1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * IP multicast routing support for mrouted 3.6/3.8 4 * 5 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 6 * Linux Consultancy and Custom Driver Development 7 * 8 * Fixes: 9 * Michael Chastain : Incorrect size of copying. 10 * Alan Cox : Added the cache manager code 11 * Alan Cox : Fixed the clone/copy bug and device race. 12 * Mike McLagan : Routing by source 13 * Malcolm Beattie : Buffer handling fixes. 14 * Alexey Kuznetsov : Double buffer free and other fixes. 15 * SVR Anand : Fixed several multicast bugs and problems. 16 * Alexey Kuznetsov : Status, optimisations and more. 17 * Brad Parker : Better behaviour on mrouted upcall 18 * overflow. 19 * Carlos Picoto : PIMv1 Support 20 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 21 * Relax this requirement to work with older peers. 22 */ 23 24 #include <linux/uaccess.h> 25 #include <linux/types.h> 26 #include <linux/cache.h> 27 #include <linux/capability.h> 28 #include <linux/errno.h> 29 #include <linux/mm.h> 30 #include <linux/kernel.h> 31 #include <linux/fcntl.h> 32 #include <linux/stat.h> 33 #include <linux/socket.h> 34 #include <linux/in.h> 35 #include <linux/inet.h> 36 #include <linux/netdevice.h> 37 #include <linux/inetdevice.h> 38 #include <linux/igmp.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 #include <linux/mroute.h> 42 #include <linux/init.h> 43 #include <linux/if_ether.h> 44 #include <linux/slab.h> 45 #include <net/net_namespace.h> 46 #include <net/ip.h> 47 #include <net/protocol.h> 48 #include <linux/skbuff.h> 49 #include <net/route.h> 50 #include <net/icmp.h> 51 #include <net/udp.h> 52 #include <net/raw.h> 53 #include <linux/notifier.h> 54 #include <linux/if_arp.h> 55 #include <linux/netfilter_ipv4.h> 56 #include <linux/compat.h> 57 #include <linux/export.h> 58 #include <linux/rhashtable.h> 59 #include <net/ip_tunnels.h> 60 #include <net/checksum.h> 61 #include <net/netlink.h> 62 #include <net/fib_rules.h> 63 #include <linux/netconf.h> 64 #include <net/rtnh.h> 65 66 #include <linux/nospec.h> 67 68 struct ipmr_rule { 69 struct fib_rule common; 70 }; 71 72 struct ipmr_result { 73 struct mr_table *mrt; 74 }; 75 76 /* Big lock, protecting vif table, mrt cache and mroute socket state. 77 * Note that the changes are semaphored via rtnl_lock. 78 */ 79 80 static DEFINE_SPINLOCK(mrt_lock); 81 82 static struct net_device *vif_dev_read(const struct vif_device *vif) 83 { 84 return rcu_dereference(vif->dev); 85 } 86 87 /* Multicast router control variables */ 88 89 /* Special spinlock for queue of unresolved entries */ 90 static DEFINE_SPINLOCK(mfc_unres_lock); 91 92 /* We return to original Alan's scheme. Hash table of resolved 93 * entries is changed only in process context and protected 94 * with weak lock mrt_lock. Queue of unresolved entries is protected 95 * with strong spinlock mfc_unres_lock. 96 * 97 * In this case data path is free of exclusive locks at all. 98 */ 99 100 static struct kmem_cache *mrt_cachep __ro_after_init; 101 102 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 103 static void ipmr_free_table(struct mr_table *mrt); 104 105 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 106 struct net_device *dev, struct sk_buff *skb, 107 struct mfc_cache *cache, int local); 108 static int ipmr_cache_report(const struct mr_table *mrt, 109 struct sk_buff *pkt, vifi_t vifi, int assert); 110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 111 int cmd); 112 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt); 113 static void mroute_clean_tables(struct mr_table *mrt, int flags); 114 static void ipmr_expire_process(struct timer_list *t); 115 116 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 117 #define ipmr_for_each_table(mrt, net) \ 118 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list, \ 119 lockdep_rtnl_is_held() || \ 120 list_empty(&net->ipv4.mr_tables)) 121 122 static struct mr_table *ipmr_mr_table_iter(struct net *net, 123 struct mr_table *mrt) 124 { 125 struct mr_table *ret; 126 127 if (!mrt) 128 ret = list_entry_rcu(net->ipv4.mr_tables.next, 129 struct mr_table, list); 130 else 131 ret = list_entry_rcu(mrt->list.next, 132 struct mr_table, list); 133 134 if (&ret->list == &net->ipv4.mr_tables) 135 return NULL; 136 return ret; 137 } 138 139 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 140 { 141 struct mr_table *mrt; 142 143 ipmr_for_each_table(mrt, net) { 144 if (mrt->id == id) 145 return mrt; 146 } 147 return NULL; 148 } 149 150 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 151 struct mr_table **mrt) 152 { 153 int err; 154 struct ipmr_result res; 155 struct fib_lookup_arg arg = { 156 .result = &res, 157 .flags = FIB_LOOKUP_NOREF, 158 }; 159 160 /* update flow if oif or iif point to device enslaved to l3mdev */ 161 l3mdev_update_flow(net, flowi4_to_flowi(flp4)); 162 163 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 164 flowi4_to_flowi(flp4), 0, &arg); 165 if (err < 0) 166 return err; 167 *mrt = res.mrt; 168 return 0; 169 } 170 171 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 172 int flags, struct fib_lookup_arg *arg) 173 { 174 struct ipmr_result *res = arg->result; 175 struct mr_table *mrt; 176 177 switch (rule->action) { 178 case FR_ACT_TO_TBL: 179 break; 180 case FR_ACT_UNREACHABLE: 181 return -ENETUNREACH; 182 case FR_ACT_PROHIBIT: 183 return -EACCES; 184 case FR_ACT_BLACKHOLE: 185 default: 186 return -EINVAL; 187 } 188 189 arg->table = fib_rule_get_table(rule, arg); 190 191 mrt = ipmr_get_table(rule->fr_net, arg->table); 192 if (!mrt) 193 return -EAGAIN; 194 res->mrt = mrt; 195 return 0; 196 } 197 198 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 199 { 200 return 1; 201 } 202 203 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 204 struct fib_rule_hdr *frh, struct nlattr **tb, 205 struct netlink_ext_ack *extack) 206 { 207 return 0; 208 } 209 210 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 211 struct nlattr **tb) 212 { 213 return 1; 214 } 215 216 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 217 struct fib_rule_hdr *frh) 218 { 219 frh->dst_len = 0; 220 frh->src_len = 0; 221 frh->tos = 0; 222 return 0; 223 } 224 225 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { 226 .family = RTNL_FAMILY_IPMR, 227 .rule_size = sizeof(struct ipmr_rule), 228 .addr_size = sizeof(u32), 229 .action = ipmr_rule_action, 230 .match = ipmr_rule_match, 231 .configure = ipmr_rule_configure, 232 .compare = ipmr_rule_compare, 233 .fill = ipmr_rule_fill, 234 .nlgroup = RTNLGRP_IPV4_RULE, 235 .owner = THIS_MODULE, 236 }; 237 238 static int __net_init ipmr_rules_init(struct net *net) 239 { 240 struct fib_rules_ops *ops; 241 struct mr_table *mrt; 242 int err; 243 244 ops = fib_rules_register(&ipmr_rules_ops_template, net); 245 if (IS_ERR(ops)) 246 return PTR_ERR(ops); 247 248 INIT_LIST_HEAD(&net->ipv4.mr_tables); 249 250 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 251 if (IS_ERR(mrt)) { 252 err = PTR_ERR(mrt); 253 goto err1; 254 } 255 256 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 257 if (err < 0) 258 goto err2; 259 260 net->ipv4.mr_rules_ops = ops; 261 return 0; 262 263 err2: 264 rtnl_lock(); 265 ipmr_free_table(mrt); 266 rtnl_unlock(); 267 err1: 268 fib_rules_unregister(ops); 269 return err; 270 } 271 272 static void __net_exit ipmr_rules_exit(struct net *net) 273 { 274 struct mr_table *mrt, *next; 275 276 ASSERT_RTNL(); 277 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 278 list_del(&mrt->list); 279 ipmr_free_table(mrt); 280 } 281 fib_rules_unregister(net->ipv4.mr_rules_ops); 282 } 283 284 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb, 285 struct netlink_ext_ack *extack) 286 { 287 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack); 288 } 289 290 static unsigned int ipmr_rules_seq_read(struct net *net) 291 { 292 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR); 293 } 294 295 bool ipmr_rule_default(const struct fib_rule *rule) 296 { 297 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT; 298 } 299 EXPORT_SYMBOL(ipmr_rule_default); 300 #else 301 #define ipmr_for_each_table(mrt, net) \ 302 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 303 304 static struct mr_table *ipmr_mr_table_iter(struct net *net, 305 struct mr_table *mrt) 306 { 307 if (!mrt) 308 return net->ipv4.mrt; 309 return NULL; 310 } 311 312 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 313 { 314 return net->ipv4.mrt; 315 } 316 317 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 318 struct mr_table **mrt) 319 { 320 *mrt = net->ipv4.mrt; 321 return 0; 322 } 323 324 static int __net_init ipmr_rules_init(struct net *net) 325 { 326 struct mr_table *mrt; 327 328 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 329 if (IS_ERR(mrt)) 330 return PTR_ERR(mrt); 331 net->ipv4.mrt = mrt; 332 return 0; 333 } 334 335 static void __net_exit ipmr_rules_exit(struct net *net) 336 { 337 ASSERT_RTNL(); 338 ipmr_free_table(net->ipv4.mrt); 339 net->ipv4.mrt = NULL; 340 } 341 342 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb, 343 struct netlink_ext_ack *extack) 344 { 345 return 0; 346 } 347 348 static unsigned int ipmr_rules_seq_read(struct net *net) 349 { 350 return 0; 351 } 352 353 bool ipmr_rule_default(const struct fib_rule *rule) 354 { 355 return true; 356 } 357 EXPORT_SYMBOL(ipmr_rule_default); 358 #endif 359 360 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg, 361 const void *ptr) 362 { 363 const struct mfc_cache_cmp_arg *cmparg = arg->key; 364 const struct mfc_cache *c = ptr; 365 366 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp || 367 cmparg->mfc_origin != c->mfc_origin; 368 } 369 370 static const struct rhashtable_params ipmr_rht_params = { 371 .head_offset = offsetof(struct mr_mfc, mnode), 372 .key_offset = offsetof(struct mfc_cache, cmparg), 373 .key_len = sizeof(struct mfc_cache_cmp_arg), 374 .nelem_hint = 3, 375 .obj_cmpfn = ipmr_hash_cmp, 376 .automatic_shrinking = true, 377 }; 378 379 static void ipmr_new_table_set(struct mr_table *mrt, 380 struct net *net) 381 { 382 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 383 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 384 #endif 385 } 386 387 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = { 388 .mfc_mcastgrp = htonl(INADDR_ANY), 389 .mfc_origin = htonl(INADDR_ANY), 390 }; 391 392 static struct mr_table_ops ipmr_mr_table_ops = { 393 .rht_params = &ipmr_rht_params, 394 .cmparg_any = &ipmr_mr_table_ops_cmparg_any, 395 }; 396 397 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 398 { 399 struct mr_table *mrt; 400 401 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ 402 if (id != RT_TABLE_DEFAULT && id >= 1000000000) 403 return ERR_PTR(-EINVAL); 404 405 mrt = ipmr_get_table(net, id); 406 if (mrt) 407 return mrt; 408 409 return mr_table_alloc(net, id, &ipmr_mr_table_ops, 410 ipmr_expire_process, ipmr_new_table_set); 