xref: /linux/net/ipv4/ipmr.c (revision d58ff35122847a83ba55394e2ae3a1527b6febf5)
1 /*
2  *	IP multicast routing support for mrouted 3.6/3.8
3  *
4  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *	  Linux Consultancy and Custom Driver Development
6  *
7  *	This program is free software; you can redistribute it and/or
8  *	modify it under the terms of the GNU General Public License
9  *	as published by the Free Software Foundation; either version
10  *	2 of the License, or (at your option) any later version.
11  *
12  *	Fixes:
13  *	Michael Chastain	:	Incorrect size of copying.
14  *	Alan Cox		:	Added the cache manager code
15  *	Alan Cox		:	Fixed the clone/copy bug and device race.
16  *	Mike McLagan		:	Routing by source
17  *	Malcolm Beattie		:	Buffer handling fixes.
18  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
19  *	SVR Anand		:	Fixed several multicast bugs and problems.
20  *	Alexey Kuznetsov	:	Status, optimisations and more.
21  *	Brad Parker		:	Better behaviour on mrouted upcall
22  *					overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
25  *					Relax this requirement to work with older peers.
26  *
27  */
28 
29 #include <linux/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69 #include <net/nexthop.h>
70 
71 struct ipmr_rule {
72 	struct fib_rule		common;
73 };
74 
75 struct ipmr_result {
76 	struct mr_table		*mrt;
77 };
78 
79 /* Big lock, protecting vif table, mrt cache and mroute socket state.
80  * Note that the changes are semaphored via rtnl_lock.
81  */
82 
83 static DEFINE_RWLOCK(mrt_lock);
84 
85 /* Multicast router control variables */
86 
87 /* Special spinlock for queue of unresolved entries */
88 static DEFINE_SPINLOCK(mfc_unres_lock);
89 
90 /* We return to original Alan's scheme. Hash table of resolved
91  * entries is changed only in process context and protected
92  * with weak lock mrt_lock. Queue of unresolved entries is protected
93  * with strong spinlock mfc_unres_lock.
94  *
95  * In this case data path is free of exclusive locks at all.
96  */
97 
98 static struct kmem_cache *mrt_cachep __read_mostly;
99 
100 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
101 static void ipmr_free_table(struct mr_table *mrt);
102 
103 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
104 			  struct net_device *dev, struct sk_buff *skb,
105 			  struct mfc_cache *cache, int local);
106 static int ipmr_cache_report(struct mr_table *mrt,
107 			     struct sk_buff *pkt, vifi_t vifi, int assert);
108 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
109 			      struct mfc_cache *c, struct rtmsg *rtm);
110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
111 				 int cmd);
112 static void mroute_clean_tables(struct mr_table *mrt, bool all);
113 static void ipmr_expire_process(unsigned long arg);
114 
115 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
116 #define ipmr_for_each_table(mrt, net) \
117 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
118 
119 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
120 {
121 	struct mr_table *mrt;
122 
123 	ipmr_for_each_table(mrt, net) {
124 		if (mrt->id == id)
125 			return mrt;
126 	}
127 	return NULL;
128 }
129 
130 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
131 			   struct mr_table **mrt)
132 {
133 	int err;
134 	struct ipmr_result res;
135 	struct fib_lookup_arg arg = {
136 		.result = &res,
137 		.flags = FIB_LOOKUP_NOREF,
138 	};
139 
140 	/* update flow if oif or iif point to device enslaved to l3mdev */
141 	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
142 
143 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
144 			       flowi4_to_flowi(flp4), 0, &arg);
145 	if (err < 0)
146 		return err;
147 	*mrt = res.mrt;
148 	return 0;
149 }
150 
151 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
152 			    int flags, struct fib_lookup_arg *arg)
153 {
154 	struct ipmr_result *res = arg->result;
155 	struct mr_table *mrt;
156 
157 	switch (rule->action) {
158 	case FR_ACT_TO_TBL:
159 		break;
160 	case FR_ACT_UNREACHABLE:
161 		return -ENETUNREACH;
162 	case FR_ACT_PROHIBIT:
163 		return -EACCES;
164 	case FR_ACT_BLACKHOLE:
165 	default:
166 		return -EINVAL;
167 	}
168 
169 	arg->table = fib_rule_get_table(rule, arg);
170 
171 	mrt = ipmr_get_table(rule->fr_net, arg->table);
172 	if (!mrt)
173 		return -EAGAIN;
174 	res->mrt = mrt;
175 	return 0;
176 }
177 
178 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
179 {
180 	return 1;
181 }
182 
183 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
184 	FRA_GENERIC_POLICY,
185 };
186 
187 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
188 			       struct fib_rule_hdr *frh, struct nlattr **tb)
189 {
190 	return 0;
191 }
192 
193 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
194 			     struct nlattr **tb)
195 {
196 	return 1;
197 }
198 
199 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
200 			  struct fib_rule_hdr *frh)
201 {
202 	frh->dst_len = 0;
203 	frh->src_len = 0;
204 	frh->tos     = 0;
205 	return 0;
206 }
207 
208 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
209 	.family		= RTNL_FAMILY_IPMR,
210 	.rule_size	= sizeof(struct ipmr_rule),
211 	.addr_size	= sizeof(u32),
212 	.action		= ipmr_rule_action,
213 	.match		= ipmr_rule_match,
214 	.configure	= ipmr_rule_configure,
215 	.compare	= ipmr_rule_compare,
216 	.fill		= ipmr_rule_fill,
217 	.nlgroup	= RTNLGRP_IPV4_RULE,
218 	.policy		= ipmr_rule_policy,
219 	.owner		= THIS_MODULE,
220 };
221 
222 static int __net_init ipmr_rules_init(struct net *net)
223 {
224 	struct fib_rules_ops *ops;
225 	struct mr_table *mrt;
226 	int err;
227 
228 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
229 	if (IS_ERR(ops))
230 		return PTR_ERR(ops);
231 
232 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
233 
234 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
235 	if (IS_ERR(mrt)) {
236 		err = PTR_ERR(mrt);
237 		goto err1;
238 	}
239 
240 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
241 	if (err < 0)
242 		goto err2;
243 
244 	net->ipv4.mr_rules_ops = ops;
245 	return 0;
246 
247 err2:
248 	ipmr_free_table(mrt);
249 err1:
250 	fib_rules_unregister(ops);
251 	return err;
252 }
253 
254 static void __net_exit ipmr_rules_exit(struct net *net)
255 {
256 	struct mr_table *mrt, *next;
257 
258 	rtnl_lock();
259 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
260 		list_del(&mrt->list);
261 		ipmr_free_table(mrt);
262 	}
263 	fib_rules_unregister(net->ipv4.mr_rules_ops);
264 	rtnl_unlock();
265 }
266 #else
267 #define ipmr_for_each_table(mrt, net) \
268 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
269 
270 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
271 {
272 	return net->ipv4.mrt;
273 }
274 
275 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
276 			   struct mr_table **mrt)
277 {
278 	*mrt = net->ipv4.mrt;
279 	return 0;
280 }
281 
282 static int __net_init ipmr_rules_init(struct net *net)
283 {
284 	struct mr_table *mrt;
285 
286 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
287 	if (IS_ERR(mrt))
288 		return PTR_ERR(mrt);
289 	net->ipv4.mrt = mrt;
290 	return 0;
291 }
292 
293 static void __net_exit ipmr_rules_exit(struct net *net)
294 {
295 	rtnl_lock();
296 	ipmr_free_table(net->ipv4.mrt);
297 	net->ipv4.mrt = NULL;
298 	rtnl_unlock();
299 }
300 #endif
301 
302 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
303 				const void *ptr)
304 {
305 	const struct mfc_cache_cmp_arg *cmparg = arg->key;
306 	struct mfc_cache *c = (struct mfc_cache *)ptr;
307 
308 	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
309 	       cmparg->mfc_origin != c->mfc_origin;
310 }
311 
312 static const struct rhashtable_params ipmr_rht_params = {
313 	.head_offset = offsetof(struct mfc_cache, mnode),
314 	.key_offset = offsetof(struct mfc_cache, cmparg),
315 	.key_len = sizeof(struct mfc_cache_cmp_arg),
316 	.nelem_hint = 3,
317 	.locks_mul = 1,
318 	.obj_cmpfn = ipmr_hash_cmp,
319 	.automatic_shrinking = true,
320 };
321 
322 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
323 {
324 	struct mr_table *mrt;
325 
326 	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
327 	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
328 		return ERR_PTR(-EINVAL);
329 
330 	mrt = ipmr_get_table(net, id);
331 	if (mrt)
332 		return mrt;
333 
334 	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
335 	if (!mrt)
336 		return ERR_PTR(-ENOMEM);
337 	write_pnet(&mrt->net, net);
338 	mrt->id = id;
339 
340 	rhltable_init(&mrt->mfc_hash, &ipmr_rht_params);
341 	INIT_LIST_HEAD(&mrt->mfc_cache_list);
342 	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
343 
344 	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
345 		    (unsigned long)mrt);
346 
347 	mrt->mroute_reg_vif_num = -1;
348 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
349 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
350 #endif
351 	return mrt;
352 }
353 
354 static void ipmr_free_table(struct mr_table *mrt)
355 {
356 	del_timer_sync(&mrt->ipmr_expire_timer);
357 	mroute_clean_tables(mrt, true);
358 	rhltable_destroy(&mrt->mfc_hash);
359 	kfree(mrt);
360 }
361 
362 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
363 
364 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
365 {
366 	struct net *net = dev_net(dev);
367 
368 	dev_close(dev);
369 
370 	dev = __dev_get_by_name(net, "tunl0");
371 	if (dev) {
372 		const struct net_device_ops *ops = dev->netdev_ops;
373 		struct ifreq ifr;
374 		struct ip_tunnel_parm p;
375 
376 		memset(&p, 0, sizeof(p));
377 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
378 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
379 		p.iph.version = 4;
380 		p.iph.ihl = 5;
381 		p.iph.protocol = IPPROTO_IPIP;
382 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
383 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
384 
385 		if (ops->ndo_do_ioctl) {
386 			mm_segment_t oldfs = get_fs();
387 
388 			set_fs(KERNEL_DS);
389 			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
390 			set_fs(oldfs);
391 		}
392 	}
393 }
394 
395 /* Initialize ipmr pimreg/tunnel in_device */
396 static bool ipmr_init_vif_indev(const struct net_device *dev)
397 {
398 	struct in_device *in_dev;
399 
400 	ASSERT_RTNL();
401 
402 	in_dev = __in_dev_get_rtnl(dev);
403 	if (!in_dev)
404 		return false;
405 	ipv4_devconf_setall(in_dev);
406 	neigh_parms_data_state_setall(in_dev->arp_parms);
407 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
408 
409 	return true;
410 }
411 
412 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
413 {
414 	struct net_device  *dev;
415 
416 	dev = __dev_get_by_name(net, "tunl0");
417 
418 	if (dev) {
419 		const struct net_device_ops *ops = dev->netdev_ops;
420 		int err;
421 		struct ifreq ifr;
422 		struct ip_tunnel_parm p;
423 
424 		memset(&p, 0, sizeof(p));
425 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
426 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
427 		p.iph.version = 4;
428 		p.iph.ihl = 5;
429 		p.iph.protocol = IPPROTO_IPIP;
