1 /* 2 * IP multicast routing support for mrouted 3.6/3.8 3 * 4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 5 * Linux Consultancy and Custom Driver Development 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 * 12 * Fixes: 13 * Michael Chastain : Incorrect size of copying. 14 * Alan Cox : Added the cache manager code 15 * Alan Cox : Fixed the clone/copy bug and device race. 16 * Mike McLagan : Routing by source 17 * Malcolm Beattie : Buffer handling fixes. 18 * Alexey Kuznetsov : Double buffer free and other fixes. 19 * SVR Anand : Fixed several multicast bugs and problems. 20 * Alexey Kuznetsov : Status, optimisations and more. 21 * Brad Parker : Better behaviour on mrouted upcall 22 * overflow. 23 * Carlos Picoto : PIMv1 Support 24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 25 * Relax this requirement to work with older peers. 26 * 27 */ 28 29 #include <linux/uaccess.h> 30 #include <linux/types.h> 31 #include <linux/cache.h> 32 #include <linux/capability.h> 33 #include <linux/errno.h> 34 #include <linux/mm.h> 35 #include <linux/kernel.h> 36 #include <linux/fcntl.h> 37 #include <linux/stat.h> 38 #include <linux/socket.h> 39 #include <linux/in.h> 40 #include <linux/inet.h> 41 #include <linux/netdevice.h> 42 #include <linux/inetdevice.h> 43 #include <linux/igmp.h> 44 #include <linux/proc_fs.h> 45 #include <linux/seq_file.h> 46 #include <linux/mroute.h> 47 #include <linux/init.h> 48 #include <linux/if_ether.h> 49 #include <linux/slab.h> 50 #include <net/net_namespace.h> 51 #include <net/ip.h> 52 #include <net/protocol.h> 53 #include <linux/skbuff.h> 54 #include <net/route.h> 55 #include <net/icmp.h> 56 #include <net/udp.h> 57 #include <net/raw.h> 58 #include <linux/notifier.h> 59 #include <linux/if_arp.h> 60 #include <linux/netfilter_ipv4.h> 61 #include <linux/compat.h> 62 #include <linux/export.h> 63 #include <linux/rhashtable.h> 64 #include <net/ip_tunnels.h> 65 #include <net/checksum.h> 66 #include <net/netlink.h> 67 #include <net/fib_rules.h> 68 #include <linux/netconf.h> 69 #include <net/nexthop.h> 70 #include <net/switchdev.h> 71 72 struct ipmr_rule { 73 struct fib_rule common; 74 }; 75 76 struct ipmr_result { 77 struct mr_table *mrt; 78 }; 79 80 /* Big lock, protecting vif table, mrt cache and mroute socket state. 81 * Note that the changes are semaphored via rtnl_lock. 82 */ 83 84 static DEFINE_RWLOCK(mrt_lock); 85 86 /* Multicast router control variables */ 87 88 /* Special spinlock for queue of unresolved entries */ 89 static DEFINE_SPINLOCK(mfc_unres_lock); 90 91 /* We return to original Alan's scheme. Hash table of resolved 92 * entries is changed only in process context and protected 93 * with weak lock mrt_lock. Queue of unresolved entries is protected 94 * with strong spinlock mfc_unres_lock. 95 * 96 * In this case data path is free of exclusive locks at all. 97 */ 98 99 static struct kmem_cache *mrt_cachep __ro_after_init; 100 101 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 102 static void ipmr_free_table(struct mr_table *mrt); 103 104 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 105 struct net_device *dev, struct sk_buff *skb, 106 struct mfc_cache *cache, int local); 107 static int ipmr_cache_report(struct mr_table *mrt, 108 struct sk_buff *pkt, vifi_t vifi, int assert); 109 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 110 int cmd); 111 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt); 112 static void mroute_clean_tables(struct mr_table *mrt, bool all); 113 static void ipmr_expire_process(struct timer_list *t); 114 115 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 116 #define ipmr_for_each_table(mrt, net) \ 117 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list) 118 119 static struct mr_table *ipmr_mr_table_iter(struct net *net, 120 struct mr_table *mrt) 121 { 122 struct mr_table *ret; 123 124 if (!mrt) 125 ret = list_entry_rcu(net->ipv4.mr_tables.next, 126 struct mr_table, list); 127 else 128 ret = list_entry_rcu(mrt->list.next, 129 struct mr_table, list); 130 131 if (&ret->list == &net->ipv4.mr_tables) 132 return NULL; 133 return ret; 134 } 135 136 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 137 { 138 struct mr_table *mrt; 139 140 ipmr_for_each_table(mrt, net) { 141 if (mrt->id == id) 142 return mrt; 143 } 144 return NULL; 145 } 146 147 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 148 struct mr_table **mrt) 149 { 150 int err; 151 struct ipmr_result res; 152 struct fib_lookup_arg arg = { 153 .result = &res, 154 .flags = FIB_LOOKUP_NOREF, 155 }; 156 157 /* update flow if oif or iif point to device enslaved to l3mdev */ 158 l3mdev_update_flow(net, flowi4_to_flowi(flp4)); 159 160 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 161 flowi4_to_flowi(flp4), 0, &arg); 162 if (err < 0) 163 return err; 164 *mrt = res.mrt; 165 return 0; 166 } 167 168 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 169 int flags, struct fib_lookup_arg *arg) 170 { 171 struct ipmr_result *res = arg->result; 172 struct mr_table *mrt; 173 174 switch (rule->action) { 175 case FR_ACT_TO_TBL: 176 break; 177 case FR_ACT_UNREACHABLE: 178 return -ENETUNREACH; 179 case FR_ACT_PROHIBIT: 180 return -EACCES; 181 case FR_ACT_BLACKHOLE: 182 default: 183 return -EINVAL; 184 } 185 186 arg->table = fib_rule_get_table(rule, arg); 187 188 mrt = ipmr_get_table(rule->fr_net, arg->table); 189 if (!mrt) 190 return -EAGAIN; 191 res->mrt = mrt; 192 return 0; 193 } 194 195 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 196 { 197 return 1; 198 } 199 200 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = { 201 FRA_GENERIC_POLICY, 202 }; 203 204 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 205 struct fib_rule_hdr *frh, struct nlattr **tb, 206 struct netlink_ext_ack *extack) 207 { 208 return 0; 209 } 210 211 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 212 struct nlattr **tb) 213 { 214 return 1; 215 } 216 217 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 218 struct fib_rule_hdr *frh) 219 { 220 frh->dst_len = 0; 221 frh->src_len = 0; 222 frh->tos = 0; 223 return 0; 224 } 225 226 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { 227 .family = RTNL_FAMILY_IPMR, 228 .rule_size = sizeof(struct ipmr_rule), 229 .addr_size = sizeof(u32), 230 .action = ipmr_rule_action, 231 .match = ipmr_rule_match, 232 .configure = ipmr_rule_configure, 233 .compare = ipmr_rule_compare, 234 .fill = ipmr_rule_fill, 235 .nlgroup = RTNLGRP_IPV4_RULE, 236 .policy = ipmr_rule_policy, 237 .owner = THIS_MODULE, 238 }; 239 240 static int __net_init ipmr_rules_init(struct net *net) 241 { 242 struct fib_rules_ops *ops; 243 struct mr_table *mrt; 244 int err; 245 246 ops = fib_rules_register(&ipmr_rules_ops_template, net); 247 if (IS_ERR(ops)) 248 return PTR_ERR(ops); 249 250 INIT_LIST_HEAD(&net->ipv4.mr_tables); 251 252 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 253 if (IS_ERR(mrt)) { 254 err = PTR_ERR(mrt); 255 goto err1; 256 } 257 258 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 259 if (err < 0) 260 goto err2; 261 262 net->ipv4.mr_rules_ops = ops; 263 return 0; 264 265 err2: 266 ipmr_free_table(mrt); 267 err1: 268 fib_rules_unregister(ops); 269 return err; 270 } 271 272 static void __net_exit ipmr_rules_exit(struct net *net) 273 { 274 struct mr_table *mrt, *next; 275 276 rtnl_lock(); 277 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 278 list_del(&mrt->list); 279 ipmr_free_table(mrt); 280 } 281 fib_rules_unregister(net->ipv4.mr_rules_ops); 282 rtnl_unlock(); 283 } 284 285 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb) 286 { 287 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR); 288 } 289 290 static unsigned int ipmr_rules_seq_read(struct net *net) 291 { 292 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR); 293 } 294 295 bool ipmr_rule_default(const struct fib_rule *rule) 296 { 297 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT; 298 } 299 EXPORT_SYMBOL(ipmr_rule_default); 300 #else 301 #define ipmr_for_each_table(mrt, net) \ 302 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 303 304 static struct mr_table *ipmr_mr_table_iter(struct net *net, 305 struct mr_table *mrt) 306 { 307 if (!mrt) 308 return net->ipv4.mrt; 309 return NULL; 310 } 311 312 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 313 { 314 return net->ipv4.mrt; 315 } 316 317 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 318 struct mr_table **mrt) 319 { 320 *mrt = net->ipv4.mrt; 321 return 0; 322 } 323 324 static int __net_init ipmr_rules_init(struct net *net) 325 { 326 struct mr_table *mrt; 327 328 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 329 if (IS_ERR(mrt)) 330 return PTR_ERR(mrt); 331 net->ipv4.mrt = mrt; 332 return 0; 333 } 334 335 static void __net_exit ipmr_rules_exit(struct net *net) 336 { 337 rtnl_lock(); 338 ipmr_free_table(net->ipv4.mrt); 339 net->ipv4.mrt = NULL; 340 rtnl_unlock(); 341 } 342 343 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb) 344 { 345 return 0; 346 } 347 348 static unsigned int ipmr_rules_seq_read(struct net *net) 349 { 350 return 0; 351 } 352 353 bool ipmr_rule_default(const struct fib_rule *rule) 354 { 355 return true; 356 } 357 EXPORT_SYMBOL(ipmr_rule_default); 358 #endif 359 360 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg, 361 const void *ptr) 362 { 363 const struct mfc_cache_cmp_arg *cmparg = arg->key; 364 struct mfc_cache *c = (struct mfc_cache *)ptr; 365 366 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp || 367 cmparg->mfc_origin != c->mfc_origin; 368 } 369 370 static const struct rhashtable_params ipmr_rht_params = { 371 .head_offset = offsetof(struct mr_mfc, mnode), 372 .key_offset = offsetof(struct mfc_cache, cmparg), 373 .key_len = sizeof(struct mfc_cache_cmp_arg), 374 .nelem_hint = 3, 375 .locks_mul = 1, 376 .obj_cmpfn = ipmr_hash_cmp, 377 .automatic_shrinking = true, 378 }; 379 380 static void ipmr_new_table_set(struct mr_table *mrt, 381 struct net *net) 382 { 383 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 384 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 385 #endif 386 } 387 388 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = { 389 .mfc_mcastgrp = htonl(INADDR_ANY), 390 .mfc_origin = htonl(INADDR_ANY), 391 }; 392 393 static