1 /* 2 * IP multicast routing support for mrouted 3.6/3.8 3 * 4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 5 * Linux Consultancy and Custom Driver Development 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 * 12 * Fixes: 13 * Michael Chastain : Incorrect size of copying. 14 * Alan Cox : Added the cache manager code 15 * Alan Cox : Fixed the clone/copy bug and device race. 16 * Mike McLagan : Routing by source 17 * Malcolm Beattie : Buffer handling fixes. 18 * Alexey Kuznetsov : Double buffer free and other fixes. 19 * SVR Anand : Fixed several multicast bugs and problems. 20 * Alexey Kuznetsov : Status, optimisations and more. 21 * Brad Parker : Better behaviour on mrouted upcall 22 * overflow. 23 * Carlos Picoto : PIMv1 Support 24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 25 * Relax this requirement to work with older peers. 26 * 27 */ 28 29 #include <asm/system.h> 30 #include <asm/uaccess.h> 31 #include <linux/types.h> 32 #include <linux/capability.h> 33 #include <linux/errno.h> 34 #include <linux/timer.h> 35 #include <linux/mm.h> 36 #include <linux/kernel.h> 37 #include <linux/fcntl.h> 38 #include <linux/stat.h> 39 #include <linux/socket.h> 40 #include <linux/in.h> 41 #include <linux/inet.h> 42 #include <linux/netdevice.h> 43 #include <linux/inetdevice.h> 44 #include <linux/igmp.h> 45 #include <linux/proc_fs.h> 46 #include <linux/seq_file.h> 47 #include <linux/mroute.h> 48 #include <linux/init.h> 49 #include <linux/if_ether.h> 50 #include <linux/slab.h> 51 #include <net/net_namespace.h> 52 #include <net/ip.h> 53 #include <net/protocol.h> 54 #include <linux/skbuff.h> 55 #include <net/route.h> 56 #include <net/sock.h> 57 #include <net/icmp.h> 58 #include <net/udp.h> 59 #include <net/raw.h> 60 #include <linux/notifier.h> 61 #include <linux/if_arp.h> 62 #include <linux/netfilter_ipv4.h> 63 #include <net/ipip.h> 64 #include <net/checksum.h> 65 #include <net/netlink.h> 66 #include <net/fib_rules.h> 67 68 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 69 #define CONFIG_IP_PIMSM 1 70 #endif 71 72 struct mr_table { 73 struct list_head list; 74 #ifdef CONFIG_NET_NS 75 struct net *net; 76 #endif 77 u32 id; 78 struct sock __rcu *mroute_sk; 79 struct timer_list ipmr_expire_timer; 80 struct list_head mfc_unres_queue; 81 struct list_head mfc_cache_array[MFC_LINES]; 82 struct vif_device vif_table[MAXVIFS]; 83 int maxvif; 84 atomic_t cache_resolve_queue_len; 85 int mroute_do_assert; 86 int mroute_do_pim; 87 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 88 int mroute_reg_vif_num; 89 #endif 90 }; 91 92 struct ipmr_rule { 93 struct fib_rule common; 94 }; 95 96 struct ipmr_result { 97 struct mr_table *mrt; 98 }; 99 100 /* Big lock, protecting vif table, mrt cache and mroute socket state. 101 * Note that the changes are semaphored via rtnl_lock. 102 */ 103 104 static DEFINE_RWLOCK(mrt_lock); 105 106 /* 107 * Multicast router control variables 108 */ 109 110 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL) 111 112 /* Special spinlock for queue of unresolved entries */ 113 static DEFINE_SPINLOCK(mfc_unres_lock); 114 115 /* We return to original Alan's scheme. Hash table of resolved 116 * entries is changed only in process context and protected 117 * with weak lock mrt_lock. Queue of unresolved entries is protected 118 * with strong spinlock mfc_unres_lock. 119 * 120 * In this case data path is free of exclusive locks at all. 121 */ 122 123 static struct kmem_cache *mrt_cachep __read_mostly; 124 125 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 126 static int ip_mr_forward(struct net *net, struct mr_table *mrt, 127 struct sk_buff *skb, struct mfc_cache *cache, 128 int local); 129 static int ipmr_cache_report(struct mr_table *mrt, 130 struct sk_buff *pkt, vifi_t vifi, int assert); 131 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 132 struct mfc_cache *c, struct rtmsg *rtm); 133 static void ipmr_expire_process(unsigned long arg); 134 135 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 136 #define ipmr_for_each_table(mrt, net) \ 137 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list) 138 139 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 140 { 141 struct mr_table *mrt; 142 143 ipmr_for_each_table(mrt, net) { 144 if (mrt->id == id) 145 return mrt; 146 } 147 return NULL; 148 } 149 150 static int ipmr_fib_lookup(struct net *net, struct flowi *flp, 151 struct mr_table **mrt) 152 { 153 struct ipmr_result res; 154 struct fib_lookup_arg arg = { .result = &res, }; 155 int err; 156 157 err = fib_rules_lookup(net->ipv4.mr_rules_ops, flp, 0, &arg); 158 if (err < 0) 159 return err; 160 *mrt = res.mrt; 161 return 0; 162 } 163 164 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 165 int flags, struct fib_lookup_arg *arg) 166 { 167 struct ipmr_result *res = arg->result; 168 struct mr_table *mrt; 169 170 switch (rule->action) { 171 case FR_ACT_TO_TBL: 172 break; 173 case FR_ACT_UNREACHABLE: 174 return -ENETUNREACH; 175 case FR_ACT_PROHIBIT: 176 return -EACCES; 177 case FR_ACT_BLACKHOLE: 178 default: 179 return -EINVAL; 180 } 181 182 mrt = ipmr_get_table(rule->fr_net, rule->table); 183 if (mrt == NULL) 184 return -EAGAIN; 185 res->mrt = mrt; 186 return 0; 187 } 188 189 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 190 { 191 return 1; 192 } 193 194 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = { 195 FRA_GENERIC_POLICY, 196 }; 197 198 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 199 struct fib_rule_hdr *frh, struct nlattr **tb) 200 { 201 return 0; 202 } 203 204 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 205 struct nlattr **tb) 206 { 207 return 1; 208 } 209 210 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 211 struct fib_rule_hdr *frh) 212 { 213 frh->dst_len = 0; 214 frh->src_len = 0; 215 frh->tos = 0; 216 return 0; 217 } 218 219 static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = { 220 .family = RTNL_FAMILY_IPMR, 221 .rule_size = sizeof(struct ipmr_rule), 222 .addr_size = sizeof(u32), 223 .action = ipmr_rule_action, 224 .match = ipmr_rule_match, 225 .configure = ipmr_rule_configure, 226 .compare = ipmr_rule_compare, 227 .default_pref = fib_default_rule_pref, 228 .fill = ipmr_rule_fill, 229 .nlgroup = RTNLGRP_IPV4_RULE, 230 .policy = ipmr_rule_policy, 231 .owner = THIS_MODULE, 232 }; 233 234 static int __net_init ipmr_rules_init(struct net *net) 235 { 236 struct fib_rules_ops *ops; 237 struct mr_table *mrt; 238 int err; 239 240 ops = fib_rules_register(&ipmr_rules_ops_template, net); 241 if (IS_ERR(ops)) 242 return PTR_ERR(ops); 243 244 INIT_LIST_HEAD(&net->ipv4.mr_tables); 245 246 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 247 if (mrt == NULL) { 248 err = -ENOMEM; 249 goto err1; 250 } 251 252 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 253 if (err < 0) 254 goto err2; 255 256 net->ipv4.mr_rules_ops = ops; 257 return 0; 258 259 err2: 260 kfree(mrt); 261 err1: 262 fib_rules_unregister(ops); 263 return err; 264 } 265 266 static void __net_exit ipmr_rules_exit(struct net *net) 267 { 268 struct mr_table *mrt, *next; 269 270 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 271 list_del(&mrt->list); 272 kfree(mrt); 273 } 274 fib_rules_unregister(net->ipv4.mr_rules_ops); 275 } 276 #else 277 #define ipmr_for_each_table(mrt, net) \ 278 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 279 280 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 281 { 282 return net->ipv4.mrt; 283 } 284 285 static int ipmr_fib_lookup(struct net *net, struct flowi *flp, 286 struct mr_table **mrt) 287 { 288 *mrt = net->ipv4.mrt; 289 return 0; 290 } 291 292 static int __net_init ipmr_rules_init(struct net *net) 293 { 294 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 295 return net->ipv4.mrt ? 