430 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
431 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
432 
433 		if (ops->ndo_do_ioctl) {
434 			mm_segment_t oldfs = get_fs();
435 
436 			set_fs(KERNEL_DS);
437 			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
438 			set_fs(oldfs);
439 		} else {
440 			err = -EOPNOTSUPP;
441 		}
442 		dev = NULL;
443 
444 		if (err == 0 &&
445 		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
446 			dev->flags |= IFF_MULTICAST;
447 			if (!ipmr_init_vif_indev(dev))
448 				goto failure;
449 			if (dev_open(dev))
450 				goto failure;
451 			dev_hold(dev);
452 		}
453 	}
454 	return dev;
455 
456 failure:
457 	unregister_netdevice(dev);
458 	return NULL;
459 }
460 
461 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
462 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
463 {
464 	struct net *net = dev_net(dev);
465 	struct mr_table *mrt;
466 	struct flowi4 fl4 = {
467 		.flowi4_oif	= dev->ifindex,
468 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
469 		.flowi4_mark	= skb->mark,
470 	};
471 	int err;
472 
473 	err = ipmr_fib_lookup(net, &fl4, &mrt);
474 	if (err < 0) {
475 		kfree_skb(skb);
476 		return err;
477 	}
478 
479 	read_lock(&mrt_lock);
480 	dev->stats.tx_bytes += skb->len;
481 	dev->stats.tx_packets++;
482 	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
483 	read_unlock(&mrt_lock);
484 	kfree_skb(skb);
485 	return NETDEV_TX_OK;
486 }
487 
488 static int reg_vif_get_iflink(const struct net_device *dev)
489 {
490 	return 0;
491 }
492 
493 static const struct net_device_ops reg_vif_netdev_ops = {
494 	.ndo_start_xmit	= reg_vif_xmit,
495 	.ndo_get_iflink = reg_vif_get_iflink,
496 };
497 
498 static void reg_vif_setup(struct net_device *dev)
499 {
500 	dev->type		= ARPHRD_PIMREG;
501 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
502 	dev->flags		= IFF_NOARP;
503 	dev->netdev_ops		= &reg_vif_netdev_ops;
504 	dev->needs_free_netdev	= true;
505 	dev->features		|= NETIF_F_NETNS_LOCAL;
506 }
507 
508 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
509 {
510 	struct net_device *dev;
511 	char name[IFNAMSIZ];
512 
513 	if (mrt->id == RT_TABLE_DEFAULT)
514 		sprintf(name, "pimreg");
515 	else
516 		sprintf(name, "pimreg%u", mrt->id);
517 
518 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
519 
520 	if (!dev)
521 		return NULL;
522 
523 	dev_net_set(dev, net);
524 
525 	if (register_netdevice(dev)) {
526 		free_netdev(dev);
527 		return NULL;
528 	}
529 
530 	if (!ipmr_init_vif_indev(dev))
531 		goto failure;
532 	if (dev_open(dev))
533 		goto failure;
534 
535 	dev_hold(dev);
536 
537 	return dev;
538 
539 failure:
540 	unregister_netdevice(dev);
541 	return NULL;
542 }
543 
544 /* called with rcu_read_lock() */
545 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
546 		     unsigned int pimlen)
547 {
548 	struct net_device *reg_dev = NULL;
549 	struct iphdr *encap;
550 
551 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
552 	/* Check that:
553 	 * a. packet is really sent to a multicast group
554 	 * b. packet is not a NULL-REGISTER
555 	 * c. packet is not truncated
556 	 */
557 	if (!ipv4_is_multicast(encap->daddr) ||
558 	    encap->tot_len == 0 ||
559 	    ntohs(encap->tot_len) + pimlen > skb->len)
560 		return 1;
561 
562 	read_lock(&mrt_lock);
563 	if (mrt->mroute_reg_vif_num >= 0)
564 		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
565 	read_unlock(&mrt_lock);
566 
567 	if (!reg_dev)
568 		return 1;
569 
570 	skb->mac_header = skb->network_header;
571 	skb_pull(skb, (u8 *)encap - skb->data);
572 	skb_reset_network_header(skb);
573 	skb->protocol = htons(ETH_P_IP);
574 	skb->ip_summed = CHECKSUM_NONE;
575 
576 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
577 
578 	netif_rx(skb);
579 
580 	return NET_RX_SUCCESS;
581 }
582 #else
583 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
584 {
585 	return NULL;
586 }
587 #endif
588 
589 /**
590  *	vif_delete - Delete a VIF entry
591  *	@notify: Set to 1, if the caller is a notifier_call
592  */
593 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
594 		      struct list_head *head)
595 {
596 	struct vif_device *v;
597 	struct net_device *dev;
598 	struct in_device *in_dev;
599 
600 	if (vifi < 0 || vifi >= mrt->maxvif)
601 		return -EADDRNOTAVAIL;
602 
603 	v = &mrt->vif_table[vifi];
604 
605 	write_lock_bh(&mrt_lock);
606 	dev = v->dev;
607 	v->dev = NULL;
608 
609 	if (!dev) {
610 		write_unlock_bh(&mrt_lock);
611 		return -EADDRNOTAVAIL;
612 	}
613 
614 	if (vifi == mrt->mroute_reg_vif_num)
615 		mrt->mroute_reg_vif_num = -1;
616 
617 	if (vifi + 1 == mrt->maxvif) {
618 		int tmp;
619 
620 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
621 			if (VIF_EXISTS(mrt, tmp))
622 				break;
623 		}
624 		mrt->maxvif = tmp+1;
625 	}
626 
627 	write_unlock_bh(&mrt_lock);
628 
629 	dev_set_allmulti(dev, -1);
630 
631 	in_dev = __in_dev_get_rtnl(dev);
632 	if (in_dev) {
633 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
634 		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
635 					    NETCONFA_MC_FORWARDING,
636 					    dev->ifindex, &in_dev->cnf);
637 		ip_rt_multicast_event(in_dev);
638 	}
639 
640 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
641 		unregister_netdevice_queue(dev, head);
642 
643 	dev_put(dev);
644 	return 0;
645 }
646 
647 static void ipmr_cache_free_rcu(struct rcu_head *head)
648 {
649 	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
650 
651 	kmem_cache_free(mrt_cachep, c);
652 }
653 
654 static inline void ipmr_cache_free(struct mfc_cache *c)
655 {
656 	call_rcu(&c->rcu, ipmr_cache_free_rcu);
657 }
658 
659 /* Destroy an unresolved cache entry, killing queued skbs
660  * and reporting error to netlink readers.
661  */
662 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
663 {
664 	struct net *net = read_pnet(&mrt->net);
665 	struct sk_buff *skb;
666 	struct nlmsgerr *e;
667 
668 	atomic_dec(&mrt->cache_resolve_queue_len);
669 
670 	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
671 		if (ip_hdr(skb)->version == 0) {
672 			struct nlmsghdr *nlh = skb_pull(skb,
673 							sizeof(struct iphdr));
674 			nlh->nlmsg_type = NLMSG_ERROR;
675 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
676 			skb_trim(skb, nlh->nlmsg_len);
677 			e = nlmsg_data(nlh);
678 			e->error = -ETIMEDOUT;
679 			memset(&e->msg, 0, sizeof(e->msg));
680 
681 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
682 		} else {
683 			kfree_skb(skb);
684 		}
685 	}
686 
687 	ipmr_cache_free(c);
688 }
689 
690 /* Timer process for the unresolved queue. */
691 static void ipmr_expire_process(unsigned long arg)
692 {
693 	struct mr_table *mrt = (struct mr_table *)arg;
694 	unsigned long now;
695 	unsigned long expires;
696 	struct mfc_cache *c, *next;
697 
698 	if (!spin_trylock(&mfc_unres_lock)) {
699 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
700 		return;
701 	}
702 
703 	if (list_empty(&mrt->mfc_unres_queue))
704 		goto out;
705 
706 	now = jiffies;
707 	expires = 10*HZ;
708 
709 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
710 		if (time_after(c->mfc_un.unres.expires, now)) {
711 			unsigned long interval = c->mfc_un.unres.expires - now;
712 			if (interval < expires)
713 				expires = interval;
714 			continue;
715 		}
716 
717 		list_del(&c->list);
718 		mroute_netlink_event(mrt, c, RTM_DELROUTE);
719 		ipmr_destroy_unres(mrt, c);
720 	}
721 
722 	if (!list_empty(&mrt->mfc_unres_queue))
723 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
724 
725 out:
726 	spin_unlock(&mfc_unres_lock);
727 }
728 
729 /* Fill oifs list. It is called under write locked mrt_lock. */
730 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
731 				   unsigned char *ttls)
732 {
733 	int vifi;
734 
735 	cache->mfc_un.res.minvif = MAXVIFS;
736 	cache->mfc_un.res.maxvif = 0;
737 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
738 
739 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
740 		if (VIF_EXISTS(mrt, vifi) &&
741 		    ttls[vifi] && ttls[vifi] < 255) {
742 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
743 			if (cache->mfc_un.res.minvif > vifi)
744 				cache->mfc_un.res.minvif = vifi;
745 			if (cache->mfc_un.res.maxvif <= vifi)
746 				cache->mfc_un.res.maxvif = vifi + 1;
747 		}
748 	}
749 	cache->mfc_un.res.lastuse = jiffies;
750 }
751 
752 static int vif_add(struct net *net, struct mr_table *mrt,
753 		   struct vifctl *vifc, int mrtsock)
754 {
755 	int vifi = vifc->vifc_vifi;
756 	struct vif_device *v = &mrt->vif_table[vifi];
757 	struct net_device *dev;
758 	struct in_device *in_dev;
759 	int err;
760 
761 	/* Is vif busy ? */
762 	if (VIF_EXISTS(mrt, vifi))
763 		return -EADDRINUSE;
764 
765 	switch (vifc->vifc_flags) {
766 	case VIFF_REGISTER:
767 		if (!ipmr_pimsm_enabled())
768 			return -EINVAL;
769 		/* Special Purpose VIF in PIM
770 		 * All the packets will be sent to the daemon
771 		 */
772 		if (mrt->mroute_reg_vif_num >= 0)
773 			return -EADDRINUSE;
774 		dev = ipmr_reg_vif(net, mrt);
775 		if (!dev)
776 			return -ENOBUFS;
777 		err = dev_set_allmulti(dev, 1);
778 		if (err) {
779 			unregister_netdevice(dev);
780 			dev_put(dev);
781 			return err;
782 		}
783 		break;
784 	case VIFF_TUNNEL:
785 		dev = ipmr_new_tunnel(net, vifc);
786 		if (!dev)
787 			return -ENOBUFS;
788 		err = dev_set_allmulti(dev, 1);
789 		if (err) {
790 			ipmr_del_tunnel(dev, vifc);
791 			dev_put(dev);
792 			return err;
793 		}
794 		break;
795 	case VIFF_USE_IFINDEX:
796 	case 0:
797 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
798 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
799 			if (dev && !__in_dev_get_rtnl(dev)) {
800 				dev_put(dev);
801 				return -EADDRNOTAVAIL;
802 			}
803 		} else {
804 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
805 		}
806 		if (!dev)
807 			return -EADDRNOTAVAIL;
808 		err = dev_set_allmulti(dev, 1);
809 		if (err) {
810 			dev_put(dev);
811 			return err;
812 		}
813 		break;
814 	default:
815 		return -EINVAL;
816 	}
817 
818 	in_dev = __in_dev_get_rtnl(dev);
819 	if (!in_dev) {
820 		dev_put(dev);
821 		return -EADDRNOTAVAIL;
822 	}
823 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
824 	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
825 				    dev->ifindex, &in_dev->cnf);
826 	ip_rt_multicast_event(in_dev);
827 
828 	/* Fill in the VIF structures */
829 
830 	v->rate_limit = vifc->vifc_rate_limit;
831 	v->local = vifc->vifc_lcl_addr.s_addr;
832 	v->remote = vifc->vifc_rmt_addr.s_addr;
833 	v->flags = vifc->vifc_flags;
834 	if (!mrtsock)
835 		v->flags |= VIFF_STATIC;
836 	v->threshold = vifc->vifc_threshold;
837 	v->bytes_in = 0;
838 	v->bytes_out = 0;
839 	v->pkt_in = 0;
840 	v->pkt_out = 0;
841 	v->link = dev->ifindex;
842 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
843 		v->link = dev_get_iflink(dev);
844 
845 	/* And finish update writing critical data */
846 	write_lock_bh(&mrt_lock);
847 	v->dev = dev;
848 	if (v->flags & VIFF_REGISTER)
849 		mrt->mroute_reg_vif_num = vifi;
850 	if (vifi+1 > mrt->maxvif)
851 		mrt->maxvif = vifi+1;