struct mr_table_ops ipmr_mr_table_ops = { 394 .rht_params = &ipmr_rht_params, 395 .cmparg_any = &ipmr_mr_table_ops_cmparg_any, 396 }; 397 398 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 399 { 400 struct mr_table *mrt; 401 402 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ 403 if (id != RT_TABLE_DEFAULT && id >= 1000000000) 404 return ERR_PTR(-EINVAL); 405 406 mrt = ipmr_get_table(net, id); 407 if (mrt) 408 return mrt; 409 410 return mr_table_alloc(net, id, &ipmr_mr_table_ops, 411 ipmr_expire_process, ipmr_new_table_set); 412 } 413 414 static void ipmr_free_table(struct mr_table *mrt) 415 { 416 del_timer_sync(&mrt->ipmr_expire_timer); 417 mroute_clean_tables(mrt, true); 418 rhltable_destroy(&mrt->mfc_hash); 419 kfree(mrt); 420 } 421 422 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 423 424 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v) 425 { 426 struct net *net = dev_net(dev); 427 428 dev_close(dev); 429 430 dev = __dev_get_by_name(net, "tunl0"); 431 if (dev) { 432 const struct net_device_ops *ops = dev->netdev_ops; 433 struct ifreq ifr; 434 struct ip_tunnel_parm p; 435 436 memset(&p, 0, sizeof(p)); 437 p.iph.daddr = v->vifc_rmt_addr.s_addr; 438 p.iph.saddr = v->vifc_lcl_addr.s_addr; 439 p.iph.version = 4; 440 p.iph.ihl = 5; 441 p.iph.protocol = IPPROTO_IPIP; 442 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 443 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 444 445 if (ops->ndo_do_ioctl) { 446 mm_segment_t oldfs = get_fs(); 447 448 set_fs(KERNEL_DS); 449 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL); 450 set_fs(oldfs); 451 } 452 } 453 } 454 455 /* Initialize ipmr pimreg/tunnel in_device */ 456 static bool ipmr_init_vif_indev(const struct net_device *dev) 457 { 458 struct in_device *in_dev; 459 460 ASSERT_RTNL(); 461 462 in_dev = __in_dev_get_rtnl(dev); 463 if (!in_dev) 464 return false; 465 ipv4_devconf_setall(in_dev); 466 neigh_parms_data_state_setall(in_dev->arp_parms); 467 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 468 469 return true; 470 } 471 472 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 473 { 474 struct net_device *dev; 475 476 dev = __dev_get_by_name(net, "tunl0"); 477 478 if (dev) { 479 const struct net_device_ops *ops = dev->netdev_ops; 480 int err; 481 struct ifreq ifr; 482 struct ip_tunnel_parm p; 483 484 memset(&p, 0, sizeof(p)); 485 p.iph.daddr = v->vifc_rmt_addr.s_addr; 486 p.iph.saddr = v->vifc_lcl_addr.s_addr; 487 p.iph.version = 4; 488 p.iph.ihl = 5; 489 p.iph.protocol = IPPROTO_IPIP; 490 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 491 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 492 493 if (ops->ndo_do_ioctl) { 494 mm_segment_t oldfs = get_fs(); 495 496 set_fs(KERNEL_DS); 497 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL); 498 set_fs(oldfs); 499 } else { 500 err = -EOPNOTSUPP; 501 } 502 dev = NULL; 503 504 if (err == 0 && 505 (dev = __dev_get_by_name(net, p.name)) != NULL) { 506 dev->flags |= IFF_MULTICAST; 507 if (!ipmr_init_vif_indev(dev)) 508 goto failure; 509 if (dev_open(dev)) 510 goto failure; 511 dev_hold(dev); 512 } 513 } 514 return dev; 515 516 failure: 517 unregister_netdevice(dev); 518 return NULL; 519 } 520 521 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 522 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 523 { 524 struct net *net = dev_net(dev); 525 struct mr_table *mrt; 526 struct flowi4 fl4 = { 527 .flowi4_oif = dev->ifindex, 528 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 529 .flowi4_mark = skb->mark, 530 }; 531 int err; 532 533 err = ipmr_fib_lookup(net, &fl4, &mrt); 534 if (err < 0) { 535 kfree_skb(skb); 536 return err; 537 } 538 539 read_lock(&mrt_lock); 540 dev->stats.tx_bytes += skb->len; 541 dev->stats.tx_packets++; 542 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT); 543 read_unlock(&mrt_lock); 544 kfree_skb(skb); 545 return NETDEV_TX_OK; 546 } 547 548 static int reg_vif_get_iflink(const struct net_device *dev) 549 { 550 return 0; 551 } 552 553 static const struct net_device_ops reg_vif_netdev_ops = { 554 .ndo_start_xmit = reg_vif_xmit, 555 .ndo_get_iflink = reg_vif_get_iflink, 556 }; 557 558 static void reg_vif_setup(struct net_device *dev) 559 { 560 dev->type = ARPHRD_PIMREG; 561 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 562 dev->flags = IFF_NOARP; 563 dev->netdev_ops = ®_vif_netdev_ops; 564 dev->needs_free_netdev = true; 565 dev->features |= NETIF_F_NETNS_LOCAL; 566 } 567 568 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 569 { 570 struct net_device *dev; 571 char name[IFNAMSIZ]; 572 573 if (mrt->id == RT_TABLE_DEFAULT) 574 sprintf(name, "pimreg"); 575 else 576 sprintf(name, "pimreg%u", mrt->id); 577 578 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 579 580 if (!dev) 581 return NULL; 582 583 dev_net_set(dev, net); 584 585 if (register_netdevice(dev)) { 586 free_netdev(dev); 587 return NULL; 588 } 589 590 if (!ipmr_init_vif_indev(dev)) 591 goto failure; 592 if (dev_open(dev)) 593 goto failure; 594 595 dev_hold(dev); 596 597 return dev; 598 599 failure: 600 unregister_netdevice(dev); 601 return NULL; 602 } 603 604 /* called with rcu_read_lock() */ 605 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 606 unsigned int pimlen) 607 { 608 struct net_device *reg_dev = NULL; 609 struct iphdr *encap; 610 611 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 612 /* Check that: 613 * a. packet is really sent to a multicast group 614 * b. packet is not a NULL-REGISTER 615 * c. packet is not truncated 616 */ 617 if (!ipv4_is_multicast(encap->daddr) || 618 encap->tot_len == 0 || 619 ntohs(encap->tot_len) + pimlen > skb->len) 620 return 1; 621 622 read_lock(&mrt_lock); 623 if (mrt->mroute_reg_vif_num >= 0) 624 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev; 625 read_unlock(&mrt_lock); 626 627 if (!reg_dev) 628 return 1; 629 630 skb->mac_header = skb->network_header; 631 skb_pull(skb, (u8 *)encap - skb->data); 632 skb_reset_network_header(skb); 633 skb->protocol = htons(ETH_P_IP); 634 skb->ip_summed = CHECKSUM_NONE; 635 636 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 637 638 netif_rx(skb); 639 640 return NET_RX_SUCCESS; 641 } 642 #else 643 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 644 { 645 return NULL; 646 } 647 #endif 648 649 static int call_ipmr_vif_entry_notifiers(struct net *net, 650 enum fib_event_type event_type, 651 struct vif_device *vif, 652 vifi_t vif_index, u32 tb_id) 653 { 654 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type, 655 vif, vif_index, tb_id, 656 &net->ipv4.ipmr_seq); 657 } 658 659 static int call_ipmr_mfc_entry_notifiers(struct net *net, 660 enum fib_event_type event_type, 661 struct mfc_cache *mfc, u32 tb_id) 662 { 663 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type, 664 &mfc->_c, tb_id, &net->ipv4.ipmr_seq); 665 } 666 667 /** 668 * vif_delete - Delete a VIF entry 669 * @notify: Set to 1, if the caller is a notifier_call 670 */ 671 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 672 struct list_head *head) 673 { 674 struct net *net = read_pnet(&mrt->net); 675 struct vif_device *v; 676 struct net_device *dev; 677 struct in_device *in_dev; 678 679 if (vifi < 0 || vifi >= mrt->maxvif) 680 return -EADDRNOTAVAIL; 681 682 v = &mrt->vif_table[vifi]; 683 684 if (VIF_EXISTS(mrt, vifi)) 685 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi, 686 mrt->id); 687 688 write_lock_bh(&mrt_lock); 689 dev = v->dev; 690 v->dev = NULL; 691 692 if (!dev) { 693 write_unlock_bh(&mrt_lock); 694 return -EADDRNOTAVAIL; 695 } 696 697 if (vifi == mrt->mroute_reg_vif_num) 698 mrt->mroute_reg_vif_num = -1; 699 700 if (vifi + 1 == mrt->maxvif) { 701 int tmp; 702 703 for (tmp = vifi - 1; tmp >= 0; tmp--) { 704 if (VIF_EXISTS(mrt, tmp)) 705 break; 706 } 707 mrt->maxvif = tmp+1; 708 } 709 710 write_unlock_bh(&mrt_lock); 711 712 dev_set_allmulti(dev, -1); 713 714 in_dev = __in_dev_get_rtnl(dev); 715 if (in_dev) { 716 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 717 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, 718 NETCONFA_MC_FORWARDING, 719 dev->ifindex, &in_dev->cnf); 720 ip_rt_multicast_event(in_dev); 721 } 722 723 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 724 unregister_netdevice_queue(dev, head); 725 726 dev_put(dev); 727 return 0; 728 } 729 730 static void ipmr_cache_free_rcu(struct rcu_head *head) 731 { 732 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu); 733 734 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c); 735 } 736 737 static void ipmr_cache_free(struct mfc_cache *c) 738 { 739 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu); 740 } 741 742 /* Destroy an unresolved cache entry, killing queued skbs 743 * and reporting error to netlink readers. 