411 } 412 413 static void ipmr_free_table(struct mr_table *mrt) 414 { 415 del_timer_sync(&mrt->ipmr_expire_timer); 416 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC | 417 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC); 418 rhltable_destroy(&mrt->mfc_hash); 419 kfree(mrt); 420 } 421 422 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 423 424 /* Initialize ipmr pimreg/tunnel in_device */ 425 static bool ipmr_init_vif_indev(const struct net_device *dev) 426 { 427 struct in_device *in_dev; 428 429 ASSERT_RTNL(); 430 431 in_dev = __in_dev_get_rtnl(dev); 432 if (!in_dev) 433 return false; 434 ipv4_devconf_setall(in_dev); 435 neigh_parms_data_state_setall(in_dev->arp_parms); 436 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 437 438 return true; 439 } 440 441 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 442 { 443 struct net_device *tunnel_dev, *new_dev; 444 struct ip_tunnel_parm p = { }; 445 int err; 446 447 tunnel_dev = __dev_get_by_name(net, "tunl0"); 448 if (!tunnel_dev) 449 goto out; 450 451 p.iph.daddr = v->vifc_rmt_addr.s_addr; 452 p.iph.saddr = v->vifc_lcl_addr.s_addr; 453 p.iph.version = 4; 454 p.iph.ihl = 5; 455 p.iph.protocol = IPPROTO_IPIP; 456 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 457 458 if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl) 459 goto out; 460 err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p, 461 SIOCADDTUNNEL); 462 if (err) 463 goto out; 464 465 new_dev = __dev_get_by_name(net, p.name); 466 if (!new_dev) 467 goto out; 468 469 new_dev->flags |= IFF_MULTICAST; 470 if (!ipmr_init_vif_indev(new_dev)) 471 goto out_unregister; 472 if (dev_open(new_dev, NULL)) 473 goto out_unregister; 474 dev_hold(new_dev); 475 err = dev_set_allmulti(new_dev, 1); 476 if (err) { 477 dev_close(new_dev); 478 tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p, 479 SIOCDELTUNNEL); 480 dev_put(new_dev); 481 new_dev = ERR_PTR(err); 482 } 483 return new_dev; 484 485 out_unregister: 486 unregister_netdevice(new_dev); 487 out: 488 return ERR_PTR(-ENOBUFS); 489 } 490 491 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 492 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 493 { 494 struct net *net = dev_net(dev); 495 struct mr_table *mrt; 496 struct flowi4 fl4 = { 497 .flowi4_oif = dev->ifindex, 498 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 499 .flowi4_mark = skb->mark, 500 }; 501 int err; 502 503 err = ipmr_fib_lookup(net, &fl4, &mrt); 504 if (err < 0) { 505 kfree_skb(skb); 506 return err; 507 } 508 509 dev->stats.tx_bytes += skb->len; 510 dev->stats.tx_packets++; 511 rcu_read_lock(); 512 513 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */ 514 ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num), 515 IGMPMSG_WHOLEPKT); 516 517 rcu_read_unlock(); 518 kfree_skb(skb); 519 return NETDEV_TX_OK; 520 } 521 522 static int reg_vif_get_iflink(const struct net_device *dev) 523 { 524 return 0; 525 } 526 527 static const struct net_device_ops reg_vif_netdev_ops = { 528 .ndo_start_xmit = reg_vif_xmit, 529 .ndo_get_iflink = reg_vif_get_iflink, 530 }; 531 532 static void reg_vif_setup(struct net_device *dev) 533 { 534 dev->type = ARPHRD_PIMREG; 535 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 536 dev->flags = IFF_NOARP; 537 dev->netdev_ops = ®_vif_netdev_ops; 538 dev->needs_free_netdev = true; 539 dev->features |= NETIF_F_NETNS_LOCAL; 540 } 541 542 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 543 { 544 struct net_device *dev; 545 char name[IFNAMSIZ]; 546 547 if (mrt->id == RT_TABLE_DEFAULT) 548 sprintf(name, "pimreg"); 549 else 550 sprintf(name, "pimreg%u", mrt->id); 551 552 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 553 554 if (!dev) 555 return NULL; 556 557 dev_net_set(dev, net); 558 559 if (register_netdevice(dev)) { 560 free_netdev(dev); 561 return NULL; 562 } 563 564 if (!ipmr_init_vif_indev(dev)) 565 goto failure; 566 if (dev_open(dev, NULL)) 567 goto failure; 568 569 dev_hold(dev); 570 571 return dev; 572 573 failure: 574 unregister_netdevice(dev); 575 return NULL; 576 } 577 578 /* called with rcu_read_lock() */ 579 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 580 unsigned int pimlen) 581 { 582 struct net_device *reg_dev = NULL; 583 struct iphdr *encap; 584 int vif_num; 585 586 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 587 /* Check that: 588 * a. packet is really sent to a multicast group 589 * b. packet is not a NULL-REGISTER 590 * c. packet is not truncated 591 */ 592 if (!ipv4_is_multicast(encap->daddr) || 593 encap->tot_len == 0 || 594 ntohs(encap->tot_len) + pimlen > skb->len) 595 return 1; 596 597 /* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */ 598 vif_num = READ_ONCE(mrt->mroute_reg_vif_num); 599 if (vif_num >= 0) 600 reg_dev = vif_dev_read(&mrt->vif_table[vif_num]); 601 if (!reg_dev) 602 return 1; 603 604 skb->mac_header = skb->network_header; 605 skb_pull(skb, (u8 *)encap - skb->data); 606 skb_reset_network_header(skb); 607 skb->protocol = htons(ETH_P_IP); 608 skb->ip_summed = CHECKSUM_NONE; 609 610 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 611 612 netif_rx(skb); 613 614 return NET_RX_SUCCESS; 615 } 616 #else 617 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 618 { 619 return NULL; 620 } 621 #endif 622 623 static int call_ipmr_vif_entry_notifiers(struct net *net, 624 enum fib_event_type event_type, 625 struct vif_device *vif, 626 struct net_device *vif_dev, 627 vifi_t vif_index, u32 tb_id) 628 { 629 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type, 630 vif, vif_dev, vif_index, tb_id, 631 &net->ipv4.ipmr_seq); 632 } 633 634 static int call_ipmr_mfc_entry_notifiers(struct net *net, 635 enum fib_event_type event_type, 636 struct mfc_cache *mfc, u32 tb_id) 637 { 638 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type, 639 &mfc->_c, tb_id, &net->ipv4.ipmr_seq); 640 } 641 642 /** 643 * vif_delete - Delete a VIF entry 644 * @mrt: Table to delete from 645 * @vifi: VIF identifier to delete 646 * @notify: Set to 1, if the caller is a notifier_call 647 * @head: if unregistering the VIF, place it on this queue 648 */ 649 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 650 struct list_head *head) 651 { 652 struct net *net = read_pnet(&mrt->net); 653 struct vif_device *v; 654 struct net_device *dev; 655 struct in_device *in_dev; 656 657 if (vifi < 0 || vifi >= mrt->maxvif) 658 return -EADDRNOTAVAIL; 659 660 v = &mrt->vif_table[vifi]; 661 662 dev = rtnl_dereference(v->dev); 663 if (!dev) 664 return -EADDRNOTAVAIL; 665 666 spin_lock(&mrt_lock); 667 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev, 668 vifi, mrt->id); 669 RCU_INIT_POINTER(v->dev, NULL); 670 671 if (vifi == mrt->mroute_reg_vif_num) { 672 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */ 673 WRITE_ONCE(mrt->mroute_reg_vif_num, -1); 674 } 675 if (vifi + 1 == mrt->maxvif) { 676 int tmp; 677 678 for (tmp = vifi - 1; tmp >= 0; tmp--) { 679 if (VIF_EXISTS(mrt, tmp)) 680 break; 681 } 682 WRITE_ONCE(mrt->maxvif, tmp + 1); 683 } 684 685 spin_unlock(&mrt_lock); 686 687 dev_set_allmulti(dev, -1); 688 689 in_dev = __in_dev_get_rtnl(dev); 690 if (in_dev) { 691 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 692 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, 693 NETCONFA_MC_FORWARDING, 694 dev->ifindex, &in_dev->cnf); 695 ip_rt_multicast_event(in_dev); 696 } 697 698 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 699 unregister_netdevice_queue(dev, head); 700 701 netdev_put(dev, &v->dev_tracker); 702 return 0; 703 } 704 705 static void ipmr_cache_free_rcu(struct rcu_head *head) 706 { 707 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu); 708 709 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c); 710 } 711 712 static void ipmr_cache_free(struct mfc_cache *c) 713 { 714 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu); 715 } 716 717 /* Destroy an unresolved cache entry, killing queued skbs 718 * and reporting error to netlink readers. 719 */ 720 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 721 { 722 struct net *net = read_pnet(&mrt->net); 723 struct sk_buff *skb; 724 struct nlmsgerr *e; 725 726 atomic_dec(&mrt->cache_resolve_queue_len); 727 728 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) { 729 if (ip_hdr(skb)->version == 0) { 730 struct nlmsghdr *nlh = skb_pull(skb, 731 sizeof(struct iphdr)); 732 nlh->nlmsg_type = NLMSG_ERROR; 733 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 734 skb_trim(skb, nlh->nlmsg_len); 735 e = nlmsg_data(nlh); 736 e->error = -ETIMEDOUT; 737 memset(&e->msg, 0, sizeof(e->msg)); 738 739 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 740 } else { 741 kfree_skb(skb); 742 } 743 } 744 745 ipmr_cache_free(c); 746 } 747 748 /* Timer process for the unresolved queue. */ 749 static void ipmr_expire_process(struct timer_list *t) 750 { 751 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer); 752 struct mr_mfc *c, *next; 753 unsigned long expires; 754 unsigned long now; 755 756 if (!spin_trylock(&mfc_unres_lock)) { 757 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 758 return; 759 } 760 761 if (list_empty(&mrt->mfc_unres_queue)) 762 goto out; 763 764 now = jiffies; 765 expires = 10*HZ; 766 767 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 768 if (time_after(c->mfc_un.unres.expires, now)) { 769 unsigned long interval = c->mfc_un.unres.expires - now; 770 if (interval < expires) 771 expires = interval; 772 continue; 773 } 774 775 list_del(&c->list); 776 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE); 777 ipmr_destroy_unres(mrt, (struct mfc_cache *)c); 778 } 779 780 if (!list_empty(&mrt->mfc_unres_queue)) 781 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 782 783 out: 784 spin_unlock(&mfc_unres_lock); 785 } 786 787 /* Fill oifs list. It is called under locked mrt_lock. */ 788 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache, 789 unsigned char *ttls) 790 { 791 int vifi; 792 793 cache->mfc_un.res.minvif = MAXVIFS; 794 cache->mfc_un.res.maxvif = 0; 795 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 796 797 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 798 if (VIF_EXISTS(mrt, vifi) && 799 ttls[vifi] && ttls[vifi] < 255) { 800 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 801 if (cache->mfc_un.res.minvif > vifi) 802 cache->mfc_un.res.minvif = vifi; 803 if (cache->mfc_un.res.maxvif <= vifi) 804 cache->mfc_un.res.maxvif = vifi + 1; 805 } 806 } 807 cache->mfc_un.res.lastuse = jiffies; 808 } 809 810 static int vif_add(struct net *net, struct mr_table *mrt, 811 struct vifctl *vifc, int mrtsock) 812 { 813 struct netdev_phys_item_id ppid = { }; 814 int vifi = vifc->vifc_vifi; 815 struct vif_device *v = &mrt->vif_table[vifi]; 816 struct net_device *dev; 817 struct in_device *in_dev; 818 int err; 819 820 /* Is vif busy ? */ 821 if (VIF_EXISTS(mrt, vifi)) 822 return -EADDRINUSE; 823 824 switch (vifc->vifc_flags) { 825 case VIFF_REGISTER: 826 if (!ipmr_pimsm_enabled()) 827 return -EINVAL; 828 /* Special Purpose VIF in PIM 829 * All the packets will be sent to the daemon 830 */ 831 if (mrt->mroute_reg_vif_num >= 0) 832 return -EADDRINUSE; 833 dev = ipmr_reg_vif(net, mrt); 834 if (!dev) 835 return -ENOBUFS; 836 err = dev_set_allmulti(dev, 1); 837 if (err) { 838 unregister_netdevice(dev); 839 dev_put(dev); 840 return err; 841 } 842 break; 843 case VIFF_TUNNEL: 844 dev = ipmr_new_tunnel(net, vifc); 845 if (IS_ERR(dev)) 846 return PTR_ERR(dev); 847 break; 848 case VIFF_USE_IFINDEX: 849 case 0: 850 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 851 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 852 if (dev && !