852 	write_unlock_bh(&mrt_lock);
853 	return 0;
854 }
855 
856 /* called with rcu_read_lock() */
857 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
858 					 __be32 origin,
859 					 __be32 mcastgrp)
860 {
861 	struct mfc_cache_cmp_arg arg = {
862 			.mfc_mcastgrp = mcastgrp,
863 			.mfc_origin = origin
864 	};
865 	struct rhlist_head *tmp, *list;
866 	struct mfc_cache *c;
867 
868 	list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
869 	rhl_for_each_entry_rcu(c, tmp, list, mnode)
870 		return c;
871 
872 	return NULL;
873 }
874 
875 /* Look for a (*,*,oif) entry */
876 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
877 						    int vifi)
878 {
879 	struct mfc_cache_cmp_arg arg = {
880 			.mfc_mcastgrp = htonl(INADDR_ANY),
881 			.mfc_origin = htonl(INADDR_ANY)
882 	};
883 	struct rhlist_head *tmp, *list;
884 	struct mfc_cache *c;
885 
886 	list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
887 	rhl_for_each_entry_rcu(c, tmp, list, mnode)
888 		if (c->mfc_un.res.ttls[vifi] < 255)
889 			return c;
890 
891 	return NULL;
892 }
893 
894 /* Look for a (*,G) entry */
895 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
896 					     __be32 mcastgrp, int vifi)
897 {
898 	struct mfc_cache_cmp_arg arg = {
899 			.mfc_mcastgrp = mcastgrp,
900 			.mfc_origin = htonl(INADDR_ANY)
901 	};
902 	struct rhlist_head *tmp, *list;
903 	struct mfc_cache *c, *proxy;
904 
905 	if (mcastgrp == htonl(INADDR_ANY))
906 		goto skip;
907 
908 	list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
909 	rhl_for_each_entry_rcu(c, tmp, list, mnode) {
910 		if (c->mfc_un.res.ttls[vifi] < 255)
911 			return c;
912 
913 		/* It's ok if the vifi is part of the static tree */
914 		proxy = ipmr_cache_find_any_parent(mrt, c->mfc_parent);
915 		if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
916 			return c;
917 	}
918 
919 skip:
920 	return ipmr_cache_find_any_parent(mrt, vifi);
921 }
922 
923 /* Look for a (S,G,iif) entry if parent != -1 */
924 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
925 						__be32 origin, __be32 mcastgrp,
926 						int parent)
927 {
928 	struct mfc_cache_cmp_arg arg = {
929 			.mfc_mcastgrp = mcastgrp,
930 			.mfc_origin = origin,
931 	};
932 	struct rhlist_head *tmp, *list;
933 	struct mfc_cache *c;
934 
935 	list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
936 	rhl_for_each_entry_rcu(c, tmp, list, mnode)
937 		if (parent == -1 || parent == c->mfc_parent)
938 			return c;
939 
940 	return NULL;
941 }
942 
943 /* Allocate a multicast cache entry */
944 static struct mfc_cache *ipmr_cache_alloc(void)
945 {
946 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
947 
948 	if (c) {
949 		c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
950 		c->mfc_un.res.minvif = MAXVIFS;
951 	}
952 	return c;
953 }
954 
955 static struct mfc_cache *ipmr_cache_alloc_unres(void)
956 {
957 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
958 
959 	if (c) {
960 		skb_queue_head_init(&c->mfc_un.unres.unresolved);
961 		c->mfc_un.unres.expires = jiffies + 10*HZ;
962 	}
963 	return c;
964 }
965 
966 /* A cache entry has gone into a resolved state from queued */
967 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
968 			       struct mfc_cache *uc, struct mfc_cache *c)
969 {
970 	struct sk_buff *skb;
971 	struct nlmsgerr *e;
972 
973 	/* Play the pending entries through our router */
974 	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
975 		if (ip_hdr(skb)->version == 0) {
976 			struct nlmsghdr *nlh = skb_pull(skb,
977 							sizeof(struct iphdr));
978 
979 			if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
980 				nlh->nlmsg_len = skb_tail_pointer(skb) -
981 						 (u8 *)nlh;
982 			} else {
983 				nlh->nlmsg_type = NLMSG_ERROR;
984 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
985 				skb_trim(skb, nlh->nlmsg_len);
986 				e = nlmsg_data(nlh);
987 				e->error = -EMSGSIZE;
988 				memset(&e->msg, 0, sizeof(e->msg));
989 			}
990 
991 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
992 		} else {
993 			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
994 		}
995 	}
996 }
997 
998 /* Bounce a cache query up to mrouted. We could use netlink for this but mrouted
999  * expects the following bizarre scheme.
1000  *
1001  * Called under mrt_lock.
1002  */
1003 static int ipmr_cache_report(struct mr_table *mrt,
1004 			     struct sk_buff *pkt, vifi_t vifi, int assert)
1005 {
1006 	const int ihl = ip_hdrlen(pkt);
1007 	struct sock *mroute_sk;
1008 	struct igmphdr *igmp;
1009 	struct igmpmsg *msg;
1010 	struct sk_buff *skb;
1011 	int ret;
1012 
1013 	if (assert == IGMPMSG_WHOLEPKT)
1014 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1015 	else
1016 		skb = alloc_skb(128, GFP_ATOMIC);
1017 
1018 	if (!skb)
1019 		return -ENOBUFS;
1020 
1021 	if (assert == IGMPMSG_WHOLEPKT) {
1022 		/* Ugly, but we have no choice with this interface.
1023 		 * Duplicate old header, fix ihl, length etc.
1024 		 * And all this only to mangle msg->im_msgtype and
1025 		 * to set msg->im_mbz to "mbz" :-)
1026 		 */
1027 		skb_push(skb, sizeof(struct iphdr));
1028 		skb_reset_network_header(skb);
1029 		skb_reset_transport_header(skb);
1030 		msg = (struct igmpmsg *)skb_network_header(skb);
1031 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1032 		msg->im_msgtype = IGMPMSG_WHOLEPKT;
1033 		msg->im_mbz = 0;
1034 		msg->im_vif = mrt->mroute_reg_vif_num;
1035 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1036 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1037 					     sizeof(struct iphdr));
1038 	} else {
1039 		/* Copy the IP header */
1040 		skb_set_network_header(skb, skb->len);
1041 		skb_put(skb, ihl);
1042 		skb_copy_to_linear_data(skb, pkt->data, ihl);
1043 		/* Flag to the kernel this is a route add */
1044 		ip_hdr(skb)->protocol = 0;
1045 		msg = (struct igmpmsg *)skb_network_header(skb);
1046 		msg->im_vif = vifi;
1047 		skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1048 		/* Add our header */
1049 		igmp = skb_put(skb, sizeof(struct igmphdr));
1050 		igmp->type = assert;
1051 		msg->im_msgtype = assert;
1052 		igmp->code = 0;
1053 		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1054 		skb->transport_header = skb->network_header;
1055 	}
1056 
1057 	rcu_read_lock();
1058 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1059 	if (!mroute_sk) {
1060 		rcu_read_unlock();
1061 		kfree_skb(skb);
1062 		return -EINVAL;
1063 	}
1064 
1065 	/* Deliver to mrouted */
1066 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1067 	rcu_read_unlock();
1068 	if (ret < 0) {
1069 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1070 		kfree_skb(skb);
1071 	}
1072 
1073 	return ret;
1074 }
1075 
1076 /* Queue a packet for resolution. It gets locked cache entry! */
1077 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1078 				 struct sk_buff *skb, struct net_device *dev)
1079 {
1080 	const struct iphdr *iph = ip_hdr(skb);
1081 	struct mfc_cache *c;
1082 	bool found = false;
1083 	int err;
1084 
1085 	spin_lock_bh(&mfc_unres_lock);
1086 	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1087 		if (c->mfc_mcastgrp == iph->daddr &&
1088 		    c->mfc_origin == iph->saddr) {
1089 			found = true;
1090 			break;
1091 		}
1092 	}
1093 
1094 	if (!found) {
1095 		/* Create a new entry if allowable */
1096 		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1097 		    (c = ipmr_cache_alloc_unres()) == NULL) {
1098 			spin_unlock_bh(&mfc_unres_lock);
1099 
1100 			kfree_skb(skb);
1101 			return -ENOBUFS;
1102 		}
1103 
1104 		/* Fill in the new cache entry */
1105 		c->mfc_parent	= -1;
1106 		c->mfc_origin	= iph->saddr;
1107 		c->mfc_mcastgrp	= iph->daddr;
1108 
1109 		/* Reflect first query at mrouted. */
1110 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1111 		if (err < 0) {
1112 			/* If the report failed throw the cache entry
1113 			   out - Brad Parker
1114 			 */
1115 			spin_unlock_bh(&mfc_unres_lock);
1116 
1117 			ipmr_cache_free(c);
1118 			kfree_skb(skb);
1119 			return err;
1120 		}
1121 
1122 		atomic_inc(&mrt->cache_resolve_queue_len);
1123 		list_add(&c->list, &mrt->mfc_unres_queue);
1124 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1125 
1126 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1127 			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1128 	}
1129 
1130 	/* See if we can append the packet */
1131 	if (c->mfc_un.unres.unresolved.qlen > 3) {
1132 		kfree_skb(skb);
1133 		err = -ENOBUFS;
1134 	} else {
1135 		if (dev) {
1136 			skb->dev = dev;
1137 			skb->skb_iif = dev->ifindex;
1138 		}
1139 		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1140 		err = 0;
1141 	}
1142 
1143 	spin_unlock_bh(&mfc_unres_lock);
1144 	return err;
1145 }
1146 
1147 /* MFC cache manipulation by user space mroute daemon */
1148 
1149 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1150 {
1151 	struct mfc_cache *c;
1152 
1153 	/* The entries are added/deleted only under RTNL */
1154 	rcu_read_lock();
1155 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1156 				   mfc->mfcc_mcastgrp.s_addr, parent);
1157 	rcu_read_unlock();
1158 	if (!c)
1159 		return -ENOENT;
1160 	rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1161 	list_del_rcu(&c->list);
1162 	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1163 	ipmr_cache_free(c);
1164 
1165 	return 0;
1166 }
1167 
1168 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1169 			struct mfcctl *mfc, int mrtsock, int parent)
1170 {
1171 	struct mfc_cache *uc, *c;
1172 	bool found;
1173 	int ret;
1174 
1175 	if (mfc->mfcc_parent >= MAXVIFS)
1176 		return -ENFILE;
1177 
1178 	/* The entries are added/deleted only under RTNL */
1179 	rcu_read_lock();
1180 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1181 				   mfc->mfcc_mcastgrp.s_addr, parent);
1182 	rcu_read_unlock();
1183 	if (c) {
1184 		write_lock_bh(&mrt_lock);
1185 		c->mfc_parent = mfc->mfcc_parent;
1186 		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1187 		if (!mrtsock)
1188 			c->mfc_flags |= MFC_STATIC;
1189 		write_unlock_bh(&mrt_lock);
1190 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1191 		return 0;
1192 	}
1193 
1194 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1195 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1196 		return -EINVAL;
1197 
1198 	c = ipmr_cache_alloc();
1199 	if (!c)
1200 		return -ENOMEM;
1201 
1202 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1203 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1204 	c->mfc_parent = mfc->mfcc_parent;
1205 	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1206 	if (!mrtsock)
1207 		c->mfc_flags |= MFC_STATIC;
1208 
1209 	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->mnode,
1210 				  ipmr_rht_params);
1211 	if (ret) {
1212 		pr_err("ipmr: rhtable insert error %d\n", ret);
1213 		ipmr_cache_free(c);
1214 		return ret;
1215 	}
1216 	list_add_tail_rcu(&c->list, &mrt->mfc_cache_list);
1217 	/* Check to see if we resolved a queued list. If so we
1218 	 * need to send on the frames and tidy up.
