1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * IP multicast routing support for mrouted 3.6/3.8 4 * 5 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 6 * Linux Consultancy and Custom Driver Development 7 * 8 * Fixes: 9 * Michael Chastain : Incorrect size of copying. 10 * Alan Cox : Added the cache manager code 11 * Alan Cox : Fixed the clone/copy bug and device race. 12 * Mike McLagan : Routing by source 13 * Malcolm Beattie : Buffer handling fixes. 14 * Alexey Kuznetsov : Double buffer free and other fixes. 15 * SVR Anand : Fixed several multicast bugs and problems. 16 * Alexey Kuznetsov : Status, optimisations and more. 17 * Brad Parker : Better behaviour on mrouted upcall 18 * overflow. 19 * Carlos Picoto : PIMv1 Support 20 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 21 * Relax this requirement to work with older peers. 22 */ 23 24 #include <linux/uaccess.h> 25 #include <linux/types.h> 26 #include <linux/cache.h> 27 #include <linux/capability.h> 28 #include <linux/errno.h> 29 #include <linux/mm.h> 30 #include <linux/kernel.h> 31 #include <linux/fcntl.h> 32 #include <linux/stat.h> 33 #include <linux/socket.h> 34 #include <linux/in.h> 35 #include <linux/inet.h> 36 #include <linux/netdevice.h> 37 #include <linux/inetdevice.h> 38 #include <linux/igmp.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 #include <linux/mroute.h> 42 #include <linux/init.h> 43 #include <linux/if_ether.h> 44 #include <linux/slab.h> 45 #include <net/net_namespace.h> 46 #include <net/ip.h> 47 #include <net/protocol.h> 48 #include <linux/skbuff.h> 49 #include <net/route.h> 50 #include <net/icmp.h> 51 #include <net/udp.h> 52 #include <net/raw.h> 53 #include <linux/notifier.h> 54 #include <linux/if_arp.h> 55 #include <linux/netfilter_ipv4.h> 56 #include <linux/compat.h> 57 #include <linux/export.h> 58 #include <linux/rhashtable.h> 59 #include <net/ip_tunnels.h> 60 #include <net/checksum.h> 61 #include <net/netlink.h> 62 #include <net/fib_rules.h> 63 #include <linux/netconf.h> 64 #include <net/rtnh.h> 65 66 #include <linux/nospec.h> 67 68 struct ipmr_rule { 69 struct fib_rule common; 70 }; 71 72 struct ipmr_result { 73 struct mr_table *mrt; 74 }; 75 76 /* Big lock, protecting vif table, mrt cache and mroute socket state. 77 * Note that the changes are semaphored via rtnl_lock. 78 */ 79 80 static DEFINE_SPINLOCK(mrt_lock); 81 82 static struct net_device *vif_dev_read(const struct vif_device *vif) 83 { 84 return rcu_dereference(vif->dev); 85 } 86 87 /* Multicast router control variables */ 88 89 /* Special spinlock for queue of unresolved entries */ 90 static DEFINE_SPINLOCK(mfc_unres_lock); 91 92 /* We return to original Alan's scheme. Hash table of resolved 93 * entries is changed only in process context and protected 94 * with weak lock mrt_lock. Queue of unresolved entries is protected 95 * with strong spinlock mfc_unres_lock. 96 * 97 * In this case data path is free of exclusive locks at all. 98 */ 99 100 static struct kmem_cache *mrt_cachep __ro_after_init; 101 102 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 103 static void ipmr_free_table(struct mr_table *mrt); 104 105 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 106 struct net_device *dev, struct sk_buff *skb, 107 struct mfc_cache *cache, int local); 108 static int ipmr_cache_report(const struct mr_table *mrt, 109 struct sk_buff *pkt, vifi_t vifi, int assert); 110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 111 int cmd); 112 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt); 113 static void mroute_clean_tables(struct mr_table *mrt, int flags); 114 static void ipmr_expire_process(struct timer_list *t); 115 116 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 117 #define ipmr_for_each_table(mrt, net) \ 118 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list, \ 119 lockdep_rtnl_is_held() || \ 120 list_empty(&net->ipv4.mr_tables)) 121 122 static struct mr_table *ipmr_mr_table_iter(struct net *net, 123 struct mr_table *mrt) 124 { 125 struct mr_table *ret; 126 127 if (!mrt) 128 ret = list_entry_rcu(net->ipv4.mr_tables.next, 129 struct mr_table, list); 130 else 131 ret = list_entry_rcu(mrt->list.next, 132 struct mr_table, list); 133 134 if (&ret->list == &net->ipv4.mr_tables) 135 return NULL; 136 return ret; 137 } 138 139 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 140 { 141 struct mr_table *mrt; 142 143 ipmr_for_each_table(mrt, net) { 144 if (mrt->id == id) 145 return mrt; 146 } 147 return NULL; 148 } 149 150 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 151 struct mr_table **mrt) 152 { 153 int err; 154 struct ipmr_result res; 155 struct fib_lookup_arg arg = { 156 .result = &res, 157 .flags = FIB_LOOKUP_NOREF, 158 }; 159 160 /* update flow if oif or iif point to device enslaved to l3mdev */ 161 l3mdev_update_flow(net, flowi4_to_flowi(flp4)); 162 163 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 164 flowi4_to_flowi(flp4), 0, &arg); 165 if (err < 0) 166 return err; 167 *mrt = res.mrt; 168 return 0; 169 } 170 171 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 172 int flags, struct fib_lookup_arg *arg) 173 { 174 struct ipmr_result *res = arg->result; 175 struct mr_table *mrt; 176 177 switch (rule->action) { 178 case FR_ACT_TO_TBL: 179 break; 180 case FR_ACT_UNREACHABLE: 181 return -ENETUNREACH; 182 case FR_ACT_PROHIBIT: 183 return -EACCES; 184 case FR_ACT_BLACKHOLE: 185 default: 186 return -EINVAL; 187 } 188 189 arg->table = fib_rule_get_table(rule, arg); 190 191 mrt = ipmr_get_table(rule->fr_net, arg->table); 192 if (!mrt) 193 return -EAGAIN; 194 res->mrt = mrt; 195 return 0; 196 } 197 198 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 199 { 200 return 1; 201 } 202 203 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 204 struct fib_rule_hdr *frh, struct nlattr **tb, 205 struct netlink_ext_ack *extack) 206 { 207 return 0; 208 } 209 210 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 211 struct nlattr **tb) 212 { 213 return 1; 214 } 215 216 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 217 struct fib_rule_hdr *frh) 218 { 219 frh->dst_len = 0; 220 frh->src_len = 0; 221 frh->tos = 0; 222 return 0; 223 } 224 225 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { 226 .family = RTNL_FAMILY_IPMR, 227 .rule_size = sizeof(struct ipmr_rule), 228 .addr_size = sizeof(u32), 229 .action = ipmr_rule_action, 230 .match = ipmr_rule_match, 231 .configure = ipmr_rule_configure, 232 .compare = ipmr_rule_compare, 233 .fill = ipmr_rule_fill, 234 .nlgroup = RTNLGRP_IPV4_RULE, 235 .owner = THIS_MODULE, 236 }; 237 238 static int __net_init ipmr_rules_init(struct net *net) 239 { 240 struct fib_rules_ops *ops; 241 struct mr_table *mrt; 242 int err; 243 244 ops = fib_rules_register(&ipmr_rules_ops_template, net); 245 if (IS_ERR(ops)) 246 return PTR_ERR(ops); 247 248 INIT_LIST_HEAD(&net->ipv4.mr_tables); 249 250 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 251 if (IS_ERR(mrt)) { 252 err = PTR_ERR(mrt); 253 goto err1; 254 } 255 256 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT); 257 if (err < 0) 258 goto err2; 259 260 net->ipv4.mr_rules_ops = ops; 261 return 0; 262 263 err2: 264 rtnl_lock(); 265 ipmr_free_table(mrt); 266 rtnl_unlock(); 267 err1: 268 fib_rules_unregister(ops); 269 return err; 270 } 271 272 static void __net_exit ipmr_rules_exit(struct net *net) 273 { 274 struct mr_table *mrt, *next; 275 276 ASSERT_RTNL(); 277 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 278 list_del(&mrt->list); 279 ipmr_free_table(mrt); 280 } 281 fib_rules_unregister(net->ipv4.mr_rules_ops); 282 } 283 284 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb, 285 struct netlink_ext_ack *extack) 286 { 287 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack); 288 } 289 290 static unsigned int ipmr_rules_seq_read(struct net *net) 291 { 292 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR); 293 } 294 295 bool ipmr_rule_default(const struct fib_rule *rule) 296 { 297 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT; 298 } 299 EXPORT_SYMBOL(ipmr_rule_default); 300 #else 301 #define ipmr_for_each_table(mrt, net) \ 302 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 303 304 static struct mr_table *ipmr_mr_table_iter(struct net *net, 305 struct mr_table *mrt) 306 { 307 if (!mrt) 308 return net->ipv4.mrt; 309 return NULL; 310 } 311 312 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 313 { 314 return net->ipv4.mrt; 315 } 316 317 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 318 struct mr_table **mrt) 319 { 320 *mrt = net->ipv4.mrt; 321 return 0; 322 } 323 324 static int __net_init ipmr_rules_init(struct net *net) 325 { 326 struct mr_table *mrt; 327 328 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 329 if (IS_ERR(mrt)) 330 return PTR_ERR(mrt); 331 net->ipv4.mrt = mrt; 332 return 0; 333 } 334 335 static void __net_exit ipmr_rules_exit(struct net *net) 336 { 337 ASSERT_RTNL(); 338 ipmr_free_table(net->ipv4.mrt); 339 net->ipv4.mrt = NULL; 340 } 341 342 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb, 343 struct netlink_ext_ack *extack) 344 { 345 return 0; 346 } 347 348 static unsigned int ipmr_rules_seq_read(struct net *net) 349 { 350 return 0; 351 } 352 353 bool ipmr_rule_default(const struct fib_rule *rule) 354 { 355 return true; 356 } 357 EXPORT_SYMBOL(ipmr_rule_default); 358 #endif 359 360 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg, 361 const void *ptr) 362 { 363 const struct mfc_cache_cmp_arg *cmparg = arg->key; 364 const struct mfc_cache *c = ptr; 365 366 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp || 367 cmparg->mfc_origin != c->mfc_origin; 368 } 369 370 static const struct rhashtable_params ipmr_rht_params = { 371 .head_offset = offsetof(struct mr_mfc, mnode), 372 .key_offset = offsetof(struct mfc_cache, cmparg), 373 .key_len = sizeof(struct mfc_cache_cmp_arg), 374 .nelem_hint = 3, 375 .obj_cmpfn = ipmr_hash_cmp, 376 .automatic_shrinking = true, 377 }; 378 379 static void ipmr_new_table_set(struct mr_table *mrt, 380 struct net *net) 381 { 382 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 383 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 384 #endif 385 } 386 387 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = { 388 .mfc_mcastgrp = htonl(INADDR_ANY), 389 .mfc_origin = htonl(INADDR_ANY), 390 }; 391 392 static struct mr_table_ops ipmr_mr_table_ops = { 393 .rht_params = &ipmr_rht_params, 394 .cmparg_any = &ipmr_mr_table_ops_cmparg_any, 395 }; 396 397 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 398 { 399 struct mr_table *mrt; 400 401 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ 402 if (id != RT_TABLE_DEFAULT && id >= 1000000000) 403 return ERR_PTR(-EINVAL); 404 405 mrt = ipmr_get_table(net, id); 406 if (mrt) 407 return mrt; 408 409 return mr_table_alloc(net, id, &ipmr_mr_table_ops, 410 ipmr_expire_process, ipmr_new_table_set); 411 } 412 413 static void ipmr_free_table(struct mr_table *mrt) 414 { 415 timer_shutdown_sync(&mrt->ipmr_expire_timer); 416 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC | 417 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC); 418 rhltable_destroy(&mrt->mfc_hash); 419 kfree(mrt); 420 } 421 422 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 423 424 /* Initialize ipmr pimreg/tunnel in_device */ 425 static bool ipmr_init_vif_indev(const struct net_device *dev) 426 { 427 struct in_device *in_dev; 428 429 ASSERT_RTNL(); 430 431 in_dev = __in_dev_get_rtnl(dev); 432 if (!in_dev) 433 return false; 434 ipv4_devconf_setall(in_dev); 435 neigh_parms_data_state_setall(in_dev->arp_parms); 436 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 437 438 return true; 439 } 440 441 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 442 { 443 struct net_device *tunnel_dev, *new_dev; 444 struct ip_tunnel_parm p = { }; 445 int err; 446 447 tunnel_dev = __dev_get_by_name(net, "tunl0"); 448 if (!tunnel_dev) 449 goto out; 450 451 p.iph.daddr = v->vifc_rmt_addr.s_addr; 452 p.iph.saddr = v->vifc_lcl_addr.s_addr; 453 p.iph.version = 4; 454 p.iph.ihl = 5; 455 p.iph.protocol = IPPROTO_IPIP; 456 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 457 458 if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl) 459 goto out; 460 err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p, 461 SIOCADDTUNNEL); 462 if (err) 463 goto out; 464 465 new_dev = __dev_get_by_name(net, p.name); 466 if (!new_dev) 467 goto out; 468 469 new_dev->flags |= IFF_MULTICAST; 470 if (!ipmr_init_vif_indev(new_dev)) 471 goto out_unregister; 472 if (dev_open(new_dev, NULL)) 473 goto out_unregister; 474 dev_hold(new_dev); 475 err = dev_set_allmulti(new_dev, 1); 476 if (err) { 477 dev_close(new_dev); 478 tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p, 479 SIOCDELTUNNEL); 480 dev_put(new_dev); 481 new_dev = ERR_PTR(err); 482 } 483 return new_dev; 484 485 out_unregister: 486 unregister_netdevice(new_dev); 487 out: 488 return ERR_PTR(-ENOBUFS); 489 } 490 491 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 492 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 493 { 494 struct net *net = dev_net(dev); 495 struct mr_table *mrt; 496 struct flowi4 fl4 = { 497 .flowi4_oif = dev->ifindex, 498 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 499 .flowi4_mark = skb->mark, 500 }; 501 int err; 502 503 err = ipmr_fib_lookup(net, &fl4, &mrt); 504 if (err < 0) { 505 kfree_skb(skb); 506 return err; 507 } 508 509 DEV_STATS_ADD(dev, tx_bytes, skb->len); 510 DEV_STATS_INC(dev, tx_packets); 511 rcu_read_lock(); 512 513 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */ 514 ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num), 515 IGMPMSG_WHOLEPKT); 516 517 rcu_read_unlock(); 518 kfree_skb(skb); 519 return NETDEV_TX_OK; 520 } 521 522 static int reg_vif_get_iflink(const struct net_device *dev) 523 { 524 return 0; 525 } 526 527 static const struct net_device_ops reg_vif_netdev_ops = { 528 .ndo_start_xmit = reg_vif_xmit, 529 .ndo_get_iflink = reg_vif_get_iflink, 530 }; 531 532 static void reg_vif_setup(struct net_device *dev) 533 { 534 dev->type = ARPHRD_PIMREG; 535 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 536 dev->flags = IFF_NOARP; 537 dev->netdev_ops = ®_vif_netdev_ops; 538 dev->needs_free_netdev = true; 539 dev->features |= NETIF_F_NETNS_LOCAL; 540 } 541 542 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 543 { 544 struct net_device *dev; 545 char name[IFNAMSIZ]; 546 547 if (mrt->id == RT_TABLE_DEFAULT) 548 sprintf(name, "pimreg"); 549 else 550 sprintf(name, "pimreg%u", mrt->id); 551 552 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 553 554 if (!dev) 555 return NULL; 556 557 dev_net_set(dev, net); 558 559 if (register_netdevice(dev)) { 560 free_netdev(dev); 561 return NULL; 562 } 563 564 if (!ipmr_init_vif_indev(dev)) 565 goto failure; 566 if (dev_open(dev, NULL)) 567 goto failure; 568 569 dev_hold(dev); 570 571 return dev; 572 573 failure: 574 unregister_netdevice(dev); 575 return NULL; 576 } 577 578 /* called with rcu_read_lock() */ 579 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 580 unsigned int pimlen) 581 { 582 struct net_device *reg_dev = NULL; 583 struct iphdr *encap; 584 int vif_num; 585 586 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 587 /* Check that: 588 * a. packet is really sent to a multicast group 589 * b. packet is not a NULL-REGISTER 590 * c. packet is not truncated 591 */ 592 if (!ipv4_is_multicast(encap->daddr) || 593 encap->tot_len == 0 || 594 ntohs(encap->tot_len) + pimlen > skb->len) 595 return 1; 596 597 /* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */ 598 vif_num = READ_ONCE(mrt->mroute_reg_vif_num); 599 if (vif_num >= 0) 600 reg_dev = vif_dev_read(&mrt->vif_table[vif_num]); 601 if (!reg_dev) 602 return 1; 603 604 skb->mac_header = skb->network_header; 605 skb_pull(skb, (u8 *)encap - skb->data); 606 skb_reset_network_header(skb); 607 skb->protocol = htons(ETH_P_IP); 608 skb->ip_summed = CHECKSUM_NONE; 609 610 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 611 612 netif_rx(skb); 613 614 return NET_RX_SUCCESS; 615 } 616 #else 617 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 618 { 619 return NULL; 620 } 621 #endif 622 623 static int call_ipmr_vif_entry_notifiers(struct net *net, 624 enum fib_event_type event_type, 625 struct vif_device *vif, 626 struct net_device *vif_dev, 627 vifi_t vif_index, u32 tb_id) 628 { 629 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type, 630 vif, vif_dev, vif_index, tb_id, 631 &net->ipv4.ipmr_seq); 632 } 633 634 static int call_ipmr_mfc_entry_notifiers(struct net *net, 635 enum fib_event_type event_type, 636 struct mfc_cache *mfc, u32 tb_id) 637 { 638 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type, 639 &mfc->_c, tb_id, &net->ipv4.ipmr_seq); 640 } 641 642 /** 643 * vif_delete - Delete a VIF entry 644 * @mrt: Table to delete from 645 * @vifi: VIF identifier to delete 646 * @notify: Set to 1, if the caller is a notifier_call 647 * @head: if unregistering the VIF, place it on this queue 648 */ 649 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 650 struct list_head *head) 651 { 652 struct net *net = read_pnet(&mrt->net); 653 struct vif_device *v; 654 struct net_device *dev; 655 struct in_device *in_dev; 656 657 if (vifi < 0 || vifi >= mrt->maxvif) 658 return -EADDRNOTAVAIL; 659 660 v = &mrt->vif_table[vifi]; 661 662 dev = rtnl_dereference(v->dev); 663 if (!dev) 664 return -EADDRNOTAVAIL; 665 666 spin_lock(&mrt_lock); 667 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev, 668 vifi, mrt->id); 669 RCU_INIT_POINTER(v->dev, NULL); 670 671 if (vifi == mrt->mroute_reg_vif_num) { 672 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */ 673 WRITE_ONCE(mrt->mroute_reg_vif_num, -1); 674 } 675 if (vifi + 1 == mrt->maxvif) { 676 int tmp; 677 678 for (tmp = vifi - 1; tmp >= 0; tmp--) { 679 if (VIF_EXISTS(mrt, tmp)) 680 break; 681 } 682 WRITE_ONCE(mrt->maxvif, tmp + 1); 683 } 684 685 spin_unlock(&mrt_lock); 686 687 dev_set_allmulti(dev, -1); 688 689 in_dev = __in_dev_get_rtnl(dev); 690 if (in_dev) { 691 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 692 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, 693 NETCONFA_MC_FORWARDING, 694 dev->ifindex, &in_dev->cnf); 695 ip_rt_multicast_event(in_dev); 696 } 697 698 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 699 unregister_netdevice_queue(dev, head); 700 701 netdev_put(dev, &v->dev_tracker); 702 return 0; 703 } 704 705 static void ipmr_cache_free_rcu(struct rcu_head *head) 706 { 707 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu); 708 709 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c); 710 } 711 712 static void ipmr_cache_free(struct mfc_cache *c) 713 { 714 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu); 715 } 716 717 /* Destroy an unresolved cache entry, killing queued skbs 718 * and reporting error to netlink readers. 719 */ 720 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 721 { 722 struct net *net = read_pnet(&mrt->net); 723 struct sk_buff *skb; 724 struct nlmsgerr *e; 725 726 atomic_dec(&mrt->cache_resolve_queue_len); 727 728 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) { 729 if (ip_hdr(skb)->version == 0) { 730 struct nlmsghdr *nlh = skb_pull(skb, 731 sizeof(struct iphdr)); 732 nlh->nlmsg_type = NLMSG_ERROR; 733 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 734 skb_trim(skb, nlh->nlmsg_len); 735 e = nlmsg_data(nlh); 736 e->error = -ETIMEDOUT; 737 memset(&e->msg, 0, sizeof(e->msg)); 738 739 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 740 } else { 741 kfree_skb(skb); 742 } 743 } 744 745 ipmr_cache_free(c); 746 } 747 748 /* Timer process for the unresolved queue. */ 749 static void ipmr_expire_process(struct timer_list *t) 750 { 751 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer); 752 struct mr_mfc *c, *next; 753 unsigned long expires; 754 unsigned long now; 755 756 if (!spin_trylock(&mfc_unres_lock)) { 757 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 758 return; 759 } 760 761 if (list_empty(&mrt->mfc_unres_queue)) 762 goto out; 763 764 now = jiffies; 765 expires = 10*HZ; 766 767 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 768 if (time_after(c->mfc_un.unres.expires, now)) { 769 unsigned long interval = c->mfc_un.unres.expires - now; 770 if (interval < expires) 771 expires = interval; 772 continue; 773 } 774 775 list_del(&c->list); 776 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE); 777 ipmr_destroy_unres(mrt, (struct mfc_cache *)c); 778 } 779 780 if (!list_empty(&mrt->mfc_unres_queue)) 781 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 782 783 out: 784 spin_unlock(&mfc_unres_lock); 785 } 786 787 /* Fill oifs list. It is called under locked mrt_lock. */ 788 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache, 789 unsigned char *ttls) 790 { 791 int vifi; 792 793 cache->mfc_un.res.minvif = MAXVIFS; 794 cache->mfc_un.res.maxvif = 0; 795 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 796 797 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 798 if (VIF_EXISTS(mrt, vifi) && 799 ttls[vifi] && ttls[vifi] < 255) { 800 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 801 if (cache->mfc_un.res.minvif > vifi) 802 cache->mfc_un.res.minvif = vifi; 803 if (cache->mfc_un.res.maxvif <= vifi) 804 cache->mfc_un.res.maxvif = vifi + 1; 805 } 806 } 807 cache->mfc_un.res.lastuse = jiffies; 808 } 809 810 static int vif_add(struct net *net, struct mr_table *mrt, 811 struct vifctl *vifc, int mrtsock) 812 { 813 struct netdev_phys_item_id ppid = { }; 814 int vifi = vifc->vifc_vifi; 815 struct vif_device *v = &mrt->vif_table[vifi]; 816 struct net_device *dev; 817 struct in_device *in_dev; 818 int err; 819 820 /* Is vif busy ? */ 821 if (VIF_EXISTS(mrt, vifi)) 822 return -EADDRINUSE; 823 824 switch (vifc->vifc_flags) { 825 case VIFF_REGISTER: 826 if (!ipmr_pimsm_enabled()) 827 return -EINVAL; 828 /* Special Purpose VIF in PIM 829 * All the packets will be sent to the daemon 830 */ 831 if (mrt->mroute_reg_vif_num >= 0) 832 return -EADDRINUSE; 833 dev = ipmr_reg_vif(net, mrt); 834 if (!dev) 835 return -ENOBUFS; 836 err = dev_set_allmulti(dev, 1); 837 if (err) { 838 unregister_netdevice(dev); 839 dev_put(dev); 840 return err; 841 } 842 break; 843 case VIFF_TUNNEL: 844 dev = ipmr_new_tunnel(net, vifc); 845 if (IS_ERR(dev)) 846 return PTR_ERR(dev); 847 break; 848 case VIFF_USE_IFINDEX: 849 case 0: 850 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 851 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 852 if (dev && !