__in_dev_get_rtnl(dev)) { 853 dev_put(dev); 854 return -EADDRNOTAVAIL; 855 } 856 } else { 857 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 858 } 859 if (!dev) 860 return -EADDRNOTAVAIL; 861 err = dev_set_allmulti(dev, 1); 862 if (err) { 863 dev_put(dev); 864 return err; 865 } 866 break; 867 default: 868 return -EINVAL; 869 } 870 871 in_dev = __in_dev_get_rtnl(dev); 872 if (!in_dev) { 873 dev_put(dev); 874 return -EADDRNOTAVAIL; 875 } 876 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 877 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, 878 dev->ifindex, &in_dev->cnf); 879 ip_rt_multicast_event(in_dev); 880 881 /* Fill in the VIF structures */ 882 vif_device_init(v, dev, vifc->vifc_rate_limit, 883 vifc->vifc_threshold, 884 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0), 885 (VIFF_TUNNEL | VIFF_REGISTER)); 886 887 err = dev_get_port_parent_id(dev, &ppid, true); 888 if (err == 0) { 889 memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len); 890 v->dev_parent_id.id_len = ppid.id_len; 891 } else { 892 v->dev_parent_id.id_len = 0; 893 } 894 895 v->local = vifc->vifc_lcl_addr.s_addr; 896 v->remote = vifc->vifc_rmt_addr.s_addr; 897 898 /* And finish update writing critical data */ 899 spin_lock(&mrt_lock); 900 rcu_assign_pointer(v->dev, dev); 901 netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC); 902 if (v->flags & VIFF_REGISTER) { 903 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */ 904 WRITE_ONCE(mrt->mroute_reg_vif_num, vifi); 905 } 906 if (vifi+1 > mrt->maxvif) 907 WRITE_ONCE(mrt->maxvif, vifi + 1); 908 spin_unlock(&mrt_lock); 909 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev, 910 vifi, mrt->id); 911 return 0; 912 } 913 914 /* called with rcu_read_lock() */ 915 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 916 __be32 origin, 917 __be32 mcastgrp) 918 { 919 struct mfc_cache_cmp_arg arg = { 920 .mfc_mcastgrp = mcastgrp, 921 .mfc_origin = origin 922 }; 923 924 return mr_mfc_find(mrt, &arg); 925 } 926 927 /* Look for a (*,G) entry */ 928 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, 929 __be32 mcastgrp, int vifi) 930 { 931 struct mfc_cache_cmp_arg arg = { 932 .mfc_mcastgrp = mcastgrp, 933 .mfc_origin = htonl(INADDR_ANY) 934 }; 935 936 if (mcastgrp == htonl(INADDR_ANY)) 937 return mr_mfc_find_any_parent(mrt, vifi); 938 return mr_mfc_find_any(mrt, vifi, &arg); 939 } 940 941 /* Look for a (S,G,iif) entry if parent != -1 */ 942 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt, 943 __be32 origin, __be32 mcastgrp, 944 int parent) 945 { 946 struct mfc_cache_cmp_arg arg = { 947 .mfc_mcastgrp = mcastgrp, 948 .mfc_origin = origin, 949 }; 950 951 return mr_mfc_find_parent(mrt, &arg, parent); 952 } 953 954 /* Allocate a multicast cache entry */ 955 static struct mfc_cache *ipmr_cache_alloc(void) 956 { 957 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 958 959 if (c) { 960 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1; 961 c->_c.mfc_un.res.minvif = MAXVIFS; 962 c->_c.free = ipmr_cache_free_rcu; 963 refcount_set(&c->_c.mfc_un.res.refcount, 1); 964 } 965 return c; 966 } 967 968 static struct mfc_cache *ipmr_cache_alloc_unres(void) 969 { 970 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 971 972 if (c) { 973 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved); 974 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ; 975 } 976 return c; 977 } 978 979 /* A cache entry has gone into a resolved state from queued */ 980 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 981 struct mfc_cache *uc, struct mfc_cache *c) 982 { 983 struct sk_buff *skb; 984 struct nlmsgerr *e; 985 986 /* Play the pending entries through our router */ 987 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) { 988 if (ip_hdr(skb)->version == 0) { 989 struct nlmsghdr *nlh = skb_pull(skb, 990 sizeof(struct iphdr)); 991 992 if (mr_fill_mroute(mrt, skb, &c->_c, 993 nlmsg_data(nlh)) > 0) { 994 nlh->nlmsg_len = skb_tail_pointer(skb) - 995 (u8 *)nlh; 996 } else { 997 nlh->nlmsg_type = NLMSG_ERROR; 998 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 999 skb_trim(skb, nlh->nlmsg_len); 1000 e = nlmsg_data(nlh); 1001 e->error = -EMSGSIZE; 1002 memset(&e->msg, 0, sizeof(e->msg)); 1003 } 1004 1005 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 1006 } else { 1007 rcu_read_lock(); 1008 ip_mr_forward(net, mrt, skb->dev, skb, c, 0); 1009 rcu_read_unlock(); 1010 } 1011 } 1012 } 1013 1014 /* Bounce a cache query up to mrouted and netlink. 1015 * 1016 * Called under rcu_read_lock(). 1017 */ 1018 static int ipmr_cache_report(const struct mr_table *mrt, 1019 struct sk_buff *pkt, vifi_t vifi, int assert) 1020 { 1021 const int ihl = ip_hdrlen(pkt); 1022 struct sock *mroute_sk; 1023 struct igmphdr *igmp; 1024 struct igmpmsg *msg; 1025 struct sk_buff *skb; 1026 int ret; 1027 1028 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) 1029 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 1030 else 1031 skb = alloc_skb(128, GFP_ATOMIC); 1032 1033 if (!skb) 1034 return -ENOBUFS; 1035 1036 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) { 1037 /* Ugly, but we have no choice with this interface. 1038 * Duplicate old header, fix ihl, length etc. 1039 * And all this only to mangle msg->im_msgtype and 1040 * to set msg->im_mbz to "mbz" :-) 1041 */ 1042 skb_push(skb, sizeof(struct iphdr)); 1043 skb_reset_network_header(skb); 1044 skb_reset_transport_header(skb); 1045 msg = (struct igmpmsg *)skb_network_header(skb); 1046 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 1047 msg->im_msgtype = assert; 1048 msg->im_mbz = 0; 1049 if (assert == IGMPMSG_WRVIFWHOLE) { 1050 msg->im_vif = vifi; 1051 msg->im_vif_hi = vifi >> 8; 1052 } else { 1053 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */ 1054 int vif_num = READ_ONCE(mrt->mroute_reg_vif_num); 1055 1056 msg->im_vif = vif_num; 1057 msg->im_vif_hi = vif_num >> 8; 1058 } 1059 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 1060 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 1061 sizeof(struct iphdr)); 1062 } else { 1063 /* Copy the IP header */ 1064 skb_set_network_header(skb, skb->len); 1065 skb_put(skb, ihl); 1066 skb_copy_to_linear_data(skb, pkt->data, ihl); 1067 /* Flag to the kernel this is a route add */ 1068 ip_hdr(skb)->protocol = 0; 1069 msg = (struct igmpmsg *)skb_network_header(skb); 1070 msg->im_vif = vifi; 1071 msg->im_vif_hi = vifi >> 8; 1072 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 1073 /* Add our header */ 1074 igmp = skb_put(skb, sizeof(struct igmphdr)); 1075 igmp->type = assert; 1076 msg->im_msgtype = assert; 1077 igmp->code = 0; 1078 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 1079 skb->transport_header = skb->network_header; 1080 } 1081 1082 mroute_sk = rcu_dereference(mrt->mroute_sk); 1083 if (!mroute_sk) { 1084 kfree_skb(skb); 1085 return -EINVAL; 1086 } 1087 1088 igmpmsg_netlink_event(mrt, skb); 1089 1090 /* Deliver to mrouted */ 1091 ret = sock_queue_rcv_skb(mroute_sk, skb); 1092 1093 if (ret < 0) { 1094 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 1095 kfree_skb(skb); 1096 } 1097 1098 return ret; 1099 } 1100 1101 /* Queue a packet for resolution. It gets locked cache entry! */ 1102 /* Called under rcu_read_lock() */ 1103 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, 1104 struct sk_buff *skb, struct net_device *dev) 1105 { 1106 const struct iphdr *iph = ip_hdr(skb); 1107 struct mfc_cache *c; 1108 bool found = false; 1109 int err; 1110 1111 spin_lock_bh(&mfc_unres_lock); 1112 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) { 1113 if (c->mfc_mcastgrp == iph->daddr && 1114 c->mfc_origin == iph->saddr) { 1115 found = true; 1116 break; 1117 } 1118 } 1119 1120 if (!found) { 1121 /* Create a new entry if allowable */ 1122 c = ipmr_cache_alloc_unres(); 1123 if (!c) { 1124 spin_unlock_bh(&mfc_unres_lock); 1125 1126 kfree_skb(skb); 1127 return -ENOBUFS; 1128 } 1129 1130 /* Fill in the new cache entry */ 1131 c->_c.mfc_parent = -1; 1132 c->mfc_origin = iph->saddr; 1133 c->mfc_mcastgrp = iph->daddr; 1134 1135 /* Reflect first query at mrouted. */ 1136 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1137 1138 if (err < 0) { 1139 /* If the report failed throw the cache entry 1140 out - Brad Parker 1141 */ 1142 spin_unlock_bh(&mfc_unres_lock); 1143 1144 ipmr_cache_free(c); 1145 kfree_skb(skb); 1146 return err; 1147 } 1148 1149 atomic_inc(&mrt->cache_resolve_queue_len); 1150 list_add(&c->_c.list, &mrt->mfc_unres_queue); 1151 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1152 1153 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1154 mod_timer(&mrt->ipmr_expire_timer, 1155 c->_c.mfc_un.unres.expires); 1156 } 1157 1158 /* See if we can append the packet */ 1159 if (c->_c.mfc_un.unres.unresolved.qlen > 3) { 1160 kfree_skb(skb); 1161 err = -ENOBUFS; 1162 } else { 1163 if (dev) { 1164 skb->dev = dev; 1165 skb->skb_iif = dev->ifindex; 1166 } 1167 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb); 1168 err = 0; 1169 } 1170 1171 spin_unlock_bh(&mfc_unres_lock); 1172 return err; 1173 } 1174 1175 /* MFC cache manipulation by user space mroute daemon */ 1176 1177 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) 1178 { 1179 struct net *net = read_pnet(&mrt->net); 1180 struct mfc_cache *c; 1181 1182 /* The entries are added/deleted only under RTNL */ 1183 rcu_read_lock(); 1184 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1185 mfc->mfcc_mcastgrp.s_addr, parent); 1186 rcu_read_unlock(); 1187 if (!c) 1188 return -ENOENT; 1189 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params); 1190 list_del_rcu(&c->_c.list); 1191 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id); 1192 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1193 mr_cache_put(&c->_c); 1194 1195 return 0; 1196 } 1197 1198 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1199 struct mfcctl *mfc, int mrtsock, int parent) 1200 { 1201 struct mfc_cache *uc, *c; 1202 struct mr_mfc *_uc; 1203 bool found; 1204 int ret; 1205 1206 if (mfc->mfcc_parent >= MAXVIFS) 1207 return -ENFILE; 1208 1209 /* The entries are added/deleted only under RTNL */ 1210 rcu_read_lock(); 