1219 	 */
1220 	found = false;
1221 	spin_lock_bh(&mfc_unres_lock);
1222 	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1223 		if (uc->mfc_origin == c->mfc_origin &&
1224 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1225 			list_del(&uc->list);
1226 			atomic_dec(&mrt->cache_resolve_queue_len);
1227 			found = true;
1228 			break;
1229 		}
1230 	}
1231 	if (list_empty(&mrt->mfc_unres_queue))
1232 		del_timer(&mrt->ipmr_expire_timer);
1233 	spin_unlock_bh(&mfc_unres_lock);
1234 
1235 	if (found) {
1236 		ipmr_cache_resolve(net, mrt, uc, c);
1237 		ipmr_cache_free(uc);
1238 	}
1239 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1240 	return 0;
1241 }
1242 
1243 /* Close the multicast socket, and clear the vif tables etc */
1244 static void mroute_clean_tables(struct mr_table *mrt, bool all)
1245 {
1246 	struct mfc_cache *c, *tmp;
1247 	LIST_HEAD(list);
1248 	int i;
1249 
1250 	/* Shut down all active vif entries */
1251 	for (i = 0; i < mrt->maxvif; i++) {
1252 		if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1253 			continue;
1254 		vif_delete(mrt, i, 0, &list);
1255 	}
1256 	unregister_netdevice_many(&list);
1257 
1258 	/* Wipe the cache */
1259 	list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1260 		if (!all && (c->mfc_flags & MFC_STATIC))
1261 			continue;
1262 		rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1263 		list_del_rcu(&c->list);
1264 		mroute_netlink_event(mrt, c, RTM_DELROUTE);
1265 		ipmr_cache_free(c);
1266 	}
1267 
1268 	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1269 		spin_lock_bh(&mfc_unres_lock);
1270 		list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1271 			list_del(&c->list);
1272 			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1273 			ipmr_destroy_unres(mrt, c);
1274 		}
1275 		spin_unlock_bh(&mfc_unres_lock);
1276 	}
1277 }
1278 
1279 /* called from ip_ra_control(), before an RCU grace period,
1280  * we dont need to call synchronize_rcu() here
1281  */
1282 static void mrtsock_destruct(struct sock *sk)
1283 {
1284 	struct net *net = sock_net(sk);
1285 	struct mr_table *mrt;
1286 
1287 	ASSERT_RTNL();
1288 	ipmr_for_each_table(mrt, net) {
1289 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1290 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1291 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1292 						    NETCONFA_MC_FORWARDING,
1293 						    NETCONFA_IFINDEX_ALL,
1294 						    net->ipv4.devconf_all);
1295 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1296 			mroute_clean_tables(mrt, false);
1297 		}
1298 	}
1299 }
1300 
1301 /* Socket options and virtual interface manipulation. The whole
1302  * virtual interface system is a complete heap, but unfortunately
1303  * that's how BSD mrouted happens to think. Maybe one day with a proper
1304  * MOSPF/PIM router set up we can clean this up.
1305  */
1306 
1307 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1308 			 unsigned int optlen)
1309 {
1310 	struct net *net = sock_net(sk);
1311 	int val, ret = 0, parent = 0;
1312 	struct mr_table *mrt;
1313 	struct vifctl vif;
1314 	struct mfcctl mfc;
1315 	u32 uval;
1316 
1317 	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1318 	rtnl_lock();
1319 	if (sk->sk_type != SOCK_RAW ||
1320 	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1321 		ret = -EOPNOTSUPP;
1322 		goto out_unlock;
1323 	}
1324 
1325 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1326 	if (!mrt) {
1327 		ret = -ENOENT;
1328 		goto out_unlock;
1329 	}
1330 	if (optname != MRT_INIT) {
1331 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1332 		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1333 			ret = -EACCES;
1334 			goto out_unlock;
1335 		}
1336 	}
1337 
1338 	switch (optname) {
1339 	case MRT_INIT:
1340 		if (optlen != sizeof(int)) {
1341 			ret = -EINVAL;
1342 			break;
1343 		}
1344 		if (rtnl_dereference(mrt->mroute_sk)) {
1345 			ret = -EADDRINUSE;
1346 			break;
1347 		}
1348 
1349 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1350 		if (ret == 0) {
1351 			rcu_assign_pointer(mrt->mroute_sk, sk);
1352 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1353 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1354 						    NETCONFA_MC_FORWARDING,
1355 						    NETCONFA_IFINDEX_ALL,
1356 						    net->ipv4.devconf_all);
1357 		}
1358 		break;
1359 	case MRT_DONE:
1360 		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1361 			ret = -EACCES;
1362 		} else {
1363 			ret = ip_ra_control(sk, 0, NULL);
1364 			goto out_unlock;
1365 		}
1366 		break;
1367 	case MRT_ADD_VIF:
1368 	case MRT_DEL_VIF:
1369 		if (optlen != sizeof(vif)) {
1370 			ret = -EINVAL;
1371 			break;
1372 		}
1373 		if (copy_from_user(&vif, optval, sizeof(vif))) {
1374 			ret = -EFAULT;
1375 			break;
1376 		}
1377 		if (vif.vifc_vifi >= MAXVIFS) {
1378 			ret = -ENFILE;
1379 			break;
1380 		}
1381 		if (optname == MRT_ADD_VIF) {
1382 			ret = vif_add(net, mrt, &vif,
1383 				      sk == rtnl_dereference(mrt->mroute_sk));
1384 		} else {
1385 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1386 		}
1387 		break;
1388 	/* Manipulate the forwarding caches. These live
1389 	 * in a sort of kernel/user symbiosis.
1390 	 */
1391 	case MRT_ADD_MFC:
1392 	case MRT_DEL_MFC:
1393 		parent = -1;
1394 	case MRT_ADD_MFC_PROXY:
1395 	case MRT_DEL_MFC_PROXY:
1396 		if (optlen != sizeof(mfc)) {
1397 			ret = -EINVAL;
1398 			break;
1399 		}
1400 		if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1401 			ret = -EFAULT;
1402 			break;
1403 		}
1404 		if (parent == 0)
1405 			parent = mfc.mfcc_parent;
1406 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1407 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1408 		else
1409 			ret = ipmr_mfc_add(net, mrt, &mfc,
1410 					   sk == rtnl_dereference(mrt->mroute_sk),
1411 					   parent);
1412 		break;
1413 	/* Control PIM assert. */
1414 	case MRT_ASSERT:
1415 		if (optlen != sizeof(val)) {
1416 			ret = -EINVAL;
1417 			break;
1418 		}
1419 		if (get_user(val, (int __user *)optval)) {
1420 			ret = -EFAULT;
1421 			break;
1422 		}
1423 		mrt->mroute_do_assert = val;
1424 		break;
1425 	case MRT_PIM:
1426 		if (!ipmr_pimsm_enabled()) {
1427 			ret = -ENOPROTOOPT;
1428 			break;
1429 		}
1430 		if (optlen != sizeof(val)) {
1431 			ret = -EINVAL;
1432 			break;
1433 		}
1434 		if (get_user(val, (int __user *)optval)) {
1435 			ret = -EFAULT;
1436 			break;
1437 		}
1438 
1439 		val = !!val;
1440 		if (val != mrt->mroute_do_pim) {
1441 			mrt->mroute_do_pim = val;
1442 			mrt->mroute_do_assert = val;
1443 		}
1444 		break;
1445 	case MRT_TABLE:
1446 		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1447 			ret = -ENOPROTOOPT;
1448 			break;
1449 		}
1450 		if (optlen != sizeof(uval)) {
1451 			ret = -EINVAL;
1452 			break;
1453 		}
1454 		if (get_user(uval, (u32 __user *)optval)) {
1455 			ret = -EFAULT;
1456 			break;
1457 		}
1458 
1459 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1460 			ret = -EBUSY;
1461 		} else {
1462 			mrt = ipmr_new_table(net, uval);
1463 			if (IS_ERR(mrt))
1464 				ret = PTR_ERR(mrt);
1465 			else
1466 				raw_sk(sk)->ipmr_table = uval;
1467 		}
1468 		break;
1469 	/* Spurious command, or MRT_VERSION which you cannot set. */
1470 	default:
1471 		ret = -ENOPROTOOPT;
1472 	}
1473 out_unlock:
1474 	rtnl_unlock();
1475 	return ret;
1476 }
1477 
1478 /* Getsock opt support for the multicast routing system. */
1479 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1480 {
1481 	int olr;
1482 	int val;
1483 	struct net *net = sock_net(sk);
1484 	struct mr_table *mrt;
1485 
1486 	if (sk->sk_type != SOCK_RAW ||
1487 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1488 		return -EOPNOTSUPP;
1489 
1490 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1491 	if (!mrt)
1492 		return -ENOENT;
1493 
1494 	switch (optname) {
1495 	case MRT_VERSION:
1496 		val = 0x0305;
1497 		break;
1498 	case MRT_PIM:
1499 		if (!ipmr_pimsm_enabled())
1500 			return -ENOPROTOOPT;
1501 		val = mrt->mroute_do_pim;
1502 		break;
1503 	case MRT_ASSERT:
1504 		val = mrt->mroute_do_assert;
1505 		break;
1506 	default:
1507 		return -ENOPROTOOPT;
1508 	}
1509 
1510 	if (get_user(olr, optlen))
1511 		return -EFAULT;
1512 	olr = min_t(unsigned int, olr, sizeof(int));
1513 	if (olr < 0)
1514 		return -EINVAL;
1515 	if (put_user(olr, optlen))
1516 		return -EFAULT;
1517 	if (copy_to_user(optval, &val, olr))
1518 		return -EFAULT;
1519 	return 0;
1520 }
1521 
1522 /* The IP multicast ioctl support routines. */
1523 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1524 {
1525 	struct sioc_sg_req sr;
1526 	struct sioc_vif_req vr;
1527 	struct vif_device *vif;
1528 	struct mfc_cache *c;
1529 	struct net *net = sock_net(sk);
1530 	struct mr_table *mrt;
1531 
1532 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1533 	if (!mrt)
1534 		return -ENOENT;
1535 
1536 	switch (cmd) {
1537 	case SIOCGETVIFCNT:
1538 		if (copy_from_user(&vr, arg, sizeof(vr)))
1539 			return -EFAULT;
1540 		if (vr.vifi >= mrt->maxvif)
1541 			return -EINVAL;
1542 		read_lock(&mrt_lock);
1543 		vif = &mrt->vif_table[vr.vifi];
1544 		if (VIF_EXISTS(mrt, vr.vifi)) {
1545 			vr.icount = vif->pkt_in;
1546 			vr.ocount = vif->pkt_out;
1547 			vr.ibytes = vif->bytes_in;
1548 			vr.obytes = vif->bytes_out;
1549 			read_unlock(&mrt_lock);
1550 
1551 			if (copy_to_user(arg, &vr, sizeof(vr)))
1552 				return -EFAULT;
1553 			return 0;
1554 		}
1555 		read_unlock(&mrt_lock);
1556 		return -EADDRNOTAVAIL;
1557 	case SIOCGETSGCNT:
1558 		if (copy_from_user(&sr, arg, sizeof(sr)))
1559 			return -EFAULT;
1560 
1561 		rcu_read_lock();
1562 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1563 		if (c) {
1564 			sr.pktcnt = c->mfc_un.res.pkt;
1565 			sr.bytecnt = c->mfc_un.res.bytes;
1566 			sr.wrong_if = c->mfc_un.res.wrong_if;
1567 			rcu_read_unlock();
1568 
1569 			if (copy_to_user(arg, &sr, sizeof(sr)))
1570 				return -EFAULT;
1571 			return 0;
1572 		}
1573 		rcu_read_unlock();
1574 		return -EADDRNOTAVAIL;
1575 	default:
1576 		return -ENOIOCTLCMD;
1577 	}
1578 }
1579 
1580 #ifdef CONFIG_COMPAT
1581 struct compat_sioc_sg_req {
1582 	struct in_addr src;
1583 	struct in_addr grp;