0 : -ENOMEM; 296 } 297 298 static void __net_exit ipmr_rules_exit(struct net *net) 299 { 300 kfree(net->ipv4.mrt); 301 } 302 #endif 303 304 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 305 { 306 struct mr_table *mrt; 307 unsigned int i; 308 309 mrt = ipmr_get_table(net, id); 310 if (mrt != NULL) 311 return mrt; 312 313 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL); 314 if (mrt == NULL) 315 return NULL; 316 write_pnet(&mrt->net, net); 317 mrt->id = id; 318 319 /* Forwarding cache */ 320 for (i = 0; i < MFC_LINES; i++) 321 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]); 322 323 INIT_LIST_HEAD(&mrt->mfc_unres_queue); 324 325 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process, 326 (unsigned long)mrt); 327 328 #ifdef CONFIG_IP_PIMSM 329 mrt->mroute_reg_vif_num = -1; 330 #endif 331 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 332 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 333 #endif 334 return mrt; 335 } 336 337 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 338 339 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v) 340 { 341 struct net *net = dev_net(dev); 342 343 dev_close(dev); 344 345 dev = __dev_get_by_name(net, "tunl0"); 346 if (dev) { 347 const struct net_device_ops *ops = dev->netdev_ops; 348 struct ifreq ifr; 349 struct ip_tunnel_parm p; 350 351 memset(&p, 0, sizeof(p)); 352 p.iph.daddr = v->vifc_rmt_addr.s_addr; 353 p.iph.saddr = v->vifc_lcl_addr.s_addr; 354 p.iph.version = 4; 355 p.iph.ihl = 5; 356 p.iph.protocol = IPPROTO_IPIP; 357 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 358 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 359 360 if (ops->ndo_do_ioctl) { 361 mm_segment_t oldfs = get_fs(); 362 363 set_fs(KERNEL_DS); 364 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL); 365 set_fs(oldfs); 366 } 367 } 368 } 369 370 static 371 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 372 { 373 struct net_device *dev; 374 375 dev = __dev_get_by_name(net, "tunl0"); 376 377 if (dev) { 378 const struct net_device_ops *ops = dev->netdev_ops; 379 int err; 380 struct ifreq ifr; 381 struct ip_tunnel_parm p; 382 struct in_device *in_dev; 383 384 memset(&p, 0, sizeof(p)); 385 p.iph.daddr = v->vifc_rmt_addr.s_addr; 386 p.iph.saddr = v->vifc_lcl_addr.s_addr; 387 p.iph.version = 4; 388 p.iph.ihl = 5; 389 p.iph.protocol = IPPROTO_IPIP; 390 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 391 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 392 393 if (ops->ndo_do_ioctl) { 394 mm_segment_t oldfs = get_fs(); 395 396 set_fs(KERNEL_DS); 397 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL); 398 set_fs(oldfs); 399 } else { 400 err = -EOPNOTSUPP; 401 } 402 dev = NULL; 403 404 if (err == 0 && 405 (dev = __dev_get_by_name(net, p.name)) != NULL) { 406 dev->flags |= IFF_MULTICAST; 407 408 in_dev = __in_dev_get_rtnl(dev); 409 if (in_dev == NULL) 410 goto failure; 411 412 ipv4_devconf_setall(in_dev); 413 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 414 415 if (dev_open(dev)) 416 goto failure; 417 dev_hold(dev); 418 } 419 } 420 return dev; 421 422 failure: 423 /* allow the register to be completed before unregistering. */ 424 rtnl_unlock(); 425 rtnl_lock(); 426 427 unregister_netdevice(dev); 428 return NULL; 429 } 430 431 #ifdef CONFIG_IP_PIMSM 432 433 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 434 { 435 struct net *net = dev_net(dev); 436 struct mr_table *mrt; 437 struct flowi fl = { 438 .oif = dev->ifindex, 439 .iif = skb->skb_iif, 440 .mark = skb->mark, 441 }; 442 int err; 443 444 err = ipmr_fib_lookup(net, &fl, &mrt); 445 if (err < 0) { 446 kfree_skb(skb); 447 return err; 448 } 449 450 read_lock(&mrt_lock); 451 dev->stats.tx_bytes += skb->len; 452 dev->stats.tx_packets++; 453 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT); 454 read_unlock(&mrt_lock); 455 kfree_skb(skb); 456 return NETDEV_TX_OK; 457 } 458 459 static const struct net_device_ops reg_vif_netdev_ops = { 460 .ndo_start_xmit = reg_vif_xmit, 461 }; 462 463 static void reg_vif_setup(struct net_device *dev) 464 { 465 dev->type = ARPHRD_PIMREG; 466 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 467 dev->flags = IFF_NOARP; 468 dev->netdev_ops = ®_vif_netdev_ops, 469 dev->destructor = free_netdev; 470 dev->features |= NETIF_F_NETNS_LOCAL; 471 } 472 473 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 474 { 475 struct net_device *dev; 476 struct in_device *in_dev; 477 char name[IFNAMSIZ]; 478 479 if (mrt->id == RT_TABLE_DEFAULT) 480 sprintf(name, "pimreg"); 481 else 482 sprintf(name, "pimreg%u", mrt->id); 483 484 dev = alloc_netdev(0, name, reg_vif_setup); 485 486 if (dev == NULL) 487 return NULL; 488 489 dev_net_set(dev, net); 490 491 if (register_netdevice(dev)) { 492 free_netdev(dev); 493 return NULL; 494 } 495 dev->iflink = 0; 496 497 rcu_read_lock(); 498 in_dev = __in_dev_get_rcu(dev); 499 if (!in_dev) { 500 rcu_read_unlock(); 501 goto failure; 502 } 503 504 ipv4_devconf_setall(in_dev); 505 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 506 rcu_read_unlock(); 507 508 if (dev_open(dev)) 509 goto failure; 510 511 dev_hold(dev); 512 513 return dev; 514 515 failure: 516 /* allow the register to be completed before unregistering. */ 517 rtnl_unlock(); 518 rtnl_lock(); 519 520 unregister_netdevice(dev); 521 return NULL; 522 } 523 #endif 524 525 /* 526 * Delete a VIF entry 527 * @notify: Set to 1, if the caller is a notifier_call 528 */ 529 530 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 531 struct list_head *head) 532 { 533 struct vif_device *v; 534 struct net_device *dev; 535 struct in_device *in_dev; 536 537 if (vifi < 0 || vifi >= mrt->maxvif) 538 return -EADDRNOTAVAIL; 539 540 v = &mrt->vif_table[vifi]; 541 542 write_lock_bh(&mrt_lock); 543 dev = v->dev; 544 v->dev = NULL; 545 546 if (!dev) { 547 write_unlock_bh(&mrt_lock); 548 return -EADDRNOTAVAIL; 549 } 550 551 #ifdef CONFIG_IP_PIMSM 552 if (vifi == mrt->mroute_reg_vif_num) 553 mrt->mroute_reg_vif_num = -1; 554 #endif 555 556 if (vifi + 1 == mrt->maxvif) { 557 int tmp; 558 559 for (tmp = vifi - 1; tmp >= 0; tmp--) { 560 if (VIF_EXISTS(mrt, tmp)) 561 break; 562 } 563 mrt->maxvif = tmp+1; 564 } 565 566 write_unlock_bh(&mrt_lock); 567 568 dev_set_allmulti(dev, -1); 569 570 in_dev = __in_dev_get_rtnl(dev); 571 if (in_dev) { 572 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 573 ip_rt_multicast_event(in_dev); 574 } 575 576 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 577 unregister_netdevice_queue(dev, head); 578 579 dev_put(dev); 580 return 0; 581 } 582 583 static void ipmr_cache_free_rcu(struct rcu_head *head) 584 { 585 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu); 586 587 kmem_cache_free(mrt_cachep, c); 588 } 589 590 static inline void ipmr_cache_free(struct mfc_cache *c) 591 { 592 call_rcu(&c->rcu, ipmr_cache_free_rcu); 593 } 594 595 /* Destroy an unresolved cache entry, killing queued skbs 596 * and reporting error to netlink readers. 