__in_dev_get_rtnl(dev)) { 853 dev_put(dev); 854 return -EADDRNOTAVAIL; 855 } 856 } else { 857 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 858 } 859 if (!dev) 860 return -EADDRNOTAVAIL; 861 err = dev_set_allmulti(dev, 1); 862 if (err) { 863 dev_put(dev); 864 return err; 865 } 866 break; 867 default: 868 return -EINVAL; 869 } 870 871 in_dev = __in_dev_get_rtnl(dev); 872 if (!in_dev) { 873 dev_put(dev); 874 return -EADDRNOTAVAIL; 875 } 876 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 877 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, 878 dev->ifindex, &in_dev->cnf); 879 ip_rt_multicast_event(in_dev); 880 881 /* Fill in the VIF structures */ 882 vif_device_init(v, dev, vifc->vifc_rate_limit, 883 vifc->vifc_threshold, 884 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0), 885 (VIFF_TUNNEL | VIFF_REGISTER)); 886 887 err = dev_get_port_parent_id(dev, &ppid, true); 888 if (err == 0) { 889 memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len); 890 v->dev_parent_id.id_len = ppid.id_len; 891 } else { 892 v->dev_parent_id.id_len = 0; 893 } 894 895 v->local = vifc->vifc_lcl_addr.s_addr; 896 v->remote = vifc->vifc_rmt_addr.s_addr; 897 898 /* And finish update writing critical data */ 899 spin_lock(&mrt_lock); 900 rcu_assign_pointer(v->dev, dev); 901 netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC); 902 if (v->flags & VIFF_REGISTER) { 903 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */ 904 WRITE_ONCE(mrt->mroute_reg_vif_num, vifi); 905 } 906 if (vifi+1 > mrt->maxvif) 907 WRITE_ONCE(mrt->maxvif, vifi + 1); 908 spin_unlock(&mrt_lock); 909 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev, 910 vifi, mrt->id); 911 return 0; 912 } 913 914 /* called with rcu_read_lock() */ 915 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 916 __be32 origin, 917 __be32 mcastgrp) 918 { 919 struct mfc_cache_cmp_arg arg = { 920 .mfc_mcastgrp = mcastgrp, 921 .mfc_origin = origin 922 }; 923 924 return mr_mfc_find(mrt, &arg); 925 } 926 927 /* Look for a (*,G) entry */ 928 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, 929 __be32 mcastgrp, int vifi) 930 { 931 struct mfc_cache_cmp_arg arg = { 932 .mfc_mcastgrp = mcastgrp, 933 .mfc_origin = htonl(INADDR_ANY) 934 }; 935 936 if (mcastgrp == htonl(INADDR_ANY)) 937 return mr_mfc_find_any_parent(mrt, vifi); 938 return mr_mfc_find_any(mrt, vifi, &arg); 939 } 940 941 /* Look for a (S,G,iif) entry if parent != -1 */ 942 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt, 943 __be32 origin, __be32 mcastgrp, 944 int parent) 945 { 946 struct mfc_cache_cmp_arg arg = { 947 .mfc_mcastgrp = mcastgrp, 948 .mfc_origin = origin, 949 }; 950 951 return mr_mfc_find_parent(mrt, &arg, parent); 952 } 953 954 /* Allocate a multicast cache entry */ 955 static struct mfc_cache *ipmr_cache_alloc(void) 956 { 957 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 958 959 if (c) { 960 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1; 961 c->_c.mfc_un.res.minvif = MAXVIFS; 962 c->_c.free = ipmr_cache_free_rcu; 963 refcount_set(&c->_c.mfc_un.res.refcount, 1); 964 } 965 return c; 966 } 967 968 static struct mfc_cache *ipmr_cache_alloc_unres(void) 969 { 970 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 971 972 if (c) { 973 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved); 974 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ; 975 } 976 return c; 977 } 978 979 /* A cache entry has gone into a resolved state from queued */ 980 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 981 struct mfc_cache *uc, struct mfc_cache *c) 982 { 983 struct sk_buff *skb; 984 struct nlmsgerr *e; 985 986 /* Play the pending entries through our router */ 987 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) { 988 if (ip_hdr(skb)->version == 0) { 989 struct nlmsghdr *nlh = skb_pull(skb, 990 sizeof(struct iphdr)); 991 992 if (mr_fill_mroute(mrt, skb, &c->_c, 993 nlmsg_data(nlh)) > 0) { 994 nlh->nlmsg_len = skb_tail_pointer(skb) - 995 (u8 *)nlh; 996 } else { 997 nlh->nlmsg_type = NLMSG_ERROR; 998 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 999 skb_trim(skb, nlh->nlmsg_len); 1000 e = nlmsg_data(nlh); 1001 e->error = -EMSGSIZE; 1002 memset(&e->msg, 0, sizeof(e->msg)); 1003 } 1004 1005 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 1006 } else { 1007 rcu_read_lock(); 1008 ip_mr_forward(net, mrt, skb->dev, skb, c, 0); 1009 rcu_read_unlock(); 1010 } 1011 } 1012 } 1013 1014 /* Bounce a cache query up to mrouted and netlink. 1015 * 1016 * Called under rcu_read_lock(). 1017 */ 1018 static int ipmr_cache_report(const struct mr_table *mrt, 1019 struct sk_buff *pkt, vifi_t vifi, int assert) 1020 { 1021 const int ihl = ip_hdrlen(pkt); 1022 struct sock *mroute_sk; 1023 struct igmphdr *igmp; 1024 struct igmpmsg *msg; 1025 struct sk_buff *skb; 1026 int ret; 1027 1028 mroute_sk = rcu_dereference(mrt->mroute_sk); 1029 if (!mroute_sk) 1030 return -EINVAL; 1031 1032 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) 1033 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 1034 else 1035 skb = alloc_skb(128, GFP_ATOMIC); 1036 1037 if (!skb) 1038 return -ENOBUFS; 1039 1040 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) { 1041 /* Ugly, but we have no choice with this interface. 1042 * Duplicate old header, fix ihl, length etc. 1043 * And all this only to mangle msg->im_msgtype and 1044 * to set msg->im_mbz to "mbz" :-) 1045 */ 1046 skb_push(skb, sizeof(struct iphdr)); 1047 skb_reset_network_header(skb); 1048 skb_reset_transport_header(skb); 1049 msg = (struct igmpmsg *)skb_network_header(skb); 1050 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 1051 msg->im_msgtype = assert; 1052 msg->im_mbz = 0; 1053 if (assert == IGMPMSG_WRVIFWHOLE) { 1054 msg->im_vif = vifi; 1055 msg->im_vif_hi = vifi >> 8; 1056 } else { 1057 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */ 1058 int vif_num = READ_ONCE(mrt->mroute_reg_vif_num); 1059 1060 msg->im_vif = vif_num; 1061 msg->im_vif_hi = vif_num >> 8; 1062 } 1063 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 1064 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 1065 sizeof(struct iphdr)); 1066 } else { 1067 /* Copy the IP header */ 1068 skb_set_network_header(skb, skb->len); 1069 skb_put(skb, ihl); 1070 skb_copy_to_linear_data(skb, pkt->data, ihl); 1071 /* Flag to the kernel this is a route add */ 1072 ip_hdr(skb)->protocol = 0; 1073 msg = (struct igmpmsg *)skb_network_header(skb); 1074 msg->im_vif = vifi; 1075 msg->im_vif_hi = vifi >> 8; 1076 ipv4_pktinfo_prepare(mroute_sk, pkt, false); 1077 memcpy(skb->cb, pkt->cb, sizeof(skb->cb)); 1078 /* Add our header */ 1079 igmp = skb_put(skb, sizeof(struct igmphdr)); 1080 igmp->type = assert; 1081 msg->im_msgtype = assert; 1082 igmp->code = 0; 1083 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 1084 skb->transport_header = skb->network_header; 1085 } 1086 1087 igmpmsg_netlink_event(mrt, skb); 1088 1089 /* Deliver to mrouted */ 1090 ret = sock_queue_rcv_skb(mroute_sk, skb); 1091 1092 if (ret < 0) { 1093 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 1094 kfree_skb(skb); 1095 } 1096 1097 return ret; 1098 } 1099 1100 /* Queue a packet for resolution. It gets locked cache entry! */ 1101 /* Called under rcu_read_lock() */ 1102 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, 1103 struct sk_buff *skb, struct net_device *dev) 1104 { 1105 const struct iphdr *iph = ip_hdr(skb); 1106 struct mfc_cache *c; 1107 bool found = false; 1108 int err; 1109 1110 spin_lock_bh(&mfc_unres_lock); 1111 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) { 1112 if (c->mfc_mcastgrp == iph->daddr && 1113 c->mfc_origin == iph->saddr) { 1114 found = true; 1115 break; 1116 } 1117 } 1118 1119 if (!found) { 1120 /* Create a new entry if allowable */ 1121 c = ipmr_cache_alloc_unres(); 1122 if (!c) { 1123 spin_unlock_bh(&mfc_unres_lock); 1124 1125 kfree_skb(skb); 1126 return -ENOBUFS; 1127 } 1128 1129 /* Fill in the new cache entry */ 1130 c->_c.mfc_parent = -1; 1131 c->mfc_origin = iph->saddr; 1132 c->mfc_mcastgrp = iph->daddr; 1133 1134 /* Reflect first query at mrouted. */ 1135 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1136 1137 if (err < 0) { 1138 /* If the report failed throw the cache entry 1139 out - Brad Parker 1140 */ 1141 spin_unlock_bh(&mfc_unres_lock); 1142 1143 ipmr_cache_free(c); 1144 kfree_skb(skb); 1145 return err; 1146 } 1147 1148 atomic_inc(&mrt->cache_resolve_queue_len); 1149 list_add(&c->_c.list, &mrt->mfc_unres_queue); 1150 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1151 1152 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1153 mod_timer(&mrt->ipmr_expire_timer, 1154 c->_c.mfc_un.unres.expires); 1155 } 1156 1157 /* See if we can append the packet */ 1158 if (c->_c.mfc_un.unres.unresolved.qlen > 3) { 1159 kfree_skb(skb); 1160 err = -ENOBUFS; 1161 } else { 1162 if (dev) { 1163 skb->dev = dev; 1164 skb->skb_iif = dev->ifindex; 1165 } 1166 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb); 1167 err = 0; 1168 } 1169 1170 spin_unlock_bh(&mfc_unres_lock); 1171 return err; 1172 } 1173 1174 /* MFC cache manipulation by user space mroute daemon */ 1175 1176 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) 1177 { 1178 struct net *net = read_pnet(&mrt->net); 1179 struct mfc_cache *c; 1180 1181 /* The entries are added/deleted only under RTNL */ 1182 rcu_read_lock(); 1183 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1184 mfc->mfcc_mcastgrp.s_addr, parent); 1185 rcu_read_unlock(); 1186 if (!c) 1187 return -ENOENT; 1188 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params); 1189 list_del_rcu(&c->_c.list); 1190 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id); 1191 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1192 mr_cache_put(&c->_c); 1193 1194 return 0; 1195 } 1196 1197 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1198 struct mfcctl *mfc, int mrtsock, int parent) 1199 { 1200 struct mfc_cache *uc, *c; 1201 struct mr_mfc *_uc; 1202 bool found; 1203 int ret; 1204 1205 if (mfc->mfcc_parent >= MAXVIFS) 1206 return -ENFILE; 1207 1208 /* The entries are added/deleted only under RTNL */ 1209 rcu_read_lock(); 1210 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1211 mfc->mfcc_mcastgrp.s_addr, parent); 1212 rcu_read_unlock(); 1213 if (c) { 1214 