1584 	compat_ulong_t pktcnt;
1585 	compat_ulong_t bytecnt;
1586 	compat_ulong_t wrong_if;
1587 };
1588 
1589 struct compat_sioc_vif_req {
1590 	vifi_t	vifi;		/* Which iface */
1591 	compat_ulong_t icount;
1592 	compat_ulong_t ocount;
1593 	compat_ulong_t ibytes;
1594 	compat_ulong_t obytes;
1595 };
1596 
1597 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1598 {
1599 	struct compat_sioc_sg_req sr;
1600 	struct compat_sioc_vif_req vr;
1601 	struct vif_device *vif;
1602 	struct mfc_cache *c;
1603 	struct net *net = sock_net(sk);
1604 	struct mr_table *mrt;
1605 
1606 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1607 	if (!mrt)
1608 		return -ENOENT;
1609 
1610 	switch (cmd) {
1611 	case SIOCGETVIFCNT:
1612 		if (copy_from_user(&vr, arg, sizeof(vr)))
1613 			return -EFAULT;
1614 		if (vr.vifi >= mrt->maxvif)
1615 			return -EINVAL;
1616 		read_lock(&mrt_lock);
1617 		vif = &mrt->vif_table[vr.vifi];
1618 		if (VIF_EXISTS(mrt, vr.vifi)) {
1619 			vr.icount = vif->pkt_in;
1620 			vr.ocount = vif->pkt_out;
1621 			vr.ibytes = vif->bytes_in;
1622 			vr.obytes = vif->bytes_out;
1623 			read_unlock(&mrt_lock);
1624 
1625 			if (copy_to_user(arg, &vr, sizeof(vr)))
1626 				return -EFAULT;
1627 			return 0;
1628 		}
1629 		read_unlock(&mrt_lock);
1630 		return -EADDRNOTAVAIL;
1631 	case SIOCGETSGCNT:
1632 		if (copy_from_user(&sr, arg, sizeof(sr)))
1633 			return -EFAULT;
1634 
1635 		rcu_read_lock();
1636 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1637 		if (c) {
1638 			sr.pktcnt = c->mfc_un.res.pkt;
1639 			sr.bytecnt = c->mfc_un.res.bytes;
1640 			sr.wrong_if = c->mfc_un.res.wrong_if;
1641 			rcu_read_unlock();
1642 
1643 			if (copy_to_user(arg, &sr, sizeof(sr)))
1644 				return -EFAULT;
1645 			return 0;
1646 		}
1647 		rcu_read_unlock();
1648 		return -EADDRNOTAVAIL;
1649 	default:
1650 		return -ENOIOCTLCMD;
1651 	}
1652 }
1653 #endif
1654 
1655 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1656 {
1657 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1658 	struct net *net = dev_net(dev);
1659 	struct mr_table *mrt;
1660 	struct vif_device *v;
1661 	int ct;
1662 
1663 	if (event != NETDEV_UNREGISTER)
1664 		return NOTIFY_DONE;
1665 
1666 	ipmr_for_each_table(mrt, net) {
1667 		v = &mrt->vif_table[0];
1668 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1669 			if (v->dev == dev)
1670 				vif_delete(mrt, ct, 1, NULL);
1671 		}
1672 	}
1673 	return NOTIFY_DONE;
1674 }
1675 
1676 static struct notifier_block ip_mr_notifier = {
1677 	.notifier_call = ipmr_device_event,
1678 };
1679 
1680 /* Encapsulate a packet by attaching a valid IPIP header to it.
1681  * This avoids tunnel drivers and other mess and gives us the speed so
1682  * important for multicast video.
1683  */
1684 static void ip_encap(struct net *net, struct sk_buff *skb,
1685 		     __be32 saddr, __be32 daddr)
1686 {
1687 	struct iphdr *iph;
1688 	const struct iphdr *old_iph = ip_hdr(skb);
1689 
1690 	skb_push(skb, sizeof(struct iphdr));
1691 	skb->transport_header = skb->network_header;
1692 	skb_reset_network_header(skb);
1693 	iph = ip_hdr(skb);
1694 
1695 	iph->version	=	4;
1696 	iph->tos	=	old_iph->tos;
1697 	iph->ttl	=	old_iph->ttl;
1698 	iph->frag_off	=	0;
1699 	iph->daddr	=	daddr;
1700 	iph->saddr	=	saddr;
1701 	iph->protocol	=	IPPROTO_IPIP;
1702 	iph->ihl	=	5;
1703 	iph->tot_len	=	htons(skb->len);
1704 	ip_select_ident(net, skb, NULL);
1705 	ip_send_check(iph);
1706 
1707 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1708 	nf_reset(skb);
1709 }
1710 
1711 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1712 				      struct sk_buff *skb)
1713 {
1714 	struct ip_options *opt = &(IPCB(skb)->opt);
1715 
1716 	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1717 	IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1718 
1719 	if (unlikely(opt->optlen))
1720 		ip_forward_options(skb);
1721 
1722 	return dst_output(net, sk, skb);
1723 }
1724 
1725 /* Processing handlers for ipmr_forward */
1726 
1727 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1728 			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1729 {
1730 	const struct iphdr *iph = ip_hdr(skb);
1731 	struct vif_device *vif = &mrt->vif_table[vifi];
1732 	struct net_device *dev;
1733 	struct rtable *rt;
1734 	struct flowi4 fl4;
1735 	int    encap = 0;
1736 
1737 	if (!vif->dev)
1738 		goto out_free;
1739 
1740 	if (vif->flags & VIFF_REGISTER) {
1741 		vif->pkt_out++;
1742 		vif->bytes_out += skb->len;
1743 		vif->dev->stats.tx_bytes += skb->len;
1744 		vif->dev->stats.tx_packets++;
1745 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1746 		goto out_free;
1747 	}
1748 
1749 	if (vif->flags & VIFF_TUNNEL) {
1750 		rt = ip_route_output_ports(net, &fl4, NULL,
1751 					   vif->remote, vif->local,
1752 					   0, 0,
1753 					   IPPROTO_IPIP,
1754 					   RT_TOS(iph->tos), vif->link);
1755 		if (IS_ERR(rt))
1756 			goto out_free;
1757 		encap = sizeof(struct iphdr);
1758 	} else {
1759 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1760 					   0, 0,
1761 					   IPPROTO_IPIP,
1762 					   RT_TOS(iph->tos), vif->link);
1763 		if (IS_ERR(rt))
1764 			goto out_free;
1765 	}
1766 
1767 	dev = rt->dst.dev;
1768 
1769 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1770 		/* Do not fragment multicasts. Alas, IPv4 does not
1771 		 * allow to send ICMP, so that packets will disappear
1772 		 * to blackhole.
1773 		 */
1774 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1775 		ip_rt_put(rt);
1776 		goto out_free;
1777 	}
1778 
1779 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1780 
1781 	if (skb_cow(skb, encap)) {
1782 		ip_rt_put(rt);
1783 		goto out_free;
1784 	}
1785 
1786 	vif->pkt_out++;
1787 	vif->bytes_out += skb->len;
1788 
1789 	skb_dst_drop(skb);
1790 	skb_dst_set(skb, &rt->dst);
1791 	ip_decrease_ttl(ip_hdr(skb));
1792 
1793 	/* FIXME: forward and output firewalls used to be called here.
1794 	 * What do we do with netfilter? -- RR
1795 	 */
1796 	if (vif->flags & VIFF_TUNNEL) {
1797 		ip_encap(net, skb, vif->local, vif->remote);
1798 		/* FIXME: extra output firewall step used to be here. --RR */
1799 		vif->dev->stats.tx_packets++;
1800 		vif->dev->stats.tx_bytes += skb->len;
1801 	}
1802 
1803 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1804 
1805 	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1806 	 * not only before forwarding, but after forwarding on all output
1807 	 * interfaces. It is clear, if mrouter runs a multicasting
1808 	 * program, it should receive packets not depending to what interface
1809 	 * program is joined.
1810 	 * If we will not make it, the program will have to join on all
1811 	 * interfaces. On the other hand, multihoming host (or router, but
1812 	 * not mrouter) cannot join to more than one interface - it will
1813 	 * result in receiving multiple packets.
1814 	 */
1815 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1816 		net, NULL, skb, skb->dev, dev,
1817 		ipmr_forward_finish);
1818 	return;
1819 
1820 out_free:
1821 	kfree_skb(skb);
1822 }
1823 
1824 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1825 {
1826 	int ct;
1827 
1828 	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1829 		if (mrt->vif_table[ct].dev == dev)
1830 			break;
1831 	}
1832 	return ct;
1833 }
1834 
1835 /* "local" means that we should preserve one skb (for local delivery) */
1836 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1837 			  struct net_device *dev, struct sk_buff *skb,
1838 			  struct mfc_cache *cache, int local)
1839 {
1840 	int true_vifi = ipmr_find_vif(mrt, dev);
1841 	int psend = -1;
1842 	int vif, ct;
1843 
1844 	vif = cache->mfc_parent;
1845 	cache->mfc_un.res.pkt++;
1846 	cache->mfc_un.res.bytes += skb->len;
1847 	cache->mfc_un.res.lastuse = jiffies;
1848 
1849 	if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1850 		struct mfc_cache *cache_proxy;
1851 
1852 		/* For an (*,G) entry, we only check that the incomming
1853 		 * interface is part of the static tree.
1854 		 */
1855 		cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1856 		if (cache_proxy &&
1857 		    cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1858 			goto forward;
1859 	}
1860 
1861 	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1862 	if (mrt->vif_table[vif].dev != dev) {
1863 		if (rt_is_output_route(skb_rtable(skb))) {
1864 			/* It is our own packet, looped back.
1865 			 * Very complicated situation...
1866 			 *
1867 			 * The best workaround until routing daemons will be
1868 			 * fixed is not to redistribute packet, if it was
1869 			 * send through wrong interface. It means, that
1870 			 * multicast applications WILL NOT work for
1871 			 * (S,G), which have default multicast route pointing
1872 			 * to wrong oif. In any case, it is not a good
1873 			 * idea to use multicasting applications on router.
1874 			 */
1875 			goto dont_forward;
1876 		}
1877 
1878 		cache->mfc_un.res.wrong_if++;
1879 
1880 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1881 		    /* pimsm uses asserts, when switching from RPT to SPT,
1882 		     * so that we cannot check that packet arrived on an oif.
1883 		     * It is bad, but otherwise we would need to move pretty
1884 		     * large chunk of pimd to kernel. Ough... --ANK
1885 		     */
1886 		    (mrt->mroute_do_pim ||
1887 		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1888 		    time_after(jiffies,
1889 			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1890 			cache->mfc_un.res.last_assert = jiffies;
1891 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1892 		}
1893 		goto dont_forward;
1894 	}
1895 
1896 forward:
1897 	mrt->vif_table[vif].pkt_in++;
1898 	mrt->vif_table[vif].bytes_in += skb->len;
1899 
1900 	/* Forward the frame */
1901 	if (cache->mfc_origin == htonl(INADDR_ANY) &&
1902 	    cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1903 		if (true_vifi >= 0 &&
1904 		    true_vifi != cache->mfc_parent &&
1905 		    ip_hdr(skb)->ttl >
1906 				cache->mfc_un.res.ttls[cache->mfc_parent]) {
1907 			/* It's an (*,*) entry and the packet is not coming from
1908 			 * the upstream: forward the packet to the upstream
1909 			 * only.