744 */ 745 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 746 { 747 struct net *net = read_pnet(&mrt->net); 748 struct sk_buff *skb; 749 struct nlmsgerr *e; 750 751 atomic_dec(&mrt->cache_resolve_queue_len); 752 753 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) { 754 if (ip_hdr(skb)->version == 0) { 755 struct nlmsghdr *nlh = skb_pull(skb, 756 sizeof(struct iphdr)); 757 nlh->nlmsg_type = NLMSG_ERROR; 758 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 759 skb_trim(skb, nlh->nlmsg_len); 760 e = nlmsg_data(nlh); 761 e->error = -ETIMEDOUT; 762 memset(&e->msg, 0, sizeof(e->msg)); 763 764 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 765 } else { 766 kfree_skb(skb); 767 } 768 } 769 770 ipmr_cache_free(c); 771 } 772 773 /* Timer process for the unresolved queue. */ 774 static void ipmr_expire_process(struct timer_list *t) 775 { 776 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer); 777 struct mr_mfc *c, *next; 778 unsigned long expires; 779 unsigned long now; 780 781 if (!spin_trylock(&mfc_unres_lock)) { 782 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 783 return; 784 } 785 786 if (list_empty(&mrt->mfc_unres_queue)) 787 goto out; 788 789 now = jiffies; 790 expires = 10*HZ; 791 792 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 793 if (time_after(c->mfc_un.unres.expires, now)) { 794 unsigned long interval = c->mfc_un.unres.expires - now; 795 if (interval < expires) 796 expires = interval; 797 continue; 798 } 799 800 list_del(&c->list); 801 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE); 802 ipmr_destroy_unres(mrt, (struct mfc_cache *)c); 803 } 804 805 if (!list_empty(&mrt->mfc_unres_queue)) 806 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 807 808 out: 809 spin_unlock(&mfc_unres_lock); 810 } 811 812 /* Fill oifs list. It is called under write locked mrt_lock. */ 813 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache, 814 unsigned char *ttls) 815 { 816 int vifi; 817 818 cache->mfc_un.res.minvif = MAXVIFS; 819 cache->mfc_un.res.maxvif = 0; 820 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 821 822 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 823 if (VIF_EXISTS(mrt, vifi) && 824 ttls[vifi] && ttls[vifi] < 255) { 825 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 826 if (cache->mfc_un.res.minvif > vifi) 827 cache->mfc_un.res.minvif = vifi; 828 if (cache->mfc_un.res.maxvif <= vifi) 829 cache->mfc_un.res.maxvif = vifi + 1; 830 } 831 } 832 cache->mfc_un.res.lastuse = jiffies; 833 } 834 835 static int vif_add(struct net *net, struct mr_table *mrt, 836 struct vifctl *vifc, int mrtsock) 837 { 838 int vifi = vifc->vifc_vifi; 839 struct switchdev_attr attr = { 840 .id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID, 841 }; 842 struct vif_device *v = &mrt->vif_table[vifi]; 843 struct net_device *dev; 844 struct in_device *in_dev; 845 int err; 846 847 /* Is vif busy ? */ 848 if (VIF_EXISTS(mrt, vifi)) 849 return -EADDRINUSE; 850 851 switch (vifc->vifc_flags) { 852 case VIFF_REGISTER: 853 if (!ipmr_pimsm_enabled()) 854 return -EINVAL; 855 /* Special Purpose VIF in PIM 856 * All the packets will be sent to the daemon 857 */ 858 if (mrt->mroute_reg_vif_num >= 0) 859 return -EADDRINUSE; 860 dev = ipmr_reg_vif(net, mrt); 861 if (!dev) 862 return -ENOBUFS; 863 err = dev_set_allmulti(dev, 1); 864 if (err) { 865 unregister_netdevice(dev); 866 dev_put(dev); 867 return err; 868 } 869 break; 870 case VIFF_TUNNEL: 871 dev = ipmr_new_tunnel(net, vifc); 872 if (!dev) 873 return -ENOBUFS; 874 err = dev_set_allmulti(dev, 1); 875 if (err) { 876 ipmr_del_tunnel(dev, vifc); 877 dev_put(dev); 878 return err; 879 } 880 break; 881 case VIFF_USE_IFINDEX: 882 case 0: 883 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 884 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 885 if (dev && !__in_dev_get_rtnl(dev)) { 886 dev_put(dev); 887 return -EADDRNOTAVAIL; 888 } 889 } else { 890 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 891 } 892 if (!dev) 893 return -EADDRNOTAVAIL; 894 err = dev_set_allmulti(dev, 1); 895 if (err) { 896 dev_put(dev); 897 return err; 898 } 899 break; 900 default: 901 return -EINVAL; 902 } 903 904 in_dev = __in_dev_get_rtnl(dev); 905 if (!in_dev) { 906 dev_put(dev); 907 return -EADDRNOTAVAIL; 908 } 909 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 910 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, 911 dev->ifindex, &in_dev->cnf); 912 ip_rt_multicast_event(in_dev); 913 914 /* Fill in the VIF structures */ 915 vif_device_init(v, dev, vifc->vifc_rate_limit, 916 vifc->vifc_threshold, 917 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0), 918 (VIFF_TUNNEL | VIFF_REGISTER)); 919 920 attr.orig_dev = dev; 921 if (!switchdev_port_attr_get(dev, &attr)) { 922 memcpy(v->dev_parent_id.id, attr.u.ppid.id, attr.u.ppid.id_len); 923 v->dev_parent_id.id_len = attr.u.ppid.id_len; 924 } else { 925 v->dev_parent_id.id_len = 0; 926 } 927 928 v->local = vifc->vifc_lcl_addr.s_addr; 929 v->remote = vifc->vifc_rmt_addr.s_addr; 930 931 /* And finish update writing critical data */ 932 write_lock_bh(&mrt_lock); 933 v->dev = dev; 934 if (v->flags & VIFF_REGISTER) 935 mrt->mroute_reg_vif_num = vifi; 936 if (vifi+1 > mrt->maxvif) 937 mrt->maxvif = vifi+1; 938 write_unlock_bh(&mrt_lock); 939 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id); 940 return 0; 941 } 942 943 /* called with rcu_read_lock() */ 944 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 945 __be32 origin, 946 __be32 mcastgrp) 947 { 948 struct mfc_cache_cmp_arg arg = { 949 .mfc_mcastgrp = mcastgrp, 950 .mfc_origin = origin 951 }; 952 953 return mr_mfc_find(mrt, &arg); 954 } 955 956 /* Look for a (*,G) entry */ 957 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, 958 __be32 mcastgrp, int vifi) 959 { 960 struct mfc_cache_cmp_arg arg = { 961 .mfc_mcastgrp = mcastgrp, 962 .mfc_origin = htonl(INADDR_ANY) 963 }; 964 965 if (mcastgrp == htonl(INADDR_ANY)) 966 return mr_mfc_find_any_parent(mrt, vifi); 967 return mr_mfc_find_any(mrt, vifi, &arg); 968 } 969 970 /* Look for a (S,G,iif) entry if parent != -1 */ 971 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt, 972 __be32 origin, __be32 mcastgrp, 973 int parent) 974 { 975 struct mfc_cache_cmp_arg arg = { 976 .mfc_mcastgrp = mcastgrp, 977 .mfc_origin = origin, 978 }; 979 980 return mr_mfc_find_parent(mrt, &arg, parent); 981 } 982 983 /* Allocate a multicast cache entry */ 984 static struct mfc_cache *ipmr_cache_alloc(void) 985 { 986 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 987 988 if (c) { 989 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1; 990 c->_c.mfc_un.res.minvif = MAXVIFS; 991 c->_c.free = ipmr_cache_free_rcu; 992 refcount_set(&c->_c.mfc_un.res.refcount, 1); 993 } 994 return c; 995 } 996 997 static struct mfc_cache *ipmr_cache_alloc_unres(void) 998 { 999 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 1000 1001 if (c) { 1002 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved); 1003 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ; 1004 } 1005 return c; 1006 } 1007 1008 /* A cache entry has gone into a resolved state from queued */ 1009 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 1010 struct mfc_cache *uc, struct mfc_cache *c) 1011 { 1012 struct sk_buff *skb; 1013 struct nlmsgerr *e; 1014 1015 /* Play the pending entries through our router */ 1016 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) { 1017 if (ip_hdr(skb)->version == 0) { 1018 struct nlmsghdr *nlh = skb_pull(skb, 1019 sizeof(struct iphdr)); 1020 1021 if (mr_fill_mroute(mrt, skb, &c->_c, 1022 nlmsg_data(nlh)) > 0) { 1023 nlh->nlmsg_len = skb_tail_pointer(skb) - 1024 (u8 *)nlh; 1025 } else { 1026 nlh->nlmsg_type = NLMSG_ERROR; 1027 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 1028 skb_trim(skb, nlh->nlmsg_len); 1029 e = nlmsg_data(nlh); 1030 e->error = -EMSGSIZE; 1031 memset(&e->msg, 0, sizeof(e->msg)); 1032 } 1033 1034 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 1035 } else { 1036 ip_mr_forward(net, mrt, skb->dev, skb, c, 0); 1037 } 1038 } 1039 } 1040 1041 /* Bounce a cache query up to mrouted and netlink. 1042 * 1043 * Called under mrt_lock. 1044 */ 1045 static int ipmr_cache_report(struct mr_table *mrt, 1046 struct sk_buff *pkt, vifi_t vifi, int assert) 1047 { 1048 const int ihl = ip_hdrlen(pkt); 1049 struct sock *mroute_sk; 1050 struct igmphdr *igmp; 1051 struct igmpmsg *msg; 1052 struct sk_buff *skb; 1053 int ret; 1054 1055 if (assert == IGMPMSG_WHOLEPKT) 1056 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 1057 else 1058 skb = alloc_skb(128, GFP_ATOMIC); 1059 1060 if (!skb) 1061 return -ENOBUFS; 1062 1063 if (assert == IGMPMSG_WHOLEPKT) { 1064 /* Ugly, but we have no choice with this interface. 1065 * Duplicate old header, fix ihl, length etc. 1066 * And all this only to mangle msg->im_msgtype and 1067 * to set msg->im_mbz to "mbz" :-) 1068 */ 1069 skb_push(skb, sizeof(struct iphdr)); 1070 skb_reset_network_header(skb); 1071 skb_reset_transport_header(skb); 1072 msg = (struct igmpmsg *)skb_network_header(skb); 1073 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 1074 msg->im_msgtype = IGMPMSG_WHOLEPKT; 1075 msg->im_mbz = 0; 1076 msg->im_vif = mrt->mroute_reg_vif_num; 1077 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 1078 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 1079 sizeof(struct iphdr)); 1080 } else { 1081 /* Copy the IP header */ 1082 skb_set_network_header(skb, skb->len); 1083 skb_put(skb, ihl); 1084 skb_copy_to_linear_data(skb, pkt->data, ihl); 1085 /* Flag to the kernel this is a route add */ 1086 ip_hdr(skb)->protocol = 0; 1087 msg = (struct igmpmsg *)skb_network_header(skb); 1088 msg->im_vif = vifi; 1089 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 1090 /* Add our header */ 1091 igmp = skb_put(skb, sizeof(struct igmphdr)); 1092 igmp->type = assert; 1093 msg->im_msgtype = assert; 1094 igmp->code = 0; 1095 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 1096 skb->transport_header = skb->network_header; 1097 } 1098 1099 rcu_read_lock(); 1100 mroute_sk = rcu_dereference(mrt->mroute_sk); 1101 if (!mroute_sk) { 1102 rcu_read_unlock(); 1103 kfree_skb(skb); 1104 return -EINVAL; 1105 } 1106 1107 igmpmsg_netlink_event(mrt, skb); 1108 1109 /* Deliver to mrouted */ 1110 ret = sock_queue_rcv_skb(mroute_sk, skb); 1111 rcu_read_unlock(); 1112 if (ret < 0) { 1113 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 1114 kfree_skb(skb); 1115 } 1116 1117 return ret; 1118 } 1119 1120 /* Queue a packet for resolution. It gets locked cache entry! */ 1121 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, 1122 struct sk_buff *skb, struct net_device *dev) 1123 { 1124 const struct iphdr *iph = ip_hdr(skb); 1125 struct mfc_cache *c; 1126 bool found = false; 1127 int err; 1128 1129 spin_lock_bh(&mfc_unres_lock); 1130 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) { 1131 if (c->mfc_mcastgrp == iph->daddr && 1132 c->mfc_origin == iph->saddr) { 1133 found = true; 1134 break; 1135 } 1136 } 1137 1138 if (!found) { 1139 /* Create a new entry if allowable */ 1140 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 1141 (c = ipmr_cache_alloc_unres()) == NULL) { 1142 spin_unlock_bh(&mfc_unres_lock); 1143 1144 kfree_skb(skb); 1145 return -ENOBUFS; 1146 } 1147 1148 /* Fill in the new cache entry */ 1149 c->_c.mfc_parent = -1; 1150 c->mfc_origin = iph->saddr; 1151 c->mfc_mcastgrp = iph->daddr; 1152 1153 /* Reflect first query at mrouted. */ 1154 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1155 1156 if (err < 0) { 1157 /* If the report failed throw the cache entry 1158 out - Brad Parker 1159 */ 1160 spin_unlock_bh(&mfc_unres_lock); 1161 1162 ipmr_cache_free(c); 1163 kfree_skb(skb); 1164 return err; 1165 } 1166 1167 atomic_inc(&mrt->cache_resolve_queue_len); 1168 list_add(&c->_c.list, &mrt->mfc_unres_queue); 1169 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1170 1171 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1172 mod_timer(&mrt->ipmr_expire_timer, 1173 c->_c.mfc_un.unres.expires); 1174 } 1175 1176 /* See if we can append the packet */ 1177 if (c->_c.mfc_un.unres.unresolved.qlen > 3) { 1178 kfree_skb(skb); 1179 err = -ENOBUFS; 1180 } else { 1181 if (dev) { 1182 skb->dev = dev; 1183 skb->skb_iif = dev->ifindex; 1184 } 1185 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb); 1186 err = 0; 1187 } 1188 1189 spin_unlock_bh(&mfc_unres_lock); 1190 return err; 1191 } 1192 1193 /* MFC cache manipulation by user space mroute daemon */ 1194 1195 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) 1196 { 1197 struct net *net = read_pnet(&mrt->net); 1198 struct mfc_cache *c; 1199 1200 /* The entries are added/deleted only under RTNL */ 1201 rcu_read_lock(); 1202 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1203 mfc->mfcc_mcastgrp.s_addr, parent); 1204 rcu_read_unlock(); 1205 if (!c) 1206 return -ENOENT; 1207 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params); 1208 list_del_rcu(&c->_c.list); 1209 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id); 1210 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1211 mr_cache_put(&c->_c); 1212 1213 return 0; 1214 } 1215 1216 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1217 struct mfcctl *mfc, int mrtsock, int parent) 1218 { 1219 struct mfc_cache *uc, *c; 1220 struct mr_mfc *_uc; 1221 bool found; 1222 int ret; 1223 1224 if (mfc->mfcc_parent >= MAXVIFS) 1225 return -ENFILE; 1226 1227 /* The entries are added/deleted only under RTNL */ 1228 rcu_read_lock(); 1229 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1230 mfc->mfcc_mcastgrp.s_addr, parent); 1231 rcu_read_unlock(); 1232 if (c) { 1233 write_lock_bh(&mrt_lock); 1234 c->_c.mfc_parent = mfc->mfcc_parent; 1235 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1236 if (!mrtsock) 1237 c->_c.mfc_flags |= MFC_STATIC; 1238 write_unlock_bh(&mrt_lock); 1239 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c, 1240 mrt->id); 1241 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1242 return 0; 1243 } 1244 1245 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && 1246 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1247 return -EINVAL; 1248 1249 c = ipmr_cache_alloc(); 1250 if (!c) 1251 return -ENOMEM; 1252 1253 c->mfc_origin = mfc->mfcc_origin.s_addr; 1254 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1255 c->_c.mfc_parent = mfc->mfcc_parent; 1256 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1257 if (!mrtsock) 1258 c->_c.mfc_flags |= MFC_STATIC; 1259 1260 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode, 1261 ipmr_rht_params); 1262 if (ret) { 1263 pr_err("ipmr: rhtable insert error %d\n", ret); 1264 ipmr_cache_free(c); 1265 return ret; 1266 } 1267 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list); 1268 /* Check to see if we resolved a queued list. If so we 1269 * need to send on the frames and tidy up. 1270 */ 1271 found = false; 1272 spin_lock_bh(&mfc_unres_lock); 1273 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) { 1274 uc = (struct mfc_cache *)_uc; 1275 if (uc->mfc_origin == c->mfc_origin && 1276 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1277 list_del(&_uc->list); 1278 atomic_dec(&mrt->cache_resolve_queue_len); 1279 found = true; 1280 break; 1281 } 1282 } 1283 if (list_empty(&mrt->mfc_unres_queue)) 1284 del_timer(&mrt->ipmr_expire_timer); 1285 spin_unlock_bh(&mfc_unres_lock); 1286 1287 if (found) { 1288 ipmr_cache_resolve(net, mrt, uc, c); 1289 ipmr_cache_free(uc); 1290 } 1291 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id); 1292 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1293 return 0; 1294 } 1295 1296 /* Close the multicast socket, and clear the vif tables etc */ 1297 static void mroute_clean_tables(struct mr_table *mrt, bool all) 1298 { 1299 struct net *net = read_pnet(&mrt->net); 1300 struct mr_mfc *c, *tmp; 1301 struct mfc_cache *cache; 1302 LIST_HEAD(list); 1303 int i; 1304 1305 /* Shut down all active vif entries */ 1306 for (i = 0; i < mrt->maxvif; i++) { 1307 if (!all && (mrt->vif_table[i].flags & VIFF_STATIC)) 1308 continue; 1309 vif_delete(mrt, i, 0, &list); 1310 } 1311 unregister_netdevice_many(&list); 1312 1313 /* Wipe the cache */ 1314 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) { 1315 if (!all && (c->mfc_flags & MFC_STATIC)) 1316 continue; 1317 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params); 1318 list_del_rcu(&c->list); 1319 cache = (struct mfc_cache *)c; 1320 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache, 1321 mrt->id); 1322 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1323 mr_cache_put(c); 1324 } 1325 1326 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1327 spin_lock_bh(&mfc_unres_lock); 1328 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) { 1329 list_del(&c->list); 1330 cache = (struct mfc_cache *)c; 1331 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1332 ipmr_destroy_unres(mrt, cache); 1333 } 1334 spin_unlock_bh(&mfc_unres_lock); 1335 } 1336 } 1337 1338 /* called from ip_ra_control(), before an RCU grace period, 1339 * we dont need to call synchronize_rcu() here 1340 */ 1341 static void mrtsock_destruct(struct sock *sk) 1342 { 1343 struct net *net = sock_net(sk); 1344 struct mr_table *mrt; 1345 1346 rtnl_lock(); 1347 ipmr_for_each_table(mrt, net) { 1348 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1349 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1350 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1351 NETCONFA_MC_FORWARDING, 1352 NETCONFA_IFINDEX_ALL, 1353 net->ipv4.devconf_all); 1354 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1355 mroute_clean_tables(mrt, false); 1356 } 1357 } 1358 rtnl_unlock(); 1359 } 1360 1361 /* Socket options and virtual interface manipulation. The whole 1362 * virtual interface system is a complete heap, but unfortunately 1363 * that's how BSD mrouted happens to think. Maybe one day with a proper 1364 * MOSPF/PIM router set up we can clean this up. 1365 */ 1366 1367 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, 1368 unsigned int optlen) 1369 { 1370 struct net *net = sock_net(sk); 1371 int val, ret = 0, parent = 0; 1372 struct mr_table *mrt; 1373 struct vifctl vif; 1374 struct mfcctl mfc; 1375 u32 uval; 1376 1377 /* There's one exception to the lock - MRT_DONE which needs to unlock */ 1378 rtnl_lock(); 1379 if (sk->sk_type != SOCK_RAW || 1380 inet_sk(sk)->inet_num != IPPROTO_IGMP) { 1381 ret = -EOPNOTSUPP; 1382 goto out_unlock; 1383 } 1384 1385 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1386 if (!mrt) { 1387 ret = -ENOENT; 1388 goto out_unlock; 1389 } 1390 if (optname != MRT_INIT) { 1391 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1392 !ns_capable(net->user_ns, CAP_NET_ADMIN)) { 1393 ret = -EACCES; 1394 goto out_unlock; 1395 } 1396 } 1397 1398 switch (optname) { 1399 case MRT_INIT: 1400 if (optlen != sizeof(int)) { 1401 ret = -EINVAL; 1402 break; 1403 } 1404 if (rtnl_dereference(mrt->mroute_sk)) { 1405 ret = -EADDRINUSE; 1406 break; 1407 } 1408 1409 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1410 if (ret == 0) { 1411 rcu_assign_pointer(mrt->mroute_sk, sk); 1412 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1413 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1414 NETCONFA_MC_FORWARDING, 1415 NETCONFA_IFINDEX_ALL, 1416 net->ipv4.devconf_all); 1417 } 1418 break; 1419 case MRT_DONE: 1420 if (sk != rcu_access_pointer(mrt->mroute_sk)) { 1421 ret = -EACCES; 1422 } else { 1423 /* We need to unlock here because mrtsock_destruct takes 1424 * care of rtnl itself and we can't change that due to 1425 * the IP_ROUTER_ALERT setsockopt which runs without it. 1426 */ 1427 rtnl_unlock(); 1428 ret = ip_ra_control(sk, 0, NULL); 1429 goto out; 1430 } 1431 break; 1432 case MRT_ADD_VIF: 1433 case MRT_DEL_VIF: 1434 if (optlen != sizeof(vif)) { 1435 ret = -EINVAL; 1436 break; 1437 } 1438 if (copy_from_user(&vif, optval, sizeof(vif))) { 1439 ret = -EFAULT; 1440 break; 1441 } 1442 if (vif.vifc_vifi >= MAXVIFS) { 1443 ret = -ENFILE; 1444 break; 1445 } 1446 if (optname == MRT_ADD_VIF) { 1447 ret = vif_add(net, mrt, &vif, 1448 sk == rtnl_dereference(mrt->mroute_sk)); 1449 } else { 1450 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1451 } 1452 break; 1453 /* Manipulate the forwarding caches. These live 1454 * in a sort of kernel/user symbiosis. 1455 */ 1456 case MRT_ADD_MFC: 1457 case MRT_DEL_MFC: 1458 parent = -1; 1459 /* fall through */ 1460 case MRT_ADD_MFC_PROXY: 1461 case MRT_DEL_MFC_PROXY: 1462 if (optlen != sizeof(mfc)) { 1463 ret = -EINVAL; 1464 break; 1465 } 1466 if (copy_from_user(&mfc, optval, sizeof(mfc))) { 1467 ret = -EFAULT; 1468 break; 1469 } 1470 if (parent == 0) 1471 parent = mfc.mfcc_parent; 1472 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) 1473 ret = ipmr_mfc_delete(mrt, &mfc, parent); 1474 else 1475 ret = ipmr_mfc_add(net, mrt, &mfc, 1476 sk == rtnl_dereference(mrt->mroute_sk), 1477 parent); 1478 break; 1479 /* Control PIM assert. */ 1480 case MRT_ASSERT: 1481 if (optlen != sizeof(val)) { 1482 ret = -EINVAL; 1483 break; 1484 } 1485 if (get_user(val, (int __user *)optval)) { 1486 ret = -EFAULT; 1487 break; 1488 } 1489 mrt->mroute_do_assert = val; 1490 break; 1491 case MRT_PIM: 1492 if (!ipmr_pimsm_enabled()) { 1493 ret = -ENOPROTOOPT; 1494 break; 1495 } 1496 if (optlen != sizeof(val)) { 1497 ret = -EINVAL; 1498 break; 1499 } 1500 if (get_user(val, (int __user *)optval)) { 1501 ret = -EFAULT; 1502 break; 1503 } 1504 1505 val = !!val; 1506 if (val != mrt->mroute_do_pim) { 1507 mrt->mroute_do_pim = val; 1508 mrt->mroute_do_assert = val; 1509 } 1510 break; 1511 case MRT_TABLE: 1512 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) { 1513 ret = -ENOPROTOOPT; 1514 break; 1515 } 1516 if (optlen != sizeof(uval)) { 1517 ret = -EINVAL; 1518 break; 1519 } 1520 if (get_user(uval, (u32 __user *)optval)) { 1521 ret = -EFAULT; 1522 break; 1523 } 1524 1525 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1526 ret = -EBUSY; 