597 */ 598 599 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 600 { 601 struct net *net = read_pnet(&mrt->net); 602 struct sk_buff *skb; 603 struct nlmsgerr *e; 604 605 atomic_dec(&mrt->cache_resolve_queue_len); 606 607 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) { 608 if (ip_hdr(skb)->version == 0) { 609 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 610 nlh->nlmsg_type = NLMSG_ERROR; 611 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr)); 612 skb_trim(skb, nlh->nlmsg_len); 613 e = NLMSG_DATA(nlh); 614 e->error = -ETIMEDOUT; 615 memset(&e->msg, 0, sizeof(e->msg)); 616 617 rtnl_unicast(skb, net, NETLINK_CB(skb).pid); 618 } else { 619 kfree_skb(skb); 620 } 621 } 622 623 ipmr_cache_free(c); 624 } 625 626 627 /* Timer process for the unresolved queue. */ 628 629 static void ipmr_expire_process(unsigned long arg) 630 { 631 struct mr_table *mrt = (struct mr_table *)arg; 632 unsigned long now; 633 unsigned long expires; 634 struct mfc_cache *c, *next; 635 636 if (!spin_trylock(&mfc_unres_lock)) { 637 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 638 return; 639 } 640 641 if (list_empty(&mrt->mfc_unres_queue)) 642 goto out; 643 644 now = jiffies; 645 expires = 10*HZ; 646 647 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 648 if (time_after(c->mfc_un.unres.expires, now)) { 649 unsigned long interval = c->mfc_un.unres.expires - now; 650 if (interval < expires) 651 expires = interval; 652 continue; 653 } 654 655 list_del(&c->list); 656 ipmr_destroy_unres(mrt, c); 657 } 658 659 if (!list_empty(&mrt->mfc_unres_queue)) 660 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 661 662 out: 663 spin_unlock(&mfc_unres_lock); 664 } 665 666 /* Fill oifs list. It is called under write locked mrt_lock. */ 667 668 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache, 669 unsigned char *ttls) 670 { 671 int vifi; 672 673 cache->mfc_un.res.minvif = MAXVIFS; 674 cache->mfc_un.res.maxvif = 0; 675 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 676 677 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 678 if (VIF_EXISTS(mrt, vifi) && 679 ttls[vifi] && ttls[vifi] < 255) { 680 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 681 if (cache->mfc_un.res.minvif > vifi) 682 cache->mfc_un.res.minvif = vifi; 683 if (cache->mfc_un.res.maxvif <= vifi) 684 cache->mfc_un.res.maxvif = vifi + 1; 685 } 686 } 687 } 688 689 static int vif_add(struct net *net, struct mr_table *mrt, 690 struct vifctl *vifc, int mrtsock) 691 { 692 int vifi = vifc->vifc_vifi; 693 struct vif_device *v = &mrt->vif_table[vifi]; 694 struct net_device *dev; 695 struct in_device *in_dev; 696 int err; 697 698 /* Is vif busy ? */ 699 if (VIF_EXISTS(mrt, vifi)) 700 return -EADDRINUSE; 701 702 switch (vifc->vifc_flags) { 703 #ifdef CONFIG_IP_PIMSM 704 case VIFF_REGISTER: 705 /* 706 * Special Purpose VIF in PIM 707 * All the packets will be sent to the daemon 708 */ 709 if (mrt->mroute_reg_vif_num >= 0) 710 return -EADDRINUSE; 711 dev = ipmr_reg_vif(net, mrt); 712 if (!dev) 713 return -ENOBUFS; 714 err = dev_set_allmulti(dev, 1); 715 if (err) { 716 unregister_netdevice(dev); 717 dev_put(dev); 718 return err; 719 } 720 break; 721 #endif 722 case VIFF_TUNNEL: 723 dev = ipmr_new_tunnel(net, vifc); 724 if (!dev) 725 return -ENOBUFS; 726 err = dev_set_allmulti(dev, 1); 727 if (err) { 728 ipmr_del_tunnel(dev, vifc); 729 dev_put(dev); 730 return err; 731 } 732 break; 733 734 case VIFF_USE_IFINDEX: 735 case 0: 736 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 737 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 738 if (dev && __in_dev_get_rtnl(dev) == NULL) { 739 dev_put(dev); 740 return -EADDRNOTAVAIL; 741 } 742 } else { 743 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 744 } 745 if (!dev) 746 return -EADDRNOTAVAIL; 747 err = dev_set_allmulti(dev, 1); 748 if (err) { 749 dev_put(dev); 750 return err; 751 } 752 break; 753 default: 754 return -EINVAL; 755 } 756 757 in_dev = __in_dev_get_rtnl(dev); 758 if (!in_dev) { 759 dev_put(dev); 760 return -EADDRNOTAVAIL; 761 } 762 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 763 ip_rt_multicast_event(in_dev); 764 765 /* Fill in the VIF structures */ 766 767 v->rate_limit = vifc->vifc_rate_limit; 768 v->local = vifc->vifc_lcl_addr.s_addr; 769 v->remote = vifc->vifc_rmt_addr.s_addr; 770 v->flags = vifc->vifc_flags; 771 if (!mrtsock) 772 v->flags |= VIFF_STATIC; 773 v->threshold = vifc->vifc_threshold; 774 v->bytes_in = 0; 775 v->bytes_out = 0; 776 v->pkt_in = 0; 777 v->pkt_out = 0; 778 v->link = dev->ifindex; 779 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER)) 780 v->link = dev->iflink; 781 782 /* And finish update writing critical data */ 783 write_lock_bh(&mrt_lock); 784 v->dev = dev; 785 #ifdef CONFIG_IP_PIMSM 786 if (v->flags & VIFF_REGISTER) 787 mrt->mroute_reg_vif_num = vifi; 788 #endif 789 if (vifi+1 > mrt->maxvif) 790 mrt->maxvif = vifi+1; 791 write_unlock_bh(&mrt_lock); 792 return 0; 793 } 794 795 /* called with rcu_read_lock() */ 796 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 797 __be32 origin, 798 __be32 mcastgrp) 799 { 800 int line = MFC_HASH(mcastgrp, origin); 801 struct mfc_cache *c; 802 803 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) { 804 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp) 805 return c; 806 } 807 return NULL; 808 } 809 810 /* 811 * Allocate a multicast cache entry 812 */ 813 static struct mfc_cache *ipmr_cache_alloc(void) 814 { 815 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 816 817 if (c) 818 c->mfc_un.res.minvif = MAXVIFS; 819 return c; 820 } 821 822 static struct mfc_cache *ipmr_cache_alloc_unres(void) 823 { 824 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 825 826 if (c) { 827 skb_queue_head_init(&c->mfc_un.unres.unresolved); 828 c->mfc_un.unres.expires = jiffies + 10*HZ; 829 } 830 return c; 831 } 832 833 /* 834 * A cache entry has gone into a resolved state from queued 835 */ 836 837 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 838 struct mfc_cache *uc, struct mfc_cache *c) 839 { 840 struct sk_buff *skb; 841 struct nlmsgerr *e; 842 843 /* Play the pending entries through our router */ 844 845 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) { 846 if (ip_hdr(skb)->version == 0) { 847 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 848 849 if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) { 850 nlh->nlmsg_len = skb_tail_pointer(skb) - 851 (u8 *)nlh; 852 } else { 853 nlh->nlmsg_type = NLMSG_ERROR; 854 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr)); 855 skb_trim(skb, nlh->nlmsg_len); 856 e = NLMSG_DATA(nlh); 857 e->error = -EMSGSIZE; 858 memset(&e->msg, 0, sizeof(e->msg)); 859 } 860 861 rtnl_unicast(skb, net, NETLINK_CB(skb).pid); 862 } else { 863 ip_mr_forward(net, mrt, skb, c, 0); 864 } 865 } 866 } 867 868 /* 869 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted 870 * expects the following bizarre scheme. 871 * 872 * Called under mrt_lock. 873 */ 874 875 static int ipmr_cache_report(struct mr_table *mrt, 876 struct sk_buff *pkt, vifi_t vifi, int assert) 877 { 878 struct sk_buff *skb; 879 const int ihl = ip_hdrlen(pkt); 880 struct igmphdr *igmp; 881 struct igmpmsg *msg; 882 struct sock *mroute_sk; 883 int ret; 884 885 #ifdef CONFIG_IP_PIMSM 886 if (assert == IGMPMSG_WHOLEPKT) 887 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 888 else 889 #endif 890 skb = alloc_skb(128, GFP_ATOMIC); 891 892 if (!skb) 893 return -ENOBUFS; 894 895 #ifdef CONFIG_IP_PIMSM 896 if (assert == IGMPMSG_WHOLEPKT) { 897 /* Ugly, but we have no choice with this interface. 898 * Duplicate old header, fix ihl, length etc. 899 * And all this only to mangle msg->im_msgtype and 900 * to set msg->im_mbz to "mbz" :-) 901 */ 902 skb_push(skb, sizeof(struct iphdr)); 903 skb_reset_network_header(skb); 904 skb_reset_transport_header(skb); 905 msg = (struct igmpmsg *)skb_network_header(skb); 906 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 907 msg->im_msgtype = IGMPMSG_WHOLEPKT; 908 msg->im_mbz = 0; 909 msg->im_vif = mrt->mroute_reg_vif_num; 910 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 911 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 912 sizeof(struct iphdr)); 913 } else 914 #endif 915 { 916 917 /* Copy the IP header */ 918 919 skb->network_header = skb->tail; 920 skb_put(skb, ihl); 921 skb_copy_to_linear_data(skb, pkt->data, ihl); 922 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */ 923 msg = (struct igmpmsg *)skb_network_header(skb); 924 msg->im_vif = vifi; 925 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 926 927 /* Add our header */ 928 929 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr)); 930 igmp->type = 931 msg->im_msgtype = assert; 932 igmp->code = 0; 933 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 934 skb->transport_header = skb->network_header; 935 } 936 937 rcu_read_lock(); 938 mroute_sk = rcu_dereference(mrt->mroute_sk); 939 if (mroute_sk == NULL) { 940 rcu_read_unlock(); 941 kfree_skb(skb); 942 return -EINVAL; 943 } 944 945 /* Deliver to mrouted */ 946 947 ret = sock_queue_rcv_skb(mroute_sk, skb); 948 rcu_read_unlock(); 949 if (ret < 0) { 950 if (net_ratelimit()) 951 printk(KERN_WARNING "mroute: pending queue full, dropping entries.