spin_lock(&mrt_lock); 1215 c->_c.mfc_parent = mfc->mfcc_parent; 1216 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1217 if (!mrtsock) 1218 c->_c.mfc_flags |= MFC_STATIC; 1219 spin_unlock(&mrt_lock); 1220 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c, 1221 mrt->id); 1222 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1223 return 0; 1224 } 1225 1226 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && 1227 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1228 return -EINVAL; 1229 1230 c = ipmr_cache_alloc(); 1231 if (!c) 1232 return -ENOMEM; 1233 1234 c->mfc_origin = mfc->mfcc_origin.s_addr; 1235 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1236 c->_c.mfc_parent = mfc->mfcc_parent; 1237 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1238 if (!mrtsock) 1239 c->_c.mfc_flags |= MFC_STATIC; 1240 1241 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode, 1242 ipmr_rht_params); 1243 if (ret) { 1244 pr_err("ipmr: rhtable insert error %d\n", ret); 1245 ipmr_cache_free(c); 1246 return ret; 1247 } 1248 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list); 1249 /* Check to see if we resolved a queued list. If so we 1250 * need to send on the frames and tidy up. 1251 */ 1252 found = false; 1253 spin_lock_bh(&mfc_unres_lock); 1254 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) { 1255 uc = (struct mfc_cache *)_uc; 1256 if (uc->mfc_origin == c->mfc_origin && 1257 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1258 list_del(&_uc->list); 1259 atomic_dec(&mrt->cache_resolve_queue_len); 1260 found = true; 1261 break; 1262 } 1263 } 1264 if (list_empty(&mrt->mfc_unres_queue)) 1265 del_timer(&mrt->ipmr_expire_timer); 1266 spin_unlock_bh(&mfc_unres_lock); 1267 1268 if (found) { 1269 ipmr_cache_resolve(net, mrt, uc, c); 1270 ipmr_cache_free(uc); 1271 } 1272 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id); 1273 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1274 return 0; 1275 } 1276 1277 /* Close the multicast socket, and clear the vif tables etc */ 1278 static void mroute_clean_tables(struct mr_table *mrt, int flags) 1279 { 1280 struct net *net = read_pnet(&mrt->net); 1281 struct mr_mfc *c, *tmp; 1282 struct mfc_cache *cache; 1283 LIST_HEAD(list); 1284 int i; 1285 1286 /* Shut down all active vif entries */ 1287 if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) { 1288 for (i = 0; i < mrt->maxvif; i++) { 1289 if (((mrt->vif_table[i].flags & VIFF_STATIC) && 1290 !(flags & MRT_FLUSH_VIFS_STATIC)) || 1291 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS))) 1292 continue; 1293 vif_delete(mrt, i, 0, &list); 1294 } 1295 unregister_netdevice_many(&list); 1296 } 1297 1298 /* Wipe the cache */ 1299 if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) { 1300 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) { 1301 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) || 1302 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC))) 1303 continue; 1304 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params); 1305 list_del_rcu(&c->list); 1306 cache = (struct mfc_cache *)c; 1307 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache, 1308 mrt->id); 1309 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1310 mr_cache_put(c); 1311 } 1312 } 1313 1314 if (flags & MRT_FLUSH_MFC) { 1315 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1316 spin_lock_bh(&mfc_unres_lock); 1317 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) { 1318 list_del(&c->list); 1319 cache = (struct mfc_cache *)c; 1320 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1321 ipmr_destroy_unres(mrt, cache); 1322 } 1323 spin_unlock_bh(&mfc_unres_lock); 1324 } 1325 } 1326 } 1327 1328 /* called from ip_ra_control(), before an RCU grace period, 1329 * we don't need to call synchronize_rcu() here 1330 */ 1331 static void mrtsock_destruct(struct sock *sk) 1332 { 1333 struct net *net = sock_net(sk); 1334 struct mr_table *mrt; 1335 1336 rtnl_lock(); 1337 ipmr_for_each_table(mrt, net) { 1338 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1339 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1340 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1341 NETCONFA_MC_FORWARDING, 1342 NETCONFA_IFINDEX_ALL, 1343 net->ipv4.devconf_all); 1344 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1345 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC); 1346 } 1347 } 1348 rtnl_unlock(); 1349 } 1350 1351 /* Socket options and virtual interface manipulation. The whole 1352 * virtual interface system is a complete heap, but unfortunately 1353 * that's how BSD mrouted happens to think. Maybe one day with a proper 1354 * MOSPF/PIM router set up we can clean this up. 1355 */ 1356 1357 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval, 1358 unsigned int optlen) 1359 { 1360 struct net *net = sock_net(sk); 1361 int val, ret = 0, parent = 0; 1362 struct mr_table *mrt; 1363 struct vifctl vif; 1364 struct mfcctl mfc; 1365 bool do_wrvifwhole; 1366 u32 uval; 1367 1368 /* There's one exception to the lock - MRT_DONE which needs to unlock */ 1369 rtnl_lock(); 1370 if (sk->sk_type != SOCK_RAW || 1371 inet_sk(sk)->inet_num != IPPROTO_IGMP) { 1372 ret = -EOPNOTSUPP; 1373 goto out_unlock; 1374 } 1375 1376 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1377 if (!mrt) { 1378 ret = -ENOENT; 1379 goto out_unlock; 1380 } 1381 if (optname != MRT_INIT) { 1382 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1383 !ns_capable(net->user_ns, CAP_NET_ADMIN)) { 1384 ret = -EACCES; 1385 goto out_unlock; 1386 } 1387 } 1388 1389 switch (optname) { 1390 case MRT_INIT: 1391 if (optlen != sizeof(int)) { 1392 ret = -EINVAL; 1393 break; 1394 } 1395 if (rtnl_dereference(mrt->mroute_sk)) { 1396 ret = -EADDRINUSE; 1397 break; 1398 } 1399 1400 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1401 if (ret == 0) { 1402 rcu_assign_pointer(mrt->mroute_sk, sk); 1403 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1404 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1405 NETCONFA_MC_FORWARDING, 1406 NETCONFA_IFINDEX_ALL, 1407 net->ipv4.devconf_all); 1408 } 1409 break; 1410 case MRT_DONE: 1411 if (sk != rcu_access_pointer(mrt->mroute_sk)) { 1412 ret = -EACCES; 1413 } else { 1414 /* We need to unlock here because mrtsock_destruct takes 1415 * care of rtnl itself and we can't change that due to 1416 * the IP_ROUTER_ALERT setsockopt which runs without it. 1417 */ 1418 rtnl_unlock(); 1419 ret = ip_ra_control(sk, 0, NULL); 1420 goto out; 1421 } 1422 break; 1423 case MRT_ADD_VIF: 1424 case MRT_DEL_VIF: 1425 if (optlen != sizeof(vif)) { 1426 ret = -EINVAL; 1427 break; 1428 } 1429 if (copy_from_sockptr(&vif, optval, sizeof(vif))) { 1430 ret = -EFAULT; 1431 break; 1432 } 1433 if (vif.vifc_vifi >= MAXVIFS) { 1434 ret = -ENFILE; 1435 break; 1436 } 1437 if (optname == MRT_ADD_VIF) { 1438 ret = vif_add(net, mrt, &vif, 1439 sk == rtnl_dereference(mrt->mroute_sk)); 1440 } else { 1441 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1442 } 1443 break; 1444 /* Manipulate the forwarding caches. These live 1445 * in a sort of kernel/user symbiosis. 1446 */ 1447 case MRT_ADD_MFC: 1448 case MRT_DEL_MFC: 1449 parent = -1; 1450 fallthrough; 1451 case MRT_ADD_MFC_PROXY: 1452 case MRT_DEL_MFC_PROXY: 1453 if (optlen != sizeof(mfc)) { 1454 ret = -EINVAL; 1455 break; 1456 } 1457 if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) { 1458 ret = -EFAULT; 1459 break; 1460 } 1461 if (parent == 0) 1462 parent = mfc.mfcc_parent; 1463 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) 1464 ret = ipmr_mfc_delete(mrt, &mfc, parent); 1465 else 1466 ret = ipmr_mfc_add(net, mrt, &mfc, 1467 sk == rtnl_dereference(mrt->mroute_sk), 1468 parent); 1469 break; 1470 case MRT_FLUSH: 1471 if (optlen != sizeof(val)) { 1472 ret = -EINVAL; 1473 break; 1474 } 1475 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1476 ret = -EFAULT; 1477 break; 1478 } 1479 mroute_clean_tables(mrt, val); 1480 break; 1481 /* Control PIM assert. */ 1482 case MRT_ASSERT: 1483 if (optlen != sizeof(val)) { 1484 ret = -EINVAL; 1485 break; 1486 } 1487 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1488 ret = -EFAULT; 1489 break; 1490 } 1491 mrt->mroute_do_assert = val; 1492 break; 1493 case MRT_PIM: 1494 if (!ipmr_pimsm_enabled()) { 1495 ret = -ENOPROTOOPT; 1496 break; 1497 } 1498 if (optlen != sizeof(val)) { 1499 ret = -EINVAL; 1500 break; 1501 } 1502 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1503 ret = -EFAULT; 1504 break; 1505 } 1506 1507 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE); 1508 val = !!val; 1509 if (val != mrt->mroute_do_pim) { 1510 mrt->mroute_do_pim = val; 1511 mrt->mroute_do_assert = val; 1512 mrt->mroute_do_wrvifwhole = do_wrvifwhole; 1513 } 1514 break; 1515 case MRT_TABLE: 1516 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) { 1517 ret = -ENOPROTOOPT; 1518 break; 1519 } 1520 if (optlen != sizeof(uval)) { 1521 ret = -EINVAL; 1522 break; 1523 } 1524 if (copy_from_sockptr(&uval, optval, sizeof(uval))) { 1525 ret = -EFAULT; 1526 break; 1527 } 1528 1529 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1530 ret = -EBUSY; 1531 } else { 1532 mrt = ipmr_new_table(net, uval); 1533 if (IS_ERR(mrt)) 1534 ret = PTR_ERR(mrt); 1535 else 1536 raw_sk(sk)->ipmr_table = uval; 1537 } 1538 break; 1539 /* Spurious command, or MRT_VERSION which you cannot set. */ 1540 default: 1541 ret = -ENOPROTOOPT; 1542 } 1543 out_unlock: 1544 rtnl_unlock(); 1545 out: 1546 return ret; 1547 } 1548 1549 /* Execute if this ioctl is a special mroute ioctl */ 1550 int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1551 { 1552 switch (cmd) { 1553 /* These userspace buffers will be consumed by ipmr_ioctl() */ 1554 case SIOCGETVIFCNT: { 1555 struct sioc_vif_req buffer; 1556 1557 return sock_ioctl_inout(sk, cmd, arg, &buffer, 1558 sizeof(buffer)); 1559 } 1560 case SIOCGETSGCNT: { 1561 struct sioc_sg_req buffer; 1562 1563 return sock_ioctl_inout(sk, cmd, arg, &buffer, 1564 sizeof(buffer)); 1565 } 1566 } 1567 /* return code > 0 means that the ioctl was not executed */ 1568 return 1; 1569 } 1570 1571 /* Getsock opt support for the multicast routing system. */ 1572 int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval, 1573 sockptr_t optlen) 1574 { 1575 int olr; 1576 int val; 1577 struct net *net = sock_net(sk); 1578 struct mr_table *mrt; 1579 1580 if (sk->sk_type != SOCK_RAW || 1581 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1582 return -EOPNOTSUPP; 1583 1584 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1585 if (!mrt) 1586 return -ENOENT; 1587 1588 switch (optname) { 1589 case MRT_VERSION: 1590 val = 0x0305; 1591 break; 1592 case MRT_PIM: 1593 if (!ipmr_pimsm_enabled()) 1594 return -ENOPROTOOPT; 1595 val = mrt->mroute_do_pim; 1596 break; 1597 case MRT_ASSERT: 1598 val = mrt->mroute_do_assert; 1599 break; 1600 default: 1601 return -ENOPROTOOPT; 1602 } 1603 1604 if (copy_from_sockptr(&olr, optlen, sizeof(int))) 1605 