addr src;
1650 	struct in_addr grp;
1651 	compat_ulong_t pktcnt;
1652 	compat_ulong_t bytecnt;
1653 	compat_ulong_t wrong_if;
1654 };
1655 
1656 struct compat_sioc_vif_req {
1657 	vifi_t	vifi;		/* Which iface */
1658 	compat_ulong_t icount;
1659 	compat_ulong_t ocount;
1660 	compat_ulong_t ibytes;
1661 	compat_ulong_t obytes;
1662 };
1663 
1664 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1665 {
1666 	struct compat_sioc_sg_req sr;
1667 	struct compat_sioc_vif_req vr;
1668 	struct vif_device *vif;
1669 	struct mfc_cache *c;
1670 	struct net *net = sock_net(sk);
1671 	struct mr_table *mrt;
1672 
1673 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1674 	if (!mrt)
1675 		return -ENOENT;
1676 
1677 	switch (cmd) {
1678 	case SIOCGETVIFCNT:
1679 		if (copy_from_user(&vr, arg, sizeof(vr)))
1680 			return -EFAULT;
1681 		if (vr.vifi >= mrt->maxvif)
1682 			return -EINVAL;
1683 		read_lock(&mrt_lock);
1684 		vif = &mrt->vif_table[vr.vifi];
1685 		if (VIF_EXISTS(mrt, vr.vifi)) {
1686 			vr.icount = vif->pkt_in;
1687 			vr.ocount = vif->pkt_out;
1688 			vr.ibytes = vif->bytes_in;
1689 			vr.obytes = vif->bytes_out;
1690 			read_unlock(&mrt_lock);
1691 
1692 			if (copy_to_user(arg, &vr, sizeof(vr)))
1693 				return -EFAULT;
1694 			return 0;
1695 		}
1696 		read_unlock(&mrt_lock);
1697 		return -EADDRNOTAVAIL;
1698 	case SIOCGETSGCNT:
1699 		if (copy_from_user(&sr, arg, sizeof(sr)))
1700 			return -EFAULT;
1701 
1702 		rcu_read_lock();
1703 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1704 		if (c) {
1705 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1706 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1707 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1708 			rcu_read_unlock();
1709 
1710 			if (copy_to_user(arg, &sr, sizeof(sr)))
1711 				return -EFAULT;
1712 			return 0;
1713 		}
1714 		rcu_read_unlock();
1715 		return -EADDRNOTAVAIL;
1716 	default:
1717 		return -ENOIOCTLCMD;
1718 	}
1719 }
1720 #endif
1721 
1722 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1723 {
1724 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1725 	struct net *net = dev_net(dev);
1726 	struct mr_table *mrt;
1727 	struct vif_device *v;
1728 	int ct;
1729 
1730 	if (event != NETDEV_UNREGISTER)
1731 		return NOTIFY_DONE;
1732 
1733 	ipmr_for_each_table(mrt, net) {
1734 		v = &mrt->vif_table[0];
1735 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1736 			if (v->dev == dev)
1737 				vif_delete(mrt, ct, 1, NULL);
1738 		}
1739 	}
1740 	return NOTIFY_DONE;
1741 }
1742 
1743 static struct notifier_block ip_mr_notifier = {
1744 	.notifier_call = ipmr_device_event,
1745 };
1746 
1747 /* Encapsulate a packet by attaching a valid IPIP header to it.
1748  * This avoids tunnel drivers and other mess and gives us the speed so
1749  * important for multicast video.
1750  */
1751 static void ip_encap(struct net *net, struct sk_buff *skb,
1752 		     __be32 saddr, __be32 daddr)
1753 {
1754 	struct iphdr *iph;
1755 	const struct iphdr *old_iph = ip_hdr(skb);
1756 
1757 	skb_push(skb, sizeof(struct iphdr));
1758 	skb->transport_header = skb->network_header;
1759 	skb_reset_network_header(skb);
1760 	iph = ip_hdr(skb);
1761 
1762 	iph->version	=	4;
1763 	iph->tos	=	old_iph->tos;
1764 	iph->ttl	=	old_iph->ttl;
1765 	iph->frag_off	=	0;
1766 	iph->daddr	=	daddr;
1767 	iph->saddr	=	saddr;
1768 	iph->protocol	=	IPPROTO_IPIP;
1769 	iph->ihl	=	5;
1770 	iph->tot_len	=	htons(skb->len);
1771 	ip_select_ident(net, skb, NULL);
1772 	ip_send_check(iph);
1773 
1774 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1775 	nf_reset(skb);
1776 }
1777 
1778 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1779 				      struct sk_buff *skb)
1780 {
1781 	struct ip_options *opt = &(IPCB(skb)->opt);
1782 
1783 	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1784 	IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1785 
1786 	if (unlikely(opt->optlen))
1787 		ip_forward_options(skb);
1788 
1789 	return dst_output(net, sk, skb);
1790 }
1791 
1792 #ifdef CONFIG_NET_SWITCHDEV
1793 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1794 				   int in_vifi, int out_vifi)
1795 {
1796 	struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1797 	struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1798 
1799 	if (!skb->offload_mr_fwd_mark)
1800 		return false;
1801 	if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1802 		return false;
1803 	return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1804 					&in_vif->dev_parent_id);
1805 }
1806 #else
1807 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1808 				   int in_vifi, int out_vifi)
1809 {
1810 	return false;
1811 }
1812 #endif
1813 
1814 /* Processing handlers for ipmr_forward */
1815 
1816 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1817 			    int in_vifi, struct sk_buff *skb,
1818 			    struct mfc_cache *c, int vifi)
1819 {
1820 	const struct iphdr *iph = ip_hdr(skb);
1821 	struct vif_device *vif = &mrt->vif_table[vifi];
1822 	struct net_device *dev;
1823 	struct rtable *rt;
1824 	struct flowi4 fl4;
1825 	int    encap = 0;
1826 
1827 	if (!vif->dev)
1828 		goto out_free;
1829 
1830 	if (vif->flags & VIFF_REGISTER) {
1831 		vif->pkt_out++;
1832 		vif->bytes_out += skb->len;
1833 		vif->dev->stats.tx_bytes += skb->len;
1834 		vif->dev->stats.tx_packets++;
1835 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1836 		goto out_free;
1837 	}
1838 
1839 	if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1840 		goto out_free;
1841 
1842 	if (vif->flags & VIFF_TUNNEL) {
1843 		rt = ip_route_output_ports(net, &fl4, NULL,
1844 					   vif->remote, vif->local,
1845 					   0, 0,
1846 					   IPPROTO_IPIP,
1847 					   RT_TOS(iph->tos), vif->link);
1848 		if (IS_ERR(rt))
1849 			goto out_free;
1850 		encap = sizeof(struct iphdr);
1851 	} else {
1852 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1853 					   0, 0,
1854 					   IPPROTO_IPIP,
1855 					   RT_TOS(iph->tos), vif->link);
1856 		if (IS_ERR(rt))
1857 			goto out_free;
1858 	}
1859 
1860 	dev = rt->dst.dev;
1861 
1862 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1863 		/* Do not fragment multicasts. Alas, IPv4 does not
1864 		 * allow to send ICMP, so that packets will disappear
1865 		 * to blackhole.