1211 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1212 mfc->mfcc_mcastgrp.s_addr, parent); 1213 rcu_read_unlock(); 1214 if (c) { 1215 spin_lock(&mrt_lock); 1216 c->_c.mfc_parent = mfc->mfcc_parent; 1217 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1218 if (!mrtsock) 1219 c->_c.mfc_flags |= MFC_STATIC; 1220 spin_unlock(&mrt_lock); 1221 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c, 1222 mrt->id); 1223 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1224 return 0; 1225 } 1226 1227 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && 1228 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1229 return -EINVAL; 1230 1231 c = ipmr_cache_alloc(); 1232 if (!c) 1233 return -ENOMEM; 1234 1235 c->mfc_origin = mfc->mfcc_origin.s_addr; 1236 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1237 c->_c.mfc_parent = mfc->mfcc_parent; 1238 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1239 if (!mrtsock) 1240 c->_c.mfc_flags |= MFC_STATIC; 1241 1242 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode, 1243 ipmr_rht_params); 1244 if (ret) { 1245 pr_err("ipmr: rhtable insert error %d\n", ret); 1246 ipmr_cache_free(c); 1247 return ret; 1248 } 1249 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list); 1250 /* Check to see if we resolved a queued list. If so we 1251 * need to send on the frames and tidy up. 1252 */ 1253 found = false; 1254 spin_lock_bh(&mfc_unres_lock); 1255 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) { 1256 uc = (struct mfc_cache *)_uc; 1257 if (uc->mfc_origin == c->mfc_origin && 1258 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1259 list_del(&_uc->list); 1260 atomic_dec(&mrt->cache_resolve_queue_len); 1261 found = true; 1262 break; 1263 } 1264 } 1265 if (list_empty(&mrt->mfc_unres_queue)) 1266 del_timer(&mrt->ipmr_expire_timer); 1267 spin_unlock_bh(&mfc_unres_lock); 1268 1269 if (found) { 1270 ipmr_cache_resolve(net, mrt, uc, c); 1271 ipmr_cache_free(uc); 1272 } 1273 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id); 1274 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1275 return 0; 1276 } 1277 1278 /* Close the multicast socket, and clear the vif tables etc */ 1279 static void mroute_clean_tables(struct mr_table *mrt, int flags) 1280 { 1281 struct net *net = read_pnet(&mrt->net); 1282 struct mr_mfc *c, *tmp; 1283 struct mfc_cache *cache; 1284 LIST_HEAD(list); 1285 int i; 1286 1287 /* Shut down all active vif entries */ 1288 if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) { 1289 for (i = 0; i < mrt->maxvif; i++) { 1290 if (((mrt->vif_table[i].flags & VIFF_STATIC) && 1291 !(flags & MRT_FLUSH_VIFS_STATIC)) || 1292 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS))) 1293 continue; 1294 vif_delete(mrt, i, 0, &list); 1295 } 1296 unregister_netdevice_many(&list); 1297 } 1298 1299 /* Wipe the cache */ 1300 if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) { 1301 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) { 1302 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) || 1303 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC))) 1304 continue; 1305 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params); 1306 list_del_rcu(&c->list); 1307 cache = (struct mfc_cache *)c; 1308 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache, 1309 mrt->id); 1310 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1311 mr_cache_put(c); 1312 } 1313 } 1314 1315 if (flags & MRT_FLUSH_MFC) { 1316 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1317 spin_lock_bh(&mfc_unres_lock); 1318 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) { 1319 list_del(&c->list); 1320 cache = (struct mfc_cache *)c; 1321 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1322 ipmr_destroy_unres(mrt, cache); 1323 } 1324 spin_unlock_bh(&mfc_unres_lock); 1325 } 1326 } 1327 } 1328 1329 /* called from ip_ra_control(), before an RCU grace period, 1330 * we don't need to call synchronize_rcu() here 1331 */ 1332 static void mrtsock_destruct(struct sock *sk) 1333 { 1334 struct net *net = sock_net(sk); 1335 struct mr_table *mrt; 1336 1337 rtnl_lock(); 1338 ipmr_for_each_table(mrt, net) { 1339 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1340 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1341 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1342 NETCONFA_MC_FORWARDING, 1343 NETCONFA_IFINDEX_ALL, 1344 net->ipv4.devconf_all); 1345 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1346 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC); 1347 } 1348 } 1349 rtnl_unlock(); 1350 } 1351 1352 /* Socket options and virtual interface manipulation. The whole 1353 * virtual interface system is a complete heap, but unfortunately 1354 * that's how BSD mrouted happens to think. Maybe one day with a proper 1355 * MOSPF/PIM router set up we can clean this up. 1356 */ 1357 1358 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval, 1359 unsigned int optlen) 1360 { 1361 struct net *net = sock_net(sk); 1362 int val, ret = 0, parent = 0; 1363 struct mr_table *mrt; 1364 struct vifctl vif; 1365 struct mfcctl mfc; 1366 bool do_wrvifwhole; 1367 u32 uval; 1368 1369 /* There's one exception to the lock - MRT_DONE which needs to unlock */ 1370 rtnl_lock(); 1371 if (sk->sk_type != SOCK_RAW || 1372 inet_sk(sk)->inet_num != IPPROTO_IGMP) { 1373 ret = -EOPNOTSUPP; 1374 goto out_unlock; 1375 } 1376 1377 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1378 if (!mrt) { 1379 ret = -ENOENT; 1380 goto out_unlock; 1381 } 1382 if (optname != MRT_INIT) { 1383 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1384 !ns_capable(net->user_ns, CAP_NET_ADMIN)) { 1385 ret = -EACCES; 1386 goto out_unlock; 1387 } 1388 } 1389 1390 switch (optname) { 1391 case MRT_INIT: 1392 if (optlen != sizeof(int)) { 1393 ret = -EINVAL; 1394 break; 1395 } 1396 if (rtnl_dereference(mrt->mroute_sk)) { 1397 ret = -EADDRINUSE; 1398 break; 1399 } 1400 1401 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1402 if (ret == 0) { 1403 rcu_assign_pointer(mrt->mroute_sk, sk); 1404 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1405 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1406 NETCONFA_MC_FORWARDING, 1407 NETCONFA_IFINDEX_ALL, 1408 net->ipv4.devconf_all); 1409 } 1410 break; 1411 case MRT_DONE: 1412 if (sk != rcu_access_pointer(mrt->mroute_sk)) { 1413 ret = -EACCES; 1414 } else { 1415 /* We need to unlock here because mrtsock_destruct takes 1416 * care of rtnl itself and we can't change that due to 1417 * the IP_ROUTER_ALERT setsockopt which runs without it. 1418 */ 1419 rtnl_unlock(); 1420 ret = ip_ra_control(sk, 0, NULL); 1421 goto out; 1422 } 1423 break; 1424 case MRT_ADD_VIF: 1425 case MRT_DEL_VIF: 1426 if (optlen != sizeof(vif)) { 1427 ret = -EINVAL; 1428 break; 1429 } 1430 if (copy_from_sockptr(&vif, optval, sizeof(vif))) { 1431 ret = -EFAULT; 1432 break; 1433 } 1434 if (vif.vifc_vifi >= MAXVIFS) { 1435 ret = -ENFILE; 1436 break; 1437 } 1438 if (optname == MRT_ADD_VIF) { 1439 ret = vif_add(net, mrt, &vif, 1440 sk == rtnl_dereference(mrt->mroute_sk)); 1441 } else { 1442 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1443 } 1444 break; 1445 /* Manipulate the forwarding caches. These live 1446 * in a sort of kernel/user symbiosis. 1447 */ 1448 case MRT_ADD_MFC: 1449 case MRT_DEL_MFC: 1450 parent = -1; 1451 fallthrough; 1452 case MRT_ADD_MFC_PROXY: 1453 case MRT_DEL_MFC_PROXY: 1454 if (optlen != sizeof(mfc)) { 1455 ret = -EINVAL; 1456 break; 1457 } 1458 if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) { 1459 ret = -EFAULT; 1460 break; 1461 } 1462 if (parent == 0) 1463 parent = mfc.mfcc_parent; 1464 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) 1465 ret = ipmr_mfc_delete(mrt, &mfc, parent); 1466 else 1467 ret = ipmr_mfc_add(net, mrt, &mfc, 1468 sk == rtnl_dereference(mrt->mroute_sk), 1469 parent); 1470 break; 1471 case MRT_FLUSH: 1472 if (optlen != sizeof(val)) { 1473 ret = -EINVAL; 1474 break; 1475 } 1476 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1477 ret = -EFAULT; 1478 break; 1479 } 1480 mroute_clean_tables(mrt, val); 1481 break; 1482 /* Control PIM assert. */ 1483 case MRT_ASSERT: 1484 if (optlen != sizeof(val)) { 1485 ret = -EINVAL; 1486 break; 1487 } 1488 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1489 ret = -EFAULT; 1490 break; 1491 } 1492 mrt->mroute_do_assert = val; 1493 break; 1494 case MRT_PIM: 1495 if (!ipmr_pimsm_enabled()) { 1496 ret = -ENOPROTOOPT; 1497 break; 1498 } 1499 if (optlen != sizeof(val)) { 1500 ret = -EINVAL; 1501 break; 1502 } 1503 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1504 ret = -EFAULT; 1505 break; 1506 } 1507 1508 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE); 1509 val = !!val; 1510 if (val != mrt->mroute_do_pim) { 1511 mrt->mroute_do_pim = val; 1512 mrt->mroute_do_assert = val; 1513 mrt->mroute_do_wrvifwhole = do_wrvifwhole; 1514 } 1515 break; 1516 case MRT_TABLE: 1517 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) { 1518 ret = -ENOPROTOOPT; 1519 break; 1520 } 1521 if (optlen != sizeof(uval)) { 1522 ret = -EINVAL; 1523 break; 1524 } 1525 if (copy_from_sockptr(&uval, optval, sizeof(uval))) { 1526 ret = -EFAULT; 1527 break; 1528 } 1529 1530 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1531 ret = -EBUSY; 1532 } else { 1533 mrt = ipmr_new_table(net, uval); 1534 if (IS_ERR(mrt)) 1535 ret = PTR_ERR(mrt); 1536 else 1537 raw_sk(sk)->ipmr_table = uval; 1538 } 1539 break; 1540 /* Spurious command, or MRT_VERSION which you cannot set. */ 1541 default: 1542 ret = -ENOPROTOOPT; 1543 } 1544 out_unlock: 1545 rtnl_unlock(); 1546 out: 1547 return ret; 1548 } 1549 1550 /* Getsock opt support for the multicast routing system. */ 1551 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) 1552 { 1553 int olr; 1554 int val; 1555 struct net *net = sock_net(sk); 1556 struct mr_table *mrt; 1557 1558 if (sk->sk_type != SOCK_RAW || 1559 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1560 return -EOPNOTSUPP; 1561 1562 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1563 if (!mrt) 1564 return -ENOENT; 1565 1566 switch (optname) { 1567 case MRT_VERSION: 1568 val = 0x0305; 1569 break; 1570 case MRT_PIM: 1571 if (!ipmr_pimsm_enabled()) 1572 return -ENOPROTOOPT; 1573 val = mrt->mroute_do_pim; 1574 break; 1575 case MRT_ASSERT: 1576 val = mrt->mroute_do_assert; 1577 break; 1578 default: 1579 return -ENOPROTOOPT; 1580 } 1581 1582 if (get_user(olr, optlen)) 1583 return -EFAULT; 1584 olr = min_t(unsigned int, olr, sizeof(int)); 1585 if (olr < 0) 1586 return -EINVAL; 1587 if (put_user(olr, optlen)) 1588 return -EFAULT; 1589 if (copy_to_user(optval, &val, olr)) 1590 return -EFAULT; 1591 return 0; 1592 } 1593 1594 /* The IP multicast ioctl support routines. */ 1595 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) 1596 { 1597 struct sioc_sg_req sr; 1598 struct sioc_vif_req vr; 1599 struct vif_device *vif; 1600 struct mfc_cache *c; 1601 struct net *net = sock_net(sk); 1602 struct mr_table *mrt; 1603 1604 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1605 if (!mrt) 1606 return -ENOENT; 1607 1608 switch (cmd) { 1609 case SIOCGETVIFCNT: 1610 if (copy_from_user(&vr, arg, sizeof(vr))) 1611 return -EFAULT; 1612 if (vr.vifi >= mrt->maxvif) 1613 return -EINVAL; 1614 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif); 1615 rcu_read_lock(); 1616 vif = &mrt->vif_table[vr.vifi]; 1617 if (VIF_EXISTS(mrt, vr.vifi)) { 1618 vr.icount = READ_ONCE(vif->pkt_in); 1619 vr.ocount = READ_ONCE(vif->pkt_out); 1620 vr.ibytes = READ_ONCE(vif->bytes_in); 1621 vr.obytes = READ_ONCE(vif->bytes_out); 1622 rcu_read_unlock(); 1623 1624 if (copy_to_user(arg, &vr, sizeof(vr))) 1625 return -EFAULT; 1626 return 0; 1627 } 1628 rcu_read_unlock(); 1629 return -EADDRNOTAVAIL; 1630 case SIOCGETSGCNT: 1631 if (copy_from_user(&sr, arg, sizeof(sr))) 1632 return -EFAULT; 1633 1634 rcu_read_lock(); 1635 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1636 if (c) { 1637 sr.pktcnt = c->_c.mfc_un.res.pkt; 1638 sr.bytecnt = c->_c.mfc_un.res.bytes; 1639 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1640 rcu_read_unlock(); 1641 1642 if (copy_to_user(arg, &sr, sizeof(sr))) 1643 return -EFAULT; 1644 return 0; 1645 } 1646 rcu_read_unlock(); 1647 return -EADDRNOTAVAIL; 1648 default: 1649 return -ENOIOCTLCMD; 1650 } 1651 } 1652 1653 #ifdef CONFIG_COMPAT 1654 struct compat_sioc_sg_req { 1655 struct in_addr src; 1656 struct in_addr grp; 1657 compat_ulong_t pktcnt; 1658 compat_ulong_t bytecnt; 1659 compat_ulong_t wrong_if; 1660 }; 1661 1662 struct compat_sioc_vif_req { 1663 vifi_t vifi; /* Which iface */ 1664 compat_ulong_t icount; 1665 compat_ulong_t ocount; 1666 compat_ulong_t ibytes; 1667 compat_ulong_t obytes; 1668 }; 1669 1670 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1671 { 1672 struct compat_sioc_sg_req sr; 1673 struct compat_sioc_vif_req vr; 1674 struct vif_device *vif; 1675 struct mfc_cache *c; 1676 struct net *net = sock_net(sk); 1677 struct mr_table *mrt; 1678 1679 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1680 if (!mrt) 1681 return -ENOENT; 1682 1683 switch (cmd) { 1684 case SIOCGETVIFCNT: 1685 if (copy_from_user(&vr, arg, sizeof(vr))) 1686 return -EFAULT; 1687 if (vr.vifi >= mrt->maxvif) 1688 return -EINVAL; 1689 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif); 1690 rcu_read_lock(); 1691 vif = &mrt->vif_table[vr.vifi]; 1692 if (VIF_EXISTS(mrt, vr.vifi)) { 1693 vr.icount = READ_ONCE(vif->pkt_in); 1694 vr.ocount = READ_ONCE(vif->pkt_out); 1695 vr.ibytes = READ_ONCE(vif->bytes_in); 1696 vr.obytes = READ_ONCE(vif->bytes_out); 1697 rcu_read_unlock(); 1698 1699 if (copy_to_user(arg, &vr, sizeof(vr))) 1700 return -EFAULT; 1701 return 0; 1702 } 1703 rcu_read_unlock(); 1704 return -EADDRNOTAVAIL; 1705 case SIOCGETSGCNT: 1706 if (copy_from_user(&sr, arg, sizeof(sr))) 1707 return -EFAULT; 1708 1709 rcu_read_lock(); 1710 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1711 if (c) { 1712 sr.pktcnt = c->_c.mfc_un.res.pkt; 1713 sr.bytecnt = c->_c.mfc_un.res.bytes; 1714 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1715 rcu_read_unlock(); 1716 1717 if (copy_to_user(arg, &sr, sizeof(sr))) 1718 return -EFAULT; 1719 return 0; 1720 } 1721 rcu_read_unlock(); 1722 return -EADDRNOTAVAIL; 1723 default: 1724 return -ENOIOCTLCMD; 1725 } 1726 } 1727 #endif 1728 1729 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1730 { 1731 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1732 struct net *net = dev_net(dev); 1733 struct mr_table *mrt; 1734 struct vif_device *v; 1735 int ct; 1736 1737 if (event != NETDEV_UNREGISTER) 1738 return NOTIFY_DONE; 1739 1740 ipmr_for_each_table(mrt, net) { 1741 v = &mrt->vif_table[0]; 1742 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1743 if (rcu_access_pointer(v->dev) == dev) 1744 vif_delete(mrt, ct, 1, NULL); 1745 } 1746 } 1747 return NOTIFY_DONE; 1748 } 1749 1750 static struct notifier_block ip_mr_notifier = { 1751 .notifier_call = ipmr_device_event, 1752 }; 1753 1754 /* Encapsulate a packet by attaching a valid IPIP header to it. 1755 * This avoids tunnel drivers and other mess and gives us the speed so 1756 * important for multicast video. 1757 */ 1758 static void ip_encap(struct net *net, struct sk_buff *skb, 1759 __be32 saddr, __be32 daddr) 1760 { 1761 struct iphdr *iph; 1762 const struct iphdr *old_iph = ip_hdr(skb); 1763 1764 skb_push(skb, sizeof(struct iphdr)); 1765 skb->transport_header = skb->network_header; 1766 skb_reset_network_header(skb); 1767 iph = ip_hdr(skb); 1768 1769 iph->version = 4; 1770 iph->tos = old_iph->tos; 1771 iph->ttl = old_iph->ttl; 1772 iph->frag_off = 0; 1773 iph->daddr = daddr; 1774 iph->saddr = saddr; 1775 iph->protocol = IPPROTO_IPIP; 1776 iph->ihl = 5; 1777 iph->tot_len = htons(skb->len); 1778 ip_select_ident(net, skb, NULL); 1779 ip_send_check(iph); 1780 1781 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1782 nf_reset_ct(skb); 1783 } 1784 1785 static inline int ipmr_forward_finish(struct net *net, struct sock *sk, 1786 struct sk_buff *skb) 1787 { 1788 struct ip_options *opt = &(IPCB(skb)->opt); 1789 1790 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS); 1791 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len); 1792 1793 if (unlikely(opt->optlen)) 1794 ip_forward_options(skb); 1795 1796 return dst_output(net, sk, skb); 1797 } 1798 1799 #ifdef CONFIG_NET_SWITCHDEV 1800 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1801 int in_vifi, int out_vifi) 1802 { 1803 struct vif_device *out_vif = &mrt->vif_table[out_vifi]; 1804 struct vif_device *in_vif = &mrt->vif_table[in_vifi]; 1805 1806 if (!skb->offload_l3_fwd_mark) 1807 return false; 1808 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len) 1809 return false; 1810 return netdev_phys_item_id_same(&out_vif->dev_parent_id, 1811 &in_vif->dev_parent_id); 1812 } 1813 #else 1814 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1815 int in_vifi, int out_vifi) 1816 { 1817 return false; 1818 } 1819 #endif 1820 1821 /* Processing handlers for ipmr_forward, under rcu_read_lock() */ 1822 1823 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1824 int in_vifi, struct sk_buff *skb, int vifi) 1825 { 1826 const struct iphdr *iph = ip_hdr(skb); 1827 struct vif_device *vif = &mrt->vif_table[vifi]; 1828 struct net_device *vif_dev; 1829 struct net_device *dev; 1830 struct rtable *rt; 1831 struct flowi4 fl4; 1832 int encap = 0; 1833 1834 vif_dev = vif_dev_read(vif); 1835 if (!vif_dev) 1836 goto out_free; 1837 1838 if (vif->flags & VIFF_REGISTER) { 1839 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1); 1840 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len); 1841 vif_dev->stats.tx_bytes += skb->len; 1842 vif_dev->stats.tx_packets++; 1843 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1844 goto out_free; 1845 } 1846 1847 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi)) 1848 goto out_free; 1849 1850 if (vif->flags & VIFF_TUNNEL) { 1851 rt = ip_route_output_ports(net, &fl4, NULL, 1852 vif->remote, vif->local, 1853 0, 0, 1854 IPPROTO_IPIP, 1855 RT_TOS(iph->tos), vif->link); 1856 if (IS_ERR(rt)) 1857 goto out_free; 1858 encap = sizeof(struct iphdr); 1859 } else { 1860 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1861 0, 0, 1862 IPPROTO_IPIP, 1863 RT_TOS(iph->tos), vif->link); 1864 if (IS_ERR(rt)) 1865 goto out_free; 1866 } 1867 1868 dev = rt->dst.dev; 1869 1870 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1871 /* Do not fragment multicasts. Alas, IPv4 does not 1872 * allow to send ICMP, so that packets will disappear 1873 * to blackhole. 1874 */ 1875 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 1876 ip_rt_put(rt); 1877 goto out_free; 1878 } 1879 1880 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1881 1882 if (skb_cow(skb, encap)) { 1883 ip_rt_put(rt); 1884 goto out_free; 1885 } 1886 1887 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1); 1888 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len); 1889 1890 skb_dst_drop(skb); 1891 skb_dst_set(skb, &rt->dst); 1892 ip_decrease_ttl(ip_hdr(skb)); 1893 1894 /* FIXME: forward and output firewalls used to be called here. 1895 * What do we do with netfilter? -- RR 1896 */ 1897 if (vif->flags & VIFF_TUNNEL) { 1898 ip_encap(net, skb, vif->local, vif->remote); 1899 /* FIXME: extra output firewall step used to be here. --RR */ 1900 vif_dev->stats.tx_packets++; 1901 vif_dev->stats.tx_bytes += skb->len; 1902 } 1903 1904 IPCB(skb)->flags |= IPSKB_FORWARDED; 1905 1906 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1907 * not only before forwarding, but after forwarding on all output 1908 * interfaces. It is clear, if mrouter runs a multicasting 1909 * program, it should receive packets not depending to what interface 1910 * program is joined. 1911 * If we will not make it, the program will have to join on all 1912 * interfaces. On the other hand, multihoming host (or router, but 1913 * not mrouter) cannot join to more than one interface - it will 1914 * result in receiving multiple packets. 1915 */ 1916 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, 1917 net, NULL, skb, skb->dev, dev, 1918 ipmr_forward_finish); 1919 return; 1920 1921 out_free: 1922 kfree_skb(skb); 1923 } 1924 1925 /* Called with mrt_lock or rcu_read_lock() */ 1926 static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev) 1927 { 1928 int ct; 1929 /* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */ 1930 for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) { 1931 if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev) 1932 break; 1933 } 1934 return ct; 1935 } 1936 1937 /* "local" means that we should preserve one skb (for local delivery) */ 1938 /* Called uner rcu_read_lock() */ 1939 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 1940 struct net_device *dev, struct sk_buff *skb, 1941 struct mfc_cache *c, int local) 1942 { 1943 int true_vifi = ipmr_find_vif(mrt, dev); 1944 int psend = -1; 1945 int vif, ct; 1946 1947 vif = c->_c.mfc_parent; 1948 c->_c.mfc_un.res.pkt++; 1949 c->_c.mfc_un.res.bytes += skb->len; 1950 c->_c.mfc_un.res.lastuse = jiffies; 1951 1952 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { 1953 struct mfc_cache *cache_proxy; 1954 1955 /* For an (*,G) entry, we only check that the incoming 1956 * interface is part of the static tree. 1957 */ 1958 cache_proxy = mr_mfc_find_any_parent(mrt, vif); 1959 if (cache_proxy && 1960 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255) 1961 goto forward; 1962 } 1963 1964 /* Wrong interface: drop packet and (maybe) send PIM assert. */ 1965 if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) { 1966 if (rt_is_output_route(skb_rtable(skb))) { 1967 /* It is our own packet, looped back. 1968 * Very complicated situation... 