1527 } else { 1528 mrt = ipmr_new_table(net, uval); 1529 if (IS_ERR(mrt)) 1530 ret = PTR_ERR(mrt); 1531 else 1532 raw_sk(sk)->ipmr_table = uval; 1533 } 1534 break; 1535 /* Spurious command, or MRT_VERSION which you cannot set. */ 1536 default: 1537 ret = -ENOPROTOOPT; 1538 } 1539 out_unlock: 1540 rtnl_unlock(); 1541 out: 1542 return ret; 1543 } 1544 1545 /* Getsock opt support for the multicast routing system. */ 1546 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) 1547 { 1548 int olr; 1549 int val; 1550 struct net *net = sock_net(sk); 1551 struct mr_table *mrt; 1552 1553 if (sk->sk_type != SOCK_RAW || 1554 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1555 return -EOPNOTSUPP; 1556 1557 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1558 if (!mrt) 1559 return -ENOENT; 1560 1561 switch (optname) { 1562 case MRT_VERSION: 1563 val = 0x0305; 1564 break; 1565 case MRT_PIM: 1566 if (!ipmr_pimsm_enabled()) 1567 return -ENOPROTOOPT; 1568 val = mrt->mroute_do_pim; 1569 break; 1570 case MRT_ASSERT: 1571 val = mrt->mroute_do_assert; 1572 break; 1573 default: 1574 return -ENOPROTOOPT; 1575 } 1576 1577 if (get_user(olr, optlen)) 1578 return -EFAULT; 1579 olr = min_t(unsigned int, olr, sizeof(int)); 1580 if (olr < 0) 1581 return -EINVAL; 1582 if (put_user(olr, optlen)) 1583 return -EFAULT; 1584 if (copy_to_user(optval, &val, olr)) 1585 return -EFAULT; 1586 return 0; 1587 } 1588 1589 /* The IP multicast ioctl support routines. */ 1590 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) 1591 { 1592 struct sioc_sg_req sr; 1593 struct sioc_vif_req vr; 1594 struct vif_device *vif; 1595 struct mfc_cache *c; 1596 struct net *net = sock_net(sk); 1597 struct mr_table *mrt; 1598 1599 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1600 if (!mrt) 1601 return -ENOENT; 1602 1603 switch (cmd) { 1604 case SIOCGETVIFCNT: 1605 if (copy_from_user(&vr, arg, sizeof(vr))) 1606 return -EFAULT; 1607 if (vr.vifi >= mrt->maxvif) 1608 return -EINVAL; 1609 read_lock(&mrt_lock); 1610 vif = &mrt->vif_table[vr.vifi]; 1611 if (VIF_EXISTS(mrt, vr.vifi)) { 1612 vr.icount = vif->pkt_in; 1613 vr.ocount = vif->pkt_out; 1614 vr.ibytes = vif->bytes_in; 1615 vr.obytes = vif->bytes_out; 1616 read_unlock(&mrt_lock); 1617 1618 if (copy_to_user(arg, &vr, sizeof(vr))) 1619 return -EFAULT; 1620 return 0; 1621 } 1622 read_unlock(&mrt_lock); 1623 return -EADDRNOTAVAIL; 1624 case SIOCGETSGCNT: 1625 if (copy_from_user(&sr, arg, sizeof(sr))) 1626 return -EFAULT; 1627 1628 rcu_read_lock(); 1629 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1630 if (c) { 1631 sr.pktcnt = c->_c.mfc_un.res.pkt; 1632 sr.bytecnt = c->_c.mfc_un.res.bytes; 1633 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1634 rcu_read_unlock(); 1635 1636 if (copy_to_user(arg, &sr, sizeof(sr))) 1637 return -EFAULT; 1638 return 0; 1639 } 1640 rcu_read_unlock(); 1641 return -EADDRNOTAVAIL; 1642 default: 1643 return -ENOIOCTLCMD; 1644 } 1645 } 1646 1647 #ifdef CONFIG_COMPAT 1648 struct compat_sioc_sg_req { 1649 struct in_addr src; 1650 struct in_addr grp; 1651 compat_ulong_t pktcnt; 1652 compat_ulong_t bytecnt; 1653 compat_ulong_t wrong_if; 1654 }; 1655 1656 struct compat_sioc_vif_req { 1657 vifi_t vifi; /* Which iface */ 1658 compat_ulong_t icount; 1659 compat_ulong_t ocount; 1660 compat_ulong_t ibytes; 1661 compat_ulong_t obytes; 1662 }; 1663 1664 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1665 { 1666 struct compat_sioc_sg_req sr; 1667 struct compat_sioc_vif_req vr; 1668 struct vif_device *vif; 1669 struct mfc_cache *c; 1670 struct net *net = sock_net(sk); 1671 struct mr_table *mrt; 1672 1673 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1674 if (!mrt) 1675 return -ENOENT; 1676 1677 switch (cmd) { 1678 case SIOCGETVIFCNT: 1679 if (copy_from_user(&vr, arg, sizeof(vr))) 1680 return -EFAULT; 1681 if (vr.vifi >= mrt->maxvif) 1682 return -EINVAL; 1683 read_lock(&mrt_lock); 1684 vif = &mrt->vif_table[vr.vifi]; 1685 if (VIF_EXISTS(mrt, vr.vifi)) { 1686 vr.icount = vif->pkt_in; 1687 vr.ocount = vif->pkt_out; 1688 vr.ibytes = vif->bytes_in; 1689 vr.obytes = vif->bytes_out; 1690 read_unlock(&mrt_lock); 1691 1692 if (copy_to_user(arg, &vr, sizeof(vr))) 1693 return -EFAULT; 1694 return 0; 1695 } 1696 read_unlock(&mrt_lock); 1697 return -EADDRNOTAVAIL; 1698 case SIOCGETSGCNT: 1699 if (copy_from_user(&sr, arg, sizeof(sr))) 1700 return -EFAULT; 1701 1702 rcu_read_lock(); 1703 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1704 if (c) { 1705 sr.pktcnt = c->_c.mfc_un.res.pkt; 1706 sr.bytecnt = c->_c.mfc_un.res.bytes; 1707 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1708 rcu_read_unlock(); 1709 1710 if (copy_to_user(arg, &sr, sizeof(sr))) 1711 return -EFAULT; 1712 return 0; 1713 } 1714 rcu_read_unlock(); 1715 return -EADDRNOTAVAIL; 1716 default: 1717 return -ENOIOCTLCMD; 1718 } 1719 } 1720 #endif 1721 1722 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1723 { 1724 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1725 struct net *net = dev_net(dev); 1726 struct mr_table *mrt; 1727 struct vif_device *v; 1728 int ct; 1729 1730 if (event != NETDEV_UNREGISTER) 1731 return NOTIFY_DONE; 1732 1733 ipmr_for_each_table(mrt, net) { 1734 v = &mrt->vif_table[0]; 1735 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1736 if (v->dev == dev) 1737 vif_delete(mrt, ct, 1, NULL); 1738 } 1739 } 1740 return NOTIFY_DONE; 1741 } 1742 1743 static struct notifier_block ip_mr_notifier = { 1744 .notifier_call = ipmr_device_event, 1745 }; 1746 1747 /* Encapsulate a packet by attaching a valid IPIP header to it. 1748 * This avoids tunnel drivers and other mess and gives us the speed so 1749 * important for multicast video. 1750 */ 1751 static void ip_encap(struct net *net, struct sk_buff *skb, 1752 __be32 saddr, __be32 daddr) 1753 { 1754 struct iphdr *iph; 1755 const struct iphdr *old_iph = ip_hdr(skb); 1756 1757 skb_push(skb, sizeof(struct iphdr)); 1758 skb->transport_header = skb->network_header; 1759 skb_reset_network_header(skb); 1760 iph = ip_hdr(skb); 1761 1762 iph->version = 4; 1763 iph->tos = old_iph->tos; 1764 iph->ttl = old_iph->ttl; 1765 iph->frag_off = 0; 1766 iph->daddr = daddr; 1767 iph->saddr = saddr; 1768 iph->protocol = IPPROTO_IPIP; 1769 iph->ihl = 5; 1770 iph->tot_len = htons(skb->len); 1771 ip_select_ident(net, skb, NULL); 1772 ip_send_check(iph); 1773 1774 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1775 nf_reset(skb); 1776 } 1777 1778 static inline int ipmr_forward_finish(struct net *net, struct sock *sk, 1779 struct sk_buff *skb) 1780 { 1781 struct ip_options *opt = &(IPCB(skb)->opt); 1782 1783 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS); 1784 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len); 1785 1786 if (unlikely(opt->optlen)) 1787 ip_forward_options(skb); 1788 1789 return dst_output(net, sk, skb); 1790 } 1791 1792 #ifdef CONFIG_NET_SWITCHDEV 1793 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1794 int in_vifi, int out_vifi) 1795 { 1796 struct vif_device *out_vif = &mrt->vif_table[out_vifi]; 1797 struct vif_device *in_vif = &mrt->vif_table[in_vifi]; 1798 1799 if (!skb->offload_mr_fwd_mark) 1800 return false; 1801 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len) 1802 return false; 1803 return netdev_phys_item_id_same(&out_vif->dev_parent_id, 1804 &in_vif->dev_parent_id); 1805 } 1806 #else 1807 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1808 int in_vifi, int out_vifi) 1809 { 1810 return false; 1811 } 1812 #endif 1813 1814 /* Processing handlers for ipmr_forward */ 1815 1816 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1817 int in_vifi, struct sk_buff *skb, 1818 struct mfc_cache *c, int vifi) 1819 { 1820 const struct iphdr *iph = ip_hdr(skb); 1821 struct vif_device *vif = &mrt->vif_table[vifi]; 1822 struct net_device *dev; 1823 struct rtable *rt; 1824 struct flowi4 fl4; 1825 int encap = 0; 1826 1827 if (!vif->dev) 1828 goto out_free; 1829 1830 if (vif->flags & VIFF_REGISTER) { 1831 vif->pkt_out++; 1832 vif->bytes_out += skb->len; 1833 vif->dev->stats.tx_bytes += skb->len; 1834 vif->dev->stats.tx_packets++; 1835 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1836 goto out_free; 1837 } 1838 1839 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi)) 1840 goto out_free; 1841 1842 if (vif->flags & VIFF_TUNNEL) { 1843 rt = ip_route_output_ports(net, &fl4, NULL, 1844 vif->remote, vif->local, 1845 0, 0, 1846 IPPROTO_IPIP, 1847 RT_TOS(iph->tos), vif->link); 1848 if (IS_ERR(rt)) 1849 goto out_free; 1850 encap = sizeof(struct iphdr); 1851 } else { 1852 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1853 0, 0, 1854 IPPROTO_IPIP, 1855 RT_TOS(iph->tos), vif->link); 1856 if (IS_ERR(rt)) 1857 goto out_free; 1858 } 1859 1860 dev = rt->dst.dev; 1861 1862 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1863 /* Do not fragment multicasts. Alas, IPv4 does not 1864 * allow to send ICMP, so that packets will disappear 1865 * to blackhole. 1866 */ 1867 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 1868 ip_rt_put(rt); 1869 goto out_free; 1870 } 1871 1872 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1873 1874 if (skb_cow(skb, encap)) { 1875 ip_rt_put(rt); 1876 goto out_free; 1877 } 1878 1879 vif->pkt_out++; 1880 vif->bytes_out += skb->len; 1881 1882 skb_dst_drop(skb); 1883 skb_dst_set(skb, &rt->dst); 1884 ip_decrease_ttl(ip_hdr(skb)); 1885 1886 /* FIXME: forward and output firewalls used to be called here. 1887 * What do we do with netfilter? -- RR 1888 */ 1889 if (vif->flags & VIFF_TUNNEL) { 1890 ip_encap(net, skb, vif->local, vif->remote); 1891 /* FIXME: extra output firewall step used to be here. --RR */ 1892 vif->dev->stats.tx_packets++; 1893 vif->dev->stats.tx_bytes += skb->len; 1894 } 1895 1896 IPCB(skb)->flags |= IPSKB_FORWARDED; 1897 1898 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1899 * not only before forwarding, but after forwarding on all output 1900 * interfaces. It is clear, if mrouter runs a multicasting 1901 * program, it should receive packets not depending to what interface 1902 * program is joined. 1903 * If we will not make it, the program will have to join on all 1904 * interfaces. On the other hand, multihoming host (or router, but 1905 * not mrouter) cannot join to more than one interface - it will 1906 * result in receiving multiple packets. 