1866 		 */
1867 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1868 		ip_rt_put(rt);
1869 		goto out_free;
1870 	}
1871 
1872 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1873 
1874 	if (skb_cow(skb, encap)) {
1875 		ip_rt_put(rt);
1876 		goto out_free;
1877 	}
1878 
1879 	vif->pkt_out++;
1880 	vif->bytes_out += skb->len;
1881 
1882 	skb_dst_drop(skb);
1883 	skb_dst_set(skb, &rt->dst);
1884 	ip_decrease_ttl(ip_hdr(skb));
1885 
1886 	/* FIXME: forward and output firewalls used to be called here.
1887 	 * What do we do with netfilter? -- RR
1888 	 */
1889 	if (vif->flags & VIFF_TUNNEL) {
1890 		ip_encap(net, skb, vif->local, vif->remote);
1891 		/* FIXME: extra output firewall step used to be here. --RR */
1892 		vif->dev->stats.tx_packets++;
1893 		vif->dev->stats.tx_bytes += skb->len;
1894 	}
1895 
1896 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1897 
1898 	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1899 	 * not only before forwarding, but after forwarding on all output
1900 	 * interfaces. It is clear, if mrouter runs a multicasting
1901 	 * program, it should receive packets not depending to what interface
1902 	 * program is joined.
1903 	 * If we will not make it, the program will have to join on all
1904 	 * interfaces. On the other hand, multihoming host (or router, but
1905 	 * not mrouter) cannot join to more than one interface - it will
1906 	 * result in receiving multiple packets.
1907 	 */
1908 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1909 		net, NULL, skb, skb->dev, dev,
1910 		ipmr_forward_finish);
1911 	return;
1912 
1913 out_free:
1914 	kfree_skb(skb);
1915 }
1916 
1917 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1918 {
1919 	int ct;
1920 
1921 	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1922 		if (mrt->vif_table[ct].dev == dev)
1923 			break;
1924 	}
1925 	return ct;
1926 }
1927 
1928 /* "local" means that we should preserve one skb (for local delivery) */
1929 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1930 			  struct net_device *dev, struct sk_buff *skb,
1931 			  struct mfc_cache *c, int local)
1932 {
1933 	int true_vifi = ipmr_find_vif(mrt, dev);
1934 	int psend = -1;
1935 	int vif, ct;
1936 
1937 	vif = c->_c.mfc_parent;
1938 	c->_c.mfc_un.res.pkt++;
1939 	c->_c.mfc_un.res.bytes += skb->len;
1940 	c->_c.mfc_un.res.lastuse = jiffies;
1941 
1942 	if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1943 		struct mfc_cache *cache_proxy;
1944 
1945 		/* For an (*,G) entry, we only check that the incomming
1946 		 * interface is part of the static tree.
1947 		 */
1948 		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1949 		if (cache_proxy &&
1950 		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1951 			goto forward;
1952 	}
1953 
1954 	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1955 	if (mrt->vif_table[vif].dev != dev) {
1956 		if (rt_is_output_route(skb_rtable(skb))) {
1957 			/* It is our own packet, looped back.
1958 			 * Very complicated situation...
1959 			 *
1960 			 * The best workaround until routing daemons will be
1961 			 * fixed is not to redistribute packet, if it was
1962 			 * send through wrong interface. It means, that
1963 			 * multicast applications WILL NOT work for
1964 			 * (S,G), which have default multicast route pointing
1965 			 * to wrong oif. In any case, it is not a good
1966 			 * idea to use multicasting applications on router.
1967 			 */
1968 			goto dont_forward;
1969 		}
1970 
1971 		c->_c.mfc_un.res.wrong_if++;
1972 
1973 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1974 		    /* pimsm uses asserts, when switching from RPT to SPT,
1975 		     * so that we cannot check that packet arrived on an oif.