return -EFAULT; 1606 if (olr < 0) 1607 return -EINVAL; 1608 1609 olr = min_t(unsigned int, olr, sizeof(int)); 1610 1611 if (copy_to_sockptr(optlen, &olr, sizeof(int))) 1612 return -EFAULT; 1613 if (copy_to_sockptr(optval, &val, olr)) 1614 return -EFAULT; 1615 return 0; 1616 } 1617 1618 /* The IP multicast ioctl support routines. */ 1619 int ipmr_ioctl(struct sock *sk, int cmd, void *arg) 1620 { 1621 struct vif_device *vif; 1622 struct mfc_cache *c; 1623 struct net *net = sock_net(sk); 1624 struct sioc_vif_req *vr; 1625 struct sioc_sg_req *sr; 1626 struct mr_table *mrt; 1627 1628 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1629 if (!mrt) 1630 return -ENOENT; 1631 1632 switch (cmd) { 1633 case SIOCGETVIFCNT: 1634 vr = (struct sioc_vif_req *)arg; 1635 if (vr->vifi >= mrt->maxvif) 1636 return -EINVAL; 1637 vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif); 1638 rcu_read_lock(); 1639 vif = &mrt->vif_table[vr->vifi]; 1640 if (VIF_EXISTS(mrt, vr->vifi)) { 1641 vr->icount = READ_ONCE(vif->pkt_in); 1642 vr->ocount = READ_ONCE(vif->pkt_out); 1643 vr->ibytes = READ_ONCE(vif->bytes_in); 1644 vr->obytes = READ_ONCE(vif->bytes_out); 1645 rcu_read_unlock(); 1646 1647 return 0; 1648 } 1649 rcu_read_unlock(); 1650 return -EADDRNOTAVAIL; 1651 case SIOCGETSGCNT: 1652 sr = (struct sioc_sg_req *)arg; 1653 1654 rcu_read_lock(); 1655 c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr); 1656 if (c) { 1657 sr->pktcnt = c->_c.mfc_un.res.pkt; 1658 sr->bytecnt = c->_c.mfc_un.res.bytes; 1659 sr->wrong_if = c->_c.mfc_un.res.wrong_if; 1660 rcu_read_unlock(); 1661 return 0; 1662 } 1663 rcu_read_unlock(); 1664 return -EADDRNOTAVAIL; 1665 default: 1666 return -ENOIOCTLCMD; 1667 } 1668 } 1669 1670 #ifdef CONFIG_COMPAT 1671 struct compat_sioc_sg_req { 1672 struct in_addr src; 1673 struct in_addr grp; 1674 compat_ulong_t pktcnt; 1675 compat_ulong_t bytecnt; 1676 compat_ulong_t wrong_if; 1677 }; 1678 1679 struct compat_sioc_vif_req { 1680 vifi_t vifi; /* Which iface */ 1681 compat_ulong_t icount; 1682 compat_ulong_t ocount; 1683 compat_ulong_t ibytes; 1684 compat_ulong_t obytes; 1685 }; 1686 1687 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1688 { 1689 struct compat_sioc_sg_req sr; 1690 struct compat_sioc_vif_req vr; 1691 struct vif_device *vif; 1692 struct mfc_cache *c; 1693 struct net *net = sock_net(sk); 1694 struct mr_table *mrt; 1695 1696 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1697 if (!mrt) 1698 return -ENOENT; 1699 1700 switch (cmd) { 1701 case SIOCGETVIFCNT: 1702 if (copy_from_user(&vr, arg, sizeof(vr))) 1703 return -EFAULT; 1704 if (vr.vifi >= mrt->maxvif) 1705 return -EINVAL; 1706 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif); 1707 rcu_read_lock(); 1708 vif = &mrt->vif_table[vr.vifi]; 1709 if (VIF_EXISTS(mrt, vr.vifi)) { 1710 vr.icount = READ_ONCE(vif->pkt_in); 1711 vr.ocount = READ_ONCE(vif->pkt_out); 1712 vr.ibytes = READ_ONCE(vif->bytes_in); 1713 vr.obytes = READ_ONCE(vif->bytes_out); 1714 rcu_read_unlock(); 1715 1716 if (copy_to_user(arg, &vr, sizeof(vr))) 1717 return -EFAULT; 1718 return 0; 1719 } 1720 rcu_read_unlock(); 1721 return -EADDRNOTAVAIL; 1722 case SIOCGETSGCNT: 1723 if (copy_from_user(&sr, arg, sizeof(sr))) 1724 return -EFAULT; 1725 1726 rcu_read_lock(); 1727 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1728 if (c) { 1729 sr.pktcnt = c->_c.mfc_un.res.pkt; 1730 sr.bytecnt = c->_c.mfc_un.res.bytes; 1731 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1732 rcu_read_unlock(); 1733 1734 if (copy_to_user(arg, &sr, sizeof(sr))) 1735 return -EFAULT; 1736 return 0; 1737 } 1738 rcu_read_unlock(); 1739 return -EADDRNOTAVAIL; 1740 default: 1741 return -ENOIOCTLCMD; 1742 } 1743 } 1744 #endif 1745 1746 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1747 { 1748 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1749 struct net *net = dev_net(dev); 1750 struct mr_table *mrt; 1751 struct vif_device *v; 1752 int ct; 1753 1754 if (event != NETDEV_UNREGISTER) 1755 return NOTIFY_DONE; 1756 1757 ipmr_for_each_table(mrt, net) { 1758 v = &mrt->vif_table[0]; 1759 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1760 if (rcu_access_pointer(v->dev) == dev) 1761 vif_delete(mrt, ct, 1, NULL); 1762 } 1763 } 1764 return NOTIFY_DONE; 1765 } 1766 1767 static struct notifier_block ip_mr_notifier = { 1768 .notifier_call = ipmr_device_event, 1769 }; 1770 1771 /* Encapsulate a packet by attaching a valid IPIP header to it. 1772 * This avoids tunnel drivers and other mess and gives us the speed so 1773 * important for multicast video. 1774 */ 1775 static void ip_encap(struct net *net, struct sk_buff *skb, 1776 __be32 saddr, __be32 daddr) 1777 { 1778 struct iphdr *iph; 1779 const struct iphdr *old_iph = ip_hdr(skb); 1780 1781 skb_push(skb, sizeof(struct iphdr)); 1782 skb->transport_header = skb->network_header; 1783 skb_reset_network_header(skb); 1784 iph = ip_hdr(skb); 1785 1786 iph->version = 4; 1787 iph->tos = old_iph->tos; 1788 iph->ttl = old_iph->ttl; 1789 iph->frag_off = 0; 1790 iph->daddr = daddr; 1791 iph->saddr = saddr; 1792 iph->protocol = IPPROTO_IPIP; 1793 iph->ihl = 5; 1794 iph->tot_len = htons(skb->len); 1795 ip_select_ident(net, skb, NULL); 1796 ip_send_check(iph); 1797 1798 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1799 nf_reset_ct(skb); 1800 } 1801 1802 static inline int ipmr_forward_finish(struct net *net, struct sock *sk, 1803 struct sk_buff *skb) 1804 { 1805 struct ip_options *opt = &(IPCB(skb)->opt); 1806 1807 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS); 1808 1809 if (unlikely(opt->optlen)) 1810 ip_forward_options(skb); 1811 1812 return dst_output(net, sk, skb); 1813 } 1814 1815 #ifdef CONFIG_NET_SWITCHDEV 1816 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1817 int in_vifi, int out_vifi) 1818 { 1819 struct vif_device *out_vif = &mrt->vif_table[out_vifi]; 1820 struct vif_device *in_vif = &mrt->vif_table[in_vifi]; 1821 1822 if (!skb->offload_l3_fwd_mark) 1823 return false; 1824 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len) 1825 return false; 1826 return netdev_phys_item_id_same(&out_vif->dev_parent_id, 1827 &in_vif->dev_parent_id); 1828 } 1829 #else 1830 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1831 int in_vifi, int out_vifi) 1832 { 1833 return false; 1834 } 1835 #endif 1836 1837 /* Processing handlers for ipmr_forward, under rcu_read_lock() */ 1838 1839 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1840 int in_vifi, struct sk_buff *skb, int vifi) 1841 { 1842 const struct iphdr *iph = ip_hdr(skb); 1843 struct vif_device *vif = &mrt->vif_table[vifi]; 1844 struct net_device *vif_dev; 1845 struct net_device *dev; 1846 struct rtable *rt; 1847 struct flowi4 fl4; 1848 int encap = 0; 1849 1850 vif_dev = vif_dev_read(vif); 1851 if (!vif_dev) 1852 goto out_free; 1853 1854 if (vif->flags & VIFF_REGISTER) { 1855 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1); 1856 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len); 1857 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len); 1858 DEV_STATS_INC(vif_dev, tx_packets); 1859 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1860 goto out_free; 1861 } 1862 1863 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi)) 1864 goto out_free; 1865 1866 if (vif->flags & VIFF_TUNNEL) { 1867 rt = ip_route_output_ports(net, &fl4, NULL, 1868 vif->remote, vif->local, 1869 0, 0, 1870 IPPROTO_IPIP, 1871 RT_TOS(iph->tos), vif->link); 1872 if (IS_ERR(rt)) 1873 goto out_free; 1874 encap = sizeof(struct iphdr); 1875 } else { 1876 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1877 0, 0, 1878 IPPROTO_IPIP, 1879 RT_TOS(iph->tos), vif->link); 1880 if (IS_ERR(rt)) 1881 goto out_free; 1882 } 1883 1884 dev = rt->dst.dev; 1885 1886 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1887 /* Do not fragment multicasts. Alas, IPv4 does not 1888 * allow to send ICMP, so that packets will disappear 1889 * to blackhole. 1890 */ 1891 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 1892 ip_rt_put(rt); 1893 goto out_free; 1894 } 1895 1896 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1897 1898 if (skb_cow(skb, encap)) { 1899 ip_rt_put(rt); 1900 goto out_free; 1901 } 1902 1903 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1); 1904 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len); 1905 1906 skb_dst_drop(skb); 1907 skb_dst_set(skb, &rt->dst); 1908 ip_decrease_ttl(ip_hdr(skb)); 1909 1910 /* FIXME: forward and output firewalls used to be called here. 1911 * What do we do with netfilter? -- RR 1912 */ 1913 if (vif->flags & VIFF_TUNNEL) { 1914 ip_encap(net, skb, vif->local, vif->remote); 1915 /* FIXME: extra output firewall step used to be here. --RR */ 1916 DEV_STATS_INC(vif_dev, tx_packets); 1917 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len); 1918 } 1919 1920 IPCB(skb)->flags |= IPSKB_FORWARDED; 1921 1922 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1923 * not only before forwarding, but after forwarding on all output 1924 * interfaces. It is clear, if mrouter runs a multicasting 1925 * program, it should receive packets not depending to what interface 1926 * program is joined. 1927 * If we will not make it, the program will have to join on all 1928 * interfaces. On the other hand, multihoming host (or router, but 1929 * not mrouter) cannot join to more than one interface - it will 1930 * result in receiving multiple packets. 1931 */ 1932 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, 1933 net, NULL, skb, skb->dev, dev, 1934 ipmr_forward_finish); 1935 return; 1936 1937 out_free: 1938 kfree_skb(skb); 1939 } 1940 1941 /* Called with mrt_lock or rcu_read_lock() */ 1942 static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev) 1943 { 1944 int ct; 1945 /* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */ 1946 for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) { 1947 if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev) 1948 break; 1949 } 1950 return ct; 1951 } 1952 1953 /* "local" means that we should preserve one skb (for local delivery) */ 1954 /* Called uner rcu_read_lock() */ 1955 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 1956 struct net_device *dev, struct sk_buff *skb, 1957 struct mfc_cache *c, int local) 1958 { 1959 int true_vifi = ipmr_find_vif(mrt, dev); 1960 int psend = -1; 1961 int vif, ct; 1962 1963 vif = c->_c.mfc_parent; 1964 c->_c.mfc_un.res.pkt++; 1965 c->_c.mfc_un.res.bytes += skb->len; 1966 c->_c.mfc_un.res.lastuse = jiffies; 1967 1968 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { 1969 struct mfc_cache *cache_proxy; 1970 1971 /* For an (*,G) entry, we only check that the incoming 1972 * interface is part of the static tree. 1973 */ 1974 cache_proxy = mr_mfc_find_any_parent(mrt, vif); 1975 if (cache_proxy && 1976 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255) 1977 goto forward; 1978 } 1979 1980 /* Wrong interface: drop packet and (maybe) send PIM assert. */ 1981 if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) { 1982 if (rt_is_output_route(skb_rtable(skb))) { 1983 /* It is our own packet, looped back. 1984 * Very complicated situation... 