1969 * 1970 * The best workaround until routing daemons will be 1971 * fixed is not to redistribute packet, if it was 1972 * send through wrong interface. It means, that 1973 * multicast applications WILL NOT work for 1974 * (S,G), which have default multicast route pointing 1975 * to wrong oif. In any case, it is not a good 1976 * idea to use multicasting applications on router. 1977 */ 1978 goto dont_forward; 1979 } 1980 1981 c->_c.mfc_un.res.wrong_if++; 1982 1983 if (true_vifi >= 0 && mrt->mroute_do_assert && 1984 /* pimsm uses asserts, when switching from RPT to SPT, 1985 * so that we cannot check that packet arrived on an oif. 1986 * It is bad, but otherwise we would need to move pretty 1987 * large chunk of pimd to kernel. Ough... --ANK 1988 */ 1989 (mrt->mroute_do_pim || 1990 c->_c.mfc_un.res.ttls[true_vifi] < 255) && 1991 time_after(jiffies, 1992 c->_c.mfc_un.res.last_assert + 1993 MFC_ASSERT_THRESH)) { 1994 c->_c.mfc_un.res.last_assert = jiffies; 1995 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 1996 if (mrt->mroute_do_wrvifwhole) 1997 ipmr_cache_report(mrt, skb, true_vifi, 1998 IGMPMSG_WRVIFWHOLE); 1999 } 2000 goto dont_forward; 2001 } 2002 2003 forward: 2004 WRITE_ONCE(mrt->vif_table[vif].pkt_in, 2005 mrt->vif_table[vif].pkt_in + 1); 2006 WRITE_ONCE(mrt->vif_table[vif].bytes_in, 2007 mrt->vif_table[vif].bytes_in + skb->len); 2008 2009 /* Forward the frame */ 2010 if (c->mfc_origin == htonl(INADDR_ANY) && 2011 c->mfc_mcastgrp == htonl(INADDR_ANY)) { 2012 if (true_vifi >= 0 && 2013 true_vifi != c->_c.mfc_parent && 2014 ip_hdr(skb)->ttl > 2015 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) { 2016 /* It's an (*,*) entry and the packet is not coming from 2017 * the upstream: forward the packet to the upstream 2018 * only. 2019 */ 2020 psend = c->_c.mfc_parent; 2021 goto last_forward; 2022 } 2023 goto dont_forward; 2024 } 2025 for (ct = c->_c.mfc_un.res.maxvif - 1; 2026 ct >= c->_c.mfc_un.res.minvif; ct--) { 2027 /* For (*,G) entry, don't forward to the incoming interface */ 2028 if ((c->mfc_origin != htonl(INADDR_ANY) || 2029 ct != true_vifi) && 2030 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) { 2031 if (psend != -1) { 2032 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2033 2034 if (skb2) 2035 ipmr_queue_xmit(net, mrt, true_vifi, 2036 skb2, psend); 2037 } 2038 psend = ct; 2039 } 2040 } 2041 last_forward: 2042 if (psend != -1) { 2043 if (local) { 2044 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2045 2046 if (skb2) 2047 ipmr_queue_xmit(net, mrt, true_vifi, skb2, 2048 psend); 2049 } else { 2050 ipmr_queue_xmit(net, mrt, true_vifi, skb, psend); 2051 return; 2052 } 2053 } 2054 2055 dont_forward: 2056 if (!local) 2057 kfree_skb(skb); 2058 } 2059 2060 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 2061 { 2062 struct rtable *rt = skb_rtable(skb); 2063 struct iphdr *iph = ip_hdr(skb); 2064 struct flowi4 fl4 = { 2065 .daddr = iph->daddr, 2066 .saddr = iph->saddr, 2067 .flowi4_tos = RT_TOS(iph->tos), 2068 .flowi4_oif = (rt_is_output_route(rt) ? 2069 skb->dev->ifindex : 0), 2070 .flowi4_iif = (rt_is_output_route(rt) ? 2071 LOOPBACK_IFINDEX : 2072 skb->dev->ifindex), 2073 .flowi4_mark = skb->mark, 2074 }; 2075 struct mr_table *mrt; 2076 int err; 2077 2078 err = ipmr_fib_lookup(net, &fl4, &mrt); 2079 if (err) 2080 return ERR_PTR(err); 2081 return mrt; 2082 } 2083 2084 /* Multicast packets for forwarding arrive here 2085 * Called with rcu_read_lock(); 2086 */ 2087 int ip_mr_input(struct sk_buff *skb) 2088 { 2089 struct mfc_cache *cache; 2090 struct net *net = dev_net(skb->dev); 2091 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 2092 struct mr_table *mrt; 2093 struct net_device *dev; 2094 2095 /* skb->dev passed in is the loX master dev for vrfs. 2096 * As there are no vifs associated with loopback devices, 2097 * get the proper interface that does have a vif associated with it. 2098 */ 2099 dev = skb->dev; 2100 if (netif_is_l3_master(skb->dev)) { 2101 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif); 2102 if (!dev) { 2103 kfree_skb(skb); 2104 return -ENODEV; 2105 } 2106 } 2107 2108 /* Packet is looped back after forward, it should not be 2109 * forwarded second time, but still can be delivered locally. 2110 */ 2111 if (IPCB(skb)->flags & IPSKB_FORWARDED) 2112 goto dont_forward; 2113 2114 mrt = ipmr_rt_fib_lookup(net, skb); 2115 if (IS_ERR(mrt)) { 2116 kfree_skb(skb); 2117 return PTR_ERR(mrt); 2118 } 2119 if (!local) { 2120 if (IPCB(skb)->opt.router_alert) { 2121 if (ip_call_ra_chain(skb)) 2122 return 0; 2123 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 2124 /* IGMPv1 (and broken IGMPv2 implementations sort of 2125 * Cisco IOS <= 11.2(8)) do not put router alert 2126 * option to IGMP packets destined to routable 2127 * groups. It is very bad, because it means 2128 * that we can forward NO IGMP messages. 2129 */ 2130 struct sock *mroute_sk; 2131 2132 mroute_sk = rcu_dereference(mrt->mroute_sk); 2133 if (mroute_sk) { 2134 nf_reset_ct(skb); 2135 raw_rcv(mroute_sk, skb); 2136 return 0; 2137 } 2138 } 2139 } 2140 2141 /* already under rcu_read_lock() */ 2142 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 2143 if (!cache) { 2144 int vif = ipmr_find_vif(mrt, dev); 2145 2146 if (vif >= 0) 2147 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 2148 vif); 2149 } 2150 2151 /* No usable cache entry */ 2152 if (!cache) { 2153 int vif; 2154 2155 if (local) { 2156 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2157 ip_local_deliver(skb); 2158 if (!skb2) 2159 return -ENOBUFS; 2160 skb = skb2; 2161 } 2162 2163 vif = ipmr_find_vif(mrt, dev); 2164 if (vif >= 0) 2165 return ipmr_cache_unresolved(mrt, vif, skb, dev); 2166 kfree_skb(skb); 2167 return -ENODEV; 2168 } 2169 2170 ip_mr_forward(net, mrt, dev, skb, cache, local); 2171 2172 if (local) 2173 return ip_local_deliver(skb); 2174 2175 return 0; 2176 2177 dont_forward: 2178 if (local) 2179 return ip_local_deliver(skb); 2180 kfree_skb(skb); 2181 return 0; 2182 } 2183 2184 #ifdef CONFIG_IP_PIMSM_V1 2185 /* Handle IGMP messages of PIMv1 */ 2186 int pim_rcv_v1(struct sk_buff *skb) 2187 { 2188 struct igmphdr *pim; 2189 struct net *net = dev_net(skb->dev); 2190 struct mr_table *mrt; 2191 2192 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2193 goto drop; 2194 2195 pim = igmp_hdr(skb); 2196 2197 mrt = ipmr_rt_fib_lookup(net, skb); 2198 if (IS_ERR(mrt)) 2199 goto drop; 2200 if (!mrt->mroute_do_pim || 2201 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 2202 goto drop; 2203 2204 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2205 drop: 2206 kfree_skb(skb); 2207 } 2208 return 0; 2209 } 2210 #endif 2211 2212 #ifdef CONFIG_IP_PIMSM_V2 2213 static int pim_rcv(struct sk_buff *skb) 2214 { 2215 struct pimreghdr *pim; 2216 struct net *net = dev_net(skb->dev); 2217 struct mr_table *mrt; 2218 2219 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2220 goto drop; 2221 2222 pim = (struct pimreghdr *)skb_transport_header(skb); 2223 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) || 2224 (pim->flags & PIM_NULL_REGISTER) || 2225 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 2226 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 2227 goto drop; 2228 2229 mrt = ipmr_rt_fib_lookup(net, skb); 2230 if (IS_ERR(mrt)) 2231 goto drop; 2232 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2233 drop: 2234 kfree_skb(skb); 2235 } 2236 return 0; 2237 } 2238 #endif 2239 2240 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2241 __be32 saddr, __be32 daddr, 2242 struct rtmsg *rtm, u32 portid) 2243 { 2244 struct mfc_cache *cache; 2245 struct mr_table *mrt; 2246 int err; 2247 2248 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2249 if (!mrt) 2250 return -ENOENT; 2251 2252 rcu_read_lock(); 2253 cache = ipmr_cache_find(mrt, saddr, daddr); 2254 if (!cache && skb->dev) { 2255 int vif = ipmr_find_vif(mrt, skb->dev); 2256 2257 if (vif >= 0) 2258 cache = ipmr_cache_find_any(mrt, daddr, vif); 2259 } 2260 if (!cache) { 2261 struct sk_buff *skb2; 2262 struct iphdr *iph; 2263 struct net_device *dev; 2264 int vif = -1; 2265 2266 dev = skb->dev; 2267 if (dev) 2268 vif = ipmr_find_vif(mrt, dev); 2269 if (vif < 0) { 2270 rcu_read_unlock(); 2271 return -ENODEV; 2272 } 2273 2274 skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr)); 2275 if (!skb2) { 2276 rcu_read_unlock(); 2277 return -ENOMEM; 2278 } 2279 2280 NETLINK_CB(skb2).portid = portid; 2281 skb_push(skb2, sizeof(struct iphdr)); 2282 skb_reset_network_header(skb2); 2283 iph = ip_hdr(skb2); 2284 iph->ihl = sizeof(struct iphdr) >> 2; 2285 iph->saddr = saddr; 2286 iph->daddr = daddr; 2287 iph->version = 0; 2288 err = ipmr_cache_unresolved(mrt, vif, skb2, dev); 2289 rcu_read_unlock(); 2290 return err; 2291 } 2292 2293 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm); 2294 rcu_read_unlock(); 2295 return err; 2296 } 2297 2298 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2299 u32 portid, u32 seq, struct mfc_cache *c, int cmd, 2300 int flags) 2301 { 2302 struct nlmsghdr *nlh; 2303 struct rtmsg *rtm; 2304 int err; 2305 2306 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2307 if (!nlh) 2308 return -EMSGSIZE; 2309 2310 rtm = nlmsg_data(nlh); 2311 rtm->rtm_family = RTNL_FAMILY_IPMR; 2312 rtm->rtm_dst_len = 32; 2313 rtm->rtm_src_len = 32; 2314 rtm->rtm_tos = 0; 2315 rtm->rtm_table = mrt->id; 2316 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2317 goto nla_put_failure; 2318 rtm->rtm_type = RTN_MULTICAST; 2319 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2320 if (c->_c.mfc_flags & MFC_STATIC) 2321 rtm->rtm_protocol = RTPROT_STATIC; 2322 else 2323 rtm->rtm_protocol = RTPROT_MROUTED; 2324 rtm->rtm_flags = 0; 2325 2326 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) || 2327 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp)) 2328 goto nla_put_failure; 2329 err = mr_fill_mroute(mrt, skb, &c->_c, rtm); 2330 /* do not break the dump if cache is unresolved */ 2331 if (err < 0 && err != -ENOENT) 2332 goto nla_put_failure; 2333 2334 nlmsg_end(skb, nlh); 2335 return 0; 2336 2337 nla_put_failure: 2338 nlmsg_cancel(skb, nlh); 2339 return -EMSGSIZE; 2340 } 2341 2342 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2343 u32 portid, u32 seq, struct mr_mfc *c, int cmd, 2344 int flags) 2345 { 2346 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c, 2347 cmd, flags); 2348 } 2349 2350 static size_t mroute_msgsize(bool unresolved, int maxvif) 2351 { 2352 size_t len = 2353 NLMSG_ALIGN(sizeof(struct rtmsg)) 2354 + nla_total_size(4) /* RTA_TABLE */ 2355 + nla_total_size(4) /* RTA_SRC */ 2356 + nla_total_size(4) /* RTA_DST */ 2357 ; 2358 2359 if (!unresolved) 2360 len = len 2361 + nla_total_size(4) /* RTA_IIF */ 2362 + nla_total_size(0) /* RTA_MULTIPATH */ 2363 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2364 /* RTA_MFC_STATS */ 2365 + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) 2366 ; 2367 2368 return len; 2369 } 2370 2371 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 2372 int cmd) 2373 { 2374 struct net *net = read_pnet(&mrt->net); 2375 struct sk_buff *skb; 2376 int err = -ENOBUFS; 2377 2378 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS, 2379 mrt->maxvif), 2380 GFP_ATOMIC); 2381 if (!skb) 2382 goto errout; 2383 2384 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2385 if (err < 0) 2386 goto errout; 2387 2388 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); 2389 return; 2390 2391 errout: 2392 kfree_skb(skb); 2393 if (err < 0) 2394 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); 2395 } 2396 2397 static size_t igmpmsg_netlink_msgsize(size_t payloadlen) 2398 { 2399 size_t len = 2400 NLMSG_ALIGN(sizeof(struct rtgenmsg)) 2401 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */ 2402 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */ 2403 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */ 2404 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */ 2405 + nla_total_size(4) /* IPMRA_CREPORT_TABLE */ 2406 /* IPMRA_CREPORT_PKT */ 2407 + nla_total_size(payloadlen) 2408 ; 2409 2410 return len; 2411 } 2412 2413 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt) 2414 { 2415 struct net *net = read_pnet(&mrt->net); 2416 struct nlmsghdr *nlh; 2417 struct rtgenmsg *rtgenm; 2418 struct igmpmsg *msg; 2419 struct sk_buff *skb; 2420 struct nlattr *nla; 2421 int payloadlen; 2422 2423 payloadlen = pkt->len - sizeof(struct igmpmsg); 2424 msg = (struct igmpmsg *)skb_network_header(pkt); 2425 2426 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC); 2427 if (!skb) 2428 goto errout; 2429 2430 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT, 2431 sizeof(struct rtgenmsg), 0); 2432 if (!nlh) 2433 goto errout; 2434 rtgenm = nlmsg_data(nlh); 2435 rtgenm->rtgen_family = RTNL_FAMILY_IPMR; 2436 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) || 2437 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) || 2438 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR, 2439 msg->im_src.s_addr) || 2440 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR, 2441 msg->im_dst.s_addr) || 2442 nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id)) 2443 goto nla_put_failure; 2444 2445 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen); 2446 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg), 2447 nla_data(nla), payloadlen)) 2448 goto nla_put_failure; 2449 2450 nlmsg_end(skb, nlh); 2451 2452 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC); 2453 return; 2454 2455 nla_put_failure: 2456 nlmsg_cancel(skb, nlh); 2457 errout: 2458 kfree_skb(skb); 2459 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS); 2460 } 2461 2462 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb, 2463 const struct nlmsghdr *nlh, 2464 struct nlattr **tb, 2465 struct netlink_ext_ack *extack) 2466 { 2467 struct rtmsg *rtm; 2468 int i, err; 2469 2470 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) { 2471 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request"); 2472 return -EINVAL; 2473 } 2474 2475 if (!netlink_strict_get_check(skb)) 2476 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 2477 rtm_ipv4_policy, extack); 2478 2479 rtm = nlmsg_data(nlh); 2480 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) || 2481 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) || 2482 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol || 2483 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) { 2484 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request"); 2485 return -EINVAL; 2486 } 2487 2488 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, 2489 rtm_ipv4_policy, extack); 2490 if (err) 2491 return err; 2492 2493 if ((tb[RTA_SRC] && !rtm->rtm_src_len) || 2494 (tb[RTA_DST] && !rtm->rtm_dst_len)) { 2495 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4"); 2496 return -EINVAL; 2497 } 2498 2499 for (i = 0; i <= RTA_MAX; i++) { 2500 if (!tb[i]) 2501 continue; 2502 2503 switch (i) { 2504 case RTA_SRC: 2505 case RTA_DST: 2506 case RTA_TABLE: 2507 break; 2508 default: 2509 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request"); 2510 return -EINVAL; 2511 } 2512 } 2513 2514 return 0; 2515 } 2516 2517 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 2518 struct netlink_ext_ack *extack) 2519 { 2520 struct net *net = sock_net(in_skb->sk); 2521 struct nlattr *tb[RTA_MAX + 1]; 2522 struct sk_buff *skb = NULL; 2523 struct mfc_cache *cache; 2524 struct mr_table *mrt; 2525 __be32 src, grp; 2526 u32 tableid; 2527 int err; 2528 2529 err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack); 2530 if (err < 0) 2531 goto errout; 2532 2533 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0; 2534 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0; 2535 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0; 2536 2537 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT); 2538 if (!mrt) { 2539 err = -ENOENT; 2540 goto errout_free; 2541 } 2542 2543 /* entries are added/deleted only under RTNL */ 2544 rcu_read_lock(); 2545 cache = ipmr_cache_find(mrt, src, grp); 2546 rcu_read_unlock(); 2547 if (!cache) { 2548 err = -ENOENT; 2549 goto errout_free; 2550 } 2551 2552 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL); 2553 if (!skb) { 2554 err = -ENOBUFS; 2555 goto errout_free; 2556 } 2557 2558 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid, 2559 nlh->nlmsg_seq, cache, 2560 RTM_NEWROUTE, 0); 2561 if (err < 0) 2562 goto errout_free; 2563 2564 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 2565 2566 errout: 2567 return err; 2568 2569 errout_free: 2570 kfree_skb(skb); 2571 goto errout; 2572 } 2573 2574 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2575 { 2576 struct fib_dump_filter filter = {}; 2577 int err; 2578 2579 if (cb->strict_check) { 2580 err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh, 2581 &filter, cb); 2582 if (err < 0) 2583 return err; 2584 } 2585 2586 if (filter.table_id) { 2587 struct mr_table *mrt; 2588 2589 mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id); 2590 if (!mrt) { 2591 if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR) 2592 return skb->len; 2593 2594 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist"); 2595 return -ENOENT; 2596 } 2597 err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute, 2598 &mfc_unres_lock, &filter); 2599 return skb->len ? : err; 2600 } 2601 2602 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter, 2603 _ipmr_fill_mroute, &mfc_unres_lock, &filter); 2604 } 2605 2606 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = { 2607 [RTA_SRC] = { .type = NLA_U32 }, 2608 [RTA_DST] = { .type = NLA_U32 }, 2609 [RTA_IIF] = { .type = NLA_U32 }, 2610 [RTA_TABLE] = { .type = NLA_U32 }, 2611 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 2612 }; 2613 2614 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol) 2615 { 2616 switch (rtm_protocol) { 2617 case RTPROT_STATIC: 2618 case RTPROT_MROUTED: 2619 return true; 2620 } 2621 return false; 2622 } 2623 2624 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc) 2625 { 2626 struct rtnexthop *rtnh = nla_data(nla); 2627 int remaining = nla_len(nla), vifi = 0; 2628 2629 while (rtnh_ok(rtnh, remaining)) { 2630 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops; 2631 if (++vifi == MAXVIFS) 2632 break; 2633 rtnh = rtnh_next(rtnh, &remaining); 2634 } 2635 2636 return remaining > 0 ? -EINVAL : vifi; 2637 } 2638 2639 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */ 2640 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh, 2641 struct mfcctl *mfcc, int *mrtsock, 2642 struct mr_table **mrtret, 2643 struct netlink_ext_ack *extack) 2644 { 2645 struct net_device *dev = NULL; 2646 u32 tblid = RT_TABLE_DEFAULT; 2647 struct mr_table *mrt; 2648 struct nlattr *attr; 2649 struct rtmsg *rtm; 2650 int ret, rem; 2651 2652 ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX, 2653 rtm_ipmr_policy, extack); 2654 if (ret < 0) 2655 goto out; 2656 rtm = nlmsg_data(nlh); 2657 2658 ret = -EINVAL; 2659 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 || 2660 rtm->rtm_type != RTN_MULTICAST || 2661 rtm->rtm_scope != RT_SCOPE_UNIVERSE || 2662 !ipmr_rtm_validate_proto(rtm->rtm_protocol)) 2663 goto out; 2664 2665 memset(mfcc, 0, sizeof(*mfcc)); 2666 mfcc->mfcc_parent = -1; 2667 ret = 0; 2668 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) { 2669 switch (nla_type(attr)) { 2670 case RTA_SRC: 2671 mfcc->mfcc_origin.s_addr = nla_get_be32(attr); 2672 break; 2673 case RTA_DST: 2674 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr); 2675 break; 2676 case RTA_IIF: 2677 dev = __dev_get_by_index(net, nla_get_u32(attr)); 2678 if (!dev) { 2679 ret = -ENODEV; 2680 goto out; 2681 } 2682 break; 2683 case RTA_MULTIPATH: 2684 if (ipmr_nla_get_ttls(attr, mfcc) < 0) { 2685 ret = -EINVAL; 2686 goto out; 2687 } 2688 break; 2689 case RTA_PREFSRC: 2690 ret = 1; 2691 break; 2692 case RTA_TABLE: 2693 tblid = nla_get_u32(attr); 2694 break; 2695 } 2696 } 2697 mrt = ipmr_get_table(net, tblid); 2698 if (!mrt) { 2699 ret = -ENOENT; 2700 goto out; 2701 } 2702 *mrtret = mrt; 2703 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0; 2704 if (dev) 2705 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev); 2706 2707 out: 2708 return ret; 2709 } 2710 2711 /* takes care of both newroute and delroute */ 2712 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh, 2713 struct netlink_ext_ack *extack) 2714 { 2715 struct net *net = sock_net(skb->sk); 2716 int ret, mrtsock, parent; 2717 struct mr_table *tbl; 2718 struct mfcctl mfcc; 2719 2720 mrtsock = 0; 2721 tbl = NULL; 2722 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack); 2723 if (ret < 0) 2724 return ret; 2725 2726 parent = ret ? mfcc.mfcc_parent : -1; 2727 if (nlh->nlmsg_type == RTM_NEWROUTE) 2728 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent); 2729 else 2730 return ipmr_mfc_delete(tbl, &mfcc, parent); 2731 } 2732 2733 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb) 2734 { 2735 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len); 2736 2737 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) || 2738 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) || 2739 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM, 2740 mrt->mroute_reg_vif_num) || 2741 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT, 2742 mrt->mroute_do_assert) || 2743 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) || 2744 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE, 2745 mrt->mroute_do_wrvifwhole)) 2746 return false; 2747 2748 return true; 2749 } 2750 2751 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb) 2752 { 2753 struct net_device *vif_dev; 2754 struct nlattr *vif_nest; 2755 struct vif_device *vif; 2756 2757 vif = &mrt->vif_table[vifid]; 2758 vif_dev = rtnl_dereference(vif->dev); 