1976 		     * It is bad, but otherwise we would need to move pretty
1977 		     * large chunk of pimd to kernel. Ough... --ANK
1978 		     */
1979 		    (mrt->mroute_do_pim ||
1980 		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
1981 		    time_after(jiffies,
1982 			       c->_c.mfc_un.res.last_assert +
1983 			       MFC_ASSERT_THRESH)) {
1984 			c->_c.mfc_un.res.last_assert = jiffies;
1985 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1986 		}
1987 		goto dont_forward;
1988 	}
1989 
1990 forward:
1991 	mrt->vif_table[vif].pkt_in++;
1992 	mrt->vif_table[vif].bytes_in += skb->len;
1993 
1994 	/* Forward the frame */
1995 	if (c->mfc_origin == htonl(INADDR_ANY) &&
1996 	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
1997 		if (true_vifi >= 0 &&
1998 		    true_vifi != c->_c.mfc_parent &&
1999 		    ip_hdr(skb)->ttl >
2000 				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2001 			/* It's an (*,*) entry and the packet is not coming from
2002 			 * the upstream: forward the packet to the upstream
2003 			 * only.
2004 			 */
2005 			psend = c->_c.mfc_parent;
2006 			goto last_forward;
2007 		}
2008 		goto dont_forward;
2009 	}
2010 	for (ct = c->_c.mfc_un.res.maxvif - 1;
2011 	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2012 		/* For (*,G) entry, don't forward to the incoming interface */
2013 		if ((c->mfc_origin != htonl(INADDR_ANY) ||
2014 		     ct != true_vifi) &&
2015 		    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2016 			if (psend != -1) {
2017 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2018 
2019 				if (skb2)
2020 					ipmr_queue_xmit(net, mrt, true_vifi,
2021 							skb2, c, psend);
2022 			}
2023 			psend = ct;
2024 		}
2025 	}
2026 last_forward:
2027 	if (psend != -1) {
2028 		if (local) {
2029 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2030 
2031 			if (skb2)
2032 				ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2033 						c, psend);
2034 		} else {
2035 			ipmr_queue_xmit(net, mrt, true_vifi, skb, c, psend);
2036 			return;
2037 		}
2038 	}
2039 
2040 dont_forward:
2041 	if (!local)
2042 		kfree_skb(skb);
2043 }
2044 
2045 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2046 {
2047 	struct rtable *rt = skb_rtable(skb);
2048 	struct iphdr *iph = ip_hdr(skb);
2049 	struct flowi4 fl4 = {
2050 		.daddr = iph->daddr,
2051 		.saddr = iph->saddr,
2052 		.flowi4_tos = RT_TOS(iph->tos),
2053 		.flowi4_oif = (rt_is_output_route(rt) ?
2054 			       skb->dev->ifindex : 0),
2055 		.flowi4_iif = (rt_is_output_route(rt) ?
2056 			       LOOPBACK_IFINDEX :
2057 			       skb->dev->ifindex),
2058 		.flowi4_mark = skb->mark,
2059 	};
2060 	struct mr_table *mrt;
2061 	int err;
2062 
2063 	err = ipmr_fib_lookup(net, &fl4, &mrt);
2064 	if (err)
2065 		return ERR_PTR(err);
2066 	return mrt;
2067 }
2068 
2069 /* Multicast packets for forwarding arrive here
2070  * Called with rcu_read_lock();
2071  */
2072 int ip_mr_input(struct sk_buff *skb)
2073 {
2074 	struct mfc_cache *cache;
2075 	struct net *net = dev_net(skb->dev);
2076 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2077 	struct mr_table *mrt;
2078 	struct net_device *dev;
2079 
2080 	/* skb->dev passed in is the loX master dev for vrfs.
2081 	 * As there are no vifs associated with loopback devices,
2082 	 * get the proper interface that does have a vif associated with it.
2083 	 */
2084 	dev = skb->dev;
2085 	if (netif_is_l3_master(skb->dev)) {
2086 		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2087 		if (!dev) {
2088 			kfree_skb(skb);
2089 			return -ENODEV;
2090 		}
2091 	}
2092 
2093 	/* Packet is looped back after forward, it should not be
2094 	 * forwarded second time, but still can be delivered locally.
2095 	 */
2096 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2097 		goto dont_forward;
2098 
2099 	mrt = ipmr_rt_fib_lookup(net, skb);
2100 	if (IS_ERR(mrt)) {
2101 		kfree_skb(skb);
2102 		return PTR_ERR(mrt);
2103 	}
2104 	if (!local) {
2105 		if (IPCB(skb)->opt.router_alert) {
2106 			if (ip_call_ra_chain(skb))
2107 				return 0;
2108 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2109 			/* IGMPv1 (and broken IGMPv2 implementations sort of
2110 			 * Cisco IOS <= 11.2(8)) do not put router alert
2111 			 * option to IGMP packets destined to routable
2112 			 * groups. It is very bad, because it means
2113 			 * that we can forward NO IGMP messages.