1907 */ 1908 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, 1909 net, NULL, skb, skb->dev, dev, 1910 ipmr_forward_finish); 1911 return; 1912 1913 out_free: 1914 kfree_skb(skb); 1915 } 1916 1917 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev) 1918 { 1919 int ct; 1920 1921 for (ct = mrt->maxvif-1; ct >= 0; ct--) { 1922 if (mrt->vif_table[ct].dev == dev) 1923 break; 1924 } 1925 return ct; 1926 } 1927 1928 /* "local" means that we should preserve one skb (for local delivery) */ 1929 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 1930 struct net_device *dev, struct sk_buff *skb, 1931 struct mfc_cache *c, int local) 1932 { 1933 int true_vifi = ipmr_find_vif(mrt, dev); 1934 int psend = -1; 1935 int vif, ct; 1936 1937 vif = c->_c.mfc_parent; 1938 c->_c.mfc_un.res.pkt++; 1939 c->_c.mfc_un.res.bytes += skb->len; 1940 c->_c.mfc_un.res.lastuse = jiffies; 1941 1942 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { 1943 struct mfc_cache *cache_proxy; 1944 1945 /* For an (*,G) entry, we only check that the incomming 1946 * interface is part of the static tree. 1947 */ 1948 cache_proxy = mr_mfc_find_any_parent(mrt, vif); 1949 if (cache_proxy && 1950 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255) 1951 goto forward; 1952 } 1953 1954 /* Wrong interface: drop packet and (maybe) send PIM assert. */ 1955 if (mrt->vif_table[vif].dev != dev) { 1956 if (rt_is_output_route(skb_rtable(skb))) { 1957 /* It is our own packet, looped back. 1958 * Very complicated situation... 1959 * 1960 * The best workaround until routing daemons will be 1961 * fixed is not to redistribute packet, if it was 1962 * send through wrong interface. It means, that 1963 * multicast applications WILL NOT work for 1964 * (S,G), which have default multicast route pointing 1965 * to wrong oif. In any case, it is not a good 1966 * idea to use multicasting applications on router. 1967 */ 1968 goto dont_forward; 1969 } 1970 1971 c->_c.mfc_un.res.wrong_if++; 1972 1973 if (true_vifi >= 0 && mrt->mroute_do_assert && 1974 /* pimsm uses asserts, when switching from RPT to SPT, 1975 * so that we cannot check that packet arrived on an oif. 1976 * It is bad, but otherwise we would need to move pretty 1977 * large chunk of pimd to kernel. Ough... --ANK 1978 */ 1979 (mrt->mroute_do_pim || 1980 c->_c.mfc_un.res.ttls[true_vifi] < 255) && 1981 time_after(jiffies, 1982 c->_c.mfc_un.res.last_assert + 1983 MFC_ASSERT_THRESH)) { 1984 c->_c.mfc_un.res.last_assert = jiffies; 1985 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 1986 } 1987 goto dont_forward; 1988 } 1989 1990 forward: 1991 mrt->vif_table[vif].pkt_in++; 1992 mrt->vif_table[vif].bytes_in += skb->len; 1993 1994 /* Forward the frame */ 1995 if (c->mfc_origin == htonl(INADDR_ANY) && 1996 c->mfc_mcastgrp == htonl(INADDR_ANY)) { 1997 if (true_vifi >= 0 && 1998 true_vifi != c->_c.mfc_parent && 1999 ip_hdr(skb)->ttl > 2000 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) { 2001 /* It's an (*,*) entry and the packet is not coming from 2002 * the upstream: forward the packet to the upstream 2003 * only. 2004 */ 2005 psend = c->_c.mfc_parent; 2006 goto last_forward; 2007 } 2008 goto dont_forward; 2009 } 2010 for (ct = c->_c.mfc_un.res.maxvif - 1; 2011 ct >= c->_c.mfc_un.res.minvif; ct--) { 2012 /* For (*,G) entry, don't forward to the incoming interface */ 2013 if ((c->mfc_origin != htonl(INADDR_ANY) || 2014 ct != true_vifi) && 2015 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) { 2016 if (psend != -1) { 2017 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2018 2019 if (skb2) 2020 ipmr_queue_xmit(net, mrt, true_vifi, 2021 skb2, c, psend); 2022 } 2023 psend = ct; 2024 } 2025 } 2026 last_forward: 2027 if (psend != -1) { 2028 if (local) { 2029 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2030 2031 if (skb2) 2032 ipmr_queue_xmit(net, mrt, true_vifi, skb2, 2033 c, psend); 2034 } else { 2035 ipmr_queue_xmit(net, mrt, true_vifi, skb, c, psend); 2036 return; 2037 } 2038 } 2039 2040 dont_forward: 2041 if (!local) 2042 kfree_skb(skb); 2043 } 2044 2045 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 2046 { 2047 struct rtable *rt = skb_rtable(skb); 2048 struct iphdr *iph = ip_hdr(skb); 2049 struct flowi4 fl4 = { 2050 .daddr = iph->daddr, 2051 .saddr = iph->saddr, 2052 .flowi4_tos = RT_TOS(iph->tos), 2053 .flowi4_oif = (rt_is_output_route(rt) ? 2054 skb->dev->ifindex : 0), 2055 .flowi4_iif = (rt_is_output_route(rt) ? 2056 LOOPBACK_IFINDEX : 2057 skb->dev->ifindex), 2058 .flowi4_mark = skb->mark, 2059 }; 2060 struct mr_table *mrt; 2061 int err; 2062 2063 err = ipmr_fib_lookup(net, &fl4, &mrt); 2064 if (err) 2065 return ERR_PTR(err); 2066 return mrt; 2067 } 2068 2069 /* Multicast packets for forwarding arrive here 2070 * Called with rcu_read_lock(); 2071 */ 2072 int ip_mr_input(struct sk_buff *skb) 2073 { 2074 struct mfc_cache *cache; 2075 struct net *net = dev_net(skb->dev); 2076 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 2077 struct mr_table *mrt; 2078 struct net_device *dev; 2079 2080 /* skb->dev passed in is the loX master dev for vrfs. 2081 * As there are no vifs associated with loopback devices, 2082 * get the proper interface that does have a vif associated with it. 2083 */ 2084 dev = skb->dev; 2085 if (netif_is_l3_master(skb->dev)) { 2086 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif); 2087 if (!dev) { 2088 kfree_skb(skb); 2089 return -ENODEV; 2090 } 2091 } 2092 2093 /* Packet is looped back after forward, it should not be 2094 * forwarded second time, but still can be delivered locally. 2095 */ 2096 if (IPCB(skb)->flags & IPSKB_FORWARDED) 2097 goto dont_forward; 2098 2099 mrt = ipmr_rt_fib_lookup(net, skb); 2100 if (IS_ERR(mrt)) { 2101 kfree_skb(skb); 2102 return PTR_ERR(mrt); 2103 } 2104 if (!local) { 2105 if (IPCB(skb)->opt.router_alert) { 2106 if (ip_call_ra_chain(skb)) 2107 return 0; 2108 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 2109 /* IGMPv1 (and broken IGMPv2 implementations sort of 2110 * Cisco IOS <= 11.2(8)) do not put router alert 2111 * option to IGMP packets destined to routable 2112 * groups. It is very bad, because it means 2113 * that we can forward NO IGMP messages. 2114 */ 2115 struct sock *mroute_sk; 2116 2117 mroute_sk = rcu_dereference(mrt->mroute_sk); 2118 if (mroute_sk) { 2119 nf_reset(skb); 2120 raw_rcv(mroute_sk, skb); 2121 return 0; 2122 } 2123 } 2124 } 2125 2126 /* already under rcu_read_lock() */ 2127 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 2128 if (!cache) { 2129 int vif = ipmr_find_vif(mrt, dev); 2130 2131 if (vif >= 0) 2132 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 2133 vif); 2134 } 2135 2136 /* No usable cache entry */ 2137 if (!cache) { 2138 int vif; 2139 2140 if (local) { 2141 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2142 ip_local_deliver(skb); 2143 if (!skb2) 2144 return -ENOBUFS; 2145 skb = skb2; 2146 } 2147 2148 read_lock(&mrt_lock); 2149 vif = ipmr_find_vif(mrt, dev); 2150 if (vif >= 0) { 2151 int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev); 2152 read_unlock(&mrt_lock); 2153 2154 return err2; 2155 } 2156 read_unlock(&mrt_lock); 2157 kfree_skb(skb); 2158 return -ENODEV; 2159 } 2160 2161 read_lock(&mrt_lock); 2162 ip_mr_forward(net, mrt, dev, skb, cache, local); 2163 read_unlock(&mrt_lock); 2164 2165 if (local) 2166 return ip_local_deliver(skb); 2167 2168 return 0; 2169 2170 dont_forward: 2171 if (local) 2172 return ip_local_deliver(skb); 2173 kfree_skb(skb); 2174 return 0; 2175 } 2176 2177 #ifdef CONFIG_IP_PIMSM_V1 2178 /* Handle IGMP messages of PIMv1 */ 2179 int pim_rcv_v1(struct sk_buff *skb) 2180 { 2181 struct igmphdr *pim; 2182 struct net *net = dev_net(skb->dev); 2183 struct mr_table *mrt; 2184 2185 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2186 goto drop; 2187 2188 pim = igmp_hdr(skb); 2189 2190 mrt = ipmr_rt_fib_lookup(net, skb); 2191 if (IS_ERR(mrt)) 2192 goto drop; 2193 if (!mrt->mroute_do_pim || 2194 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 2195 goto drop; 2196 2197 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2198 drop: 2199 kfree_skb(skb); 2200 } 2201 return 0; 2202 } 2203 #endif 2204 2205 #ifdef CONFIG_IP_PIMSM_V2 2206 static int pim_rcv(struct sk_buff *skb) 2207 { 2208 struct pimreghdr *pim; 2209 struct net *net = dev_net(skb->dev); 2210 struct mr_table *mrt; 2211 2212 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2213 goto drop; 2214 2215 pim = (struct pimreghdr *)skb_transport_header(skb); 2216 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) || 2217 (pim->flags & PIM_NULL_REGISTER) || 2218 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 2219 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 2220 goto drop; 2221 2222 mrt = ipmr_rt_fib_lookup(net, skb); 2223 if (IS_ERR(mrt)) 2224 goto drop; 2225 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2226 drop: 2227 kfree_skb(skb); 2228 } 2229 return 0; 2230 } 2231 #endif 2232 2233 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2234 __be32 saddr, __be32 daddr, 2235 struct rtmsg *rtm, u32 portid) 2236 { 2237 struct mfc_cache *cache; 2238 struct mr_table *mrt; 2239 int err; 2240 2241 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2242 if (!mrt) 2243 return -ENOENT; 2244 2245 rcu_read_lock(); 2246 cache = ipmr_cache_find(mrt, saddr, daddr); 2247 if (!cache && skb->dev) { 2248 int vif = ipmr_find_vif(mrt, skb->dev); 2249 2250 if (vif >= 0) 2251 cache = ipmr_cache_find_any(mrt, daddr, vif); 2252 } 2253 if (!cache) { 2254 struct sk_buff *skb2; 2255 struct iphdr *iph; 2256 struct net_device *dev; 2257 int vif = -1; 2258 2259 dev = skb->dev; 2260 read_lock(&mrt_lock); 2261 if (dev) 2262 vif = ipmr_find_vif(mrt, dev); 2263 if (vif < 0) { 2264 read_unlock(&mrt_lock); 2265 rcu_read_unlock(); 2266 return -ENODEV; 2267 } 2268 skb2 = skb_clone(skb, GFP_ATOMIC); 2269 if (!skb2) { 2270 read_unlock(&mrt_lock); 2271 rcu_read_unlock(); 2272 return -ENOMEM; 2273 } 2274 2275 NETLINK_CB(skb2).portid = portid; 2276 skb_push(skb2, sizeof(struct iphdr)); 2277 skb_reset_network_header(skb2); 2278 iph = ip_hdr(skb2); 2279 iph->ihl = sizeof(struct iphdr) >> 2; 2280 iph->saddr = saddr; 2281 