\n"); 952 kfree_skb(skb); 953 } 954 955 return ret; 956 } 957 958 /* 959 * Queue a packet for resolution. It gets locked cache entry! 960 */ 961 962 static int 963 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb) 964 { 965 bool found = false; 966 int err; 967 struct mfc_cache *c; 968 const struct iphdr *iph = ip_hdr(skb); 969 970 spin_lock_bh(&mfc_unres_lock); 971 list_for_each_entry(c, &mrt->mfc_unres_queue, list) { 972 if (c->mfc_mcastgrp == iph->daddr && 973 c->mfc_origin == iph->saddr) { 974 found = true; 975 break; 976 } 977 } 978 979 if (!found) { 980 /* Create a new entry if allowable */ 981 982 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 983 (c = ipmr_cache_alloc_unres()) == NULL) { 984 spin_unlock_bh(&mfc_unres_lock); 985 986 kfree_skb(skb); 987 return -ENOBUFS; 988 } 989 990 /* Fill in the new cache entry */ 991 992 c->mfc_parent = -1; 993 c->mfc_origin = iph->saddr; 994 c->mfc_mcastgrp = iph->daddr; 995 996 /* Reflect first query at mrouted. */ 997 998 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 999 if (err < 0) { 1000 /* If the report failed throw the cache entry 1001 out - Brad Parker 1002 */ 1003 spin_unlock_bh(&mfc_unres_lock); 1004 1005 ipmr_cache_free(c); 1006 kfree_skb(skb); 1007 return err; 1008 } 1009 1010 atomic_inc(&mrt->cache_resolve_queue_len); 1011 list_add(&c->list, &mrt->mfc_unres_queue); 1012 1013 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1014 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires); 1015 } 1016 1017 /* See if we can append the packet */ 1018 1019 if (c->mfc_un.unres.unresolved.qlen > 3) { 1020 kfree_skb(skb); 1021 err = -ENOBUFS; 1022 } else { 1023 skb_queue_tail(&c->mfc_un.unres.unresolved, skb); 1024 err = 0; 1025 } 1026 1027 spin_unlock_bh(&mfc_unres_lock); 1028 return err; 1029 } 1030 1031 /* 1032 * MFC cache manipulation by user space mroute daemon 1033 */ 1034 1035 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc) 1036 { 1037 int line; 1038 struct mfc_cache *c, *next; 1039 1040 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1041 1042 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) { 1043 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1044 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) { 1045 list_del_rcu(&c->list); 1046 1047 ipmr_cache_free(c); 1048 return 0; 1049 } 1050 } 1051 return -ENOENT; 1052 } 1053 1054 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1055 struct mfcctl *mfc, int mrtsock) 1056 { 1057 bool found = false; 1058 int line; 1059 struct mfc_cache *uc, *c; 1060 1061 if (mfc->mfcc_parent >= MAXVIFS) 1062 return -ENFILE; 1063 1064 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1065 1066 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) { 1067 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1068 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) { 1069 found = true; 1070 break; 1071 } 1072 } 1073 1074 if (found) { 1075 write_lock_bh(&mrt_lock); 1076 c->mfc_parent = mfc->mfcc_parent; 1077 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1078 if (!mrtsock) 1079 c->mfc_flags |= MFC_STATIC; 1080 write_unlock_bh(&mrt_lock); 1081 return 0; 1082 } 1083 1084 if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1085 return -EINVAL; 1086 1087 c = ipmr_cache_alloc(); 1088 if (c == NULL) 1089 return -ENOMEM; 1090 1091 c->mfc_origin = mfc->mfcc_origin.s_addr; 1092 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1093 c->mfc_parent = mfc->mfcc_parent; 1094 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1095 if (!mrtsock) 1096 c->mfc_flags |= MFC_STATIC; 1097 1098 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]); 1099 1100 /* 1101 * Check to see if we resolved a queued list. If so we 1102 * need to send on the frames and tidy up. 1103 */ 1104 found = false; 1105 spin_lock_bh(&mfc_unres_lock); 1106 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) { 1107 if (uc->mfc_origin == c->mfc_origin && 1108 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1109 list_del(&uc->list); 1110 atomic_dec(&mrt->cache_resolve_queue_len); 1111 found = true; 1112 break; 1113 } 1114 } 1115 if (list_empty(&mrt->mfc_unres_queue)) 1116 del_timer(&mrt->ipmr_expire_timer); 1117 spin_unlock_bh(&mfc_unres_lock); 1118 1119 if (found) { 1120 ipmr_cache_resolve(net, mrt, uc, c); 1121 ipmr_cache_free(uc); 1122 } 1123 return 0; 1124 } 1125 1126 /* 1127 * Close the multicast socket, and clear the vif tables etc 1128 */ 1129 1130 static void mroute_clean_tables(struct mr_table *mrt) 1131 { 1132 int i; 1133 LIST_HEAD(list); 1134 struct mfc_cache *c, *next; 1135 1136 /* Shut down all active vif entries */ 1137 1138 for (i = 0; i < mrt->maxvif; i++) { 1139 if (!(mrt->vif_table[i].flags & VIFF_STATIC)) 1140 vif_delete(mrt, i, 0, &list); 1141 } 1142 unregister_netdevice_many(&list); 1143 1144 /* Wipe the cache */ 1145 1146 for (i = 0; i < MFC_LINES; i++) { 1147 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) { 1148 if (c->mfc_flags & MFC_STATIC) 1149 continue; 1150 list_del_rcu(&c->list); 1151 ipmr_cache_free(c); 1152 } 1153 } 1154 1155 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1156 spin_lock_bh(&mfc_unres_lock); 1157 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 1158 list_del(&c->list); 1159 ipmr_destroy_unres(mrt, c); 1160 } 1161 spin_unlock_bh(&mfc_unres_lock); 1162 } 1163 } 1164 1165 /* called from ip_ra_control(), before an RCU grace period, 1166 * we dont need to call synchronize_rcu() here 1167 */ 1168 static void mrtsock_destruct(struct sock *sk) 1169 { 1170 struct net *net = sock_net(sk); 1171 struct mr_table *mrt; 1172 1173 rtnl_lock(); 1174 ipmr_for_each_table(mrt, net) { 1175 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1176 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1177 rcu_assign_pointer(mrt->mroute_sk, NULL); 1178 mroute_clean_tables(mrt); 1179 } 1180 } 1181 rtnl_unlock(); 1182 } 1183 1184 /* 1185 * Socket options and virtual interface manipulation. The whole 1186 * virtual interface system is a complete heap, but unfortunately 1187 * that's how BSD mrouted happens to think. Maybe one day with a proper 1188 * MOSPF/PIM router set up we can clean this up. 1189 */ 1190 1191 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen) 1192 { 1193 int ret; 1194 struct vifctl vif; 1195 struct mfcctl mfc; 1196 struct net *net = sock_net(sk); 1197 struct mr_table *mrt; 1198 1199 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1200 if (mrt == NULL) 1201 return -ENOENT; 1202 1203 if (optname != MRT_INIT) { 1204 if (sk != rcu_dereference_raw(mrt->mroute_sk) && 1205 !capable(CAP_NET_ADMIN)) 1206 return -EACCES; 1207 } 1208 1209 switch (optname) { 1210 case MRT_INIT: 1211 if (sk->sk_type != SOCK_RAW || 1212 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1213 return -EOPNOTSUPP; 1214 if (optlen != sizeof(int)) 1215 return -ENOPROTOOPT; 1216 1217 rtnl_lock(); 1218 if (rtnl_dereference(mrt->mroute_sk)) { 1219 rtnl_unlock(); 1220 return -EADDRINUSE; 1221 } 1222 1223 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1224 if (ret == 0) { 1225 rcu_assign_pointer(mrt->mroute_sk, sk); 1226 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1227 } 1228 rtnl_unlock(); 1229 return ret; 1230 case MRT_DONE: 1231 if (sk != rcu_dereference_raw(mrt->mroute_sk)) 1232 return -EACCES; 1233 return ip_ra_control(sk, 0, NULL); 1234 case MRT_ADD_VIF: 1235 case MRT_DEL_VIF: 1236 if (optlen != sizeof(vif)) 1237 return -EINVAL; 1238 if (copy_from_user(&vif, optval, sizeof(vif))) 1239 return -EFAULT; 1240 if (vif.vifc_vifi >= MAXVIFS) 1241 return -ENFILE; 1242 rtnl_lock(); 1243 if (optname == MRT_ADD_VIF) { 1244 ret = vif_add(net, mrt, &vif, 1245 sk == rtnl_dereference(mrt->mroute_sk)); 1246 } else { 1247 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1248 } 1249 rtnl_unlock(); 1250 return ret; 1251 1252 /* 1253 * Manipulate the forwarding caches. These live 1254 * in a sort of kernel/user symbiosis. 