1 /* 2 * IP multicast routing support for mrouted 3.6/3.8 3 * 4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 5 * Linux Consultancy and Custom Driver Development 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 * 12 * Fixes: 13 * Michael Chastain : Incorrect size of copying. 14 * Alan Cox : Added the cache manager code 15 * Alan Cox : Fixed the clone/copy bug and device race. 16 * Mike McLagan : Routing by source 17 * Malcolm Beattie : Buffer handling fixes. 18 * Alexey Kuznetsov : Double buffer free and other fixes. 19 * SVR Anand : Fixed several multicast bugs and problems. 20 * Alexey Kuznetsov : Status, optimisations and more. 21 * Brad Parker : Better behaviour on mrouted upcall 22 * overflow. 23 * Carlos Picoto : PIMv1 Support 24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 25 * Relax this requirement to work with older peers. 26 * 27 */ 28 29 #include <linux/uaccess.h> 30 #include <linux/types.h> 31 #include <linux/cache.h> 32 #include <linux/capability.h> 33 #include <linux/errno.h> 34 #include <linux/mm.h> 35 #include <linux/kernel.h> 36 #include <linux/fcntl.h> 37 #include <linux/stat.h> 38 #include <linux/socket.h> 39 #include <linux/in.h> 40 #include <linux/inet.h> 41 #include <linux/netdevice.h> 42 #include <linux/inetdevice.h> 43 #include <linux/igmp.h> 44 #include <linux/proc_fs.h> 45 #include <linux/seq_file.h> 46 #include <linux/mroute.h> 47 #include <linux/init.h> 48 #include <linux/if_ether.h> 49 #include <linux/slab.h> 50 #include <net/net_namespace.h> 51 #include <net/ip.h> 52 #include <net/protocol.h> 53 #include <linux/skbuff.h> 54 #include <net/route.h> 55 #include <net/icmp.h> 56 #include <net/udp.h> 57 #include <net/raw.h> 58 #include <linux/notifier.h> 59 #include <linux/if_arp.h> 60 #include <linux/netfilter_ipv4.h> 61 #include <linux/compat.h> 62 #include <linux/export.h> 63 #include <linux/rhashtable.h> 64 #include <net/ip_tunnels.h> 65 #include <net/checksum.h> 66 #include <net/netlink.h> 67 #include <net/fib_rules.h> 68 #include <linux/netconf.h> 69 #include <net/nexthop.h> 70 71 #include <linux/nospec.h> 72 73 struct ipmr_rule { 74 struct fib_rule common; 75 }; 76 77 struct ipmr_result { 78 struct mr_table *mrt; 79 }; 80 81 /* Big lock, protecting vif table, mrt cache and mroute socket state. 82 * Note that the changes are semaphored via rtnl_lock. 83 */ 84 85 static DEFINE_RWLOCK(mrt_lock); 86 87 /* Multicast router control variables */ 88 89 /* Special spinlock for queue of unresolved entries */ 90 static DEFINE_SPINLOCK(mfc_unres_lock); 91 92 /* We return to original Alan's scheme. Hash table of resolved 93 * entries is changed only in process context and protected 94 * with weak lock mrt_lock. Queue of unresolved entries is protected 95 * with strong spinlock mfc_unres_lock. 96 * 97 * In this case data path is free of exclusive locks at all. 98 */ 99 100 static struct kmem_cache *mrt_cachep __ro_after_init; 101 102 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 103 static void ipmr_free_table(struct mr_table *mrt); 104 105 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 106 struct net_device *dev, struct sk_buff *skb, 107 struct mfc_cache *cache, int local); 108 static int ipmr_cache_report(struct mr_table *mrt, 109 struct sk_buff *pkt, vifi_t vifi, int assert); 110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 111 int cmd); 112 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt); 113 static void mroute_clean_tables(struct mr_table *mrt, bool all); 114 static void ipmr_expire_process(struct timer_list *t); 115 116 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 117 #define ipmr_for_each_table(mrt, net) \ 118 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list) 119 120 static struct mr_table *ipmr_mr_table_iter(struct net *net, 121 struct mr_table *mrt) 122 { 123 struct mr_table *ret; 124 125 if (!mrt) 126 ret = list_entry_rcu(net->ipv4.mr_tables.next, 127 struct mr_table, list); 128 else 129 ret = list_entry_rcu(mrt->list.next, 130 struct mr_table, list); 131 132 if (&ret->list == &net->ipv4.mr_tables) 133 return NULL; 134 return ret; 135 } 136 137 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 138 { 139 struct mr_table *mrt; 140 141 ipmr_for_each_table(mrt, net) { 142 if (mrt->id == id) 143 return mrt; 144 } 145 return NULL; 146 } 147 148 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 149 struct mr_table **mrt) 150 { 151 int err; 152 struct ipmr_result res; 153 struct fib_lookup_arg arg = { 154 .result = &res, 155 .flags = FIB_LOOKUP_NOREF, 156 }; 157 158 /* update flow if oif or iif point to device enslaved to l3mdev */ 159 l3mdev_update_flow(net, flowi4_to_flowi(flp4)); 160 161 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 162 flowi4_to_flowi(flp4), 0, &arg); 163 if (err < 0) 164 return err; 165 *mrt = res.mrt; 166 return 0; 167 } 168 169 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 170 int flags, struct fib_lookup_arg *arg) 171 { 172 struct ipmr_result *res = arg->result; 173 struct mr_table *mrt; 174 175 switch (rule->action) { 176 case FR_ACT_TO_TBL: 177 break; 178 case FR_ACT_UNREACHABLE: 179 return -ENETUNREACH; 180 case FR_ACT_PROHIBIT: 181 return -EACCES; 182 case FR_ACT_BLACKHOLE: 183 default: 184 return -EINVAL; 185 } 186 187 arg->table = fib_rule_get_table(rule, arg); 188 189 mrt = ipmr_get_table(rule->fr_net, arg->table); 190 if (!mrt) 191 return -EAGAIN; 192 res->mrt = mrt; 193 return 0; 194 } 195 196 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 197 { 198 return 1; 199 } 200 201 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = { 202 FRA_GENERIC_POLICY, 203 }; 204 205 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 206 struct fib_rule_hdr *frh, struct nlattr **tb, 207 struct netlink_ext_ack *extack) 208 { 209 return 0; 210 } 211 212 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 213 struct nlattr **tb) 214 { 215 return 1; 216 } 217 218 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 219 struct fib_rule_hdr *frh) 220 { 221 frh->dst_len = 0; 222 frh->src_len = 0; 223 frh->tos = 0; 224 return 0; 225 } 226 227 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { 228 .family = RTNL_FAMILY_IPMR, 229 .rule_size = sizeof(struct ipmr_rule), 230 .addr_size = sizeof(u32), 231 .action = ipmr_rule_action, 232 .match = ipmr_rule_match, 233 .configure = ipmr_rule_configure, 234 .compare = ipmr_rule_compare, 235 .fill = ipmr_rule_fill, 236 .nlgroup = RTNLGRP_IPV4_RULE, 237 .policy = ipmr_rule_policy, 238 .owner = THIS_MODULE, 239 }; 240 241 static int __net_init ipmr_rules_init(struct net *net) 242 { 243 struct fib_rules_ops *ops; 244 struct mr_table *mrt; 245 int err; 246 247 ops = fib_rules_register(&ipmr_rules_ops_template, net); 248 if (IS_ERR(ops)) 249 return PTR_ERR(ops); 250 251 INIT_LIST_HEAD(&net->ipv4.mr_tables); 252 253 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 254 if (IS_ERR(mrt)) { 255 err = PTR_ERR(mrt); 256 goto err1; 257 } 258 259 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 260 if (err < 0) 261 goto err2; 262 263 net->ipv4.mr_rules_ops = ops; 264 return 0; 265 266 err2: 267 ipmr_free_table(mrt); 268 err1: 269 fib_rules_unregister(ops); 270 return err; 271 } 272 273 static void __net_exit ipmr_rules_exit(struct net *net) 274 { 275 struct mr_table *mrt, *next; 276 277 rtnl_lock(); 278 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 279 list_del(&mrt->list); 280 ipmr_free_table(mrt); 281 } 282 fib_rules_unregister(net->ipv4.mr_rules_ops); 283 rtnl_unlock(); 284 } 285 286 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb) 287 { 288 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR); 289 } 290 291 static unsigned int ipmr_rules_seq_read(struct net *net) 292 { 293 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR); 294 } 295 296 bool ipmr_rule_default(const struct fib_rule *rule) 297 { 298 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT; 299 } 300 EXPORT_SYMBOL(ipmr_rule_default); 301 #else 302 #define ipmr_for_each_table(mrt, net) \ 303 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 304 305 static struct mr_table *ipmr_mr_table_iter(struct net *net, 306 struct mr_table *mrt) 307 { 308 if (!mrt) 309 return net->ipv4.mrt; 310 return NULL; 311 } 312 313 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 314 { 315 return net->ipv4.mrt; 316 } 317 318 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 319 struct mr_table **mrt) 320 { 321 *mrt = net->ipv4.mrt; 322 return 0; 323 } 324 325 static int __net_init ipmr_rules_init(struct net *net) 326 { 327 struct mr_table *mrt; 328 329 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 330 if (IS_ERR(mrt)) 331 return PTR_ERR(mrt); 332 net->ipv4.mrt = mrt; 333 return 0; 334 } 335 336 static void __net_exit ipmr_rules_exit(struct net *net) 337 { 338 rtnl_lock(); 339 ipmr_free_table(net->ipv4.mrt); 340 net->ipv4.mrt = NULL; 341 rtnl_unlock(); 342 } 343 344 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb) 345 { 346 return 0; 347 } 348 349 static unsigned int ipmr_rules_seq_read(struct net *net) 350 { 351 return 0; 352 } 353 354 bool ipmr_rule_default(const struct fib_rule *rule) 355 { 356 return true; 357 } 358 EXPORT_SYMBOL(ipmr_rule_default); 359 #endif 360 361 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg, 362 const void *ptr) 363 { 364 const struct mfc_cache_cmp_arg *cmparg = arg->key; 365 struct mfc_cache *c = (struct mfc_cache *)ptr; 366 367 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp || 368 cmparg->mfc_origin != c->mfc_origin; 369 } 370 371 static const struct rhashtable_params ipmr_rht_params = { 372 .head_offset = offsetof(struct mr_mfc, mnode), 373 .key_offset = offsetof(struct mfc_cache, cmparg), 374 .key_len = sizeof(struct mfc_cache_cmp_arg), 375 .nelem_hint = 3, 376 .locks_mul = 1, 377 .obj_cmpfn = ipmr_hash_cmp, 378 .automatic_shrinking = true, 379 }; 380 381 static void ipmr_new_table_set(struct mr_table *mrt, 382 struct net *net) 383 { 384 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 385 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 386 #endif 387 } 388 389 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = { 390 .mfc_mcastgrp = htonl(INADDR_ANY), 391 .mfc_origin = htonl(INADDR_ANY), 392 }; 393 394 static struct mr_table_ops ipmr_mr_table_ops = { 395 .rht_params = &ipmr_rht_params, 396 .cmparg_any = &ipmr_mr_table_ops_cmparg_any, 397 }; 398 399 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 400 { 401 struct mr_table *mrt; 402 403 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ 404 if (id != RT_TABLE_DEFAULT && id >= 1000000000) 405 return ERR_PTR(-EINVAL); 406 407 mrt = ipmr_get_table(net, id); 408 if (mrt) 409 return mrt; 410 411 return mr_table_alloc(net, id, &ipmr_mr_table_ops, 412 ipmr_expire_process, ipmr_new_table_set); 413 } 414 415 static void ipmr_free_table(struct mr_table *mrt) 416 { 417 del_timer_sync(&mrt->ipmr_expire_timer); 418 mroute_clean_tables(mrt, true); 419 rhltable_destroy(&mrt->mfc_hash); 420 kfree(mrt); 421 } 422 423 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 424 425 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v) 426 { 427 struct net *net = dev_net(dev); 428 429 dev_close(dev); 430 431 dev = __dev_get_by_name(net, "tunl0"); 432 if (dev) { 433 const struct net_device_ops *ops = dev->netdev_ops; 434 struct ifreq ifr; 435 struct ip_tunnel_parm p; 436 437 memset(&p, 0, sizeof(p)); 438 p.iph.daddr = v->vifc_rmt_addr.s_addr; 439 p.iph.saddr = v->vifc_lcl_addr.s_addr; 440 p.iph.version = 4; 441 p.iph.ihl = 5; 442 p.iph.protocol = IPPROTO_IPIP; 443 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 444 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 445 446 if (ops->ndo_do_ioctl) { 447 mm_segment_t oldfs = get_fs(); 448 449 set_fs(KERNEL_DS); 450 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL); 451 set_fs(oldfs); 452 } 453 } 454 } 455 456 /* Initialize ipmr pimreg/tunnel in_device */ 457 static bool ipmr_init_vif_indev(const struct net_device *dev) 458 { 459 struct in_device *in_dev; 460 461 ASSERT_RTNL(); 462 463 in_dev = __in_dev_get_rtnl(dev); 464 if (!in_dev) 465 return false; 466 ipv4_devconf_setall(in_dev); 467 neigh_parms_data_state_setall(in_dev->arp_parms); 468 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 469 470 return true; 471 } 472 473 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 474 { 475 struct net_device *dev; 476 477 dev = __dev_get_by_name(net, "tunl0"); 478 479 if (dev) { 480 const struct net_device_ops *ops = dev->netdev_ops; 481 int err; 482 struct ifreq ifr; 483 struct ip_tunnel_parm p; 484 485 memset(&p, 0, sizeof(p)); 486 p.iph.daddr = v->vifc_rmt_addr.s_addr; 487 p.iph.saddr = v->vifc_lcl_addr.s_addr; 488 p.iph.version = 4; 489 p.iph.ihl = 5; 490 p.iph.protocol = IPPROTO_IPIP; 491 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 492 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 493 494 if (ops->ndo_do_ioctl) { 495 mm_segment_t oldfs = get_fs(); 496 497 set_fs(KERNEL_DS); 498 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL); 499 set_fs(oldfs); 500 } else { 501 err = -EOPNOTSUPP; 502 } 503 dev = NULL; 504 505 if (err == 0 && 506 (dev = __dev_get_by_name(net, p.name)) != NULL) { 507 dev->flags |= IFF_MULTICAST; 508 if (!ipmr_init_vif_indev(dev)) 509 goto failure; 510 if (dev_open(dev, NULL)) 511 goto failure; 512 dev_hold(dev); 513 } 514 } 515 return dev; 516 517 failure: 518 unregister_netdevice(dev); 519 return NULL; 520 } 521 522 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 523 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 524 { 525 struct net *net = dev_net(dev); 526 struct mr_table *mrt; 527 struct flowi4 fl4 = { 528 .flowi4_oif = dev->ifindex, 529 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 530 .flowi4_mark = skb->mark, 531 }; 532 int err; 533 534 err = ipmr_fib_lookup(net, &fl4, &mrt); 535 if (err < 0) { 536 kfree_skb(skb); 537 return err; 538 } 539 540 read_lock(&mrt_lock); 541 dev->stats.tx_bytes += skb->len; 542 dev->stats.tx_packets++; 543 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT); 544 read_unlock(&mrt_lock); 545 kfree_skb(skb); 546 return NETDEV_TX_OK; 547 } 548 549 static int reg_vif_get_iflink(const struct net_device *dev) 550 { 551 return 0; 552 } 553 554 static const struct net_device_ops reg_vif_netdev_ops = { 555 .ndo_start_xmit = reg_vif_xmit, 556 .ndo_get_iflink = reg_vif_get_iflink, 557 }; 558 559 static void reg_vif_setup(struct net_device *dev) 560 { 561 dev->type = ARPHRD_PIMREG; 562 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 563 dev->flags = IFF_NOARP; 564 dev->netdev_ops = ®_vif_netdev_ops; 565 dev->needs_free_netdev = true; 566 dev->features |= NETIF_F_NETNS_LOCAL; 567 } 568 569 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 570 { 571 struct net_device *dev; 572 char name[IFNAMSIZ]; 573 574 if (mrt->id == RT_TABLE_DEFAULT) 575 sprintf(name, "pimreg"); 576 else 577 sprintf(name, "pimreg%u", mrt->id); 578 579 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 580 581 if (!dev) 582 return NULL; 583 584 dev_net_set(dev, net); 585 586 if (register_netdevice(dev)) { 587 free_netdev(dev); 588 return NULL; 589 } 590 591 if (!ipmr_init_vif_indev(dev)) 592 goto failure; 593 if (dev_open(dev, NULL)) 594 goto failure; 595 596 dev_hold(dev); 597 598 return dev; 599 600 failure: 601 unregister_netdevice(dev); 602 return NULL; 603 } 604 605 /* called with rcu_read_lock() */ 606 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 607 unsigned int pimlen) 608 { 609 struct net_device *reg_dev = NULL; 610 struct iphdr *encap; 611 612 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 613 /* Check that: 614 * a. packet is really sent to a multicast group 615 * b. packet is not a NULL-REGISTER 616 * c. packet is not truncated 617 */ 618 if (!ipv4_is_multicast(encap->daddr) || 619 encap->tot_len == 0 || 620 ntohs(encap->tot_len) + pimlen > skb->len) 621 return 1; 622 623 read_lock(&mrt_lock); 624 if (mrt->mroute_reg_vif_num >= 0) 625 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev; 626 read_unlock(&mrt_lock); 627 628 if (!reg_dev) 629 return 1; 630 631 skb->mac_header = skb->network_header; 632 skb_pull(skb, (u8 *)encap - skb->data); 633 skb_reset_network_header(skb); 634 skb->protocol = htons(ETH_P_IP); 635 skb->ip_summed = CHECKSUM_NONE; 636 637 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 638 639 netif_rx(skb); 640 641 return NET_RX_SUCCESS; 642 } 643 #else 644 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 645 { 646 return NULL; 647 } 648 #endif 649 650 static int call_ipmr_vif_entry_notifiers(struct net *net, 651 enum fib_event_type event_type, 652 struct vif_device *vif, 653 vifi_t vif_index, u32 tb_id) 654 { 655 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type, 656 vif, vif_index, tb_id, 657 &net->ipv4.ipmr_seq); 658 } 659 660 static int call_ipmr_mfc_entry_notifiers(struct net *net, 661 enum fib_event_type event_type, 662 struct mfc_cache *mfc, u32 tb_id) 663 { 664 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type, 665 &mfc->_c, tb_id, &net->ipv4.ipmr_seq); 666 } 667 668 /** 669 * vif_delete - Delete a VIF entry 670 * @notify: Set to 1, if the caller is a notifier_call 671 */ 672 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 673 struct list_head *head) 674 { 675 struct net *net = read_pnet(&mrt->net); 676 struct vif_device *v; 677 struct net_device *dev; 678 struct in_device *in_dev; 679 680 if (vifi < 0 || vifi >= mrt->maxvif) 681 return -EADDRNOTAVAIL; 682 683 v = &mrt->vif_table[vifi]; 684 685 if (VIF_EXISTS(mrt, vifi)) 686 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi, 687 mrt->id); 688 689 write_lock_bh(&mrt_lock); 690 dev = v->dev; 691 v->dev = NULL; 692 693 if (!dev) { 694 write_unlock_bh(&mrt_lock); 695 return -EADDRNOTAVAIL; 696 } 697 698 if (vifi == mrt->mroute_reg_vif_num) 699 mrt->mroute_reg_vif_num = -1; 700 701 if (vifi + 1 == mrt->maxvif) { 702 int tmp; 703 704 for (tmp = vifi - 1; tmp >= 0; tmp--) { 705 if (VIF_EXISTS(mrt, tmp)) 706 break; 707 } 708 mrt->maxvif = tmp+1; 709 } 710 711 write_unlock_bh(&mrt_lock); 712 713 dev_set_allmulti(dev, -1); 714 715 in_dev = __in_dev_get_rtnl(dev); 716 if (in_dev) { 717 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 718 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, 719 NETCONFA_MC_FORWARDING, 720 dev->ifindex, &in_dev->cnf); 721 ip_rt_multicast_event(in_dev); 722 } 723 724 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 725 unregister_netdevice_queue(dev, head); 726 727 dev_put(dev); 728 return 0; 729 } 730 731 static void ipmr_cache_free_rcu(struct rcu_head *head) 732 { 733 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu); 734 735 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c); 736 } 737 738 static void ipmr_cache_free(struct mfc_cache *c) 739 { 740 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu); 741 } 742 743 /* Destroy an unresolved cache entry, killing queued skbs 744 * and reporting error to netlink readers. 