2114 			 */
2115 			struct sock *mroute_sk;
2116 
2117 			mroute_sk = rcu_dereference(mrt->mroute_sk);
2118 			if (mroute_sk) {
2119 				nf_reset(skb);
2120 				raw_rcv(mroute_sk, skb);
2121 				return 0;
2122 			}
2123 		    }
2124 	}
2125 
2126 	/* already under rcu_read_lock() */
2127 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2128 	if (!cache) {
2129 		int vif = ipmr_find_vif(mrt, dev);
2130 
2131 		if (vif >= 0)
2132 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2133 						    vif);
2134 	}
2135 
2136 	/* No usable cache entry */
2137 	if (!cache) {
2138 		int vif;
2139 
2140 		if (local) {
2141 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2142 			ip_local_deliver(skb);
2143 			if (!skb2)
2144 				return -ENOBUFS;
2145 			skb = skb2;
2146 		}
2147 
2148 		read_lock(&mrt_lock);
2149 		vif = ipmr_find_vif(mrt, dev);
2150 		if (vif >= 0) {
2151 			int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
2152 			read_unlock(&mrt_lock);
2153 
2154 			return err2;
2155 		}
2156 		read_unlock(&mrt_lock);
2157 		kfree_skb(skb);
2158 		return -ENODEV;
2159 	}
2160 
2161 	read_lock(&mrt_lock);
2162 	ip_mr_forward(net, mrt, dev, skb, cache, local);
2163 	read_unlock(&mrt_lock);
2164 
2165 	if (local)
2166 		return ip_local_deliver(skb);
2167 
2168 	return 0;
2169 
2170 dont_forward:
2171 	if (local)
2172 		return ip_local_deliver(skb);
2173 	kfree_skb(skb);
2174 	return 0;
2175 }
2176 
2177 #ifdef CONFIG_IP_PIMSM_V1
2178 /* Handle IGMP messages of PIMv1 */
2179 int pim_rcv_v1(struct sk_buff *skb)
2180 {
2181 	struct igmphdr *pim;
2182 	struct net *net = dev_net(skb->dev);
2183 	struct mr_table *mrt;
2184 
2185 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2186 		goto drop;
2187 
2188 	pim = igmp_hdr(skb);
2189 
2190 	mrt = ipmr_rt_fib_lookup(net, skb);
2191 	if (IS_ERR(mrt))
2192 		goto drop;
2193 	if (!mrt->mroute_do_pim ||
2194 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2195 		goto drop;
2196 
2197 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2198 drop:
2199 		kfree_skb(skb);
2200 	}
2201 	return 0;
2202 }
2203 #endif
2204 
2205 #ifdef CONFIG_IP_PIMSM_V2
2206 static int pim_rcv(struct sk_buff *skb)
2207 {
2208 	struct pimreghdr *pim;
2209 	struct net *net = dev_net(skb->dev);
2210 	struct mr_table *mrt;
2211 
2212 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2213 		goto drop;
2214 
2215 	pim = (struct pimreghdr *)skb_transport_header(skb);
2216 	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2217 	    (pim->flags & PIM_NULL_REGISTER) ||
2218 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2219 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2220 		goto drop;
2221 
2222 	mrt = ipmr_rt_fib_lookup(net, skb);
2223 	if (IS_ERR(mrt))
2224 		goto drop;
2225 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2226 drop:
2227 		kfree_skb(skb);
2228 	}
2229 	return 0;
2230 }
2231 #endif
2232 
2233 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2234 		   __be32 saddr, __be32 daddr,
2235 		   struct rtmsg *rtm, u32 portid)
2236 {
2237 	struct mfc_cache *cache;
2238 	struct mr_table *mrt;
2239 	int err;
2240 
2241 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2242 	if (!mrt)
2243 		return -ENOENT;
2244 
2245 	rcu_read_lock();
2246 	cache = ipmr_cache_find(mrt, saddr, daddr);
2247 	if (!cache && skb->dev) {
2248 		int vif = ipmr_find_vif(mrt, skb->dev);
2249 
2250 		if (vif >= 0)
2251 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2252 	}
2253 	if (!cache) {
2254 		struct sk_buff *skb2;
2255 		struct iphdr *iph;
2256 		struct net_device *dev;
2257 		int vif = -1;
2258 
2259 		dev = skb->dev;
2260 		read_lock(&mrt_lock);
2261 		if (dev)
2262 			vif = ipmr_find_vif(mrt, dev);
2263 		if (vif < 0) {
2264 			read_unlock(&mrt_lock);
2265 			rcu_read_unlock();
2266 			return -ENODEV;
2267 		}
2268 		skb2 = skb_clone(skb, GFP_ATOMIC);
2269 		if (!skb2) {
2270 			read_unlock(&mrt_lock);
2271 			rcu_read_unlock();
2272 			return -ENOMEM;
2273 		}
2274 
2275 		NETLINK_CB(skb2).portid = portid;
2276 		skb_push(skb2, sizeof(struct iphdr));
2277 		skb_reset_network_header(skb2);
2278 		iph = ip_hdr(skb2);
2279 		iph->ihl = sizeof(struct iphdr) >> 2;
2280 		iph->saddr = saddr;
2281 		iph->daddr = daddr;
2282 		iph->version = 0;
2283 		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2284 		read_unlock(&mrt_lock);
2285 		rcu_read_unlock();
2286 		return err;
2287 	}
2288 
2289 	read_lock(&mrt_lock);
2290 	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2291 	read_unlock(&mrt_lock);
2292 	rcu_read_unlock();
2293 	return err;
2294 }
2295 
2296 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2297 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2298 			    int flags)
2299 {
2300 	struct nlmsghdr *nlh;
2301 	struct rtmsg *rtm;
2302 	int err;
2303 
2304 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2305 	if (!nlh)
2306 		return -EMSGSIZE;
2307 
2308 	rtm = nlmsg_data(nlh);
2309 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2310 	rtm->rtm_dst_len  = 32;
2311 	rtm->rtm_src_len  = 32;
2312 	rtm->rtm_tos      = 0;
2313 	rtm->rtm_table    = mrt->id;