1255 */ 1256 case MRT_ADD_MFC: 1257 case MRT_DEL_MFC: 1258 if (optlen != sizeof(mfc)) 1259 return -EINVAL; 1260 if (copy_from_user(&mfc, optval, sizeof(mfc))) 1261 return -EFAULT; 1262 rtnl_lock(); 1263 if (optname == MRT_DEL_MFC) 1264 ret = ipmr_mfc_delete(mrt, &mfc); 1265 else 1266 ret = ipmr_mfc_add(net, mrt, &mfc, 1267 sk == rtnl_dereference(mrt->mroute_sk)); 1268 rtnl_unlock(); 1269 return ret; 1270 /* 1271 * Control PIM assert. 1272 */ 1273 case MRT_ASSERT: 1274 { 1275 int v; 1276 if (get_user(v, (int __user *)optval)) 1277 return -EFAULT; 1278 mrt->mroute_do_assert = (v) ? 1 : 0; 1279 return 0; 1280 } 1281 #ifdef CONFIG_IP_PIMSM 1282 case MRT_PIM: 1283 { 1284 int v; 1285 1286 if (get_user(v, (int __user *)optval)) 1287 return -EFAULT; 1288 v = (v) ? 1 : 0; 1289 1290 rtnl_lock(); 1291 ret = 0; 1292 if (v != mrt->mroute_do_pim) { 1293 mrt->mroute_do_pim = v; 1294 mrt->mroute_do_assert = v; 1295 } 1296 rtnl_unlock(); 1297 return ret; 1298 } 1299 #endif 1300 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 1301 case MRT_TABLE: 1302 { 1303 u32 v; 1304 1305 if (optlen != sizeof(u32)) 1306 return -EINVAL; 1307 if (get_user(v, (u32 __user *)optval)) 1308 return -EFAULT; 1309 1310 rtnl_lock(); 1311 ret = 0; 1312 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1313 ret = -EBUSY; 1314 } else { 1315 if (!ipmr_new_table(net, v)) 1316 ret = -ENOMEM; 1317 raw_sk(sk)->ipmr_table = v; 1318 } 1319 rtnl_unlock(); 1320 return ret; 1321 } 1322 #endif 1323 /* 1324 * Spurious command, or MRT_VERSION which you cannot 1325 * set. 1326 */ 1327 default: 1328 return -ENOPROTOOPT; 1329 } 1330 } 1331 1332 /* 1333 * Getsock opt support for the multicast routing system. 1334 */ 1335 1336 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) 1337 { 1338 int olr; 1339 int val; 1340 struct net *net = sock_net(sk); 1341 struct mr_table *mrt; 1342 1343 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1344 if (mrt == NULL) 1345 return -ENOENT; 1346 1347 if (optname != MRT_VERSION && 1348 #ifdef CONFIG_IP_PIMSM 1349 optname != MRT_PIM && 1350 #endif 1351 optname != MRT_ASSERT) 1352 return -ENOPROTOOPT; 1353 1354 if (get_user(olr, optlen)) 1355 return -EFAULT; 1356 1357 olr = min_t(unsigned int, olr, sizeof(int)); 1358 if (olr < 0) 1359 return -EINVAL; 1360 1361 if (put_user(olr, optlen)) 1362 return -EFAULT; 1363 if (optname == MRT_VERSION) 1364 val = 0x0305; 1365 #ifdef CONFIG_IP_PIMSM 1366 else if (optname == MRT_PIM) 1367 val = mrt->mroute_do_pim; 1368 #endif 1369 else 1370 val = mrt->mroute_do_assert; 1371 if (copy_to_user(optval, &val, olr)) 1372 return -EFAULT; 1373 return 0; 1374 } 1375 1376 /* 1377 * The IP multicast ioctl support routines. 1378 */ 1379 1380 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) 1381 { 1382 struct sioc_sg_req sr; 1383 struct sioc_vif_req vr; 1384 struct vif_device *vif; 1385 struct mfc_cache *c; 1386 struct net *net = sock_net(sk); 1387 struct mr_table *mrt; 1388 1389 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1390 if (mrt == NULL) 1391 return -ENOENT; 1392 1393 switch (cmd) { 1394 case SIOCGETVIFCNT: 1395 if (copy_from_user(&vr, arg, sizeof(vr))) 1396 return -EFAULT; 1397 if (vr.vifi >= mrt->maxvif) 1398 return -EINVAL; 1399 read_lock(&mrt_lock); 1400 vif = &mrt->vif_table[vr.vifi]; 1401 if (VIF_EXISTS(mrt, vr.vifi)) { 1402 vr.icount = vif->pkt_in; 1403 vr.ocount = vif->pkt_out; 1404 vr.ibytes = vif->bytes_in; 1405 vr.obytes = vif->bytes_out; 1406 read_unlock(&mrt_lock); 1407 1408 if (copy_to_user(arg, &vr, sizeof(vr))) 1409 return -EFAULT; 1410 return 0; 1411 } 1412 read_unlock(&mrt_lock); 1413 return -EADDRNOTAVAIL; 1414 case SIOCGETSGCNT: 1415 if (copy_from_user(&sr, arg, sizeof(sr))) 1416 return -EFAULT; 1417 1418 rcu_read_lock(); 1419 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1420 if (c) { 1421 sr.pktcnt = c->mfc_un.res.pkt; 1422 sr.bytecnt = c->mfc_un.res.bytes; 1423 sr.wrong_if = c->mfc_un.res.wrong_if; 1424 rcu_read_unlock(); 1425 1426 if (copy_to_user(arg, &sr, sizeof(sr))) 1427 return -EFAULT; 1428 return 0; 1429 } 1430 rcu_read_unlock(); 1431 return -EADDRNOTAVAIL; 1432 default: 1433 return -ENOIOCTLCMD; 1434 } 1435 } 1436 1437 1438 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1439 { 1440 struct net_device *dev = ptr; 1441 struct net *net = dev_net(dev); 1442 struct mr_table *mrt; 1443 struct vif_device *v; 1444 int ct; 1445 LIST_HEAD(list); 1446 1447 if (event != NETDEV_UNREGISTER) 1448 return NOTIFY_DONE; 1449 1450 ipmr_for_each_table(mrt, net) { 1451 v = &mrt->vif_table[0]; 1452 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1453 if (v->dev == dev) 1454 vif_delete(mrt, ct, 1, &list); 1455 } 1456 } 1457 unregister_netdevice_many(&list); 1458 return NOTIFY_DONE; 1459 } 1460 1461 1462 static struct notifier_block ip_mr_notifier = { 1463 .notifier_call = ipmr_device_event, 1464 }; 1465 1466 /* 1467 * Encapsulate a packet by attaching a valid IPIP header to it. 1468 * This avoids tunnel drivers and other mess and gives us the speed so 1469 * important for multicast video. 1470 */ 1471 1472 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr) 1473 { 1474 struct iphdr *iph; 1475 struct iphdr *old_iph = ip_hdr(skb); 1476 1477 skb_push(skb, sizeof(struct iphdr)); 1478 skb->transport_header = skb->network_header; 1479 skb_reset_network_header(skb); 1480 iph = ip_hdr(skb); 1481 1482 iph->version = 4; 1483 iph->tos = old_iph->tos; 1484 iph->ttl = old_iph->ttl; 1485 iph->frag_off = 0; 1486 iph->daddr = daddr; 1487 iph->saddr = saddr; 1488 iph->protocol = IPPROTO_IPIP; 1489 iph->ihl = 5; 1490 iph->tot_len = htons(skb->len); 1491 ip_select_ident(iph, skb_dst(skb), NULL); 1492 ip_send_check(iph); 1493 1494 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1495 nf_reset(skb); 1496 } 1497 1498 static inline int ipmr_forward_finish(struct sk_buff *skb) 1499 { 1500 struct ip_options *opt = &(IPCB(skb)->opt); 1501 1502 IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS); 1503 1504 if (unlikely(opt->optlen)) 1505 ip_forward_options(skb); 1506 1507 return dst_output(skb); 1508 } 1509 1510 /* 1511 * Processing handlers for ipmr_forward 1512 */ 1513 1514 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1515 struct sk_buff *skb, struct mfc_cache *c, int vifi) 1516 { 1517 const struct iphdr *iph = ip_hdr(skb); 1518 struct vif_device *vif = &mrt->vif_table[vifi]; 1519 struct net_device *dev; 1520 struct rtable *rt; 1521 int encap = 0; 1522 1523 if (vif->dev == NULL) 1524 goto out_free; 1525 1526 #ifdef CONFIG_IP_PIMSM 1527 if (vif->flags & VIFF_REGISTER) { 1528 vif->pkt_out++; 1529 vif->bytes_out += skb->len; 1530 vif->dev->stats.tx_bytes += skb->len; 1531 vif->dev->stats.tx_packets++; 1532 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1533 goto out_free; 1534 } 1535 #endif 1536 1537 if (vif->flags & VIFF_TUNNEL) { 1538 struct flowi fl = { 1539 .oif = vif->link, 1540 .nl_u = { 1541 .ip4_u = { 1542 .daddr = vif->remote, 1543 .saddr = vif->local, 1544 .tos = RT_TOS(iph->tos) 1545 } 1546 }, 1547 .proto = IPPROTO_IPIP 1548 }; 1549 1550 if (ip_route_output_key(net, &rt, &fl)) 1551 goto out_free; 1552 encap = sizeof(struct iphdr); 1553 } else { 1554 struct flowi fl = { 1555 .oif = vif->link, 1556 .nl_u = { 1557 .ip4_u = { 1558 .daddr = iph->daddr, 1559 .tos = RT_TOS(iph->tos) 1560 } 1561 }, 1562 .proto = IPPROTO_IPIP 1563 }; 1564 1565 if (ip_route_output_key(net, &rt, &fl)) 1566 goto out_free; 1567 } 1568 1569 dev = rt->dst.dev; 1570 1571 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1572 /* Do not fragment multicasts. Alas, IPv4 does not 1573 * allow to send ICMP, so that packets will disappear 1574 * to blackhole. 