745 */ 746 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 747 { 748 struct net *net = read_pnet(&mrt->net); 749 struct sk_buff *skb; 750 struct nlmsgerr *e; 751 752 atomic_dec(&mrt->cache_resolve_queue_len); 753 754 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) { 755 if (ip_hdr(skb)->version == 0) { 756 struct nlmsghdr *nlh = skb_pull(skb, 757 sizeof(struct iphdr)); 758 nlh->nlmsg_type = NLMSG_ERROR; 759 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 760 skb_trim(skb, nlh->nlmsg_len); 761 e = nlmsg_data(nlh); 762 e->error = -ETIMEDOUT; 763 memset(&e->msg, 0, sizeof(e->msg)); 764 765 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 766 } else { 767 kfree_skb(skb); 768 } 769 } 770 771 ipmr_cache_free(c); 772 } 773 774 /* Timer process for the unresolved queue. */ 775 static void ipmr_expire_process(struct timer_list *t) 776 { 777 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer); 778 struct mr_mfc *c, *next; 779 unsigned long expires; 780 unsigned long now; 781 782 if (!spin_trylock(&mfc_unres_lock)) { 783 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 784 return; 785 } 786 787 if (list_empty(&mrt->mfc_unres_queue)) 788 goto out; 789 790 now = jiffies; 791 expires = 10*HZ; 792 793 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 794 if (time_after(c->mfc_un.unres.expires, now)) { 795 unsigned long interval = c->mfc_un.unres.expires - now; 796 if (interval < expires) 797 expires = interval; 798 continue; 799 } 800 801 list_del(&c->list); 802 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE); 803 ipmr_destroy_unres(mrt, (struct mfc_cache *)c); 804 } 805 806 if (!list_empty(&mrt->mfc_unres_queue)) 807 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 808 809 out: 810 spin_unlock(&mfc_unres_lock); 811 } 812 813 /* Fill oifs list. It is called under write locked mrt_lock. */ 814 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache, 815 unsigned char *ttls) 816 { 817 int vifi; 818 819 cache->mfc_un.res.minvif = MAXVIFS; 820 cache->mfc_un.res.maxvif = 0; 821 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 822 823 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 824 if (VIF_EXISTS(mrt, vifi) && 825 ttls[vifi] && ttls[vifi] < 255) { 826 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 827 if (cache->mfc_un.res.minvif > vifi) 828 cache->mfc_un.res.minvif = vifi; 829 if (cache->mfc_un.res.maxvif <= vifi) 830 cache->mfc_un.res.maxvif = vifi + 1; 831 } 832 } 833 cache->mfc_un.res.lastuse = jiffies; 834 } 835 836 static int vif_add(struct net *net, struct mr_table *mrt, 837 struct vifctl *vifc, int mrtsock) 838 { 839 struct netdev_phys_item_id ppid = { }; 840 int vifi = vifc->vifc_vifi; 841 struct vif_device *v = &mrt->vif_table[vifi]; 842 struct net_device *dev; 843 struct in_device *in_dev; 844 int err; 845 846 /* Is vif busy ? */ 847 if (VIF_EXISTS(mrt, vifi)) 848 return -EADDRINUSE; 849 850 switch (vifc->vifc_flags) { 851 case VIFF_REGISTER: 852 if (!ipmr_pimsm_enabled()) 853 return -EINVAL; 854 /* Special Purpose VIF in PIM 855 * All the packets will be sent to the daemon 856 */ 857 if (mrt->mroute_reg_vif_num >= 0) 858 return -EADDRINUSE; 859 dev = ipmr_reg_vif(net, mrt); 860 if (!dev) 861 return -ENOBUFS; 862 err = dev_set_allmulti(dev, 1); 863 if (err) { 864 unregister_netdevice(dev); 865 dev_put(dev); 866 return err; 867 } 868 break; 869 case VIFF_TUNNEL: 870 dev = ipmr_new_tunnel(net, vifc); 871 if (!dev) 872 return -ENOBUFS; 873 err = dev_set_allmulti(dev, 1); 874 if (err) { 875 ipmr_del_tunnel(dev, vifc); 876 dev_put(dev); 877 return err; 878 } 879 break; 880 case VIFF_USE_IFINDEX: 881 case 0: 882 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 883 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 884 if (dev && !__in_dev_get_rtnl(dev)) { 885 dev_put(dev); 886 return -EADDRNOTAVAIL; 887 } 888 } else { 889 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 890 } 891 if (!dev) 892 return -EADDRNOTAVAIL; 893 err = dev_set_allmulti(dev, 1); 894 if (err) { 895 dev_put(dev); 896 return err; 897 } 898 break; 899 default: 900 return -EINVAL; 901 } 902 903 in_dev = __in_dev_get_rtnl(dev); 904 if (!in_dev) { 905 dev_put(dev); 906 return -EADDRNOTAVAIL; 907 } 908 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 909 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, 910 dev->ifindex, &in_dev->cnf); 911 ip_rt_multicast_event(in_dev); 912 913 /* Fill in the VIF structures */ 914 vif_device_init(v, dev, vifc->vifc_rate_limit, 915 vifc->vifc_threshold, 916 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0), 917 (VIFF_TUNNEL | VIFF_REGISTER)); 918 919 err = dev_get_port_parent_id(dev, &ppid, true); 920 if (err == 0) { 921 memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len); 922 v->dev_parent_id.id_len = ppid.id_len; 923 } else { 924 v->dev_parent_id.id_len = 0; 925 } 926 927 v->local = vifc->vifc_lcl_addr.s_addr; 928 v->remote = vifc->vifc_rmt_addr.s_addr; 929 930 /* And finish update writing critical data */ 931 write_lock_bh(&mrt_lock); 932 v->dev = dev; 933 if (v->flags & VIFF_REGISTER) 934 mrt->mroute_reg_vif_num = vifi; 935 if (vifi+1 > mrt->maxvif) 936 mrt->maxvif = vifi+1; 937 write_unlock_bh(&mrt_lock); 938 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id); 939 return 0; 940 } 941 942 /* called with rcu_read_lock() */ 943 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 944 __be32 origin, 945 __be32 mcastgrp) 946 { 947 struct mfc_cache_cmp_arg arg = { 948 .mfc_mcastgrp = mcastgrp, 949 .mfc_origin = origin 950 }; 951 952 return mr_mfc_find(mrt, &arg); 953 } 954 955 /* Look for a (*,G) entry */ 956 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, 957 __be32 mcastgrp, int vifi) 958 { 959 struct mfc_cache_cmp_arg arg = { 960 .mfc_mcastgrp = mcastgrp, 961 .mfc_origin = htonl(INADDR_ANY) 962 }; 963 964 if (mcastgrp == htonl(INADDR_ANY)) 965 return mr_mfc_find_any_parent(mrt, vifi); 966 return mr_mfc_find_any(mrt, vifi, &arg); 967 } 968 969 /* Look for a (S,G,iif) entry if parent != -1 */ 970 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt, 971 __be32 origin, __be32 mcastgrp, 972 int parent) 973 { 974 struct mfc_cache_cmp_arg arg = { 975 .mfc_mcastgrp = mcastgrp, 976 .mfc_origin = origin, 977 }; 978 979 return mr_mfc_find_parent(mrt, &arg, parent); 980 } 981 982 /* Allocate a multicast cache entry */ 983 static struct mfc_cache *ipmr_cache_alloc(void) 984 { 985 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 986 987 if (c) { 988 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1; 989 c->_c.mfc_un.res.minvif = MAXVIFS; 990 c->_c.free = ipmr_cache_free_rcu; 991 refcount_set(&c->_c.mfc_un.res.refcount, 1); 992 } 993 return c; 994 } 995 996 static struct mfc_cache *ipmr_cache_alloc_unres(void) 997 { 998 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 999 1000 if (c) { 1001 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved); 1002 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ; 1003 } 1004 return c; 1005 } 1006 1007 /* A cache entry has gone into a resolved state from queued */ 1008 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 1009 struct mfc_cache *uc, struct mfc_cache *c) 1010 { 1011 struct sk_buff *skb; 1012 struct nlmsgerr *e; 1013 1014 /* Play the pending entries through our router */ 1015 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) { 1016 if (ip_hdr(skb)->version == 0) { 1017 struct nlmsghdr *nlh = skb_pull(skb, 1018 sizeof(struct iphdr)); 1019 1020 if (mr_fill_mroute(mrt, skb, &c->_c, 1021 nlmsg_data(nlh)) > 0) { 1022 nlh->nlmsg_len = skb_tail_pointer(skb) - 1023 (u8 *)nlh; 1024 } else { 1025 nlh->nlmsg_type = NLMSG_ERROR; 1026 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 1027 skb_trim(skb, nlh->nlmsg_len); 1028 e = nlmsg_data(nlh); 1029 e->error = -EMSGSIZE; 1030 memset(&e->msg, 0, sizeof(e->msg)); 1031 } 1032 1033 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 1034 } else { 1035 ip_mr_forward(net, mrt, skb->dev, skb, c, 0); 1036 } 1037 } 1038 } 1039 1040 /* Bounce a cache query up to mrouted and netlink. 