2759 /* if the VIF doesn't exist just continue */ 2760 if (!vif_dev) 2761 return true; 2762 2763 vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF); 2764 if (!vif_nest) 2765 return false; 2766 2767 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) || 2768 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) || 2769 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) || 2770 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in, 2771 IPMRA_VIFA_PAD) || 2772 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out, 2773 IPMRA_VIFA_PAD) || 2774 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in, 2775 IPMRA_VIFA_PAD) || 2776 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out, 2777 IPMRA_VIFA_PAD) || 2778 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) || 2779 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) { 2780 nla_nest_cancel(skb, vif_nest); 2781 return false; 2782 } 2783 nla_nest_end(skb, vif_nest); 2784 2785 return true; 2786 } 2787 2788 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh, 2789 struct netlink_ext_ack *extack) 2790 { 2791 struct ifinfomsg *ifm; 2792 2793 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) { 2794 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump"); 2795 return -EINVAL; 2796 } 2797 2798 if (nlmsg_attrlen(nlh, sizeof(*ifm))) { 2799 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump"); 2800 return -EINVAL; 2801 } 2802 2803 ifm = nlmsg_data(nlh); 2804 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags || 2805 ifm->ifi_change || ifm->ifi_index) { 2806 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request"); 2807 return -EINVAL; 2808 } 2809 2810 return 0; 2811 } 2812 2813 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb) 2814 { 2815 struct net *net = sock_net(skb->sk); 2816 struct nlmsghdr *nlh = NULL; 2817 unsigned int t = 0, s_t; 2818 unsigned int e = 0, s_e; 2819 struct mr_table *mrt; 2820 2821 if (cb->strict_check) { 2822 int err = ipmr_valid_dumplink(cb->nlh, cb->extack); 2823 2824 if (err < 0) 2825 return err; 2826 } 2827 2828 s_t = cb->args[0]; 2829 s_e = cb->args[1]; 2830 2831 ipmr_for_each_table(mrt, net) { 2832 struct nlattr *vifs, *af; 2833 struct ifinfomsg *hdr; 2834 u32 i; 2835 2836 if (t < s_t) 2837 goto skip_table; 2838 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, 2839 cb->nlh->nlmsg_seq, RTM_NEWLINK, 2840 sizeof(*hdr), NLM_F_MULTI); 2841 if (!nlh) 2842 break; 2843 2844 hdr = nlmsg_data(nlh); 2845 memset(hdr, 0, sizeof(*hdr)); 2846 hdr->ifi_family = RTNL_FAMILY_IPMR; 2847 2848 af = nla_nest_start_noflag(skb, IFLA_AF_SPEC); 2849 if (!af) { 2850 nlmsg_cancel(skb, nlh); 2851 goto out; 2852 } 2853 2854 if (!ipmr_fill_table(mrt, skb)) { 2855 nlmsg_cancel(skb, nlh); 2856 goto out; 2857 } 2858 2859 vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS); 2860 if (!vifs) { 2861 nla_nest_end(skb, af); 2862 nlmsg_end(skb, nlh); 2863 goto out; 2864 } 2865 for (i = 0; i < mrt->maxvif; i++) { 2866 if (e < s_e) 2867 goto skip_entry; 2868 if (!ipmr_fill_vif(mrt, i, skb)) { 2869 nla_nest_end(skb, vifs); 2870 nla_nest_end(skb, af); 2871 nlmsg_end(skb, nlh); 2872 goto out; 2873 } 2874 skip_entry: 2875 e++; 2876 } 2877 s_e = 0; 2878 e = 0; 2879 nla_nest_end(skb, vifs); 2880 nla_nest_end(skb, af); 2881 nlmsg_end(skb, nlh); 2882 skip_table: 2883 t++; 2884 } 2885 2886 out: 2887 cb->args[1] = e; 2888 cb->args[0] = t; 2889 2890 return skb->len; 2891 } 2892 2893 #ifdef CONFIG_PROC_FS 2894 /* The /proc interfaces to multicast routing : 2895 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2896 */ 2897 2898 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2899 __acquires(RCU) 2900 { 2901 struct mr_vif_iter *iter = seq->private; 2902 struct net *net = seq_file_net(seq); 2903 struct mr_table *mrt; 2904 2905 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2906 if (!mrt) 2907 return ERR_PTR(-ENOENT); 2908 2909 iter->mrt = mrt; 2910 2911 rcu_read_lock(); 2912 return mr_vif_seq_start(seq, pos); 2913 } 2914 2915 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2916 __releases(RCU) 2917 { 2918 rcu_read_unlock(); 2919 } 2920 2921 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2922 { 2923 struct mr_vif_iter *iter = seq->private; 2924 struct mr_table *mrt = iter->mrt; 2925 2926 if (v == SEQ_START_TOKEN) { 2927 seq_puts(seq, 2928 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2929 } else { 2930 const struct vif_device *vif = v; 2931 const struct net_device *vif_dev; 2932 const char *name; 2933 2934 vif_dev = vif_dev_read(vif); 2935 name = vif_dev ? vif_dev->name : "none"; 2936 seq_printf(seq, 2937 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2938 vif - mrt->vif_table, 2939 name, vif->bytes_in, vif->pkt_in, 2940 vif->bytes_out, vif->pkt_out, 2941 vif->flags, vif->local, vif->remote); 2942 } 2943 return 0; 2944 } 2945 2946 static const struct seq_operations ipmr_vif_seq_ops = { 2947 .start = ipmr_vif_seq_start, 2948 .next = mr_vif_seq_next, 2949 .stop = ipmr_vif_seq_stop, 2950 .show = ipmr_vif_seq_show, 2951 }; 2952 2953 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2954 { 2955 struct net *net = seq_file_net(seq); 2956 struct mr_table *mrt; 2957 2958 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2959 if (!mrt) 2960 return ERR_PTR(-ENOENT); 2961 2962 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock); 2963 } 2964 2965 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2966 { 2967 int n; 2968 2969 if (v == SEQ_START_TOKEN) { 2970 seq_puts(seq, 2971 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2972 } else { 2973 const struct mfc_cache *mfc = v; 2974 const struct mr_mfc_iter *it = seq->private; 2975 const struct mr_table *mrt = it->mrt; 2976 2977 seq_printf(seq, "%08X %08X %-3hd", 2978 (__force u32) mfc->mfc_mcastgrp, 2979 (__force u32) mfc->mfc_origin, 2980 mfc->_c.mfc_parent); 2981 2982 if (it->cache != &mrt->mfc_unres_queue) { 2983 seq_printf(seq, " %8lu %8lu %8lu", 2984 mfc->_c.mfc_un.res.pkt, 2985 mfc->_c.mfc_un.res.bytes, 2986 mfc->_c.mfc_un.res.wrong_if); 2987 for (n = mfc->_c.mfc_un.res.minvif; 2988 n < mfc->_c.mfc_un.res.maxvif; n++) { 2989 if (VIF_EXISTS(mrt, n) && 2990 mfc->_c.mfc_un.res.ttls[n] < 255) 2991 seq_printf(seq, 2992 " %2d:%-3d", 2993 n, mfc->_c.mfc_un.res.ttls[n]); 2994 } 2995 } else { 2996 /* unresolved mfc_caches don't contain 2997 * pkt, bytes and wrong_if values 2998 */ 2999 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 3000 } 3001 seq_putc(seq, '\n'); 3002 } 3003 return 0; 3004 } 3005 3006 static const struct seq_operations ipmr_mfc_seq_ops = { 3007 .start = ipmr_mfc_seq_start, 3008 .next = mr_mfc_seq_next, 3009 .stop = mr_mfc_seq_stop, 3010 .show = ipmr_mfc_seq_show, 3011 }; 3012 #endif 3013 3014 #ifdef CONFIG_IP_PIMSM_V2 3015 static const struct net_protocol pim_protocol = { 3016 .handler = pim_rcv, 3017 }; 3018 #endif 3019 3020 static unsigned int ipmr_seq_read(struct net *net) 3021 { 3022 ASSERT_RTNL(); 3023 3024 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net); 3025 } 3026 3027 static int ipmr_dump(struct net *net, struct notifier_block *nb, 3028 struct netlink_ext_ack *extack) 3029 { 3030 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump, 3031 ipmr_mr_table_iter, extack); 3032 } 3033 3034 static const struct fib_notifier_ops ipmr_notifier_ops_template = { 3035 .family = RTNL_FAMILY_IPMR, 3036 .fib_seq_read = ipmr_seq_read, 3037 .fib_dump = ipmr_dump, 3038 .owner = THIS_MODULE, 3039 }; 3040 3041 static int __net_init ipmr_notifier_init(struct net *net) 3042 { 3043 struct fib_notifier_ops *ops; 3044 3045 net->ipv4.ipmr_seq = 0; 3046 3047 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net); 3048 if (IS_ERR(ops)) 3049 return PTR_ERR(ops); 3050 net->ipv4.ipmr_notifier_ops = ops; 3051 3052 return 0; 3053 } 3054 3055 static void __net_exit ipmr_notifier_exit(struct net *net) 3056 { 3057 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops); 3058 net->ipv4.ipmr_notifier_ops = NULL; 3059 } 3060 3061 /* Setup for IP multicast routing */ 3062 static int __net_init ipmr_net_init(struct net *net) 3063 { 3064 int err; 3065 3066 err = ipmr_notifier_init(net); 3067 if (err) 3068 goto ipmr_notifier_fail; 3069 3070 err = ipmr_rules_init(net); 3071 if (err < 0) 3072 goto ipmr_rules_fail; 3073 3074 #ifdef CONFIG_PROC_FS 3075 err = -ENOMEM; 3076 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops, 3077 sizeof(struct mr_vif_iter))) 3078 goto proc_vif_fail; 3079 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops, 3080 sizeof(struct mr_mfc_iter))) 3081 goto proc_cache_fail; 3082 #endif 3083 return 0; 3084 3085 #ifdef CONFIG_PROC_FS 3086 proc_cache_fail: 3087 remove_proc_entry("ip_mr_vif", net->proc_net); 3088 proc_vif_fail: 3089 rtnl_lock(); 3090 ipmr_rules_exit(net); 3091 rtnl_unlock(); 3092 #endif 3093 ipmr_rules_fail: 3094 ipmr_notifier_exit(net); 3095 ipmr_notifier_fail: 3096 return err; 3097 } 3098 3099 static void __net_exit ipmr_net_exit(struct net *net) 3100 { 3101 #ifdef CONFIG_PROC_FS 3102 remove_proc_entry("ip_mr_cache", net->proc_net); 3103 remove_proc_entry("ip_mr_vif", net->proc_net); 3104 #endif 3105 ipmr_notifier_exit(net); 3106 } 3107 3108 static void __net_exit ipmr_net_exit_batch(struct list_head *net_list) 3109 { 3110 struct net *net; 3111 3112 rtnl_lock(); 3113 list_for_each_entry(net, net_list, exit_list) 3114 ipmr_rules_exit(net); 3115 rtnl_unlock(); 3116 } 3117 3118 static struct pernet_operations ipmr_net_ops = { 3119 .init = ipmr_net_init, 3120 .exit = ipmr_net_exit, 3121 .exit_batch = ipmr_net_exit_batch, 3122 }; 3123 3124 int __init ip_mr_init(void) 3125 { 3126 int err; 3127 3128 mrt_cachep = kmem_cache_create("ip_mrt_cache", 3129 sizeof(struct mfc_cache), 3130 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 3131 NULL); 3132 3133 err = register_pernet_subsys(&ipmr_net_ops); 3134 if (err) 3135 goto reg_pernet_fail; 3136 3137 err = register_netdevice_notifier(&ip_mr_notifier); 3138 if (err) 3139 goto reg_notif_fail; 3140 #ifdef CONFIG_IP_PIMSM_V2 3141 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 3142 pr_err("%s: can't add PIM protocol\n", __func__); 3143 err = -EAGAIN; 3144 goto add_proto_fail; 3145 } 3146 #endif 3147 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 3148 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0); 3149 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE, 3150 ipmr_rtm_route, NULL, 0); 3151 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE, 3152 ipmr_rtm_route, NULL, 0); 3153 3154 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK, 3155 NULL, ipmr_rtm_dumplink, 0); 3156 return 0; 3157 3158 #ifdef CONFIG_IP_PIMSM_V2 3159 add_proto_fail: 3160 unregister_netdevice_notifier(&ip_mr_notifier); 3161 #endif 3162 reg_notif_fail: 3163 unregister_pernet_subsys(&ipmr_net_ops); 3164 reg_pernet_fail: 3165 kmem_cache_destroy(mrt_cachep); 3166 return err; 3167 } 3168