1575 */ 1576 1577 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS); 1578 ip_rt_put(rt); 1579 goto out_free; 1580 } 1581 1582 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1583 1584 if (skb_cow(skb, encap)) { 1585 ip_rt_put(rt); 1586 goto out_free; 1587 } 1588 1589 vif->pkt_out++; 1590 vif->bytes_out += skb->len; 1591 1592 skb_dst_drop(skb); 1593 skb_dst_set(skb, &rt->dst); 1594 ip_decrease_ttl(ip_hdr(skb)); 1595 1596 /* FIXME: forward and output firewalls used to be called here. 1597 * What do we do with netfilter? -- RR 1598 */ 1599 if (vif->flags & VIFF_TUNNEL) { 1600 ip_encap(skb, vif->local, vif->remote); 1601 /* FIXME: extra output firewall step used to be here. --RR */ 1602 vif->dev->stats.tx_packets++; 1603 vif->dev->stats.tx_bytes += skb->len; 1604 } 1605 1606 IPCB(skb)->flags |= IPSKB_FORWARDED; 1607 1608 /* 1609 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1610 * not only before forwarding, but after forwarding on all output 1611 * interfaces. It is clear, if mrouter runs a multicasting 1612 * program, it should receive packets not depending to what interface 1613 * program is joined. 1614 * If we will not make it, the program will have to join on all 1615 * interfaces. On the other hand, multihoming host (or router, but 1616 * not mrouter) cannot join to more than one interface - it will 1617 * result in receiving multiple packets. 1618 */ 1619 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev, 1620 ipmr_forward_finish); 1621 return; 1622 1623 out_free: 1624 kfree_skb(skb); 1625 } 1626 1627 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev) 1628 { 1629 int ct; 1630 1631 for (ct = mrt->maxvif-1; ct >= 0; ct--) { 1632 if (mrt->vif_table[ct].dev == dev) 1633 break; 1634 } 1635 return ct; 1636 } 1637 1638 /* "local" means that we should preserve one skb (for local delivery) */ 1639 1640 static int ip_mr_forward(struct net *net, struct mr_table *mrt, 1641 struct sk_buff *skb, struct mfc_cache *cache, 1642 int local) 1643 { 1644 int psend = -1; 1645 int vif, ct; 1646 1647 vif = cache->mfc_parent; 1648 cache->mfc_un.res.pkt++; 1649 cache->mfc_un.res.bytes += skb->len; 1650 1651 /* 1652 * Wrong interface: drop packet and (maybe) send PIM assert. 1653 */ 1654 if (mrt->vif_table[vif].dev != skb->dev) { 1655 int true_vifi; 1656 1657 if (skb_rtable(skb)->fl.iif == 0) { 1658 /* It is our own packet, looped back. 1659 * Very complicated situation... 1660 * 1661 * The best workaround until routing daemons will be 1662 * fixed is not to redistribute packet, if it was 1663 * send through wrong interface. It means, that 1664 * multicast applications WILL NOT work for 1665 * (S,G), which have default multicast route pointing 1666 * to wrong oif. In any case, it is not a good 1667 * idea to use multicasting applications on router. 1668 */ 1669 goto dont_forward; 1670 } 1671 1672 cache->mfc_un.res.wrong_if++; 1673 true_vifi = ipmr_find_vif(mrt, skb->dev); 1674 1675 if (true_vifi >= 0 && mrt->mroute_do_assert && 1676 /* pimsm uses asserts, when switching from RPT to SPT, 1677 * so that we cannot check that packet arrived on an oif. 1678 * It is bad, but otherwise we would need to move pretty 1679 * large chunk of pimd to kernel. Ough... --ANK 1680 */ 1681 (mrt->mroute_do_pim || 1682 cache->mfc_un.res.ttls[true_vifi] < 255) && 1683 time_after(jiffies, 1684 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) { 1685 cache->mfc_un.res.last_assert = jiffies; 1686 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 1687 } 1688 goto dont_forward; 1689 } 1690 1691 mrt->vif_table[vif].pkt_in++; 1692 mrt->vif_table[vif].bytes_in += skb->len; 1693 1694 /* 1695 * Forward the frame 1696 */ 1697 for (ct = cache->mfc_un.res.maxvif - 1; 1698 ct >= cache->mfc_un.res.minvif; ct--) { 1699 if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) { 1700 if (psend != -1) { 1701 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1702 1703 if (skb2) 1704 ipmr_queue_xmit(net, mrt, skb2, cache, 1705 psend); 1706 } 1707 psend = ct; 1708 } 1709 } 1710 if (psend != -1) { 1711 if (local) { 1712 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1713 1714 if (skb2) 1715 ipmr_queue_xmit(net, mrt, skb2, cache, psend); 1716 } else { 1717 ipmr_queue_xmit(net, mrt, skb, cache, psend); 1718 return 0; 1719 } 1720 } 1721 1722 dont_forward: 1723 if (!local) 1724 kfree_skb(skb); 1725 return 0; 1726 } 1727 1728 1729 /* 1730 * Multicast packets for forwarding arrive here 1731 * Called with rcu_read_lock(); 1732 */ 1733 1734 int ip_mr_input(struct sk_buff *skb) 1735 { 1736 struct mfc_cache *cache; 1737 struct net *net = dev_net(skb->dev); 1738 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 1739 struct mr_table *mrt; 1740 int err; 1741 1742 /* Packet is looped back after forward, it should not be 1743 * forwarded second time, but still can be delivered locally. 1744 */ 1745 if (IPCB(skb)->flags & IPSKB_FORWARDED) 1746 goto dont_forward; 1747 1748 err = ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt); 1749 if (err < 0) { 1750 kfree_skb(skb); 1751 return err; 1752 } 1753 1754 if (!local) { 1755 if (IPCB(skb)->opt.router_alert) { 1756 if (ip_call_ra_chain(skb)) 1757 return 0; 1758 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 1759 /* IGMPv1 (and broken IGMPv2 implementations sort of 1760 * Cisco IOS <= 11.2(8)) do not put router alert 1761 * option to IGMP packets destined to routable 1762 * groups. It is very bad, because it means 1763 * that we can forward NO IGMP messages. 1764 */ 1765 struct sock *mroute_sk; 1766 1767 mroute_sk = rcu_dereference(mrt->mroute_sk); 1768 if (mroute_sk) { 1769 nf_reset(skb); 1770 raw_rcv(mroute_sk, skb); 1771 return 0; 1772 } 1773 } 1774 } 1775 1776 /* already under rcu_read_lock() */ 1777 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 1778 1779 /* 1780 * No usable cache entry 1781 */ 1782 if (cache == NULL) { 1783 int vif; 1784 1785 if (local) { 1786 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1787 ip_local_deliver(skb); 1788 if (skb2 == NULL) 1789 return -ENOBUFS; 1790 skb = skb2; 1791 } 1792 1793 read_lock(&mrt_lock); 1794 vif = ipmr_find_vif(mrt, skb->dev); 1795 if (vif >= 0) { 1796 int err2 = ipmr_cache_unresolved(mrt, vif, skb); 1797 read_unlock(&mrt_lock); 1798 1799 return err2; 1800 } 1801 read_unlock(&mrt_lock); 1802 kfree_skb(skb); 1803 return -ENODEV; 1804 } 1805 1806 read_lock(&mrt_lock); 1807 ip_mr_forward(net, mrt, skb, cache, local); 1808 read_unlock(&mrt_lock); 1809 1810 if (local) 1811 return ip_local_deliver(skb); 1812 1813 return 0; 1814 1815 dont_forward: 1816 if (local) 1817 return ip_local_deliver(skb); 1818 kfree_skb(skb); 1819 return 0; 1820 } 1821 1822 #ifdef CONFIG_IP_PIMSM 1823 /* called with rcu_read_lock() */ 1824 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 1825 unsigned int pimlen) 1826 { 1827 struct net_device *reg_dev = NULL; 1828 struct iphdr *encap; 1829 1830 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 1831 /* 1832 * Check that: 1833 * a. packet is really sent to a multicast group 1834 * b. packet is not a NULL-REGISTER 1835 * c. packet is not truncated 1836 */ 1837 if (!ipv4_is_multicast(encap->daddr) || 1838 encap->tot_len == 0 || 1839 ntohs(encap->tot_len) + pimlen > skb->len) 1840 return 1; 1841 1842 read_lock(&mrt_lock); 1843 if (mrt->mroute_reg_vif_num >= 0) 1844 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev; 1845 read_unlock(&mrt_lock); 1846 1847 if (reg_dev == NULL) 1848 return 1; 1849 1850 skb->mac_header = skb->network_header; 1851 skb_pull(skb, (u8 *)encap - skb->data); 1852 skb_reset_network_header(skb); 1853 skb->protocol = htons(ETH_P_IP); 1854 skb->ip_summed = CHECKSUM_NONE; 1855 skb->pkt_type = PACKET_HOST; 1856 1857 skb_tunnel_rx(skb, reg_dev); 1858 1859 netif_rx(skb); 1860 1861 return NET_RX_SUCCESS; 1862 } 1863 #endif 1864 1865 #ifdef CONFIG_IP_PIMSM_V1 1866 /* 1867 * Handle IGMP messages of PIMv1 1868 */ 1869 1870 int pim_rcv_v1(struct sk_buff *skb) 1871 { 1872 struct igmphdr *pim; 