1041 * 1042 * Called under mrt_lock. 1043 */ 1044 static int ipmr_cache_report(struct mr_table *mrt, 1045 struct sk_buff *pkt, vifi_t vifi, int assert) 1046 { 1047 const int ihl = ip_hdrlen(pkt); 1048 struct sock *mroute_sk; 1049 struct igmphdr *igmp; 1050 struct igmpmsg *msg; 1051 struct sk_buff *skb; 1052 int ret; 1053 1054 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) 1055 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 1056 else 1057 skb = alloc_skb(128, GFP_ATOMIC); 1058 1059 if (!skb) 1060 return -ENOBUFS; 1061 1062 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) { 1063 /* Ugly, but we have no choice with this interface. 1064 * Duplicate old header, fix ihl, length etc. 1065 * And all this only to mangle msg->im_msgtype and 1066 * to set msg->im_mbz to "mbz" :-) 1067 */ 1068 skb_push(skb, sizeof(struct iphdr)); 1069 skb_reset_network_header(skb); 1070 skb_reset_transport_header(skb); 1071 msg = (struct igmpmsg *)skb_network_header(skb); 1072 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 1073 msg->im_msgtype = assert; 1074 msg->im_mbz = 0; 1075 if (assert == IGMPMSG_WRVIFWHOLE) 1076 msg->im_vif = vifi; 1077 else 1078 msg->im_vif = mrt->mroute_reg_vif_num; 1079 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 1080 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 1081 sizeof(struct iphdr)); 1082 } else { 1083 /* Copy the IP header */ 1084 skb_set_network_header(skb, skb->len); 1085 skb_put(skb, ihl); 1086 skb_copy_to_linear_data(skb, pkt->data, ihl); 1087 /* Flag to the kernel this is a route add */ 1088 ip_hdr(skb)->protocol = 0; 1089 msg = (struct igmpmsg *)skb_network_header(skb); 1090 msg->im_vif = vifi; 1091 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 1092 /* Add our header */ 1093 igmp = skb_put(skb, sizeof(struct igmphdr)); 1094 igmp->type = assert; 1095 msg->im_msgtype = assert; 1096 igmp->code = 0; 1097 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 1098 skb->transport_header = skb->network_header; 1099 } 1100 1101 rcu_read_lock(); 1102 mroute_sk = rcu_dereference(mrt->mroute_sk); 1103 if (!mroute_sk) { 1104 rcu_read_unlock(); 1105 kfree_skb(skb); 1106 return -EINVAL; 1107 } 1108 1109 igmpmsg_netlink_event(mrt, skb); 1110 1111 /* Deliver to mrouted */ 1112 ret = sock_queue_rcv_skb(mroute_sk, skb); 1113 rcu_read_unlock(); 1114 if (ret < 0) { 1115 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 1116 kfree_skb(skb); 1117 } 1118 1119 return ret; 1120 } 1121 1122 /* Queue a packet for resolution. It gets locked cache entry! */ 1123 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, 1124 struct sk_buff *skb, struct net_device *dev) 1125 { 1126 const struct iphdr *iph = ip_hdr(skb); 1127 struct mfc_cache *c; 1128 bool found = false; 1129 int err; 1130 1131 spin_lock_bh(&mfc_unres_lock); 1132 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) { 1133 if (c->mfc_mcastgrp == iph->daddr && 1134 c->mfc_origin == iph->saddr) { 1135 found = true; 1136 break; 1137 } 1138 } 1139 1140 if (!found) { 1141 /* Create a new entry if allowable */ 1142 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 1143 (c = ipmr_cache_alloc_unres()) == NULL) { 1144 spin_unlock_bh(&mfc_unres_lock); 1145 1146 kfree_skb(skb); 1147 return -ENOBUFS; 1148 } 1149 1150 /* Fill in the new cache entry */ 1151 c->_c.mfc_parent = -1; 1152 c->mfc_origin = iph->saddr; 1153 c->mfc_mcastgrp = iph->daddr; 1154 1155 /* Reflect first query at mrouted. */ 1156 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1157 1158 if (err < 0) { 1159 /* If the report failed throw the cache entry 1160 out - Brad Parker 1161 */ 1162 spin_unlock_bh(&mfc_unres_lock); 1163 1164 ipmr_cache_free(c); 1165 kfree_skb(skb); 1166 return err; 1167 } 1168 1169 atomic_inc(&mrt->cache_resolve_queue_len); 1170 list_add(&c->_c.list, &mrt->mfc_unres_queue); 1171 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1172 1173 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1174 mod_timer(&mrt->ipmr_expire_timer, 1175 c->_c.mfc_un.unres.expires); 1176 } 1177 1178 /* See if we can append the packet */ 1179 if (c->_c.mfc_un.unres.unresolved.qlen > 3) { 1180 kfree_skb(skb); 1181 err = -ENOBUFS; 1182 } else { 1183 if (dev) { 1184 skb->dev = dev; 1185 skb->skb_iif = dev->ifindex; 1186 } 1187 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb); 1188 err = 0; 1189 } 1190 1191 spin_unlock_bh(&mfc_unres_lock); 1192 return err; 1193 } 1194 1195 /* MFC cache manipulation by user space mroute daemon */ 1196 1197 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) 1198 { 1199 struct net *net = read_pnet(&mrt->net); 1200 struct mfc_cache *c; 1201 1202 /* The entries are added/deleted only under RTNL */ 1203 rcu_read_lock(); 1204 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1205 mfc->mfcc_mcastgrp.s_addr, parent); 1206 rcu_read_unlock(); 1207 if (!c) 1208 return -ENOENT; 1209 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params); 1210 list_del_rcu(&c->_c.list); 1211 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id); 1212 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1213 mr_cache_put(&c->_c); 1214 1215 return 0; 1216 } 1217 1218 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1219 struct mfcctl *mfc, int mrtsock, int parent) 1220 { 1221 struct mfc_cache *uc, *c; 1222 struct mr_mfc *_uc; 1223 bool found; 1224 int ret; 1225 1226 if (mfc->mfcc_parent >= MAXVIFS) 1227 return -ENFILE; 1228 1229 /* The entries are added/deleted only under RTNL */ 1230 rcu_read_lock(); 1231 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1232 mfc->mfcc_mcastgrp.s_addr, parent); 1233 rcu_read_unlock(); 1234 if (c) { 