iph->daddr = daddr; 2282 iph->version = 0; 2283 err = ipmr_cache_unresolved(mrt, vif, skb2, dev); 2284 read_unlock(&mrt_lock); 2285 rcu_read_unlock(); 2286 return err; 2287 } 2288 2289 read_lock(&mrt_lock); 2290 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm); 2291 read_unlock(&mrt_lock); 2292 rcu_read_unlock(); 2293 return err; 2294 } 2295 2296 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2297 u32 portid, u32 seq, struct mfc_cache *c, int cmd, 2298 int flags) 2299 { 2300 struct nlmsghdr *nlh; 2301 struct rtmsg *rtm; 2302 int err; 2303 2304 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2305 if (!nlh) 2306 return -EMSGSIZE; 2307 2308 rtm = nlmsg_data(nlh); 2309 rtm->rtm_family = RTNL_FAMILY_IPMR; 2310 rtm->rtm_dst_len = 32; 2311 rtm->rtm_src_len = 32; 2312 rtm->rtm_tos = 0; 2313 rtm->rtm_table = mrt->id; 2314 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2315 goto nla_put_failure; 2316 rtm->rtm_type = RTN_MULTICAST; 2317 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2318 if (c->_c.mfc_flags & MFC_STATIC) 2319 rtm->rtm_protocol = RTPROT_STATIC; 2320 else 2321 rtm->rtm_protocol = RTPROT_MROUTED; 2322 rtm->rtm_flags = 0; 2323 2324 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) || 2325 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp)) 2326 goto nla_put_failure; 2327 err = mr_fill_mroute(mrt, skb, &c->_c, rtm); 2328 /* do not break the dump if cache is unresolved */ 2329 if (err < 0 && err != -ENOENT) 2330 goto nla_put_failure; 2331 2332 nlmsg_end(skb, nlh); 2333 return 0; 2334 2335 nla_put_failure: 2336 nlmsg_cancel(skb, nlh); 2337 return -EMSGSIZE; 2338 } 2339 2340 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2341 u32 portid, u32 seq, struct mr_mfc *c, int cmd, 2342 int flags) 2343 { 2344 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c, 2345 cmd, flags); 2346 } 2347 2348 static size_t mroute_msgsize(bool unresolved, int maxvif) 2349 { 2350 size_t len = 2351 NLMSG_ALIGN(sizeof(struct rtmsg)) 2352 + nla_total_size(4) /* RTA_TABLE */ 2353 + nla_total_size(4) /* RTA_SRC */ 2354 + nla_total_size(4) /* RTA_DST */ 2355 ; 2356 2357 if (!unresolved) 2358 len = len 2359 + nla_total_size(4) /* RTA_IIF */ 2360 + nla_total_size(0) /* RTA_MULTIPATH */ 2361 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2362 /* RTA_MFC_STATS */ 2363 + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) 2364 ; 2365 2366 return len; 2367 } 2368 2369 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 2370 int cmd) 2371 { 2372 struct net *net = read_pnet(&mrt->net); 2373 struct sk_buff *skb; 2374 int err = -ENOBUFS; 2375 2376 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS, 2377 mrt->maxvif), 2378 GFP_ATOMIC); 2379 if (!skb) 2380 goto errout; 2381 2382 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2383 if (err < 0) 2384 goto errout; 2385 2386 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); 2387 return; 2388 2389 errout: 2390 kfree_skb(skb); 2391 if (err < 0) 2392 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); 2393 } 2394 2395 static size_t igmpmsg_netlink_msgsize(size_t payloadlen) 2396 { 2397 size_t len = 2398 NLMSG_ALIGN(sizeof(struct rtgenmsg)) 2399 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */ 2400 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */ 2401 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */ 2402 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */ 2403 /* IPMRA_CREPORT_PKT */ 2404 + nla_total_size(payloadlen) 2405 ; 2406 2407 return len; 2408 } 2409 2410 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt) 2411 { 2412 struct net *net = read_pnet(&mrt->net); 2413 struct nlmsghdr *nlh; 2414 struct rtgenmsg *rtgenm; 2415 struct igmpmsg *msg; 2416 struct sk_buff *skb; 2417 struct nlattr *nla; 2418 int payloadlen; 2419 2420 payloadlen = pkt->len - sizeof(struct igmpmsg); 2421 msg = (struct igmpmsg *)skb_network_header(pkt); 2422 2423 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC); 2424 if (!skb) 2425 goto errout; 2426 2427 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT, 2428 sizeof(struct rtgenmsg), 0); 2429 if (!nlh) 2430 goto errout; 2431 rtgenm = nlmsg_data(nlh); 2432 rtgenm->rtgen_family = RTNL_FAMILY_IPMR; 2433 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) || 2434 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) || 2435 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR, 2436 msg->im_src.s_addr) || 2437 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR, 2438 msg->im_dst.s_addr)) 2439 goto nla_put_failure; 2440 2441 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen); 2442 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg), 2443 nla_data(nla), payloadlen)) 2444 goto nla_put_failure; 2445 2446 nlmsg_end(skb, nlh); 2447 2448 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC); 2449 return; 2450 2451 nla_put_failure: 2452 nlmsg_cancel(skb, nlh); 2453 errout: 2454 kfree_skb(skb); 2455 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS); 2456 } 2457 2458 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 2459 struct netlink_ext_ack *extack) 2460 { 2461 struct net *net = sock_net(in_skb->sk); 2462 struct nlattr *tb[RTA_MAX + 1]; 2463 struct sk_buff *skb = NULL; 2464 struct mfc_cache *cache; 2465 struct mr_table *mrt; 2466 struct rtmsg *rtm; 2467 __be32 src, grp; 2468 u32 tableid; 2469 int err; 2470 2471 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, 2472 rtm_ipv4_policy, extack); 2473 if (err < 0) 2474 goto errout; 2475 2476 rtm = nlmsg_data(nlh); 2477 2478 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0; 2479 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0; 2480 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0; 2481 2482 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT); 2483 if (!mrt) { 2484 err = -ENOENT; 2485 goto errout_free; 2486 } 2487 2488 /* entries are added/deleted only under RTNL */ 2489 rcu_read_lock(); 2490 cache = ipmr_cache_find(mrt, src, grp); 2491 rcu_read_unlock(); 2492 if (!cache) { 2493 err = -ENOENT; 2494 goto errout_free; 2495 } 2496 2497 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL); 2498 if (!skb) { 2499 err = -ENOBUFS; 2500 goto errout_free; 2501 } 2502 2503 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid, 2504 nlh->nlmsg_seq, cache, 2505 RTM_NEWROUTE, 0); 2506 if (err < 0) 2507 goto errout_free; 2508 2509 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 2510 2511 errout: 2512 return err; 2513 2514 errout_free: 2515 kfree_skb(skb); 2516 goto errout; 2517 } 2518 2519 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2520 { 2521 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter, 2522 _ipmr_fill_mroute, &mfc_unres_lock); 2523 } 2524 2525 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = { 2526 [RTA_SRC] = { .type = NLA_U32 }, 2527 [RTA_DST] = { .type = NLA_U32 }, 2528 [RTA_IIF] = { .type = NLA_U32 }, 2529 [RTA_TABLE] = { .type = NLA_U32 }, 2530 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 2531 }; 2532 2533 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol) 2534 { 2535 switch (rtm_protocol) { 2536 case RTPROT_STATIC: 2537 case RTPROT_MROUTED: 2538 return true; 2539 } 2540 return false; 2541 } 2542 2543 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc) 2544 { 2545 struct rtnexthop *rtnh = nla_data(nla); 2546 int remaining = nla_len(nla), vifi = 0; 2547 2548 while (rtnh_ok(rtnh, remaining)) { 2549 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops; 2550 if (++vifi == MAXVIFS) 2551 break; 2552 rtnh = rtnh_next(rtnh, &remaining); 2553 } 2554 2555 return remaining > 0 ? -EINVAL : vifi; 2556 } 2557 2558 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */ 2559 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh, 2560 struct mfcctl *mfcc, int *mrtsock, 2561 struct mr_table **mrtret, 2562 struct netlink_ext_ack *extack) 2563 { 2564 struct net_device *dev = NULL; 2565 u32 tblid = RT_TABLE_DEFAULT; 2566 struct mr_table *mrt; 2567 struct nlattr *attr; 2568 struct rtmsg *rtm; 2569 int ret, rem; 2570 2571 ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy, 2572 extack); 2573 if (ret < 0) 2574 goto out; 2575 rtm = nlmsg_data(nlh); 2576 2577 ret = -EINVAL; 2578 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 || 2579 rtm->rtm_type != RTN_MULTICAST || 2580 rtm->rtm_scope != RT_SCOPE_UNIVERSE || 2581 !ipmr_rtm_validate_proto(rtm->rtm_protocol)) 2582 goto out; 2583 2584 memset(mfcc, 0, sizeof(*mfcc)); 2585 mfcc->mfcc_parent = -1; 2586 ret = 0; 2587 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) { 2588 switch (nla_type(attr)) { 2589 case RTA_SRC: 2590 mfcc->mfcc_origin.s_addr = nla_get_be32(attr); 2591 break; 2592 case RTA_DST: 2593 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr); 2594 break; 2595 case RTA_IIF: 2596 dev = __dev_get_by_index(net, nla_get_u32(attr)); 2597 if (!dev) { 2598 ret = -ENODEV; 2599 goto out; 2600 } 2601 break; 2602 case RTA_MULTIPATH: 2603 if (ipmr_nla_get_ttls(attr, mfcc) < 0) { 2604 ret = -EINVAL; 2605 goto out; 2606 } 2607 break; 2608 case RTA_PREFSRC: 2609 ret = 1; 2610 break; 2611 case RTA_TABLE: 2612 tblid = nla_get_u32(attr); 2613 break; 2614 } 2615 } 2616 mrt = ipmr_get_table(net, tblid); 2617 if (!mrt) { 2618 ret = -ENOENT; 2619 goto out; 2620 } 2621 *mrtret = mrt; 2622 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0; 2623 if (dev) 2624 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev); 2625 2626 out: 2627 return ret; 2628 } 2629 2630 /* takes care of both newroute and delroute */ 2631 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh, 2632 struct netlink_ext_ack *extack) 2633 { 2634 struct net *net = sock_net(skb->sk); 2635 int ret, mrtsock, parent; 2636 struct mr_table *tbl; 2637 struct mfcctl mfcc; 2638 2639 mrtsock = 0; 2640 tbl = NULL; 2641 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack); 2642 if (ret < 0) 2643 return ret; 2644 2645 parent = ret ? mfcc.mfcc_parent : -1; 2646 if (nlh->nlmsg_type == RTM_NEWROUTE) 2647 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent); 2648 else 2649 return ipmr_mfc_delete(tbl, &mfcc, parent); 2650 } 2651 2652 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb) 2653 { 2654 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len); 