1910 			 */
1911 			psend = cache->mfc_parent;
1912 			goto last_forward;
1913 		}
1914 		goto dont_forward;
1915 	}
1916 	for (ct = cache->mfc_un.res.maxvif - 1;
1917 	     ct >= cache->mfc_un.res.minvif; ct--) {
1918 		/* For (*,G) entry, don't forward to the incoming interface */
1919 		if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1920 		     ct != true_vifi) &&
1921 		    ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1922 			if (psend != -1) {
1923 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1924 
1925 				if (skb2)
1926 					ipmr_queue_xmit(net, mrt, skb2, cache,
1927 							psend);
1928 			}
1929 			psend = ct;
1930 		}
1931 	}
1932 last_forward:
1933 	if (psend != -1) {
1934 		if (local) {
1935 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1936 
1937 			if (skb2)
1938 				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1939 		} else {
1940 			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1941 			return;
1942 		}
1943 	}
1944 
1945 dont_forward:
1946 	if (!local)
1947 		kfree_skb(skb);
1948 }
1949 
1950 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1951 {
1952 	struct rtable *rt = skb_rtable(skb);
1953 	struct iphdr *iph = ip_hdr(skb);
1954 	struct flowi4 fl4 = {
1955 		.daddr = iph->daddr,
1956 		.saddr = iph->saddr,
1957 		.flowi4_tos = RT_TOS(iph->tos),
1958 		.flowi4_oif = (rt_is_output_route(rt) ?
1959 			       skb->dev->ifindex : 0),
1960 		.flowi4_iif = (rt_is_output_route(rt) ?
1961 			       LOOPBACK_IFINDEX :
1962 			       skb->dev->ifindex),
1963 		.flowi4_mark = skb->mark,
1964 	};
1965 	struct mr_table *mrt;
1966 	int err;
1967 
1968 	err = ipmr_fib_lookup(net, &fl4, &mrt);
1969 	if (err)
1970 		return ERR_PTR(err);
1971 	return mrt;
1972 }
1973 
1974 /* Multicast packets for forwarding arrive here
1975  * Called with rcu_read_lock();
1976  */
1977 int ip_mr_input(struct sk_buff *skb)
1978 {
1979 	struct mfc_cache *cache;
1980 	struct net *net = dev_net(skb->dev);
1981 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1982 	struct mr_table *mrt;
1983 	struct net_device *dev;
1984 
1985 	/* skb->dev passed in is the loX master dev for vrfs.
1986 	 * As there are no vifs associated with loopback devices,
1987 	 * get the proper interface that does have a vif associated with it.
1988 	 */
1989 	dev = skb->dev;
1990 	if (netif_is_l3_master(skb->dev)) {
1991 		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
1992 		if (!dev) {
1993 			kfree_skb(skb);
1994 			return -ENODEV;
1995 		}
1996 	}
1997 
1998 	/* Packet is looped back after forward, it should not be
1999 	 * forwarded second time, but still can be delivered locally.
2000 	 */
2001 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2002 		goto dont_forward;
2003 
2004 	mrt = ipmr_rt_fib_lookup(net, skb);
2005 	if (IS_ERR(mrt)) {
2006 		kfree_skb(skb);
2007 		return PTR_ERR(mrt);
2008 	}
2009 	if (!local) {
2010 		if (IPCB(skb)->opt.router_alert) {
2011 			if (ip_call_ra_chain(skb))
2012 				return 0;
2013 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2014 			/* IGMPv1 (and broken IGMPv2 implementations sort of
2015 			 * Cisco IOS <= 11.2(8)) do not put router alert
2016 			 * option to IGMP packets destined to routable
2017 			 * groups. It is very bad, because it means
2018 			 * that we can forward NO IGMP messages.
2019 			 */
2020 			struct sock *mroute_sk;
2021 
2022 			mroute_sk = rcu_dereference(mrt->mroute_sk);
2023 			if (mroute_sk) {
2024 				nf_reset(skb);
2025 				raw_rcv(mroute_sk, skb);
2026 				return 0;
2027 			}
2028 		    }
2029 	}
2030 
2031 	/* already under rcu_read_lock() */
2032 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2033 	if (!cache) {
2034 		int vif = ipmr_find_vif(mrt, dev);
2035 
2036 		if (vif >= 0)
2037 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2038 						    vif);
2039 	}
2040 
2041 	/* No usable cache entry */
2042 	if (!cache) {
2043 		int vif;
2044 
2045 		if (local) {
2046 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2047 			ip_local_deliver(skb);
2048 			if (!skb2)
2049 				return -ENOBUFS;
2050 			skb = skb2;
2051 		}
2052 
2053 		read_lock(&mrt_lock);
2054 		vif = ipmr_find_vif(mrt, dev);
2055 		if (vif >= 0) {
2056 			int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
2057 			read_unlock(&mrt_lock);
2058 
2059 			return err2;
2060 		}
2061 		read_unlock(&mrt_lock);
2062 		kfree_skb(skb);
2063 		return -ENODEV;
2064 	}
2065 
2066 	read_lock(&mrt_lock);
2067 	ip_mr_forward(net, mrt, dev, skb, cache, local);
2068 	read_unlock(&mrt_lock);
2069 
2070 	if (local)
2071 		return ip_local_deliver(skb);
2072 
2073 	return 0;
2074 
2075 dont_forward:
2076 	if (local)
2077 		return ip_local_deliver(skb);
2078 	kfree_skb(skb);
2079 	return 0;
2080 }
2081 
2082 #ifdef CONFIG_IP_PIMSM_V1
2083 /* Handle IGMP messages of PIMv1 */
2084 int pim_rcv_v1(struct sk_buff *skb)
2085 {
2086 	struct igmphdr *pim;
2087 	struct net *net = dev_net(skb->dev);
2088 	struct mr_table *mrt;
2089 
2090 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2091 		goto drop;
2092 
2093 	pim = igmp_hdr(skb);
2094 
2095 	mrt = ipmr_rt_fib_lookup(net, skb);
2096 	if (IS_ERR(mrt))
2097 		goto drop;
2098 	if (!mrt->mroute_do_pim ||
2099 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2100 		goto drop;
2101 
2102 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2103 drop:
2104 		kfree_skb(skb);
2105 	}
2106 	return 0;
2107 }
2108 #endif
2109 
2110 #ifdef CONFIG_IP_PIMSM_V2
2111 static int pim_rcv(struct sk_buff *skb)
2112 {
2113 	struct pimreghdr *pim;
2114 	struct net *net = dev_net(skb->dev);
2115 	struct mr_table *mrt;
2116 
2117 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2118 		goto drop;
2119 
2120 	pim = (struct pimreghdr *)skb_transport_header(skb);
2121 	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2122 	    (pim->flags & PIM_NULL_REGISTER) ||
2123 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2124 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2125 		goto drop;
2126 
2127 	mrt = ipmr_rt_fib_lookup(net, skb);
2128 	if (IS_ERR(mrt))
2129 		goto drop;
2130 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2131 drop:
2132 		kfree_skb(skb);
2133 	}
2134 	return 0;
2135 }
2136 #endif
2137 
2138 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2139 			      struct mfc_cache *c, struct rtmsg *rtm)
2140 {
2141 	struct rta_mfc_stats mfcs;
2142 	struct nlattr *mp_attr;
2143 	struct rtnexthop *nhp;
2144 	unsigned long lastuse;
2145 	int ct;
2146 
2147 	/* If cache is unresolved, don't try to parse IIF and OIF */
2148 	if (c->mfc_parent >= MAXVIFS) {
2149 		rtm->rtm_flags |= RTNH_F_UNRESOLVED;
2150 		return -ENOENT;
2151 	}
2152 
2153 	if (VIF_EXISTS(mrt, c->mfc_parent) &&
2154 	    nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2155 		return -EMSGSIZE;
2156 
2157 	if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2158 		return -EMSGSIZE;
2159 
2160 	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2161 		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2162 			if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2163 				nla_nest_cancel(skb, mp_attr);
2164 				return -EMSGSIZE;
2165 			}
2166 
2167 			nhp->rtnh_flags = 0;
2168 			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2169 			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2170 			nhp->rtnh_len = sizeof(*nhp);
2171 		}
2172 	}
2173 
2174 	nla_nest_end(skb, mp_attr);
2175 
2176 	lastuse = READ_ONCE(c->mfc_un.res.lastuse);
2177 	lastuse = time_after_eq(jiffies, lastuse) ? jiffies - lastuse : 0;
2178 
2179 	mfcs.mfcs_packets = c->mfc_un.res.pkt;
2180 	mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2181 	mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2182 	if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) ||
2183 	    nla_put_u64_64bit(skb, RTA_EXPIRES, jiffies_to_clock_t(lastuse),
2184 			      RTA_PAD))
2185 		return -EMSGSIZE;
2186 
2187 	rtm->rtm_type = RTN_MULTICAST;
2188 	return 1;
2189 }
2190 
2191 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2192 		   __be32 saddr, __be32 daddr,
2193 		   struct rtmsg *rtm, u32 portid)
2194 {
2195 	struct mfc_cache *cache;
2196 	struct mr_table *mrt;
2197 	int err;
2198 
2199 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2200 	if (!mrt)
2201 		return -ENOENT;
2202 
2203 	rcu_read_lock();
2204 	cache = ipmr_cache_find(mrt, saddr, daddr);
2205 	if (!cache && skb->dev) {
2206 		int vif = ipmr_find_vif(mrt, skb->dev);
2207 
2208 		if (vif >= 0)
2209 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2210 	}
2211 	if (!cache) {
2212 		struct sk_buff *skb2;
2213 		struct iphdr *iph;
2214 		struct net_device *dev;
2215 		int vif = -1;
2216 
2217 		dev = skb->dev;
2218 		read_lock(&mrt_lock);
2219 		if (dev)
2220 			vif = ipmr_find_vif(mrt, dev);
2221 		if (vif < 0) {
2222 			read_unlock(&mrt_lock);
2223 			rcu_read_unlock();
2224 			return -ENODEV;
2225 		}
2226 		skb2 = skb_clone(skb, GFP_ATOMIC);
2227 		if (!skb2) {
2228 			read_unlock(&mrt_lock);
2229 			rcu_read_unlock();
2230 			return -ENOMEM;
2231 		}
2232 
2233 		NETLINK_CB(skb2).portid = portid;
2234 		skb_push(skb2, sizeof(struct iphdr));
2235 		skb_reset_network_header(skb2);
2236 		iph = ip_hdr(skb2);
2237 		iph->ihl = sizeof(struct iphdr) >> 2;
2238 		iph->saddr = saddr;
2239 		iph->daddr = daddr;
2240 		iph->version = 0;
2241 		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2242 		read_unlock(&mrt_lock);
2243 		rcu_read_unlock();
2244 		return err;
2245 	}
2246 
2247 	read_lock(&mrt_lock);
2248 	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2249 	read_unlock(&mrt_lock);
2250 	rcu_read_unlock();
2251 	return err;
2252 }
2253 
2254 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2255 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2256 			    int flags)
2257 {
2258 	struct nlmsghdr *nlh;
2259 	struct rtmsg *rtm;
2260 	int err;
2261 
2262 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2263 	if (!nlh)
2264 		return -EMSGSIZE;
2265 
2266 	rtm = nlmsg_data(nlh);
2267 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2268 	rtm->rtm_dst_len  = 32;
2269 	rtm->rtm_src_len  = 32;
2270 	rtm->rtm_tos      = 0;
2271 	rtm->rtm_table    = mrt->id;
2272 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2273 		goto nla_put_failure;