1235 write_lock_bh(&mrt_lock); 1236 c->_c.mfc_parent = mfc->mfcc_parent; 1237 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1238 if (!mrtsock) 1239 c->_c.mfc_flags |= MFC_STATIC; 1240 write_unlock_bh(&mrt_lock); 1241 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c, 1242 mrt->id); 1243 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1244 return 0; 1245 } 1246 1247 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && 1248 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1249 return -EINVAL; 1250 1251 c = ipmr_cache_alloc(); 1252 if (!c) 1253 return -ENOMEM; 1254 1255 c->mfc_origin = mfc->mfcc_origin.s_addr; 1256 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1257 c->_c.mfc_parent = mfc->mfcc_parent; 1258 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1259 if (!mrtsock) 1260 c->_c.mfc_flags |= MFC_STATIC; 1261 1262 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode, 1263 ipmr_rht_params); 1264 if (ret) { 1265 pr_err("ipmr: rhtable insert error %d\n", ret); 1266 ipmr_cache_free(c); 1267 return ret; 1268 } 1269 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list); 1270 /* Check to see if we resolved a queued list. If so we 1271 * need to send on the frames and tidy up. 1272 */ 1273 found = false; 1274 spin_lock_bh(&mfc_unres_lock); 1275 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) { 1276 uc = (struct mfc_cache *)_uc; 1277 if (uc->mfc_origin == c->mfc_origin && 1278 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1279 list_del(&_uc->list); 1280 atomic_dec(&mrt->cache_resolve_queue_len); 1281 found = true; 1282 break; 1283 } 1284 } 1285 if (list_empty(&mrt->mfc_unres_queue)) 1286 del_timer(&mrt->ipmr_expire_timer); 1287 spin_unlock_bh(&mfc_unres_lock); 1288 1289 if (found) { 1290 ipmr_cache_resolve(net, mrt, uc, c); 1291 ipmr_cache_free(uc); 1292 } 1293 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id); 1294 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1295 return 0; 1296 } 1297 1298 /* Close the multicast socket, and clear the vif tables etc */ 1299 static void mroute_clean_tables(struct mr_table *mrt, bool all) 1300 { 1301 struct net *net = read_pnet(&mrt->net); 1302 struct mr_mfc *c, *tmp; 1303 struct mfc_cache *cache; 1304 LIST_HEAD(list); 1305 int i; 1306 1307 /* Shut down all active vif entries */ 1308 for (i = 0; i < mrt->maxvif; i++) { 1309 if (!all && (mrt->vif_table[i].flags & VIFF_STATIC)) 1310 continue; 1311 vif_delete(mrt, i, 0, &list); 1312 } 1313 unregister_netdevice_many(&list); 1314 1315 /* Wipe the cache */ 1316 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) { 1317 if (!all && (c->mfc_flags & MFC_STATIC)) 1318 continue; 1319 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params); 1320 list_del_rcu(&c->list); 1321 cache = (struct mfc_cache *)c; 1322 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache, 1323 mrt->id); 1324 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1325 mr_cache_put(c); 1326 } 1327 1328 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1329 spin_lock_bh(&mfc_unres_lock); 1330 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) { 1331 list_del(&c->list); 1332 cache = (struct mfc_cache *)c; 1333 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1334 ipmr_destroy_unres(mrt, cache); 1335 } 1336 spin_unlock_bh(&mfc_unres_lock); 1337 } 1338 } 1339 1340 /* called from ip_ra_control(), before an RCU grace period, 1341 * we dont need to call synchronize_rcu() here 1342 */ 1343 static void mrtsock_destruct(struct sock *sk) 1344 { 1345 struct net *net = sock_net(sk); 1346 struct mr_table *mrt; 1347 1348 rtnl_lock(); 1349 ipmr_for_each_table(mrt, net) { 1350 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1351 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1352 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1353 NETCONFA_MC_FORWARDING, 1354 NETCONFA_IFINDEX_ALL, 1355 net->ipv4.devconf_all); 1356 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1357 mroute_clean_tables(mrt, false); 1358 } 1359 } 1360 rtnl_unlock(); 1361 } 1362 1363 /* Socket options and virtual interface manipulation. The whole 1364 * virtual interface system is a complete heap, but unfortunately 1365 * that's how BSD mrouted happens to think. Maybe one day with a proper 1366 * MOSPF/PIM router set up we can clean this up. 1367 */ 1368 1369 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, 1370 unsigned int optlen) 1371 { 1372 struct net *net = sock_net(sk); 1373 int val, ret = 0, parent = 0; 1374 struct mr_table *mrt; 1375 struct vifctl vif; 1376 struct mfcctl mfc; 1377 bool do_wrvifwhole; 1378 u32 uval; 1379 1380 /* There's one exception to the lock - MRT_DONE which needs to unlock */ 1381 rtnl_lock(); 1382 if (sk->sk_type != SOCK_RAW || 1383 inet_sk(sk)->inet_num != IPPROTO_IGMP) { 1384 ret = -EOPNOTSUPP; 1385 goto out_unlock; 1386 } 1387 1388 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1389 if (!mrt) { 1390 ret = -ENOENT; 1391 goto out_unlock; 1392 } 1393 if (optname != MRT_INIT) { 1394 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1395 !ns_capable(net->user_ns, CAP_NET_ADMIN)) { 1396 ret = -EACCES; 1397 goto out_unlock; 1398 } 1399 } 1400 1401 switch (optname) { 1402 case MRT_INIT: 1403 if (optlen != sizeof(int)) { 1404 ret = -EINVAL; 1405 break; 1406 } 1407 if (rtnl_dereference(mrt->mroute_sk)) { 1408 ret = -EADDRINUSE; 1409 break; 1410 } 1411 1412 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1413 if (ret == 0) { 1414 rcu_assign_pointer(mrt->mroute_sk, sk); 1415 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1416 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1417 NETCONFA_MC_FORWARDING, 1418 NETCONFA_IFINDEX_ALL, 1419 net->ipv4.devconf_all); 1420 } 1421 break; 1422 case MRT_DONE: 1423 if (sk != rcu_access_pointer(mrt->mroute_sk)) { 1424 ret = -EACCES; 1425 } else { 1426 /* We need to unlock here because mrtsock_destruct takes 1427 * care of rtnl itself and we can't change that due to 1428 * the IP_ROUTER_ALERT setsockopt which runs without it. 1429 */ 1430 rtnl_unlock(); 1431 ret = ip_ra_control(sk, 0, NULL); 1432 goto out; 1433 } 1434 break; 1435 case MRT_ADD_VIF: 1436 case MRT_DEL_VIF: 1437 if (optlen != sizeof(vif)) { 1438 ret = -EINVAL; 1439 break; 1440 } 1441 if (copy_from_user(&vif, optval, sizeof(vif))) { 1442 ret = -EFAULT; 1443 break; 1444 } 1445 if (vif.vifc_vifi >= MAXVIFS) { 1446 ret = -ENFILE; 1447 break; 1448 } 1449 if (optname == MRT_ADD_VIF) { 1450 ret = vif_add(net, mrt, &vif, 1451 sk == rtnl_dereference(mrt->mroute_sk)); 1452 } else { 1453 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1454 } 1455 break; 1456 /* Manipulate the forwarding caches. These live 1457 * in a sort of kernel/user symbiosis. 