1873 struct net *net = dev_net(skb->dev); 1874 struct mr_table *mrt; 1875 1876 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 1877 goto drop; 1878 1879 pim = igmp_hdr(skb); 1880 1881 if (ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt) < 0) 1882 goto drop; 1883 1884 if (!mrt->mroute_do_pim || 1885 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 1886 goto drop; 1887 1888 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 1889 drop: 1890 kfree_skb(skb); 1891 } 1892 return 0; 1893 } 1894 #endif 1895 1896 #ifdef CONFIG_IP_PIMSM_V2 1897 static int pim_rcv(struct sk_buff *skb) 1898 { 1899 struct pimreghdr *pim; 1900 struct net *net = dev_net(skb->dev); 1901 struct mr_table *mrt; 1902 1903 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 1904 goto drop; 1905 1906 pim = (struct pimreghdr *)skb_transport_header(skb); 1907 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) || 1908 (pim->flags & PIM_NULL_REGISTER) || 1909 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 1910 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 1911 goto drop; 1912 1913 if (ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt) < 0) 1914 goto drop; 1915 1916 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 1917 drop: 1918 kfree_skb(skb); 1919 } 1920 return 0; 1921 } 1922 #endif 1923 1924 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 1925 struct mfc_cache *c, struct rtmsg *rtm) 1926 { 1927 int ct; 1928 struct rtnexthop *nhp; 1929 u8 *b = skb_tail_pointer(skb); 1930 struct rtattr *mp_head; 1931 1932 /* If cache is unresolved, don't try to parse IIF and OIF */ 1933 if (c->mfc_parent >= MAXVIFS) 1934 return -ENOENT; 1935 1936 if (VIF_EXISTS(mrt, c->mfc_parent)) 1937 RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex); 1938 1939 mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0)); 1940 1941 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) { 1942 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) { 1943 if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4)) 1944 goto rtattr_failure; 1945 nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp))); 1946 nhp->rtnh_flags = 0; 1947 nhp->rtnh_hops = c->mfc_un.res.ttls[ct]; 1948 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex; 1949 nhp->rtnh_len = sizeof(*nhp); 1950 } 1951 } 1952 mp_head->rta_type = RTA_MULTIPATH; 1953 mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head; 1954 rtm->rtm_type = RTN_MULTICAST; 1955 return 1; 1956 1957 rtattr_failure: 1958 nlmsg_trim(skb, b); 1959 return -EMSGSIZE; 1960 } 1961 1962 int ipmr_get_route(struct net *net, 1963 struct sk_buff *skb, struct rtmsg *rtm, int nowait) 1964 { 1965 int err; 1966 struct mr_table *mrt; 1967 struct mfc_cache *cache; 1968 struct rtable *rt = skb_rtable(skb); 1969 1970 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 1971 if (mrt == NULL) 1972 return -ENOENT; 1973 1974 rcu_read_lock(); 1975 cache = ipmr_cache_find(mrt, rt->rt_src, rt->rt_dst); 1976 1977 if (cache == NULL) { 1978 struct sk_buff *skb2; 1979 struct iphdr *iph; 1980 struct net_device *dev; 1981 int vif = -1; 1982 1983 if (nowait) { 1984 rcu_read_unlock(); 1985 return -EAGAIN; 1986 } 1987 1988 dev = skb->dev; 1989 read_lock(&mrt_lock); 1990 if (dev) 1991 vif = ipmr_find_vif(mrt, dev); 1992 if (vif < 0) { 1993 read_unlock(&mrt_lock); 1994 rcu_read_unlock(); 1995 return -ENODEV; 1996 } 1997 skb2 = skb_clone(skb, GFP_ATOMIC); 1998 if (!skb2) { 1999 read_unlock(&mrt_lock); 2000 rcu_read_unlock(); 2001 return -ENOMEM; 2002 } 2003 2004 skb_push(skb2, sizeof(struct iphdr)); 2005 skb_reset_network_header(skb2); 2006 iph = ip_hdr(skb2); 2007 iph->ihl = sizeof(struct iphdr) >> 2; 2008 iph->saddr = rt->rt_src; 2009 iph->daddr = rt->rt_dst; 2010 iph->version = 0; 2011 err = ipmr_cache_unresolved(mrt, vif, skb2); 2012 read_unlock(&mrt_lock); 2013 rcu_read_unlock(); 2014 return err; 2015 } 2016 2017 read_lock(&mrt_lock); 2018 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY)) 2019 cache->mfc_flags |= MFC_NOTIFY; 2020 err = __ipmr_fill_mroute(mrt, skb, cache, rtm); 2021 read_unlock(&mrt_lock); 2022 rcu_read_unlock(); 2023 return err; 2024 } 2025 2026 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2027 u32 pid, u32 seq, struct mfc_cache *c) 2028 { 2029 struct nlmsghdr *nlh; 2030 struct rtmsg *rtm; 2031 2032 nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI); 2033 if (nlh == NULL) 2034 return -EMSGSIZE; 2035 2036 rtm = nlmsg_data(nlh); 2037 rtm->rtm_family = RTNL_FAMILY_IPMR; 2038 rtm->rtm_dst_len = 32; 2039 rtm->rtm_src_len = 32; 2040 rtm->rtm_tos = 0; 2041 rtm->rtm_table = mrt->id; 2042 NLA_PUT_U32(skb, RTA_TABLE, mrt->id); 2043 rtm->rtm_type = RTN_MULTICAST; 2044 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2045 rtm->rtm_protocol = RTPROT_UNSPEC; 2046 rtm->rtm_flags = 0; 2047 2048 NLA_PUT_BE32(skb, RTA_SRC, c->mfc_origin); 2049 NLA_PUT_BE32(skb, RTA_DST, c->mfc_mcastgrp); 2050 2051 if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0) 2052 goto nla_put_failure; 2053 2054 return nlmsg_end(skb, nlh); 2055 2056 nla_put_failure: 2057 nlmsg_cancel(skb, nlh); 2058 return -EMSGSIZE; 2059 } 2060 2061 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2062 { 2063 struct net *net = sock_net(skb->sk); 2064 struct mr_table *mrt; 2065 struct mfc_cache *mfc; 2066 unsigned int t = 0, s_t; 2067 unsigned int h = 0, s_h; 2068 unsigned int e = 0, s_e; 2069 2070 s_t = cb->args[0]; 2071 s_h = cb->args[1]; 2072 s_e = cb->args[2]; 2073 2074 rcu_read_lock(); 2075 ipmr_for_each_table(mrt, net) { 2076 if (t < s_t) 2077 goto next_table; 2078 if (t > s_t) 2079 s_h = 0; 2080 for (h = s_h; h < MFC_LINES; h++) { 2081 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) { 2082 if (e < s_e) 2083 goto next_entry; 2084 if (ipmr_fill_mroute(mrt, skb, 2085 NETLINK_CB(cb->skb).pid, 2086 cb->nlh->nlmsg_seq, 2087 mfc) < 0) 2088 goto done; 2089 next_entry: 2090 e++; 2091 } 2092 e = s_e = 0; 2093 } 2094 s_h = 0; 2095 next_table: 2096 t++; 2097 } 2098 done: 2099 rcu_read_unlock(); 2100 2101 cb->args[2] = e; 2102 cb->args[1] = h; 2103 cb->args[0] = t; 2104 2105 return skb->len; 2106 } 2107 2108 #ifdef CONFIG_PROC_FS 2109 /* 2110 * The /proc interfaces to multicast routing : 2111 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2112 */ 2113 struct ipmr_vif_iter { 2114 struct seq_net_private p; 2115 struct mr_table *mrt; 2116 int ct; 2117 }; 2118 2119 static struct vif_device *ipmr_vif_seq_idx(struct net *net, 2120 struct ipmr_vif_iter *iter, 2121 loff_t pos) 2122 { 2123 struct mr_table *mrt = iter->mrt; 2124 2125 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) { 2126 if (!VIF_EXISTS(mrt, iter->ct)) 2127 continue; 2128 if (pos-- == 0) 2129 return &mrt->vif_table[iter->ct]; 2130 } 2131 return NULL; 2132 } 2133 2134 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2135 __acquires(mrt_lock) 2136 { 2137 struct ipmr_vif_iter *iter = seq->private; 2138 struct net *net = seq_file_net(seq); 2139 struct mr_table *mrt; 2140 2141 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2142 if (mrt == NULL) 2143 return ERR_PTR(-ENOENT); 2144 2145 iter->mrt = mrt; 2146 2147 read_lock(&mrt_lock); 2148 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1) 2149 : SEQ_START_TOKEN; 2150 } 2151 2152 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2153 { 2154 struct ipmr_vif_iter *iter = seq->private; 2155 struct net *net = seq_file_net(seq); 2156 struct mr_table *mrt = iter->mrt; 2157 2158 ++*pos; 2159 if (v == SEQ_START_TOKEN) 2160 return ipmr_vif_seq_idx(net, iter, 0); 2161 2162 while (++iter->ct < mrt->maxvif) { 2163 if (!VIF_EXISTS(mrt, iter->ct)) 2164 continue; 2165 return &mrt->vif_table[iter->ct]; 2166 } 2167 return NULL; 2168 } 2169 2170 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2171 __releases(mrt_lock) 2172 { 2173 read_unlock(&mrt_lock); 2174 } 2175 2176 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2177 { 2178 struct ipmr_vif_iter *iter = seq->private; 2179 struct mr_table *mrt = iter->mrt; 2180 2181 if (v == SEQ_START_TOKEN) { 2182 seq_puts(seq, 2183 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2184 } else { 2185 const struct vif_device *vif = v; 2186 const char *name = vif->dev ? vif->dev->name : "none"; 2187 2188 seq_printf(seq, 2189 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2190 vif - mrt->vif_table, 2191 name, vif->bytes_in, vif->pkt_in, 2192 vif->bytes_out, vif->pkt_out, 2193 vif->flags, vif->local, vif->remote); 2194 } 2195 return 0; 2196 } 2197 2198 static const struct seq_operations ipmr_vif_seq_ops = { 2199 .start = ipmr_vif_seq_start, 2200 .next = ipmr_vif_seq_next, 2201 .stop = ipmr_vif_seq_stop, 2202 .show = ipmr_vif_seq_show, 2203 }; 2204 2205 static int ipmr_vif_open(struct inode *inode, struct file *file) 2206 { 2207 return seq_open_net(inode, file, &ipmr_vif_seq_ops, 2208 sizeof(struct ipmr_vif_iter)); 2209 } 2210 2211 static const struct file_operations ipmr_vif_fops = { 2212 .owner = THIS_MODULE, 2213 .open = ipmr_vif_open, 2214 .read = seq_read, 2215 .llseek = seq_lseek, 2216 .release = seq_release_net, 2217 }; 2218 2219 struct ipmr_mfc_iter { 2220 struct seq_net_private p; 2221 struct mr_table *mrt; 2222 struct list_head *cache; 2223 int ct; 2224 }; 2225 2226 2227 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net, 2228 struct ipmr_mfc_iter *it, loff_t pos) 2229 { 2230 struct mr_table *mrt = it->mrt; 2231 struct mfc_cache *mfc; 2232 2233 rcu_read_lock(); 2234 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) { 2235 it->cache = &mrt->mfc_cache_array[it->ct]; 2236 list_for_each_entry_rcu(mfc, it->cache, list) 2237 if (pos-- == 0) 2238 return mfc; 2239 } 2240 rcu_read_unlock(); 2241 2242 spin_lock_bh(&mfc_unres_lock); 2243 it->cache = &mrt->mfc_unres_queue; 2244 list_for_each_entry(mfc, it->cache, list) 2245 if (pos-- == 0) 2246 return mfc; 2247 spin_unlock_bh(&mfc_unres_lock); 2248 2249 it->cache = NULL; 2250 return NULL; 2251 } 2252 2253 2254 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2255 { 2256 struct ipmr_mfc_iter *it = seq->private; 2257 struct net *net = seq_file_net(seq); 2258 struct mr_table *mrt; 2259 2260 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2261 if (mrt == NULL) 2262 return ERR_PTR(-ENOENT); 2263 2264 it->mrt = mrt; 2265 it->cache = NULL; 2266 it->ct = 0; 2267 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1) 2268 : SEQ_START_TOKEN; 2269 } 2270 2271 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2272 { 2273 struct mfc_cache *mfc = v; 2274 struct ipmr_mfc_iter *it = seq->private; 2275 struct net *net = seq_file_net(seq); 2276 struct mr_table *mrt = it->mrt; 2277 2278 ++*pos; 2279 2280 if (v == SEQ_START_TOKEN) 2281 return ipmr_mfc_seq_idx(net, seq->private, 0); 2282 2283 if (mfc->list.next != it->cache) 2284 return list_entry(mfc->list.next, struct mfc_cache, list); 2285 2286 if (it->cache == &mrt->mfc_unres_queue) 2287 goto end_of_list; 2288 2289 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]); 2290 2291 while (++it->ct < MFC_LINES) { 2292 it->cache = &mrt->mfc_cache_array[it->ct]; 2293 if (list_empty(it->cache)) 2294 continue; 2295 return list_first_entry(it->cache, struct mfc_cache, list); 2296 } 2297 2298 /* exhausted cache_array, show unresolved */ 2299 rcu_read_unlock(); 2300 it->cache = &mrt->mfc_unres_queue; 2301 it->ct = 0; 2302 2303 spin_lock_bh(&mfc_unres_lock); 2304 if (!list_empty(it->cache)) 2305 return list_first_entry(it->cache, struct mfc_cache, list); 2306 2307 end_of_list: 2308 spin_unlock_bh(&mfc_unres_lock); 2309 it->cache = NULL; 2310 2311 return NULL; 2312 } 2313 2314 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v) 2315 { 2316 struct ipmr_mfc_iter *it = seq->private; 2317 struct mr_table *mrt = it->mrt; 2318 2319 if (it->cache == &mrt->mfc_unres_queue) 2320 spin_unlock_bh(&mfc_unres_lock); 2321 else if (it->cache == &mrt->mfc_cache_array[it->ct]) 2322 rcu_read_unlock(); 2323 } 2324 2325 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2326 { 2327 int n; 2328 2329 if (v == SEQ_START_TOKEN) { 2330 seq_puts(seq, 2331 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2332 } else { 2333 const struct mfc_cache *mfc = v; 2334 const struct ipmr_mfc_iter *it = seq->private; 2335 const struct mr_table *mrt = it->mrt; 2336 2337 seq_printf(seq, "%08X %08X %-3hd", 2338 (__force u32) mfc->mfc_mcastgrp, 2339 (__force u32) mfc->mfc_origin, 2340 mfc->mfc_parent); 2341 2342 if (it->cache != &mrt->mfc_unres_queue) { 2343 seq_printf(seq, " %8lu %8lu %8lu", 2344 mfc->mfc_un.res.pkt, 2345 mfc->mfc_un.res.bytes, 2346 mfc->mfc_un.res.wrong_if); 2347 for (n = mfc->mfc_un.res.minvif; 2348 n < mfc->mfc_un.res.maxvif; n++) { 2349 if (VIF_EXISTS(mrt, n) && 2350 mfc->mfc_un.res.ttls[n] < 255) 2351 seq_printf(seq, 2352 " %2d:%-3d", 2353 n, mfc->mfc_un.res.ttls[n]); 2354 } 2355 } else { 2356 /* unresolved mfc_caches don't contain 2357 * pkt, bytes and wrong_if values 2358 */ 2359 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 2360 } 2361 seq_putc(seq, '\n'); 2362 } 2363 return 0; 2364 } 2365 2366 static const struct seq_operations ipmr_mfc_seq_ops = { 2367 .start = ipmr_mfc_seq_start, 2368 .next = ipmr_mfc_seq_next, 2369 .stop = ipmr_mfc_seq_stop, 2370 .show = ipmr_mfc_seq_show, 2371 }; 2372 2373 static int ipmr_mfc_open(struct inode *inode, struct file *file) 2374 { 2375 return seq_open_net(inode, file, &ipmr_mfc_seq_ops, 2376 sizeof(struct ipmr_mfc_iter)); 2377 } 2378 2379 static const struct file_operations ipmr_mfc_fops = { 2380 .owner = THIS_MODULE, 2381 .open = ipmr_mfc_open, 2382 .read = seq_read, 2383 .llseek = seq_lseek, 2384 .release = seq_release_net, 2385 }; 2386 #endif 2387 2388 #ifdef CONFIG_IP_PIMSM_V2 2389 static const struct net_protocol pim_protocol = { 2390 .handler = pim_rcv, 2391 .netns_ok = 1, 2392 }; 2393 #endif 2394 2395 2396 /* 2397 * Setup for IP multicast routing 2398 */ 2399 static int __net_init ipmr_net_init(struct net *net) 2400 { 2401 int err; 2402 2403 err = ipmr_rules_init(net); 2404 if (err < 0) 2405 goto fail; 2406 2407 #ifdef CONFIG_PROC_FS 2408 err = -ENOMEM; 2409 if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops)) 2410 goto proc_vif_fail; 2411 if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops)) 2412 goto proc_cache_fail; 2413 #endif 2414 return 0; 2415 2416 #ifdef CONFIG_PROC_FS 2417 proc_cache_fail: 2418 proc_net_remove(net, "ip_mr_vif"); 2419 proc_vif_fail: 2420 ipmr_rules_exit(net); 2421 #endif 2422 fail: 2423 return err; 2424 } 2425 2426 static void __net_exit ipmr_net_exit(struct net *net) 2427 { 2428 #ifdef CONFIG_PROC_FS 2429 proc_net_remove(net, "ip_mr_cache"); 2430 proc_net_remove(net, "ip_mr_vif"); 2431 #endif 2432 ipmr_rules_exit(net); 2433 } 2434 2435 static struct pernet_operations ipmr_net_ops = { 2436 .init = ipmr_net_init, 2437 .exit = ipmr_net_exit, 2438 }; 2439 2440 int __init ip_mr_init(void) 2441 { 2442 int err; 2443 2444 mrt_cachep = kmem_cache_create("ip_mrt_cache", 2445 sizeof(struct mfc_cache), 2446 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 2447 NULL); 2448 if (!mrt_cachep) 2449 return -ENOMEM; 2450 2451 err = register_pernet_subsys(&ipmr_net_ops); 2452 if (err) 2453 goto reg_pernet_fail; 2454 2455 err = register_netdevice_notifier(&ip_mr_notifier); 2456 if (err) 2457 goto reg_notif_fail; 2458 #ifdef CONFIG_IP_PIMSM_V2 2459 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 2460 printk(KERN_ERR "ip_mr_init: can't add PIM protocol\n"); 2461 err = -EAGAIN; 2462 goto add_proto_fail; 2463 } 2464 #endif 2465 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, NULL, ipmr_rtm_dumproute); 2466 return 0; 2467 2468 #ifdef CONFIG_IP_PIMSM_V2 2469 add_proto_fail: 2470 unregister_netdevice_notifier(&ip_mr_notifier); 2471 #endif 2472 reg_notif_fail: 2473 unregister_pernet_subsys(&ipmr_net_ops); 2474 reg_pernet_fail: 2475 kmem_cache_destroy(mrt_cachep); 2476 return err; 2477 } 2478