2274 	rtm->rtm_type     = RTN_MULTICAST;
2275 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2276 	if (c->mfc_flags & MFC_STATIC)
2277 		rtm->rtm_protocol = RTPROT_STATIC;
2278 	else
2279 		rtm->rtm_protocol = RTPROT_MROUTED;
2280 	rtm->rtm_flags    = 0;
2281 
2282 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2283 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2284 		goto nla_put_failure;
2285 	err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2286 	/* do not break the dump if cache is unresolved */
2287 	if (err < 0 && err != -ENOENT)
2288 		goto nla_put_failure;
2289 
2290 	nlmsg_end(skb, nlh);
2291 	return 0;
2292 
2293 nla_put_failure:
2294 	nlmsg_cancel(skb, nlh);
2295 	return -EMSGSIZE;
2296 }
2297 
2298 static size_t mroute_msgsize(bool unresolved, int maxvif)
2299 {
2300 	size_t len =
2301 		NLMSG_ALIGN(sizeof(struct rtmsg))
2302 		+ nla_total_size(4)	/* RTA_TABLE */
2303 		+ nla_total_size(4)	/* RTA_SRC */
2304 		+ nla_total_size(4)	/* RTA_DST */
2305 		;
2306 
2307 	if (!unresolved)
2308 		len = len
2309 		      + nla_total_size(4)	/* RTA_IIF */
2310 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2311 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2312 						/* RTA_MFC_STATS */
2313 		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2314 		;
2315 
2316 	return len;
2317 }
2318 
2319 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2320 				 int cmd)
2321 {
2322 	struct net *net = read_pnet(&mrt->net);
2323 	struct sk_buff *skb;
2324 	int err = -ENOBUFS;
2325 
2326 	skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2327 			GFP_ATOMIC);
2328 	if (!skb)
2329 		goto errout;
2330 
2331 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2332 	if (err < 0)
2333 		goto errout;
2334 
2335 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2336 	return;
2337 
2338 errout:
2339 	kfree_skb(skb);
2340 	if (err < 0)
2341 		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2342 }
2343 
2344 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2345 {
2346 	struct net *net = sock_net(skb->sk);
2347 	struct mr_table *mrt;
2348 	struct mfc_cache *mfc;
2349 	unsigned int t = 0, s_t;
2350 	unsigned int e = 0, s_e;
2351 
2352 	s_t = cb->args[0];
2353 	s_e = cb->args[1];
2354 
2355 	rcu_read_lock();
2356 	ipmr_for_each_table(mrt, net) {
2357 		if (t < s_t)
2358 			goto next_table;
2359 		list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list) {
2360 			if (e < s_e)
2361 				goto next_entry;
2362 			if (ipmr_fill_mroute(mrt, skb,
2363 					     NETLINK_CB(cb->skb).portid,
2364 					     cb->nlh->nlmsg_seq,
2365 					     mfc, RTM_NEWROUTE,
2366 					     NLM_F_MULTI) < 0)
2367 				goto done;
2368 next_entry:
2369 			e++;
2370 		}
2371 		e = 0;
2372 		s_e = 0;
2373 
2374 		spin_lock_bh(&mfc_unres_lock);
2375 		list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2376 			if (e < s_e)
2377 				goto next_entry2;
2378 			if (ipmr_fill_mroute(mrt, skb,
2379 					     NETLINK_CB(cb->skb).portid,
2380 					     cb->nlh->nlmsg_seq,
2381 					     mfc, RTM_NEWROUTE,
2382 					     NLM_F_MULTI) < 0) {
2383 				spin_unlock_bh(&mfc_unres_lock);
2384 				goto done;
2385 			}
2386 next_entry2:
2387 			e++;
2388 		}
2389 		spin_unlock_bh(&mfc_unres_lock);
2390 		e = 0;
2391 		s_e = 0;
2392 next_table:
2393 		t++;
2394 	}
2395 done:
2396 	rcu_read_unlock();
2397 
2398 	cb->args[1] = e;
2399 	cb->args[0] = t;
2400 
2401 	return skb->len;
2402 }
2403 
2404 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2405 	[RTA_SRC]	= { .type = NLA_U32 },
2406 	[RTA_DST]	= { .type = NLA_U32 },
2407 	[RTA_IIF]	= { .type = NLA_U32 },
2408 	[RTA_TABLE]	= { .type = NLA_U32 },
2409 	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2410 };
2411 
2412 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2413 {
2414 	switch (rtm_protocol) {
2415 	case RTPROT_STATIC:
2416 	case RTPROT_MROUTED:
2417 		return true;
2418 	}
2419 	return false;
2420 }
2421 
2422 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2423 {
2424 	struct rtnexthop *rtnh = nla_data(nla);
2425 	int remaining = nla_len(nla), vifi = 0;
2426 
2427 	while (rtnh_ok(rtnh, remaining)) {
2428 		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2429 		if (++vifi == MAXVIFS)
2430 			break;
2431 		rtnh = rtnh_next(rtnh, &remaining);
2432 	}
2433 
2434 	return remaining > 0 ? -EINVAL : vifi;
2435 }
2436 
2437 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2438 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2439 			    struct mfcctl *mfcc, int *mrtsock,
2440 			    struct mr_table **mrtret,
2441 			    struct netlink_ext_ack *extack)
2442 {
2443 	struct net_device *dev = NULL;
2444 	u32 tblid = RT_TABLE_DEFAULT;
2445 	struct mr_table *mrt;
2446 	struct nlattr *attr;
2447 	struct rtmsg *rtm;
2448 	int ret, rem;
2449 
2450 	ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy,
2451 			     extack);
2452 	if (ret < 0)
2453 		goto out;
2454 	rtm = nlmsg_data(nlh);
2455 
2456 	ret = -EINVAL;
2457 	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2458 	    rtm->rtm_type != RTN_MULTICAST ||
2459 	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2460 	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2461 		goto out;
2462 
2463 	memset(mfcc, 0, sizeof(*mfcc));
2464 	mfcc->mfcc_parent = -1;
2465 	ret = 0;
2466 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2467 		switch (nla_type(attr)) {
2468 		case RTA_SRC:
2469 			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2470 			break;
2471 		case RTA_DST:
2472 			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2473 			break;
2474 		case RTA_IIF:
2475 			dev = __dev_get_by_index(net, nla_get_u32(attr));
2476 			if (!dev) {
2477 				ret = -ENODEV;
2478 				goto out;
2479 			}
2480 			break;
2481 		case RTA_MULTIPATH:
2482 			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2483 				ret = -EINVAL;
2484 				goto out;
2485 			}
2486 			break;
2487 		case RTA_PREFSRC:
2488 			ret = 1;
2489 			break;
2490 		case RTA_TABLE:
2491 			tblid = nla_get_u32(attr);
2492 			break;
2493 		}
2494 	}
2495 	mrt = ipmr_get_table(net, tblid);
2496 	if (!mrt) {
2497 		ret = -ENOENT;
2498 		goto out;
2499 	}
2500 	*mrtret = mrt;
2501 	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2502 	if (dev)
2503 		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2504 
2505 out:
2506 	return ret;
2507 }
2508 
2509 /* takes care of both newroute and delroute */
2510 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2511 			  struct netlink_ext_ack *extack)
2512 {
2513 	struct net *net = sock_net(skb->sk);
2514 	int ret, mrtsock, parent;
2515 	struct mr_table *tbl;
2516 	struct mfcctl mfcc;
2517 
2518 	mrtsock = 0;
2519 	tbl = NULL;
2520 	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2521 	if (ret < 0)
2522 		return ret;
2523 
2524 	parent = ret ? mfcc.mfcc_parent : -1;
2525 	if (nlh->nlmsg_type == RTM_NEWROUTE)
2526 		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2527 	else
2528 		return ipmr_mfc_delete(tbl, &mfcc, parent);
2529 }
2530 
2531 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2532 {
2533 	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2534 
2535 	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2536 	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2537 	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2538 			mrt->mroute_reg_vif_num) ||
2539 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2540 		       mrt->mroute_do_assert) ||
2541 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim))
2542 		return false;
2543 
2544 	return true;
2545 }
2546 
2547 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2548 {
2549 	struct nlattr *vif_nest;
2550 	struct vif_device *vif;
2551 
2552 	/* if the VIF doesn't exist just continue */
2553 	if (!VIF_EXISTS(mrt, vifid))
2554 		return true;
2555 
2556 	vif = &mrt->vif_table[vifid];
2557 	vif_nest = nla_nest_start(skb, IPMRA_VIF);
2558 	if (!vif_nest)
2559 		return false;
2560 	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
2561 	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2562 	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2563 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2564 			      IPMRA_VIFA_PAD) ||
2565 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2566 			      IPMRA_VIFA_PAD) ||
2567 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2568 			      IPMRA_VIFA_PAD) ||
2569 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2570 			      IPMRA_VIFA_PAD) ||
2571 	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2572 	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2573 		nla_nest_cancel(skb, vif_nest);
2574 		return false;
2575 	}
2576 	nla_nest_end(skb, vif_nest);
2577 
2578 	return true;
2579 }
2580 
2581 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2582 {
2583 	struct net *net = sock_net(skb->sk);
2584 	struct nlmsghdr *nlh = NULL;
2585 	unsigned int t = 0, s_t;
2586 	unsigned int e = 0, s_e;
2587 	struct mr_table *mrt;
2588 
2589 	s_t = cb->args[0];
2590 	s_e = cb->args[1];
2591 
2592 	ipmr_for_each_table(mrt, net) {
2593 		struct nlattr *vifs, *af;
2594 		struct ifinfomsg *hdr;
2595 		u32 i;
2596 
2597 		if (t < s_t)
2598 			goto skip_table;
2599 		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2600 				cb->nlh->nlmsg_seq, RTM_NEWLINK,
2601 				sizeof(*hdr), NLM_F_MULTI);
2602 		if (!nlh)
2603 			break;
2604 
2605 		hdr = nlmsg_data(nlh);
2606 		memset(hdr, 0, sizeof(*hdr));
2607 		hdr->ifi_family = RTNL_FAMILY_IPMR;
2608 
2609 		af = nla_nest_start(skb, IFLA_AF_SPEC);
2610 		if (!af) {
2611 			nlmsg_cancel(skb, nlh);
2612 			goto out;
2613 		}
2614 
2615 		if (!ipmr_fill_table(mrt, skb)) {
2616 			nlmsg_cancel(skb, nlh);
2617 			goto out;
2618 		}
2619 
2620 		vifs = nla_nest_start(skb, IPMRA_TABLE_VIFS);
2621 		if (!vifs) {
2622 			nla_nest_end(skb, af);
2623 			nlmsg_end(skb, nlh);
2624 			goto out;
2625 		}
2626 		for (i = 0; i < mrt->maxvif; i++) {
2627 			if (e < s_e)
2628 				goto skip_entry;
2629 			if (!ipmr_fill_vif(mrt, i, skb)) {
2630 				nla_nest_end(skb, vifs);
2631 				nla_nest_end(skb, af);
2632 				nlmsg_end(skb, nlh);
2633 				goto out;
2634 			}
2635 skip_entry:
2636 			e++;
2637 		}
2638 		s_e = 0;
2639 		e = 0;