1985 * 1986 * The best workaround until routing daemons will be 1987 * fixed is not to redistribute packet, if it was 1988 * send through wrong interface. It means, that 1989 * multicast applications WILL NOT work for 1990 * (S,G), which have default multicast route pointing 1991 * to wrong oif. In any case, it is not a good 1992 * idea to use multicasting applications on router. 1993 */ 1994 goto dont_forward; 1995 } 1996 1997 c->_c.mfc_un.res.wrong_if++; 1998 1999 if (true_vifi >= 0 && mrt->mroute_do_assert && 2000 /* pimsm uses asserts, when switching from RPT to SPT, 2001 * so that we cannot check that packet arrived on an oif. 2002 * It is bad, but otherwise we would need to move pretty 2003 * large chunk of pimd to kernel. Ough... --ANK 2004 */ 2005 (mrt->mroute_do_pim || 2006 c->_c.mfc_un.res.ttls[true_vifi] < 255) && 2007 time_after(jiffies, 2008 c->_c.mfc_un.res.last_assert + 2009 MFC_ASSERT_THRESH)) { 2010 c->_c.mfc_un.res.last_assert = jiffies; 2011 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 2012 if (mrt->mroute_do_wrvifwhole) 2013 ipmr_cache_report(mrt, skb, true_vifi, 2014 IGMPMSG_WRVIFWHOLE); 2015 } 2016 goto dont_forward; 2017 } 2018 2019 forward: 2020 WRITE_ONCE(mrt->vif_table[vif].pkt_in, 2021 mrt->vif_table[vif].pkt_in + 1); 2022 WRITE_ONCE(mrt->vif_table[vif].bytes_in, 2023 mrt->vif_table[vif].bytes_in + skb->len); 2024 2025 /* Forward the frame */ 2026 if (c->mfc_origin == htonl(INADDR_ANY) && 2027 c->mfc_mcastgrp == htonl(INADDR_ANY)) { 2028 if (true_vifi >= 0 && 2029 true_vifi != c->_c.mfc_parent && 2030 ip_hdr(skb)->ttl > 2031 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) { 2032 /* It's an (*,*) entry and the packet is not coming from 2033 * the upstream: forward the packet to the upstream 2034 * only. 2035 */ 2036 psend = c->_c.mfc_parent; 2037 goto last_forward; 2038 } 2039 goto dont_forward; 2040 } 2041 for (ct = c->_c.mfc_un.res.maxvif - 1; 2042 ct >= c->_c.mfc_un.res.minvif; ct--) { 2043 /* For (*,G) entry, don't forward to the incoming interface */ 2044 if ((c->mfc_origin != htonl(INADDR_ANY) || 2045 ct != true_vifi) && 2046 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) { 2047 if (psend != -1) { 2048 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2049 2050 if (skb2) 2051 ipmr_queue_xmit(net, mrt, true_vifi, 2052 skb2, psend); 2053 } 2054 psend = ct; 2055 } 2056 } 2057 last_forward: 2058 if (psend != -1) { 2059 if (local) { 2060 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2061 2062 if (skb2) 2063 ipmr_queue_xmit(net, mrt, true_vifi, skb2, 2064 psend); 2065 } else { 2066 ipmr_queue_xmit(net, mrt, true_vifi, skb, psend); 2067 return; 2068 } 2069 } 2070 2071 dont_forward: 2072 if (!local) 2073 kfree_skb(skb); 2074 } 2075 2076 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 2077 { 2078 struct rtable *rt = skb_rtable(skb); 2079 struct iphdr *iph = ip_hdr(skb); 2080 struct flowi4 fl4 = { 2081 .daddr = iph->daddr, 2082 .saddr = iph->saddr, 2083 .flowi4_tos = RT_TOS(iph->tos), 2084 .flowi4_oif = (rt_is_output_route(rt) ? 2085 skb->dev->ifindex : 0), 2086 .flowi4_iif = (rt_is_output_route(rt) ? 2087 LOOPBACK_IFINDEX : 2088 skb->dev->ifindex), 2089 .flowi4_mark = skb->mark, 2090 }; 2091 struct mr_table *mrt; 2092 int err; 2093 2094 err = ipmr_fib_lookup(net, &fl4, &mrt); 2095 if (err) 2096 return ERR_PTR(err); 2097 return mrt; 2098 } 2099 2100 /* Multicast packets for forwarding arrive here 2101 * Called with rcu_read_lock(); 2102 */ 2103 int ip_mr_input(struct sk_buff *skb) 2104 { 2105 struct mfc_cache *cache; 2106 struct net *net = dev_net(skb->dev); 2107 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 2108 struct mr_table *mrt; 2109 struct net_device *dev; 2110 2111 /* skb->dev passed in is the loX master dev for vrfs. 2112 * As there are no vifs associated with loopback devices, 2113 * get the proper interface that does have a vif associated with it. 2114 */ 2115 dev = skb->dev; 2116 if (netif_is_l3_master(skb->dev)) { 2117 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif); 2118 if (!dev) { 2119 kfree_skb(skb); 2120 return -ENODEV; 2121 } 2122 } 2123 2124 /* Packet is looped back after forward, it should not be 2125 * forwarded second time, but still can be delivered locally. 2126 */ 2127 if (IPCB(skb)->flags & IPSKB_FORWARDED) 2128 goto dont_forward; 2129 2130 mrt = ipmr_rt_fib_lookup(net, skb); 2131 if (IS_ERR(mrt)) { 2132 kfree_skb(skb); 2133 return PTR_ERR(mrt); 2134 } 2135 if (!local) { 2136 if (IPCB(skb)->opt.router_alert) { 2137 if (ip_call_ra_chain(skb)) 2138 return 0; 2139 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 2140 /* IGMPv1 (and broken IGMPv2 implementations sort of 2141 * Cisco IOS <= 11.2(8)) do not put router alert 2142 * option to IGMP packets destined to routable 2143 * groups. It is very bad, because it means 2144 * that we can forward NO IGMP messages. 2145 */ 2146 struct sock *mroute_sk; 2147 2148 mroute_sk = rcu_dereference(mrt->mroute_sk); 2149 if (mroute_sk) { 2150 nf_reset_ct(skb); 2151 raw_rcv(mroute_sk, skb); 2152 return 0; 2153 } 2154 } 2155 } 2156 2157 /* already under rcu_read_lock() */ 2158 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 2159 if (!cache) { 2160 int vif = ipmr_find_vif(mrt, dev); 2161 2162 if (vif >= 0) 2163 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 2164 vif); 2165 } 2166 2167 /* No usable cache entry */ 2168 if (!cache) { 2169 int vif; 2170 2171 if (local) { 2172 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2173 ip_local_deliver(skb); 2174 if (!skb2) 2175 return -ENOBUFS; 2176 skb = skb2; 2177 } 2178 2179 vif = ipmr_find_vif(mrt, dev); 2180 if (vif >= 0) 2181 return ipmr_cache_unresolved(mrt, vif, skb, dev); 2182 kfree_skb(skb); 2183 return -ENODEV; 2184 } 2185 2186 ip_mr_forward(net, mrt, dev, skb, cache, local); 2187 2188 if (local) 2189 return ip_local_deliver(skb); 2190 2191 return 0; 2192 2193 dont_forward: 2194 if (local) 2195 return ip_local_deliver(skb); 2196 kfree_skb(skb); 2197 return 0; 2198 } 2199 2200 #ifdef CONFIG_IP_PIMSM_V1 2201 /* Handle IGMP messages of PIMv1 */ 2202 int pim_rcv_v1(struct sk_buff *skb) 2203 { 2204 struct igmphdr *pim; 2205 struct net *net = dev_net(skb->dev); 2206 struct mr_table *mrt; 2207 2208 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2209 goto drop; 2210 2211 pim = igmp_hdr(skb); 2212 2213 mrt = ipmr_rt_fib_lookup(net, skb); 2214 if (IS_ERR(mrt)) 2215 goto drop; 2216 if (!mrt->mroute_do_pim || 2217 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 2218 goto drop; 2219 2220 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2221 drop: 2222 kfree_skb(skb); 2223 } 2224 return 0; 2225 } 2226 #endif 2227 2228 #ifdef CONFIG_IP_PIMSM_V2 2229 static int pim_rcv(struct sk_buff *skb) 2230 { 2231 struct pimreghdr *pim; 2232 struct net *net = dev_net(skb->dev); 2233 struct mr_table *mrt; 2234 2235 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2236 goto drop; 2237 2238 pim = (struct pimreghdr *)skb_transport_header(skb); 2239 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) || 2240 (pim->flags & PIM_NULL_REGISTER) || 2241 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 2242 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 2243 goto drop; 2244 2245 mrt = ipmr_rt_fib_lookup(net, skb); 2246 if (IS_ERR(mrt)) 2247 goto drop; 2248 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2249 drop: 2250 kfree_skb(skb); 2251 } 2252 return 0; 2253 } 2254 #endif 2255 2256 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2257 __be32 saddr, __be32 daddr, 2258 struct rtmsg *rtm, u32 portid) 2259 { 2260 struct mfc_cache *cache; 2261 struct mr_table *mrt; 2262 int err; 2263 2264 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2265 if (!mrt) 2266 return -ENOENT; 2267 2268 rcu_read_lock(); 2269 cache = ipmr_cache_find(mrt, saddr, daddr); 2270 if (!cache && skb->dev) { 2271 int vif = ipmr_find_vif(mrt, skb->dev); 2272 2273 if (vif >= 0) 2274 cache = ipmr_cache_find_any(mrt, daddr, vif); 2275 } 2276 if (!cache) { 2277 struct sk_buff *skb2; 2278 struct iphdr *iph; 2279 struct net_device *dev; 2280 int vif = -1; 2281 2282 dev = skb->dev; 2283 if (dev) 2284 vif = ipmr_find_vif(mrt, dev); 2285 if (vif < 0) { 2286 rcu_read_unlock(); 2287 return -ENODEV; 2288 } 2289 2290 skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr)); 2291 if (!skb2) { 2292 rcu_read_unlock(); 2293 return -ENOMEM; 2294 } 2295 2296 NETLINK_CB(skb2).portid = portid; 2297 skb_push(skb2, sizeof(struct iphdr)); 2298 skb_reset_network_header(skb2); 2299 iph = ip_hdr(skb2); 2300 iph->ihl = sizeof(struct iphdr) >> 2; 2301 iph->saddr = saddr; 2302 iph->daddr = daddr; 2303 iph->version = 0; 2304 err = ipmr_cache_unresolved(mrt, vif, skb2, dev); 2305 rcu_read_unlock(); 2306 return err; 2307 } 2308 2309 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm); 2310 rcu_read_unlock(); 2311 return err; 2312 } 2313 2314 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2315 u32 portid, u32 seq, struct mfc_cache *c, int cmd, 2316 int flags) 2317 { 2318 struct nlmsghdr *nlh; 2319 struct rtmsg *rtm; 2320 int err; 2321 2322 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2323 if (!nlh) 2324 return -EMSGSIZE; 2325 2326 rtm = nlmsg_data(nlh); 2327 rtm->rtm_family = RTNL_FAMILY_IPMR; 2328 rtm->rtm_dst_len = 32; 2329 rtm->rtm_src_len = 32; 2330 rtm->rtm_tos = 0; 2331 rtm->rtm_table = mrt->id; 2332 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2333 goto nla_put_failure; 2334 rtm->rtm_type = RTN_MULTICAST; 2335 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2336 if (c->_c.mfc_flags & MFC_STATIC) 2337 rtm->rtm_protocol = RTPROT_STATIC; 2338 else 2339 rtm->rtm_protocol = RTPROT_MROUTED; 2340 rtm->rtm_flags = 0; 2341 2342 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) || 2343 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp)) 2344 goto nla_put_failure; 2345 err = mr_fill_mroute(mrt, skb, &c->_c, rtm); 2346 /* do not break the dump if cache is unresolved */ 2347 if (err < 0 && err != -ENOENT) 2348 goto nla_put_failure; 2349 2350 nlmsg_end(skb, nlh); 2351 return 0; 2352 2353 nla_put_failure: 2354 nlmsg_cancel(skb, nlh); 2355 return -EMSGSIZE; 2356 } 2357 2358 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2359 u32 portid, u32 seq, struct mr_mfc *c, int cmd, 2360 int flags) 2361 { 2362 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c, 2363 cmd, flags); 2364 } 2365 2366 static size_t mroute_msgsize(bool unresolved, int maxvif) 2367 { 2368 size_t len = 2369 NLMSG_ALIGN(sizeof(struct rtmsg)) 2370 + nla_total_size(4) /* RTA_TABLE */ 2371 + nla_total_size(4) /* RTA_SRC */ 2372 + nla_total_size(4) /* RTA_DST */ 2373 ; 2374 2375 if (!unresolved) 2376 len = len 2377 + nla_total_size(4) /* RTA_IIF */ 2378 + nla_total_size(0) /* RTA_MULTIPATH */ 2379 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2380 /* RTA_MFC_STATS */ 2381 + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) 2382 ; 2383 2384 return len; 2385 } 2386 2387 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 2388 int cmd) 2389 { 2390 struct net *net = read_pnet(&mrt->net); 2391 struct sk_buff *skb; 2392 int err = -ENOBUFS; 2393 2394 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS, 2395 mrt->maxvif), 2396 GFP_ATOMIC); 2397 if (!skb) 2398 goto errout; 2399 2400 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2401 if (err < 0) 2402 goto errout; 2403 2404 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); 2405 return; 2406 2407 errout: 2408 kfree_skb(skb); 2409 if (err < 0) 2410 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); 2411 } 2412 2413 static size_t igmpmsg_netlink_msgsize(size_t payloadlen) 2414 { 2415 size_t len = 2416 NLMSG_ALIGN(sizeof(struct rtgenmsg)) 2417 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */ 2418 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */ 2419 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */ 2420 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */ 2421 + nla_total_size(4) /* IPMRA_CREPORT_TABLE */ 2422 /* IPMRA_CREPORT_PKT */ 2423 + nla_total_size(payloadlen) 2424 ; 2425 2426 return len; 2427 } 2428 2429 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt) 2430 { 2431 struct net *net = read_pnet(&mrt->net); 2432 struct nlmsghdr *nlh; 2433 struct rtgenmsg *rtgenm; 2434 struct igmpmsg *msg; 2435 struct sk_buff *skb; 2436 struct nlattr *nla; 2437 int payloadlen; 2438 2439 payloadlen = pkt->len - sizeof(struct igmpmsg); 2440 msg = (struct igmpmsg *)skb_network_header(pkt); 2441 2442 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC); 2443 if (!skb) 2444 goto errout; 2445 2446 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT, 2447 sizeof(struct rtgenmsg), 0); 2448 if (!nlh) 2449 goto errout; 2450 rtgenm = nlmsg_data(nlh); 2451 rtgenm->rtgen_family = RTNL_FAMILY_IPMR; 2452 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) || 2453 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) || 2454 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR, 2455 msg->im_src.s_addr) || 2456 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR, 2457 msg->im_dst.s_addr) || 2458 nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id)) 2459 goto nla_put_failure; 2460 2461 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen); 2462 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg), 2463 nla_data(nla), payloadlen)) 2464 goto nla_put_failure; 2465 2466 nlmsg_end(skb, nlh); 2467 2468 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC); 2469 return; 2470 2471 nla_put_failure: 2472 nlmsg_cancel(skb, nlh); 2473 errout: 2474 kfree_skb(skb); 2475 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS); 2476 } 2477 2478 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb, 2479 const struct nlmsghdr *nlh, 2480 struct nlattr **tb, 2481 struct netlink_ext_ack *extack) 2482 { 2483 struct rtmsg *rtm; 2484 int i, err; 2485 2486 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) { 2487 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request"); 2488 return -EINVAL; 2489 } 2490 2491 if (!netlink_strict_get_check(skb)) 2492 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 2493 rtm_ipv4_policy, extack); 2494 2495 rtm = nlmsg_data(nlh); 2496 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) || 2497 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) || 2498 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol || 2499 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) { 2500 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request"); 2501 return -EINVAL; 2502 } 2503 2504 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, 2505 rtm_ipv4_policy, extack); 2506 if (err) 2507 return err; 2508 2509 if ((tb[RTA_SRC] && !rtm->rtm_src_len) || 2510 (tb[RTA_DST] && !rtm->rtm_dst_len)) { 2511 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4"); 2512 return -EINVAL; 2513 } 2514 2515 for (i = 0; i <= RTA_MAX; i++) { 2516 if (!tb[i]) 2517 continue; 2518 2519 switch (i) { 2520 case RTA_SRC: 2521 case RTA_DST: 2522 case RTA_TABLE: 2523 break; 2524 default: 2525 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request"); 2526 return -EINVAL; 2527 } 2528 } 2529 2530 return 0; 2531 } 2532 2533 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 2534 struct netlink_ext_ack *extack) 2535 { 2536 struct net *net = sock_net(in_skb->sk); 2537 struct nlattr *tb[RTA_MAX + 1]; 2538 struct sk_buff *skb = NULL; 2539 struct mfc_cache *cache; 2540 struct mr_table *mrt; 2541 __be32 src, grp; 2542 u32 tableid; 2543 int err; 2544 2545 err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack); 2546 if (err < 0) 2547 goto errout; 2548 2549 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0; 2550 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0; 2551 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0; 2552 2553 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT); 2554 if (!mrt) { 2555 err = -ENOENT; 2556 goto errout_free; 2557 } 2558 2559 /* entries are added/deleted only under RTNL */ 2560 rcu_read_lock(); 2561 cache = ipmr_cache_find(mrt, src, grp); 2562 rcu_read_unlock(); 2563 if (!cache) { 2564 err = -ENOENT; 2565 goto errout_free; 2566 } 2567 2568 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL); 2569 if (!skb) { 2570 err = -ENOBUFS; 2571 goto errout_free; 2572 } 2573 2574 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid, 2575 nlh->nlmsg_seq, cache, 2576 RTM_NEWROUTE, 0); 2577 if (err < 0) 2578 goto errout_free; 2579 2580 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 2581 2582 errout: 2583 return err; 2584 2585 errout_free: 2586 kfree_skb(skb); 2587 goto errout; 2588 } 2589 2590 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2591 { 2592 struct fib_dump_filter filter = { 2593 .rtnl_held = true, 2594 }; 2595 int err; 2596 2597 if (cb->strict_check) { 2598 err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh, 2599 &filter, cb); 2600 if (err < 0) 2601 return err; 2602 } 2603 2604 if (filter.table_id) { 2605 struct mr_table *mrt; 2606 2607 mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id); 2608 if (!mrt) { 2609 if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR) 2610 return skb->len; 2611 2612 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist"); 2613 return -ENOENT; 2614 } 2615 err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute, 2616 &mfc_unres_lock, &filter); 2617 return skb->len ? : err; 2618 } 2619 2620 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter, 2621 _ipmr_fill_mroute, &mfc_unres_lock, &filter); 2622 } 2623 2624 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = { 2625 [RTA_SRC] = { .type = NLA_U32 }, 2626 [RTA_DST] = { .type = NLA_U32 }, 2627 [RTA_IIF] = { .type = NLA_U32 }, 2628 [RTA_TABLE] = { .type = NLA_U32 }, 2629 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 2630 }; 2631 2632 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol) 2633 { 2634 switch (rtm_protocol) { 2635 case RTPROT_STATIC: 2636 case RTPROT_MROUTED: 2637 return true; 2638 } 2639 return false; 2640 } 2641 2642 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc) 2643 { 2644 struct rtnexthop *rtnh = nla_data(nla); 2645 int remaining = nla_len(nla), vifi = 0; 2646 2647 while (rtnh_ok(rtnh, remaining)) { 2648 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops; 2649 if (++vifi == MAXVIFS) 2650 break; 2651 rtnh = rtnh_next(rtnh, &remaining); 2652 } 2653 2654 return remaining > 0 ? -EINVAL : vifi; 2655 } 2656 2657 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */ 2658 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh, 2659 struct mfcctl *mfcc, int *mrtsock, 2660 struct mr_table **mrtret, 2661 struct netlink_ext_ack *extack) 2662 { 2663 struct net_device *dev = NULL; 2664 u32 tblid = RT_TABLE_DEFAULT; 2665 struct mr_table *mrt; 2666 struct nlattr *attr; 2667 struct rtmsg *rtm; 2668 int ret, rem; 2669 2670 ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX, 2671 rtm_ipmr_policy, extack); 2672 if (ret < 0) 2673 goto out; 2674 rtm = nlmsg_data(nlh); 2675 2676 ret = -EINVAL; 2677 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 || 2678 rtm->rtm_type != RTN_MULTICAST || 2679 rtm->rtm_scope != RT_SCOPE_UNIVERSE || 2680 !ipmr_rtm_validate_proto(rtm->rtm_protocol)) 2681 goto out; 2682 2683 memset(mfcc, 0, sizeof(*mfcc)); 2684 mfcc->mfcc_parent = -1; 2685 ret = 0; 2686 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) { 2687 switch (nla_type(attr)) { 2688 case RTA_SRC: 2689 mfcc->mfcc_origin.s_addr = nla_get_be32(attr); 2690 break; 2691 case RTA_DST: 2692 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr); 2693 break; 2694 case RTA_IIF: 2695 dev = __dev_get_by_index(net, nla_get_u32(attr)); 2696 if (!dev) { 2697 ret = -ENODEV; 2698 goto out; 2699 } 2700 break; 2701 case RTA_MULTIPATH: 2702 if (ipmr_nla_get_ttls(attr, mfcc) < 0) { 2703 ret = -EINVAL; 2704 goto out; 2705 } 2706 break; 2707 case RTA_PREFSRC: 2708 ret = 1; 2709 break; 2710 case RTA_TABLE: 2711 tblid = nla_get_u32(attr); 2712 break; 2713 } 2714 } 2715 mrt = ipmr_get_table(net, tblid); 2716 if (!mrt) { 2717 ret = -ENOENT; 2718 goto out; 2719 } 2720 *mrtret = mrt; 2721 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0; 2722 if (dev) 2723 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev); 2724 2725 out: 2726 return ret; 2727 } 2728 2729 /* takes care of both newroute and delroute */ 2730 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh, 2731 struct netlink_ext_ack *extack) 2732 { 2733 struct net *net = sock_net(skb->sk); 2734 int ret, mrtsock, parent; 2735 struct mr_table *tbl; 2736 struct mfcctl mfcc; 2737 2738 mrtsock = 0; 2739 tbl = NULL; 2740 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack); 2741 if (ret < 0) 2742 return ret; 2743 2744 parent = ret ? mfcc.mfcc_parent : -1; 2745 if (nlh->nlmsg_type == RTM_NEWROUTE) 2746 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent); 2747 else 2748 return ipmr_mfc_delete(tbl, &mfcc, parent); 2749 } 2750 2751 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb) 2752 { 2753 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len); 2754 2755 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) || 2756 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) || 2757 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM, 2758 mrt->mroute_reg_vif_num) || 2759 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT, 2760 mrt->mroute_do_assert) || 2761 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) || 2762 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE, 2763 mrt->mroute_do_wrvifwhole)) 2764 return false; 2765 2766 return true; 2767 } 2768 2769 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb) 2770 { 2771 struct net_device *vif_dev; 2772 