2314 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2315 		goto nla_put_failure;
2316 	rtm->rtm_type     = RTN_MULTICAST;
2317 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2318 	if (c->_c.mfc_flags & MFC_STATIC)
2319 		rtm->rtm_protocol = RTPROT_STATIC;
2320 	else
2321 		rtm->rtm_protocol = RTPROT_MROUTED;
2322 	rtm->rtm_flags    = 0;
2323 
2324 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2325 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2326 		goto nla_put_failure;
2327 	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2328 	/* do not break the dump if cache is unresolved */
2329 	if (err < 0 && err != -ENOENT)
2330 		goto nla_put_failure;
2331 
2332 	nlmsg_end(skb, nlh);
2333 	return 0;
2334 
2335 nla_put_failure:
2336 	nlmsg_cancel(skb, nlh);
2337 	return -EMSGSIZE;
2338 }
2339 
2340 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2341 			     u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2342 			     int flags)
2343 {
2344 	return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2345 				cmd, flags);
2346 }
2347 
2348 static size_t mroute_msgsize(bool unresolved, int maxvif)
2349 {
2350 	size_t len =
2351 		NLMSG_ALIGN(sizeof(struct rtmsg))
2352 		+ nla_total_size(4)	/* RTA_TABLE */
2353 		+ nla_total_size(4)	/* RTA_SRC */
2354 		+ nla_total_size(4)	/* RTA_DST */
2355 		;
2356 
2357 	if (!unresolved)
2358 		len = len
2359 		      + nla_total_size(4)	/* RTA_IIF */
2360 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2361 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2362 						/* RTA_MFC_STATS */
2363 		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2364 		;
2365 
2366 	return len;
2367 }
2368 
2369 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2370 				 int cmd)
2371 {
2372 	struct net *net = read_pnet(&mrt->net);
2373 	struct sk_buff *skb;
2374 	int err = -ENOBUFS;
2375 
2376 	skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2377 				       mrt->maxvif),
2378 			GFP_ATOMIC);
2379 	if (!skb)
2380 		goto errout;
2381 
2382 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2383 	if (err < 0)
2384 		goto errout;
2385 
2386 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2387 	return;
2388 
2389 errout:
2390 	kfree_skb(skb);
2391 	if (err < 0)
2392 		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2393 }
2394 
2395 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2396 {
2397 	size_t len =
2398 		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2399 		+ nla_total_size(1)	/* IPMRA_CREPORT_MSGTYPE */
2400 		+ nla_total_size(4)	/* IPMRA_CREPORT_VIF_ID */
2401 		+ nla_total_size(4)	/* IPMRA_CREPORT_SRC_ADDR */
2402 		+ nla_total_size(4)	/* IPMRA_CREPORT_DST_ADDR */
2403 					/* IPMRA_CREPORT_PKT */
2404 		+ nla_total_size(payloadlen)
2405 		;
2406 
2407 	return len;
2408 }
2409 
2410 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
2411 {
2412 	struct net *net = read_pnet(&mrt->net);
2413 	struct nlmsghdr *nlh;
2414 	struct rtgenmsg *rtgenm;
2415 	struct igmpmsg *msg;
2416 	struct sk_buff *skb;
2417 	struct nlattr *nla;
2418 	int payloadlen;
2419 
2420 	payloadlen = pkt->len - sizeof(struct igmpmsg);
2421 	msg = (struct igmpmsg *)skb_network_header(pkt);
2422 
2423 	skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2424 	if (!skb)
2425 		goto errout;
2426 
2427 	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2428 			sizeof(struct rtgenmsg), 0);
2429 	if (!nlh)
2430 		goto errout;
2431 	rtgenm = nlmsg_data(nlh);
2432 	rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2433 	if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2434 	    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) ||
2435 	    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2436 			    msg->im_src.s_addr) ||
2437 	    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2438 			    msg->im_dst.s_addr))
2439 		goto nla_put_failure;
2440 
2441 	nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2442 	if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2443 				  nla_data(nla), payloadlen))
2444 		goto nla_put_failure;
2445 
2446 	nlmsg_end(skb, nlh);
2447 
2448 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2449 	return;
2450 
2451 nla_put_failure:
2452 	nlmsg_cancel(skb, nlh);
2453 errout:
2454 	kfree_skb(skb);
2455 	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2456 }
2457 
2458 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2459 			     struct netlink_ext_ack *extack)
2460 {
2461 	struct net *net = sock_net(in_skb->sk);
2462 	struct nlattr *tb[RTA_MAX + 1];
2463 	struct sk_buff *skb = NULL;
2464 	struct mfc_cache *cache;
2465 	struct mr_table *mrt;
2466 	struct rtmsg *rtm;
2467 	__be32 src, grp;
2468 	u32 tableid;
2469 	int err;
2470 
2471 	err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX,
2472 			  rtm_ipv4_policy, extack);
2473 	if (err < 0)
2474 		goto errout;
2475 
2476 	rtm = nlmsg_data(nlh);
2477 
2478 	src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2479 	grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2480 	tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2481 
2482 	mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2483 	if (!mrt) {