2655 2656 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) || 2657 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) || 2658 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM, 2659 mrt->mroute_reg_vif_num) || 2660 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT, 2661 mrt->mroute_do_assert) || 2662 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim)) 2663 return false; 2664 2665 return true; 2666 } 2667 2668 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb) 2669 { 2670 struct nlattr *vif_nest; 2671 struct vif_device *vif; 2672 2673 /* if the VIF doesn't exist just continue */ 2674 if (!VIF_EXISTS(mrt, vifid)) 2675 return true; 2676 2677 vif = &mrt->vif_table[vifid]; 2678 vif_nest = nla_nest_start(skb, IPMRA_VIF); 2679 if (!vif_nest) 2680 return false; 2681 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) || 2682 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) || 2683 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) || 2684 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in, 2685 IPMRA_VIFA_PAD) || 2686 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out, 2687 IPMRA_VIFA_PAD) || 2688 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in, 2689 IPMRA_VIFA_PAD) || 2690 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out, 2691 IPMRA_VIFA_PAD) || 2692 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) || 2693 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) { 2694 nla_nest_cancel(skb, vif_nest); 2695 return false; 2696 } 2697 nla_nest_end(skb, vif_nest); 2698 2699 return true; 2700 } 2701 2702 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb) 2703 { 2704 struct net *net = sock_net(skb->sk); 2705 struct nlmsghdr *nlh = NULL; 2706 unsigned int t = 0, s_t; 2707 unsigned int e = 0, s_e; 2708 struct mr_table *mrt; 2709 2710 s_t = cb->args[0]; 2711 s_e = cb->args[1]; 2712 2713 ipmr_for_each_table(mrt, net) { 2714 struct nlattr *vifs, *af; 2715 struct ifinfomsg *hdr; 2716 u32 i; 2717 2718 if (t < s_t) 2719 goto skip_table; 2720 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, 2721 cb->nlh->nlmsg_seq, RTM_NEWLINK, 2722 sizeof(*hdr), NLM_F_MULTI); 2723 if (!nlh) 2724 break; 2725 2726 hdr = nlmsg_data(nlh); 2727 memset(hdr, 0, sizeof(*hdr)); 2728 hdr->ifi_family = RTNL_FAMILY_IPMR; 2729 2730 af = nla_nest_start(skb, IFLA_AF_SPEC); 2731 if (!af) { 2732 nlmsg_cancel(skb, nlh); 2733 goto out; 2734 } 2735 2736 if (!ipmr_fill_table(mrt, skb)) { 2737 nlmsg_cancel(skb, nlh); 2738 goto out; 2739 } 2740 2741 vifs = nla_nest_start(skb, IPMRA_TABLE_VIFS); 2742 if (!vifs) { 2743 nla_nest_end(skb, af); 2744 nlmsg_end(skb, nlh); 2745 goto out; 2746 } 2747 for (i = 0; i < mrt->maxvif; i++) { 2748 if (e < s_e) 2749 goto skip_entry; 2750 if (!ipmr_fill_vif(mrt, i, skb)) { 2751 nla_nest_end(skb, vifs); 2752 nla_nest_end(skb, af); 2753 nlmsg_end(skb, nlh); 2754 goto out; 2755 } 2756 skip_entry: 2757 e++; 2758 } 2759 s_e = 0; 2760 e = 0; 2761 nla_nest_end(skb, vifs); 2762 nla_nest_end(skb, af); 2763 nlmsg_end(skb, nlh); 2764 skip_table: 2765 t++; 2766 } 2767 2768 out: 2769 cb->args[1] = e; 2770 cb->args[0] = t; 2771 2772 return skb->len; 2773 } 2774 2775 #ifdef CONFIG_PROC_FS 2776 /* The /proc interfaces to multicast routing : 2777 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2778 */ 2779 2780 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2781 __acquires(mrt_lock) 2782 { 2783 struct mr_vif_iter *iter = seq->private; 2784 struct net *net = seq_file_net(seq); 2785 struct mr_table *mrt; 2786 2787 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2788 if (!mrt) 2789 return ERR_PTR(-ENOENT); 2790 2791 iter->mrt = mrt; 2792 2793 read_lock(&mrt_lock); 2794 return mr_vif_seq_start(seq, pos); 2795 } 2796 2797 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2798 __releases(mrt_lock) 2799 { 2800 read_unlock(&mrt_lock); 2801 } 2802 2803 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2804 { 2805 struct mr_vif_iter *iter = seq->private; 2806 struct mr_table *mrt = iter->mrt; 2807 2808 if (v == SEQ_START_TOKEN) { 2809 seq_puts(seq, 2810 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2811 } else { 2812 const struct vif_device *vif = v; 2813 const char *name = vif->dev ? 2814 vif->dev->name : "none"; 2815 2816 seq_printf(seq, 2817 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2818 vif - mrt->vif_table, 2819 name, vif->bytes_in, vif->pkt_in, 2820 vif->bytes_out, vif->pkt_out, 2821 vif->flags, vif->local, vif->remote); 2822 } 2823 return 0; 2824 } 2825 2826 static const struct seq_operations ipmr_vif_seq_ops = { 2827 .start = ipmr_vif_seq_start, 2828 .next = mr_vif_seq_next, 2829 .stop = ipmr_vif_seq_stop, 2830 .show = ipmr_vif_seq_show, 2831 }; 2832 2833 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2834 { 2835 struct net *net = seq_file_net(seq); 2836 struct mr_table *mrt; 2837 2838 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2839 if (!mrt) 2840 return ERR_PTR(-ENOENT); 2841 2842 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock); 2843 } 2844 2845 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2846 { 2847 int n; 2848 2849 if (v == SEQ_START_TOKEN) { 2850 seq_puts(seq, 2851 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2852 } else { 2853 const struct mfc_cache *mfc = v; 2854 const struct mr_mfc_iter *it = seq->private; 2855 const struct mr_table *mrt = it->mrt; 2856 2857 seq_printf(seq, "%08X %08X %-3hd", 2858 (__force u32) mfc->mfc_mcastgrp, 2859 (__force u32) mfc->mfc_origin, 2860 mfc->_c.mfc_parent); 2861 2862 if (it->cache != &mrt->mfc_unres_queue) { 2863 seq_printf(seq, " %8lu %8lu %8lu", 2864 mfc->_c.mfc_un.res.pkt, 2865 mfc->_c.mfc_un.res.bytes, 2866 mfc->_c.mfc_un.res.wrong_if); 2867 for (n = mfc->_c.mfc_un.res.minvif; 2868 n < mfc->_c.mfc_un.res.maxvif; n++) { 2869 if (VIF_EXISTS(mrt, n) && 2870 mfc->_c.mfc_un.res.ttls[n] < 255) 2871 seq_printf(seq, 2872 " %2d:%-3d", 2873 n, mfc->_c.mfc_un.res.ttls[n]); 2874 } 2875 } else { 2876 /* unresolved mfc_caches don't contain 2877 * pkt, bytes and wrong_if values 2878 */ 2879 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 2880 } 2881 seq_putc(seq, '\n'); 2882 } 2883 return 0; 2884 } 2885 2886 static const struct seq_operations ipmr_mfc_seq_ops = { 2887 .start = ipmr_mfc_seq_start, 2888 .next = mr_mfc_seq_next, 2889 .stop = mr_mfc_seq_stop, 2890 .show = ipmr_mfc_seq_show, 2891 }; 2892 #endif 2893 2894 #ifdef CONFIG_IP_PIMSM_V2 2895 static const struct net_protocol pim_protocol = { 2896 .handler = pim_rcv, 2897 .netns_ok = 1, 2898 }; 2899 #endif 2900 2901 static unsigned int ipmr_seq_read(struct net *net) 2902 { 2903 ASSERT_RTNL(); 2904 2905 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net); 2906 } 2907 2908 static int ipmr_dump(struct net *net, struct notifier_block *nb) 2909 { 2910 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump, 2911 ipmr_mr_table_iter, &mrt_lock); 2912 } 2913 2914 static const struct fib_notifier_ops ipmr_notifier_ops_template = { 2915 .family = RTNL_FAMILY_IPMR, 2916 .fib_seq_read = ipmr_seq_read, 2917 .fib_dump = ipmr_dump, 2918 .owner = THIS_MODULE, 2919 }; 2920 2921 static int __net_init ipmr_notifier_init(struct net *net) 2922 { 2923 struct fib_notifier_ops *ops; 2924 2925 net->ipv4.ipmr_seq = 0; 2926 2927 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net); 2928 if (IS_ERR(ops)) 2929 return PTR_ERR(ops); 2930 net->ipv4.ipmr_notifier_ops = ops; 2931 2932 return 0; 2933 } 2934 2935 static void __net_exit ipmr_notifier_exit(struct net *net) 2936 { 2937 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops); 2938 net->ipv4.ipmr_notifier_ops = NULL; 2939 } 2940 2941 /* Setup for IP multicast routing */ 2942 static int __net_init ipmr_net_init(struct net *net) 2943 { 2944 int err; 2945 2946 err = ipmr_notifier_init(net); 2947 if (err) 2948 goto ipmr_notifier_fail; 2949 2950 err = ipmr_rules_init(net); 2951 if (err < 0) 2952 goto ipmr_rules_fail; 2953 2954 #ifdef CONFIG_PROC_FS 2955 err = -ENOMEM; 2956 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops, 2957 sizeof(struct mr_vif_iter))) 2958 goto proc_vif_fail; 2959 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops, 2960 sizeof(struct mr_mfc_iter))) 2961 goto proc_cache_fail; 2962 #endif 2963 return 0; 2964 2965 #ifdef CONFIG_PROC_FS 2966 proc_cache_fail: 2967 remove_proc_entry("ip_mr_vif", net->proc_net); 2968 proc_vif_fail: 2969 ipmr_rules_exit(net); 2970 #endif 2971 ipmr_rules_fail: 2972 ipmr_notifier_exit(net); 2973 ipmr_notifier_fail: 2974 return err; 2975 } 2976 2977 static void __net_exit ipmr_net_exit(struct net *net) 2978 { 2979 #ifdef CONFIG_PROC_FS 2980 remove_proc_entry("ip_mr_cache", net->proc_net); 2981 remove_proc_entry("ip_mr_vif", net->proc_net); 2982 #endif 2983 ipmr_notifier_exit(net); 2984 ipmr_rules_exit(net); 2985 } 2986 2987 static struct pernet_operations ipmr_net_ops = { 2988 .init = ipmr_net_init, 2989 .exit = ipmr_net_exit, 2990 }; 2991 2992 int __init ip_mr_init(void) 2993 { 2994 int err; 2995 2996 mrt_cachep = kmem_cache_create("ip_mrt_cache", 2997 sizeof(struct mfc_cache), 2998 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 2999 NULL); 3000 3001 err = register_pernet_subsys(&ipmr_net_ops); 3002 if (err) 3003 goto reg_pernet_fail; 3004 3005 err = register_netdevice_notifier(&ip_mr_notifier); 3006 if (err) 3007 goto reg_notif_fail; 3008 #ifdef CONFIG_IP_PIMSM_V2 3009 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 3010 pr_err("%s: can't add PIM protocol\n", __func__); 3011 err = -EAGAIN; 3012 goto add_proto_fail; 3013 } 3014 #endif 3015 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 3016 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0); 3017 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE, 3018 ipmr_rtm_route, NULL, 0); 3019 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE, 3020 ipmr_rtm_route, NULL, 0); 3021 3022 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK, 3023 NULL, ipmr_rtm_dumplink, 0); 3024 return 0; 3025 3026 #ifdef CONFIG_IP_PIMSM_V2 3027 add_proto_fail: 3028 unregister_netdevice_notifier(&ip_mr_notifier); 3029 #endif 3030 reg_notif_fail: 3031 unregister_pernet_subsys(&ipmr_net_ops); 3032 reg_pernet_fail: 3033 kmem_cache_destroy(mrt_cachep); 3034 return err; 3035 } 3036