struct nlattr *vif_nest; 2773 struct vif_device *vif; 2774 2775 vif = &mrt->vif_table[vifid]; 2776 vif_dev = rtnl_dereference(vif->dev); 2777 /* if the VIF doesn't exist just continue */ 2778 if (!vif_dev) 2779 return true; 2780 2781 vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF); 2782 if (!vif_nest) 2783 return false; 2784 2785 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) || 2786 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) || 2787 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) || 2788 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in, 2789 IPMRA_VIFA_PAD) || 2790 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out, 2791 IPMRA_VIFA_PAD) || 2792 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in, 2793 IPMRA_VIFA_PAD) || 2794 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out, 2795 IPMRA_VIFA_PAD) || 2796 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) || 2797 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) { 2798 nla_nest_cancel(skb, vif_nest); 2799 return false; 2800 } 2801 nla_nest_end(skb, vif_nest); 2802 2803 return true; 2804 } 2805 2806 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh, 2807 struct netlink_ext_ack *extack) 2808 { 2809 struct ifinfomsg *ifm; 2810 2811 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) { 2812 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump"); 2813 return -EINVAL; 2814 } 2815 2816 if (nlmsg_attrlen(nlh, sizeof(*ifm))) { 2817 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump"); 2818 return -EINVAL; 2819 } 2820 2821 ifm = nlmsg_data(nlh); 2822 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags || 2823 ifm->ifi_change || ifm->ifi_index) { 2824 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request"); 2825 return -EINVAL; 2826 } 2827 2828 return 0; 2829 } 2830 2831 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb) 2832 { 2833 struct net *net = sock_net(skb->sk); 2834 struct nlmsghdr *nlh = NULL; 2835 unsigned int t = 0, s_t; 2836 unsigned int e = 0, s_e; 2837 struct mr_table *mrt; 2838 2839 if (cb->strict_check) { 2840 int err = ipmr_valid_dumplink(cb->nlh, cb->extack); 2841 2842 if (err < 0) 2843 return err; 2844 } 2845 2846 s_t = cb->args[0]; 2847 s_e = cb->args[1]; 2848 2849 ipmr_for_each_table(mrt, net) { 2850 struct nlattr *vifs, *af; 2851 struct ifinfomsg *hdr; 2852 u32 i; 2853 2854 if (t < s_t) 2855 goto skip_table; 2856 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, 2857 cb->nlh->nlmsg_seq, RTM_NEWLINK, 2858 sizeof(*hdr), NLM_F_MULTI); 2859 if (!nlh) 2860 break; 2861 2862 hdr = nlmsg_data(nlh); 2863 memset(hdr, 0, sizeof(*hdr)); 2864 hdr->ifi_family = RTNL_FAMILY_IPMR; 2865 2866 af = nla_nest_start_noflag(skb, IFLA_AF_SPEC); 2867 if (!af) { 2868 nlmsg_cancel(skb, nlh); 2869 goto out; 2870 } 2871 2872 if (!ipmr_fill_table(mrt, skb)) { 2873 nlmsg_cancel(skb, nlh); 2874 goto out; 2875 } 2876 2877 vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS); 2878 if (!vifs) { 2879 nla_nest_end(skb, af); 2880 nlmsg_end(skb, nlh); 2881 goto out; 2882 } 2883 for (i = 0; i < mrt->maxvif; i++) { 2884 if (e < s_e) 2885 goto skip_entry; 2886 if (!ipmr_fill_vif(mrt, i, skb)) { 2887 nla_nest_end(skb, vifs); 2888 nla_nest_end(skb, af); 2889 nlmsg_end(skb, nlh); 2890 goto out; 2891 } 2892 skip_entry: 2893 e++; 2894 } 2895 s_e = 0; 2896 e = 0; 2897 nla_nest_end(skb, vifs); 2898 nla_nest_end(skb, af); 2899 nlmsg_end(skb, nlh); 2900 skip_table: 2901 t++; 2902 } 2903 2904 out: 2905 cb->args[1] = e; 2906 cb->args[0] = t; 2907 2908 return skb->len; 2909 } 2910 2911 #ifdef CONFIG_PROC_FS 2912 /* The /proc interfaces to multicast routing : 2913 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2914 */ 2915 2916 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2917 __acquires(RCU) 2918 { 2919 struct mr_vif_iter *iter = seq->private; 2920 struct net *net = seq_file_net(seq); 2921 struct mr_table *mrt; 2922 2923 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2924 if (!mrt) 2925 return ERR_PTR(-ENOENT); 2926 2927 iter->mrt = mrt; 2928 2929 rcu_read_lock(); 2930 return mr_vif_seq_start(seq, pos); 2931 } 2932 2933 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2934 __releases(RCU) 2935 { 2936 rcu_read_unlock(); 2937 } 2938 2939 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2940 { 2941 struct mr_vif_iter *iter = seq->private; 2942 struct mr_table *mrt = iter->mrt; 2943 2944 if (v == SEQ_START_TOKEN) { 2945 seq_puts(seq, 2946 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2947 } else { 2948 const struct vif_device *vif = v; 2949 const struct net_device *vif_dev; 2950 const char *name; 2951 2952 vif_dev = vif_dev_read(vif); 2953 name = vif_dev ? vif_dev->name : "none"; 2954 seq_printf(seq, 2955 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2956 vif - mrt->vif_table, 2957 name, vif->bytes_in, vif->pkt_in, 2958 vif->bytes_out, vif->pkt_out, 2959 vif->flags, vif->local, vif->remote); 2960 } 2961 return 0; 2962 } 2963 2964 static const struct seq_operations ipmr_vif_seq_ops = { 2965 .start = ipmr_vif_seq_start, 2966 .next = mr_vif_seq_next, 2967 .stop = ipmr_vif_seq_stop, 2968 .show = ipmr_vif_seq_show, 2969 }; 2970 2971 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2972 { 2973 struct net *net = seq_file_net(seq); 2974 struct mr_table *mrt; 2975 2976 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2977 if (!mrt) 2978 return ERR_PTR(-ENOENT); 2979 2980 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock); 2981 } 2982 2983 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2984 { 2985 int n; 2986 2987 if (v == SEQ_START_TOKEN) { 2988 seq_puts(seq, 2989 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2990 } else { 2991 const struct mfc_cache *mfc = v; 2992 const struct mr_mfc_iter *it = seq->private; 2993 const struct mr_table *mrt = it->mrt; 2994 2995 seq_printf(seq, "%08X %08X %-3hd", 2996 (__force u32) mfc->mfc_mcastgrp, 2997 (__force u32) mfc->mfc_origin, 2998 mfc->_c.mfc_parent); 2999 3000 if (it->cache != &mrt->mfc_unres_queue) { 3001 seq_printf(seq, " %8lu %8lu %8lu", 3002 mfc->_c.mfc_un.res.pkt, 3003 mfc->_c.mfc_un.res.bytes, 3004 mfc->_c.mfc_un.res.wrong_if); 3005 for (n = mfc->_c.mfc_un.res.minvif; 3006 n < mfc->_c.mfc_un.res.maxvif; n++) { 3007 if (VIF_EXISTS(mrt, n) && 3008 mfc->_c.mfc_un.res.ttls[n] < 255) 3009 seq_printf(seq, 3010 " %2d:%-3d", 3011 n, mfc->_c.mfc_un.res.ttls[n]); 3012 } 3013 } else { 3014 /* unresolved mfc_caches don't contain 3015 * pkt, bytes and wrong_if values 3016 */ 3017 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 3018 } 3019 seq_putc(seq, '\n'); 3020 } 3021 return 0; 3022 } 3023 3024 static const struct seq_operations ipmr_mfc_seq_ops = { 3025 .start = ipmr_mfc_seq_start, 3026 .next = mr_mfc_seq_next, 3027 .stop = mr_mfc_seq_stop, 3028 .show = ipmr_mfc_seq_show, 3029 }; 3030 #endif 3031 3032 #ifdef CONFIG_IP_PIMSM_V2 3033 static const struct net_protocol pim_protocol = { 3034 .handler = pim_rcv, 3035 }; 3036 #endif 3037 3038 static unsigned int ipmr_seq_read(struct net *net) 3039 { 3040 ASSERT_RTNL(); 3041 3042 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net); 3043 } 3044 3045 static int ipmr_dump(struct net *net, struct notifier_block *nb, 3046 struct netlink_ext_ack *extack) 3047 { 3048 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump, 3049 ipmr_mr_table_iter, extack); 3050 } 3051 3052 static const struct fib_notifier_ops ipmr_notifier_ops_template = { 3053 .family = RTNL_FAMILY_IPMR, 3054 .fib_seq_read = ipmr_seq_read, 3055 .fib_dump = ipmr_dump, 3056 .owner = THIS_MODULE, 3057 }; 3058 3059 static int __net_init ipmr_notifier_init(struct net *net) 3060 { 3061 struct fib_notifier_ops *ops; 3062 3063 net->ipv4.ipmr_seq = 0; 3064 3065 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net); 3066 if (IS_ERR(ops)) 3067 return PTR_ERR(ops); 3068 net->ipv4.ipmr_notifier_ops = ops; 3069 3070 return 0; 3071 } 3072 3073 static void __net_exit ipmr_notifier_exit(struct net *net) 3074 { 3075 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops); 3076 net->ipv4.ipmr_notifier_ops = NULL; 3077 } 3078 3079 /* Setup for IP multicast routing */ 3080 static int __net_init ipmr_net_init(struct net *net) 3081 { 3082 int err; 3083 3084 err = ipmr_notifier_init(net); 3085 if (err) 3086 goto ipmr_notifier_fail; 3087 3088 err = ipmr_rules_init(net); 3089 if (err < 0) 3090 goto ipmr_rules_fail; 3091 3092 #ifdef CONFIG_PROC_FS 3093 err = -ENOMEM; 3094 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops, 3095 sizeof(struct mr_vif_iter))) 3096 goto proc_vif_fail; 3097 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops, 3098 sizeof(struct mr_mfc_iter))) 3099 goto proc_cache_fail; 3100 #endif 3101 return 0; 3102 3103 #ifdef CONFIG_PROC_FS 3104 proc_cache_fail: 3105 remove_proc_entry("ip_mr_vif", net->proc_net); 3106 proc_vif_fail: 3107 rtnl_lock(); 3108 ipmr_rules_exit(net); 3109 rtnl_unlock(); 3110 #endif 3111 ipmr_rules_fail: 3112 ipmr_notifier_exit(net); 3113 ipmr_notifier_fail: 3114 return err; 3115 } 3116 3117 static void __net_exit ipmr_net_exit(struct net *net) 3118 { 3119 #ifdef CONFIG_PROC_FS 3120 remove_proc_entry("ip_mr_cache", net->proc_net); 3121 remove_proc_entry("ip_mr_vif", net->proc_net); 3122 #endif 3123 ipmr_notifier_exit(net); 3124 } 3125 3126 static void __net_exit ipmr_net_exit_batch(struct list_head *net_list) 3127 { 3128 struct net *net; 3129 3130 rtnl_lock(); 3131 list_for_each_entry(net, net_list, exit_list) 3132 ipmr_rules_exit(net); 3133 rtnl_unlock(); 3134 } 3135 3136 static struct pernet_operations ipmr_net_ops = { 3137 .init = ipmr_net_init, 3138 .exit = ipmr_net_exit, 3139 .exit_batch = ipmr_net_exit_batch, 3140 }; 3141 3142 int __init ip_mr_init(void) 3143 { 3144 int err; 3145 3146 mrt_cachep = KMEM_CACHE(mfc_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC); 3147 3148 err = register_pernet_subsys(&ipmr_net_ops); 3149 if (err) 3150 goto reg_pernet_fail; 3151 3152 err = register_netdevice_notifier(&ip_mr_notifier); 3153 if (err) 3154 goto reg_notif_fail; 3155 #ifdef CONFIG_IP_PIMSM_V2 3156 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 3157 pr_err("%s: can't add PIM protocol\n", __func__); 3158 err = -EAGAIN; 3159 goto add_proto_fail; 3160 } 3161 #endif 3162 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 3163 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0); 3164 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE, 3165 ipmr_rtm_route, NULL, 0); 3166 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE, 3167 ipmr_rtm_route, NULL, 0); 3168 3169 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK, 3170 NULL, ipmr_rtm_dumplink, 0); 3171 return 0; 3172 3173 #ifdef CONFIG_IP_PIMSM_V2 3174 add_proto_fail: 3175 unregister_netdevice_notifier(&ip_mr_notifier); 3176 #endif 3177 reg_notif_fail: 3178 unregister_pernet_subsys(&ipmr_net_ops); 3179 reg_pernet_fail: 3180 kmem_cache_destroy(mrt_cachep); 3181 return err; 3182 } 3183