2484 		err = -ENOENT;
2485 		goto errout_free;
2486 	}
2487 
2488 	/* entries are added/deleted only under RTNL */
2489 	rcu_read_lock();
2490 	cache = ipmr_cache_find(mrt, src, grp);
2491 	rcu_read_unlock();
2492 	if (!cache) {
2493 		err = -ENOENT;
2494 		goto errout_free;
2495 	}
2496 
2497 	skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2498 	if (!skb) {
2499 		err = -ENOBUFS;
2500 		goto errout_free;
2501 	}
2502 
2503 	err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2504 			       nlh->nlmsg_seq, cache,
2505 			       RTM_NEWROUTE, 0);
2506 	if (err < 0)
2507 		goto errout_free;
2508 
2509 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2510 
2511 errout:
2512 	return err;
2513 
2514 errout_free:
2515 	kfree_skb(skb);
2516 	goto errout;
2517 }
2518 
2519 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2520 {
2521 	return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2522 				_ipmr_fill_mroute, &mfc_unres_lock);
2523 }
2524 
2525 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2526 	[RTA_SRC]	= { .type = NLA_U32 },
2527 	[RTA_DST]	= { .type = NLA_U32 },
2528 	[RTA_IIF]	= { .type = NLA_U32 },
2529 	[RTA_TABLE]	= { .type = NLA_U32 },
2530 	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2531 };
2532 
2533 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2534 {
2535 	switch (rtm_protocol) {
2536 	case RTPROT_STATIC:
2537 	case RTPROT_MROUTED:
2538 		return true;
2539 	}
2540 	return false;
2541 }
2542 
2543 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2544 {
2545 	struct rtnexthop *rtnh = nla_data(nla);
2546 	int remaining = nla_len(nla), vifi = 0;
2547 
2548 	while (rtnh_ok(rtnh, remaining)) {
2549 		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2550 		if (++vifi == MAXVIFS)
2551 			break;
2552 		rtnh = rtnh_next(rtnh, &remaining);
2553 	}
2554 
2555 	return remaining > 0 ? -EINVAL : vifi;
2556 }
2557 
2558 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2559 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2560 			    struct mfcctl *mfcc, int *mrtsock,
2561 			    struct mr_table **mrtret,
2562 			    struct netlink_ext_ack *extack)
2563 {
2564 	struct net_device *dev = NULL;
2565 	u32 tblid = RT_TABLE_DEFAULT;
2566 	struct mr_table *mrt;
2567 	struct nlattr *attr;
2568 	struct rtmsg *rtm;
2569 	int ret, rem;
2570 
2571 	ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy,
2572 			     extack);
2573 	if (ret < 0)
2574 		goto out;
2575 	rtm = nlmsg_data(nlh);
2576 
2577 	ret = -EINVAL;
2578 	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2579 	    rtm->rtm_type != RTN_MULTICAST ||
2580 	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2581 	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2582 		goto out;
2583 
2584 	memset(mfcc, 0, sizeof(*mfcc));
2585 	mfcc->mfcc_parent = -1;
2586 	ret = 0;
2587 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2588 		switch (nla_type(attr)) {
2589 		case RTA_SRC:
2590 			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2591 			break;
2592 		case RTA_DST:
2593 			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2594 			break;
2595 		case RTA_IIF:
2596 			dev = __dev_get_by_index(net, nla_get_u32(attr));
2597 			if (!dev) {
2598 				ret = -ENODEV;
2599 				goto out;
2600 			}
2601 			break;
2602 		case RTA_MULTIPATH:
2603 			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2604 				ret = -EINVAL;
2605 				goto out;
2606 			}
2607 			break;
2608 		case RTA_PREFSRC:
2609 			ret = 1;
2610 			break;
2611 		case RTA_TABLE:
2612 			tblid = nla_get_u32(attr);
2613 			break;
2614 		}
2615 	}
2616 	mrt = ipmr_get_table(net, tblid);
2617 	if (!mrt) {
2618 		ret = -ENOENT;
2619 		goto out;
2620 	}
2621 	*mrtret = mrt;
2622 	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2623 	if (dev)
2624 		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2625 
2626 out:
2627 	return ret;
2628 }
2629 
2630 /* takes care of both newroute and delroute */
2631 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2632 			  struct netlink_ext_ack *extack)
2633 {
2634 	struct net *net = sock_net(skb->sk);
2635 	int ret, mrtsock, parent;
2636 	struct mr_table *tbl;
2637 	struct mfcctl mfcc;
2638 
2639 	mrtsock = 0;
2640 	tbl = NULL;
2641 	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2642 	if (ret < 0)
2643 		return ret;
2644 
2645 	parent = ret ? mfcc.mfcc_parent : -1;
2646 	if (nlh->nlmsg_type == RTM_NEWROUTE)
2647 		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2648 	else
2649 		return ipmr_mfc_delete(tbl, &mfcc, parent);
2650 }
2651 
2652 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2653 {
2654 	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2655 
2656 	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2657 	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2658 	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2659 			mrt->mroute_reg_vif_num) ||
2660 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2661 		       mrt->mroute_do_assert) ||
2662 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim))
2663 		return false;
2664 
2665 	return true;
2666 }
2667 