2640 		nla_nest_end(skb, vifs);
2641 		nla_nest_end(skb, af);
2642 		nlmsg_end(skb, nlh);
2643 skip_table:
2644 		t++;
2645 	}
2646 
2647 out:
2648 	cb->args[1] = e;
2649 	cb->args[0] = t;
2650 
2651 	return skb->len;
2652 }
2653 
2654 #ifdef CONFIG_PROC_FS
2655 /* The /proc interfaces to multicast routing :
2656  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2657  */
2658 struct ipmr_vif_iter {
2659 	struct seq_net_private p;
2660 	struct mr_table *mrt;
2661 	int ct;
2662 };
2663 
2664 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2665 					   struct ipmr_vif_iter *iter,
2666 					   loff_t pos)
2667 {
2668 	struct mr_table *mrt = iter->mrt;
2669 
2670 	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2671 		if (!VIF_EXISTS(mrt, iter->ct))
2672 			continue;
2673 		if (pos-- == 0)
2674 			return &mrt->vif_table[iter->ct];
2675 	}
2676 	return NULL;
2677 }
2678 
2679 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2680 	__acquires(mrt_lock)
2681 {
2682 	struct ipmr_vif_iter *iter = seq->private;
2683 	struct net *net = seq_file_net(seq);
2684 	struct mr_table *mrt;
2685 
2686 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2687 	if (!mrt)
2688 		return ERR_PTR(-ENOENT);
2689 
2690 	iter->mrt = mrt;
2691 
2692 	read_lock(&mrt_lock);
2693 	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2694 		: SEQ_START_TOKEN;
2695 }
2696 
2697 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2698 {
2699 	struct ipmr_vif_iter *iter = seq->private;
2700 	struct net *net = seq_file_net(seq);
2701 	struct mr_table *mrt = iter->mrt;
2702 
2703 	++*pos;
2704 	if (v == SEQ_START_TOKEN)
2705 		return ipmr_vif_seq_idx(net, iter, 0);
2706 
2707 	while (++iter->ct < mrt->maxvif) {
2708 		if (!VIF_EXISTS(mrt, iter->ct))
2709 			continue;
2710 		return &mrt->vif_table[iter->ct];
2711 	}
2712 	return NULL;
2713 }
2714 
2715 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2716 	__releases(mrt_lock)
2717 {
2718 	read_unlock(&mrt_lock);
2719 }
2720 
2721 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2722 {
2723 	struct ipmr_vif_iter *iter = seq->private;
2724 	struct mr_table *mrt = iter->mrt;
2725 
2726 	if (v == SEQ_START_TOKEN) {
2727 		seq_puts(seq,
2728 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2729 	} else {
2730 		const struct vif_device *vif = v;
2731 		const char *name =  vif->dev ? vif->dev->name : "none";
2732 
2733 		seq_printf(seq,
2734 			   "%2zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2735 			   vif - mrt->vif_table,
2736 			   name, vif->bytes_in, vif->pkt_in,
2737 			   vif->bytes_out, vif->pkt_out,
2738 			   vif->flags, vif->local, vif->remote);
2739 	}
2740 	return 0;
2741 }
2742 
2743 static const struct seq_operations ipmr_vif_seq_ops = {
2744 	.start = ipmr_vif_seq_start,
2745 	.next  = ipmr_vif_seq_next,
2746 	.stop  = ipmr_vif_seq_stop,
2747 	.show  = ipmr_vif_seq_show,
2748 };
2749 
2750 static int ipmr_vif_open(struct inode *inode, struct file *file)
2751 {
2752 	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2753 			    sizeof(struct ipmr_vif_iter));
2754 }
2755 
2756 static const struct file_operations ipmr_vif_fops = {
2757 	.owner	 = THIS_MODULE,
2758 	.open    = ipmr_vif_open,
2759 	.read    = seq_read,
2760 	.llseek  = seq_lseek,
2761 	.release = seq_release_net,
2762 };
2763 
2764 struct ipmr_mfc_iter {
2765 	struct seq_net_private p;
2766 	struct mr_table *mrt;
2767 	struct list_head *cache;
2768 };
2769 
2770 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2771 					  struct ipmr_mfc_iter *it, loff_t pos)
2772 {
2773 	struct mr_table *mrt = it->mrt;
2774 	struct mfc_cache *mfc;
2775 
2776 	rcu_read_lock();
2777 	it->cache = &mrt->mfc_cache_list;
2778 	list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list)
2779 		if (pos-- == 0)
2780 			return mfc;
2781 	rcu_read_unlock();
2782 
2783 	spin_lock_bh(&mfc_unres_lock);
2784 	it->cache = &mrt->mfc_unres_queue;
2785 	list_for_each_entry(mfc, it->cache, list)
2786 		if (pos-- == 0)
2787 			return mfc;
2788 	spin_unlock_bh(&mfc_unres_lock);
2789 
2790 	it->cache = NULL;
2791 	return NULL;
2792 }
2793 
2794 
2795 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2796 {
2797 	struct ipmr_mfc_iter *it = seq->private;
2798 	struct net *net = seq_file_net(seq);
2799 	struct mr_table *mrt;
2800 
2801 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2802 	if (!mrt)
2803 		return ERR_PTR(-ENOENT);
2804 
2805 	it->mrt = mrt;
2806 	it->cache = NULL;
2807 	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2808 		: SEQ_START_TOKEN;
2809 }
2810 
2811 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2812 {
2813 	struct ipmr_mfc_iter *it = seq->private;
2814 	struct net *net = seq_file_net(seq);
2815 	struct mr_table *mrt = it->mrt;
2816 	struct mfc_cache *mfc = v;
2817 
2818 	++*pos;
2819 
2820 	if (v == SEQ_START_TOKEN)
2821 		return ipmr_mfc_seq_idx(net, seq->private, 0);
2822 
2823 	if (mfc->list.next != it->cache)
2824 		return list_entry(mfc->list.next, struct mfc_cache, list);
2825 
2826 	if (it->cache == &mrt->mfc_unres_queue)
2827 		goto end_of_list;
2828 
2829 	/* exhausted cache_array, show unresolved */
2830 	rcu_read_unlock();
2831 	it->cache = &mrt->mfc_unres_queue;
2832 
2833 	spin_lock_bh(&mfc_unres_lock);
2834 	if (!list_empty(it->cache))
2835 		return list_first_entry(it->cache, struct mfc_cache, list);
2836 
2837 end_of_list:
2838 	spin_unlock_bh(&mfc_unres_lock);
2839 	it->cache = NULL;
2840 
2841 	return NULL;
2842 }
2843 
2844 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2845 {
2846 	struct ipmr_mfc_iter *it = seq->private;
2847 	struct mr_table *mrt = it->mrt;
2848 
2849 	if (it->cache == &mrt->mfc_unres_queue)
2850 		spin_unlock_bh(&mfc_unres_lock);
2851 	else if (it->cache == &mrt->mfc_cache_list)
2852 		rcu_read_unlock();
2853 }
2854 
2855 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2856 {
2857 	int n;
2858 
2859 	if (v == SEQ_START_TOKEN) {
2860 		seq_puts(seq,
2861 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2862 	} else {
2863 		const struct mfc_cache *mfc = v;
2864 		const struct ipmr_mfc_iter *it = seq->private;
2865 		const struct mr_table *mrt = it->mrt;
2866 
2867 		seq_printf(seq, "%08X %08X %-3hd",
2868 			   (__force u32) mfc->mfc_mcastgrp,
2869 			   (__force u32) mfc->mfc_origin,
2870 			   mfc->mfc_parent);
2871 
2872 		if (it->cache != &mrt->mfc_unres_queue) {
2873 			seq_printf(seq, " %8lu %8lu %8lu",
2874 				   mfc->mfc_un.res.pkt,
2875 				   mfc->mfc_un.res.bytes,
2876 				   mfc->mfc_un.res.wrong_if);
2877 			for (n = mfc->mfc_un.res.minvif;
2878 			     n < mfc->mfc_un.res.maxvif; n++) {
2879 				if (VIF_EXISTS(mrt, n) &&
2880 				    mfc->mfc_un.res.ttls[n] < 255)
2881 					seq_printf(seq,
2882 					   " %2d:%-3d",
2883 					   n, mfc->mfc_un.res.ttls[n]);
2884 			}
2885 		} else {
2886 			/* unresolved mfc_caches don't contain
2887 			 * pkt, bytes and wrong_if values
2888 			 */
2889 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2890 		}
2891 		seq_putc(seq, '\n');
2892 	}
2893 	return 0;
2894 }
2895 
2896 static const struct seq_operations ipmr_mfc_seq_ops = {
2897 	.start = ipmr_mfc_seq_start,
2898 	.next  = ipmr_mfc_seq_next,
2899 	.stop  = ipmr_mfc_seq_stop,
2900 	.show  = ipmr_mfc_seq_show,
2901 };
2902 
2903 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2904 {
2905 	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2906 			    sizeof(struct ipmr_mfc_iter));
2907 }
2908 
2909 static const struct file_operations ipmr_mfc_fops = {
2910 	.owner	 = THIS_MODULE,
2911 	.open    = ipmr_mfc_open,
2912 	.read    = seq_read,
2913 	.llseek  = seq_lseek,
2914 	.release = seq_release_net,
2915 };
2916 #endif
2917 
2918 #ifdef CONFIG_IP_PIMSM_V2
2919 static const struct net_protocol pim_protocol = {
2920 	.handler	=	pim_rcv,
2921 	.netns_ok	=	1,
2922 };
2923 #endif
2924 
2925 /* Setup for IP multicast routing */
2926 static int __net_init ipmr_net_init(struct net *net)
2927 {
2928 	int err;
2929 
2930 	err = ipmr_rules_init(net);
2931 	if (err < 0)
2932 		goto fail;
2933 
2934 #ifdef CONFIG_PROC_FS
2935 	err = -ENOMEM;
2936 	if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2937 		goto proc_vif_fail;
2938 	if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2939 		goto proc_cache_fail;
2940 #endif
2941 	return 0;
2942 
2943 #ifdef CONFIG_PROC_FS
2944 proc_cache_fail:
2945 	remove_proc_entry("ip_mr_vif", net->proc_net);
2946 proc_vif_fail:
2947 	ipmr_rules_exit(net);
2948 #endif
2949 fail:
2950 	return err;
2951 }
2952 
2953 static void __net_exit ipmr_net_exit(struct net *net)
2954 {
2955 #ifdef CONFIG_PROC_FS
2956 	remove_proc_entry("ip_mr_cache", net->proc_net);
2957 	remove_proc_entry("ip_mr_vif", net->proc_net);
2958 #endif
2959 	ipmr_rules_exit(net);
2960 }
2961 
2962 static struct pernet_operations ipmr_net_ops = {
2963 	.init = ipmr_net_init,
2964 	.exit = ipmr_net_exit,
2965 };
2966 
2967 int __init ip_mr_init(void)
2968 {
2969 	int err;
2970 
2971 	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2972 				       sizeof(struct mfc_cache),
2973 				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2974 				       NULL);
2975 
2976 	err = register_pernet_subsys(&ipmr_net_ops);
2977 	if (err)
2978 		goto reg_pernet_fail;
2979 
2980 	err = register_netdevice_notifier(&ip_mr_notifier);
2981 	if (err)
2982 		goto reg_notif_fail;
2983 #ifdef CONFIG_IP_PIMSM_V2
2984 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2985 		pr_err("%s: can't add PIM protocol\n", __func__);
2986 		err = -EAGAIN;
2987 		goto add_proto_fail;
2988 	}
2989 #endif
2990 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2991 		      NULL, ipmr_rtm_dumproute, NULL);
2992 	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
2993 		      ipmr_rtm_route, NULL, NULL);
2994 	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
2995 		      ipmr_rtm_route, NULL, NULL);
2996 
2997 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
2998 		      NULL, ipmr_rtm_dumplink, NULL);
2999 	return 0;
3000 
3001 #ifdef CONFIG_IP_PIMSM_V2
3002 add_proto_fail:
3003 	unregister_netdevice_notifier(&ip_mr_notifier);
3004 #endif
3005 reg_notif_fail:
3006 	unregister_pernet_subsys(&ipmr_net_ops);
3007 reg_pernet_fail:
3008 	kmem_cache_destroy(mrt_cachep);
3009 	return err;
3010 }
3011