2668 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2669 {
2670 	struct nlattr *vif_nest;
2671 	struct vif_device *vif;
2672 
2673 	/* if the VIF doesn't exist just continue */
2674 	if (!VIF_EXISTS(mrt, vifid))
2675 		return true;
2676 
2677 	vif = &mrt->vif_table[vifid];
2678 	vif_nest = nla_nest_start(skb, IPMRA_VIF);
2679 	if (!vif_nest)
2680 		return false;
2681 	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
2682 	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2683 	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2684 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2685 			      IPMRA_VIFA_PAD) ||
2686 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2687 			      IPMRA_VIFA_PAD) ||
2688 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2689 			      IPMRA_VIFA_PAD) ||
2690 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2691 			      IPMRA_VIFA_PAD) ||
2692 	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2693 	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2694 		nla_nest_cancel(skb, vif_nest);
2695 		return false;
2696 	}
2697 	nla_nest_end(skb, vif_nest);
2698 
2699 	return true;
2700 }
2701 
2702 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2703 {
2704 	struct net *net = sock_net(skb->sk);
2705 	struct nlmsghdr *nlh = NULL;
2706 	unsigned int t = 0, s_t;
2707 	unsigned int e = 0, s_e;
2708 	struct mr_table *mrt;
2709 
2710 	s_t = cb->args[0];
2711 	s_e = cb->args[1];
2712 
2713 	ipmr_for_each_table(mrt, net) {
2714 		struct nlattr *vifs, *af;
2715 		struct ifinfomsg *hdr;
2716 		u32 i;
2717 
2718 		if (t < s_t)
2719 			goto skip_table;
2720 		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2721 				cb->nlh->nlmsg_seq, RTM_NEWLINK,
2722 				sizeof(*hdr), NLM_F_MULTI);
2723 		if (!nlh)
2724 			break;
2725 
2726 		hdr = nlmsg_data(nlh);
2727 		memset(hdr, 0, sizeof(*hdr));
2728 		hdr->ifi_family = RTNL_FAMILY_IPMR;
2729 
2730 		af = nla_nest_start(skb, IFLA_AF_SPEC);
2731 		if (!af) {
2732 			nlmsg_cancel(skb, nlh);
2733 			goto out;
2734 		}
2735 
2736 		if (!ipmr_fill_table(mrt, skb)) {
2737 			nlmsg_cancel(skb, nlh);
2738 			goto out;
2739 		}
2740 
2741 		vifs = nla_nest_start(skb, IPMRA_TABLE_VIFS);
2742 		if (!vifs) {
2743 			nla_nest_end(skb, af);
2744 			nlmsg_end(skb, nlh);
2745 			goto out;
2746 		}
2747 		for (i = 0; i < mrt->maxvif; i++) {
2748 			if (e < s_e)
2749 				goto skip_entry;
2750 			if (!ipmr_fill_vif(mrt, i, skb)) {
2751 				nla_nest_end(skb, vifs);
2752 				nla_nest_end(skb, af);
2753 				nlmsg_end(skb, nlh);
2754 				goto out;
2755 			}
2756 skip_entry:
2757 			e++;
2758 		}
2759 		s_e = 0;
2760 		e = 0;
2761 		nla_nest_end(skb, vifs);
2762 		nla_nest_end(skb, af);
2763 		nlmsg_end(skb, nlh);
2764 skip_table:
2765 		t++;
2766 	}
2767 
2768 out:
2769 	cb->args[1] = e;
2770 	cb->args[0] = t;
2771 
2772 	return skb->len;
2773 }
2774 
2775 #ifdef CONFIG_PROC_FS
2776 /* The /proc interfaces to multicast routing :
2777  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2778  */
2779 
2780 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2781 	__acquires(mrt_lock)
2782 {
2783 	struct mr_vif_iter *iter = seq->private;
2784 	struct net *net = seq_file_net(seq);
2785 	struct mr_table *mrt;
2786 
2787 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2788 	if (!mrt)
2789 		return ERR_PTR(-ENOENT);
2790 
2791 	iter->mrt = mrt;
2792 
2793 	read_lock(&mrt_lock);
2794 	return mr_vif_seq_start(seq, pos);
2795 }
2796 
2797 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2798 	__releases(mrt_lock)
2799 {
2800 	read_unlock(&mrt_lock);
2801 }
2802 
2803 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2804 {
2805 	struct mr_vif_iter *iter = seq->private;
2806 	struct mr_table *mrt = iter->mrt;
2807 
2808 	if (v == SEQ_START_TOKEN) {
2809 		seq_puts(seq,
2810 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2811 	} else {
2812 		const struct vif_device *vif = v;
2813 		const char *name =  vif->dev ?
2814 				    vif->dev->name : "none";
2815 
2816 		seq_printf(seq,
2817 			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2818 			   vif - mrt->vif_table,
2819 			   name, vif->bytes_in, vif->pkt_in,
2820 			   vif->bytes_out, vif->pkt_out,
2821 			   vif->flags, vif->local, vif->remote);
2822 	}
2823 	return 0;
2824 }
2825 
2826 static const struct seq_operations ipmr_vif_seq_ops = {
2827 	.start = ipmr_vif_seq_start,
2828 	.next  = mr_vif_seq_next,
2829 	.stop  = ipmr_vif_seq_stop,
2830 	.show  = ipmr_vif_seq_show,
2831 };
2832 
2833 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2834 {
2835 	struct net *net = seq_file_net(seq);
2836 	struct mr_table *mrt;
2837 
2838 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2839 	if (!mrt)
2840 		return ERR_PTR(-ENOENT);
2841 
2842 	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2843 }
2844 
2845 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2846 {
2847 	int n;
2848 
2849 	if (v == SEQ_START_TOKEN) {
2850 		seq_puts(seq,
2851 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2852 	} else {
2853 		const struct mfc_cache *mfc = v;
2854 		const struct mr_mfc_iter *it = seq->private;
2855 		const struct mr_table *mrt = it->mrt;
2856 
2857 		seq_printf(seq, "%08X %08X %-3hd",
2858 			   (__force u32) mfc->mfc_mcastgrp,
2859 			   (__force u32) mfc->mfc_origin,
2860 			   mfc->_c.mfc_parent);
2861 
2862 		if (it->cache != &mrt->mfc_unres_queue) {
2863 			seq_printf(seq, " %8lu %8lu %8lu",
2864 				   mfc->_c.mfc_un.res.pkt,
2865 				   mfc->_c.mfc_un.res.bytes,
2866 				   mfc->_c.mfc_un.res.wrong_if);
2867 			for (n = mfc->_c.mfc_un.res.minvif;
2868 			     n < mfc->_c.mfc_un.res.maxvif; n++) {
2869 				if (VIF_EXISTS(mrt, n) &&
2870 				    mfc->_c.mfc_un.res.ttls[n] < 255)
2871 					seq_printf(seq,
2872 					   " %2d:%-3d",
2873 					   n, mfc->_c.mfc_un.res.ttls[n]);
2874 			}
2875 		} else {
2876 			/* unresolved mfc_caches don't contain
2877 			 * pkt, bytes and wrong_if values
2878 			 */
2879 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2880 		}
2881 		seq_putc(seq, '\n');
2882 	}
2883 	return 0;
2884 }
2885 
2886 static const struct seq_operations ipmr_mfc_seq_ops = {
2887 	.start = ipmr_mfc_seq_start,
2888 	.next  = mr_mfc_seq_next,
2889 	.stop  = mr_mfc_seq_stop,
2890 	.show  = ipmr_mfc_seq_show,
2891 };
2892 #endif
2893 
2894 #ifdef CONFIG_IP_PIMSM_V2
2895 static const struct net_protocol pim_protocol = {
2896 	.handler	=	pim_rcv,
2897 	.netns_ok	=	1,
2898 };
2899 #endif
2900 
2901 static unsigned int ipmr_seq_read(struct net *net)
2902 {
2903 	ASSERT_RTNL();
2904 
2905 	return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
2906 }
2907 
2908 static int ipmr_dump(struct net *net, struct notifier_block *nb)
2909 {
2910 	return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
2911 		       ipmr_mr_table_iter, &mrt_lock);
2912 }
2913 
2914 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
2915 	.family		= RTNL_FAMILY_IPMR,
2916 	.fib_seq_read	= ipmr_seq_read,
2917 	.fib_dump	= ipmr_dump,
2918 	.owner		= THIS_MODULE,
2919 };
2920 
2921 static int __net_init ipmr_notifier_init(struct net *net)
2922 {
2923 	struct fib_notifier_ops *ops;
2924 
2925 	net->ipv4.ipmr_seq = 0;
2926 
2927 	ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
2928 	if (IS_ERR(ops))
2929 		return PTR_ERR(ops);
2930 	net->ipv4.ipmr_notifier_ops = ops;
2931 
2932 	return 0;
2933 }
2934 
2935 static void __net_exit ipmr_notifier_exit(struct net *net)
2936 {
2937 	fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
2938 	net->ipv4.ipmr_notifier_ops = NULL;
2939 }
2940 
2941 /* Setup for IP multicast routing */
2942 static int __net_init ipmr_net_init(struct net *net)
2943 {
2944 	int err;
2945 
2946 	err = ipmr_notifier_init(net);
2947 	if (err)
2948 		goto ipmr_notifier_fail;
2949 
2950 	err = ipmr_rules_init(net);
2951 	if (err < 0)
2952 		goto ipmr_rules_fail;
2953 
2954 #ifdef CONFIG_PROC_FS
2955 	err = -ENOMEM;
2956 	if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
2957 			sizeof(struct mr_vif_iter)))
2958 		goto proc_vif_fail;
2959 	if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
2960 			sizeof(struct mr_mfc_iter)))
2961 		goto proc_cache_fail;
2962 #endif
2963 	return 0;
2964 
2965 #ifdef CONFIG_PROC_FS
2966 proc_cache_fail:
2967 	remove_proc_entry("ip_mr_vif", net->proc_net);
2968 proc_vif_fail:
2969 	ipmr_rules_exit(net);
2970 #endif
2971 ipmr_rules_fail:
2972 	ipmr_notifier_exit(net);
2973 ipmr_notifier_fail:
2974 	return err;
2975 }
2976 
2977 static void __net_exit ipmr_net_exit(struct net *net)
2978 {
2979 #ifdef CONFIG_PROC_FS
2980 	remove_proc_entry("ip_mr_cache", net->proc_net);
2981 	remove_proc_entry("ip_mr_vif", net->proc_net);
2982 #endif
2983 	ipmr_notifier_exit(net);
2984 	ipmr_rules_exit(net);
2985 }
2986 
2987 static struct pernet_operations ipmr_net_ops = {
2988 	.init = ipmr_net_init,
2989 	.exit = ipmr_net_exit,
2990 };
2991 
2992 int __init ip_mr_init(void)
2993 {
2994 	int err;
2995 
2996 	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2997 				       sizeof(struct mfc_cache),
2998 				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2999 				       NULL);
3000 
3001 	err = register_pernet_subsys(&ipmr_net_ops);
3002 	if (err)
3003 		goto reg_pernet_fail;
3004 
3005 	err = register_netdevice_notifier(&ip_mr_notifier);
3006 	if (err)
3007 		goto reg_notif_fail;
3008 #ifdef CONFIG_IP_PIMSM_V2
3009 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3010 		pr_err("%s: can't add PIM protocol\n", __func__);
3011 		err = -EAGAIN;
3012 		goto add_proto_fail;
3013 	}
3014 #endif
3015 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3016 		      ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3017 	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3018 		      ipmr_rtm_route, NULL, 0);
3019 	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3020 		      ipmr_rtm_route, NULL, 0);
3021 
3022 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3023 		      NULL, ipmr_rtm_dumplink, 0);
3024 	return 0;
3025 
3026 #ifdef CONFIG_IP_PIMSM_V2
3027 add_proto_fail:
3028 	unregister_netdevice_notifier(&ip_mr_notifier);
3029 #endif
3030 reg_notif_fail:
3031 	unregister_pernet_subsys(&ipmr_net_ops);
3032 reg_pernet_fail:
3033 	kmem_cache_destroy(mrt_cachep);
3034 	return err;
3035 }
3036