1458 */ 1459 case MRT_ADD_MFC: 1460 case MRT_DEL_MFC: 1461 parent = -1; 1462 /* fall through */ 1463 case MRT_ADD_MFC_PROXY: 1464 case MRT_DEL_MFC_PROXY: 1465 if (optlen != sizeof(mfc)) { 1466 ret = -EINVAL; 1467 break; 1468 } 1469 if (copy_from_user(&mfc, optval, sizeof(mfc))) { 1470 ret = -EFAULT; 1471 break; 1472 } 1473 if (parent == 0) 1474 parent = mfc.mfcc_parent; 1475 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) 1476 ret = ipmr_mfc_delete(mrt, &mfc, parent); 1477 else 1478 ret = ipmr_mfc_add(net, mrt, &mfc, 1479 sk == rtnl_dereference(mrt->mroute_sk), 1480 parent); 1481 break; 1482 /* Control PIM assert. */ 1483 case MRT_ASSERT: 1484 if (optlen != sizeof(val)) { 1485 ret = -EINVAL; 1486 break; 1487 } 1488 if (get_user(val, (int __user *)optval)) { 1489 ret = -EFAULT; 1490 break; 1491 } 1492 mrt->mroute_do_assert = val; 1493 break; 1494 case MRT_PIM: 1495 if (!ipmr_pimsm_enabled()) { 1496 ret = -ENOPROTOOPT; 1497 break; 1498 } 1499 if (optlen != sizeof(val)) { 1500 ret = -EINVAL; 1501 break; 1502 } 1503 if (get_user(val, (int __user *)optval)) { 1504 ret = -EFAULT; 1505 break; 1506 } 1507 1508 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE); 1509 val = !!val; 1510 if (val != mrt->mroute_do_pim) { 1511 mrt->mroute_do_pim = val; 1512 mrt->mroute_do_assert = val; 1513 mrt->mroute_do_wrvifwhole = do_wrvifwhole; 1514 } 1515 break; 1516 case MRT_TABLE: 1517 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) { 1518 ret = -ENOPROTOOPT; 1519 break; 1520 } 1521 if (optlen != sizeof(uval)) { 1522 ret = -EINVAL; 1523 break; 1524 } 1525 if (get_user(uval, (u32 __user *)optval)) { 1526 ret = -EFAULT; 1527 break; 1528 } 1529 1530 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1531 ret = -EBUSY; 1532 } else { 1533 mrt = ipmr_new_table(net, uval); 1534 if (IS_ERR(mrt)) 1535 ret = PTR_ERR(mrt); 1536 else 1537 raw_sk(sk)->ipmr_table = uval; 1538 } 1539 break; 1540 /* Spurious command, or MRT_VERSION which you cannot set. */ 1541 default: 1542 ret = -ENOPROTOOPT; 1543 } 1544 out_unlock: 1545 rtnl_unlock(); 1546 out: 1547 return ret; 1548 } 1549 1550 /* Getsock opt support for the multicast routing system. */ 1551 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) 1552 { 1553 int olr; 1554 int val; 1555 struct net *net = sock_net(sk); 1556 struct mr_table *mrt; 1557 1558 if (sk->sk_type != SOCK_RAW || 1559 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1560 return -EOPNOTSUPP; 1561 1562 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1563 if (!mrt) 1564 return -ENOENT; 1565 1566 switch (optname) { 1567 case MRT_VERSION: 1568 val = 0x0305; 1569 break; 1570 case MRT_PIM: 1571 if (!ipmr_pimsm_enabled()) 1572 return -ENOPROTOOPT; 1573 val = mrt->mroute_do_pim; 1574 break; 1575 case MRT_ASSERT: 1576 val = mrt->mroute_do_assert; 1577 break; 1578 default: 1579 return -ENOPROTOOPT; 1580 } 1581 1582 if (get_user(olr, optlen)) 1583 return -EFAULT; 1584 olr = min_t(unsigned int, olr, sizeof(int)); 1585 if (olr < 0) 1586 return -EINVAL; 1587 if (put_user(olr, optlen)) 1588 return -EFAULT; 1589 if (copy_to_user(optval, &val, olr)) 1590 return -EFAULT; 1591 return 0; 1592 } 1593 1594 /* The IP multicast ioctl support routines. */ 1595 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) 1596 { 1597 struct sioc_sg_req sr; 1598 struct sioc_vif_req vr; 1599 struct vif_device *vif; 1600 struct mfc_cache *c; 1601 struct net *net = sock_net(sk); 1602 struct mr_table *mrt; 1603 1604 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1605 if (!mrt) 1606 return -ENOENT; 1607 1608 switch (cmd) { 1609 case SIOCGETVIFCNT: 1610 if (copy_from_user(&vr, arg, sizeof(vr))) 1611 return -EFAULT; 1612 if (vr.vifi >= mrt->maxvif) 1613 return -EINVAL; 1614 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif); 1615 read_lock(&mrt_lock); 1616 vif = &mrt->vif_table[vr.vifi]; 1617 if (VIF_EXISTS(mrt, vr.vifi)) { 1618 vr.icount = vif->pkt_in; 1619 vr.ocount = vif->pkt_out; 1620 vr.ibytes = vif->bytes_in; 1621 vr.obytes = vif->bytes_out; 1622 read_unlock(&mrt_lock); 1623 1624 if (copy_to_user(arg, &vr, sizeof(vr))) 1625 return -EFAULT; 1626 return 0; 1627 } 1628 read_unlock(&mrt_lock); 1629 return -EADDRNOTAVAIL; 1630 case SIOCGETSGCNT: 1631 if (copy_from_user(&sr, arg, sizeof(sr))) 1632 return -EFAULT; 1633 1634 rcu_read_lock(); 1635 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1636 if (c) { 1637 sr.pktcnt = c->_c.mfc_un.res.pkt; 1638 sr.bytecnt = c->_c.mfc_un.res.bytes; 1639 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1640 rcu_read_unlock(); 1641 1642 if (copy_to_user(arg, &sr, sizeof(sr))) 1643 return -EFAULT; 1644 return 0; 1645 } 1646 rcu_read_unlock(); 1647 return -EADDRNOTAVAIL; 1648 default: 1649 return -ENOIOCTLCMD; 1650 } 1651 } 1652 1653 #ifdef CONFIG_COMPAT 1654 struct compat_sioc_sg_req { 1655 struct in_addr src; 1656 struct in_addr grp; 1657 compat_ulong_t pktcnt; 1658 compat_ulong_t bytecnt; 1659 compat_ulong_t wrong_if; 1660 }; 1661 1662 struct compat_sioc_vif_req { 1663 vifi_t vifi; /* Which iface */ 1664 compat_ulong_t icount; 1665 compat_ulong_t ocount; 1666 compat_ulong_t ibytes; 1667 compat_ulong_t obytes; 1668 }; 1669 1670 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1671 { 1672 struct compat_sioc_sg_req sr; 1673 struct compat_sioc_vif_req vr; 1674 struct vif_device *vif; 1675 struct mfc_cache *c; 1676 struct net *net = sock_net(sk); 1677 struct mr_table *mrt; 1678 1679 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1680 if (!mrt) 1681 return -ENOENT; 1682 1683 switch (cmd) { 1684 case SIOCGETVIFCNT: 1685 if (copy_from_user(&vr, arg, sizeof(vr))) 1686 return -EFAULT; 1687 if (vr.vifi >= mrt->maxvif) 1688 return -EINVAL; 1689 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif); 1690 read_lock(&mrt_lock); 1691 vif = &mrt->vif_table[vr.vifi]; 1692 if (VIF_EXISTS(mrt, vr.vifi)) { 1693 vr.icount = vif->pkt_in; 1694 vr.ocount = vif->pkt_out; 1695 vr.ibytes = vif->bytes_in; 1696 vr.obytes = vif->bytes_out; 1697 read_unlock(&mrt_lock); 1698 1699 if (copy_to_user(arg, &vr, sizeof(vr))) 1700 return -EFAULT; 1701 return 0; 1702 } 1703 read_unlock(&mrt_lock); 1704 return -EADDRNOTAVAIL; 1705 case SIOCGETSGCNT: 1706 if (copy_from_user(&sr, arg, sizeof(sr))) 1707 return -EFAULT; 1708 1709 rcu_read_lock(); 1710 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1711 if (c) { 1712 sr.pktcnt = c->_c.mfc_un.res.pkt; 1713 sr.bytecnt = c->_c.mfc_un.res.bytes; 1714 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1715 rcu_read_unlock(); 1716 1717 if (copy_to_user(arg, &sr, sizeof(sr))) 1718 return -EFAULT; 1719 return 0; 1720 } 1721 rcu_read_unlock(); 1722 return -EADDRNOTAVAIL; 1723 default: 1724 return -ENOIOCTLCMD; 1725 } 1726 } 1727 #endif 1728 1729 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1730 { 1731 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1732 struct net *net = dev_net(dev); 1733 struct mr_table *mrt; 1734 struct vif_device *v; 1735 int ct; 1736 1737 if (event != NETDEV_UNREGISTER) 1738 return NOTIFY_DONE; 1739 1740 ipmr_for_each_table(mrt, net) { 1741 v = &mrt->vif_table[0]; 1742 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1743 if (v->dev == dev) 1744 vif_delete(mrt, ct, 1, NULL); 1745 } 1746 } 1747 return NOTIFY_DONE; 1748 } 1749 1750 static struct notifier_block ip_mr_notifier = { 1751 .notifier_call = ipmr_device_event, 1752 }; 1753 1754 /* Encapsulate a packet by attaching a valid IPIP header to it. 1755 * This avoids tunnel drivers and other mess and gives us the speed so 1756 * important for multicast video. 1757 */ 1758 static void ip_encap(struct net *net, struct sk_buff *skb, 1759 __be32 saddr, __be32 daddr) 1760 { 1761 struct iphdr *iph; 1762 const struct iphdr *old_iph = ip_hdr(skb); 1763 1764 skb_push(skb, sizeof(struct iphdr)); 1765 skb->transport_header = skb->network_header; 1766 skb_reset_network_header(skb); 1767 iph = ip_hdr(skb); 1768 1769 iph->version = 4; 1770 iph->tos = old_iph->tos; 1771 iph->ttl = old_iph->ttl; 1772 iph->frag_off = 0; 1773 iph->daddr = daddr; 1774 iph->saddr = saddr; 1775 iph->protocol = IPPROTO_IPIP; 1776 iph->ihl = 5; 1777 iph->tot_len = htons(skb->len); 1778 ip_select_ident(net, skb, NULL); 1779 ip_send_check(iph); 1780 1781 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1782 nf_reset(skb); 1783 } 1784 1785 static inline int ipmr_forward_finish(struct net *net, struct sock *sk, 1786 struct sk_buff *skb) 1787 { 1788 struct ip_options *opt = &(IPCB(skb)->opt); 1789 1790 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS); 1791 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len); 1792 1793 if (unlikely(opt->optlen)) 1794 ip_forward_options(skb); 1795 1796 return dst_output(net, sk, skb); 1797 } 1798 1799 #ifdef CONFIG_NET_SWITCHDEV 1800 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1801 int in_vifi, int out_vifi) 1802 { 1803 struct vif_device *out_vif = &mrt->vif_table[out_vifi]; 1804 struct vif_device *in_vif = &mrt->vif_table[in_vifi]; 1805 1806 if (!skb->offload_l3_fwd_mark) 1807 return false; 1808 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len) 1809 return false; 1810 return netdev_phys_item_id_same(&out_vif->dev_parent_id, 1811 &in_vif->dev_parent_id); 1812 } 1813 #else 1814 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1815 int in_vifi, int out_vifi) 1816 { 1817 return false; 1818 } 1819 #endif 1820 1821 /* Processing handlers for ipmr_forward */ 1822 1823 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1824 int in_vifi, struct sk_buff *skb, int vifi) 1825 { 1826 const struct iphdr *iph = ip_hdr(skb); 1827 struct vif_device *vif = &mrt->vif_table[vifi]; 1828 struct net_device *dev; 1829 struct rtable *rt; 1830 struct flowi4 fl4; 1831 int encap = 0; 1832 1833 if (!vif->dev) 1834 goto out_free; 1835 1836 if (vif->flags & VIFF_REGISTER) { 1837 vif->pkt_out++; 1838 vif->bytes_out += skb->len; 1839 vif->dev->stats.tx_bytes += skb->len; 1840 vif->dev->stats.tx_packets++; 1841 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1842 goto out_free; 1843 } 1844 1845 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi)) 1846 goto out_free; 1847 1848 if (vif->flags & VIFF_TUNNEL) { 1849 rt = ip_route_output_ports(net, &fl4, NULL, 1850 vif->remote, vif->local, 1851 0, 0, 1852 IPPROTO_IPIP, 1853 RT_TOS(iph->tos), vif->link); 1854 if (IS_ERR(rt)) 1855 goto out_free; 1856 encap = sizeof(struct iphdr); 1857 } else { 1858 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1859 0, 0, 1860 IPPROTO_IPIP, 1861 RT_TOS(iph->tos), vif->link); 1862 if (IS_ERR(rt)) 1863 goto out_free; 1864 } 1865 1866 dev = rt->dst.dev; 1867 1868 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1869 /* Do not fragment multicasts. Alas, IPv4 does not 1870 * allow to send ICMP, so that packets will disappear 1871 * to blackhole. 1872 */ 1873 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 1874 ip_rt_put(rt); 1875 goto out_free; 1876 } 1877 1878 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1879 1880 if (skb_cow(skb, encap)) { 1881 ip_rt_put(rt); 1882 goto out_free; 1883 } 1884 1885 vif->pkt_out++; 1886 vif->bytes_out += skb->len; 1887 1888 skb_dst_drop(skb); 1889 skb_dst_set(skb, &rt->dst); 1890 ip_decrease_ttl(ip_hdr(skb)); 1891 1892 /* FIXME: forward and output firewalls used to be called here. 1893 * What do we do with netfilter? -- RR 1894 */ 1895 if (vif->flags & VIFF_TUNNEL) { 1896 ip_encap(net, skb, vif->local, vif->remote); 1897 /* FIXME: extra output firewall step used to be here. --RR */ 1898 vif->dev->stats.tx_packets++; 1899 vif->dev->stats.tx_bytes += skb->len; 1900 } 1901 1902 IPCB(skb)->flags |= IPSKB_FORWARDED; 1903 1904 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1905 * not only before forwarding, but after forwarding on all output 1906 * interfaces. It is clear, if mrouter runs a multicasting 1907 * program, it should receive packets not depending to what interface 1908 * program is joined. 1909 * If we will not make it, the program will have to join on all 1910 * interfaces. On the other hand, multihoming host (or router, but 1911 * not mrouter) cannot join to more than one interface - it will 1912 * result in receiving multiple packets. 1913 */ 1914 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, 1915 net, NULL, skb, skb->dev, dev, 1916 ipmr_forward_finish); 1917 return; 1918 1919 out_free: 1920 kfree_skb(skb); 1921 } 1922 1923 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev) 1924 { 1925 int ct; 1926 1927 for (ct = mrt->maxvif-1; ct >= 0; ct--) { 1928 if (mrt->vif_table[ct].dev == dev) 1929 break; 1930 } 1931 return ct; 1932 } 1933 1934 /* "local" means that we should preserve one skb (for local delivery) */ 1935 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 1936 struct net_device *dev, struct sk_buff *skb, 1937 struct mfc_cache *c, int local) 1938 { 1939 int true_vifi = ipmr_find_vif(mrt, dev); 1940 int psend = -1; 1941 int vif, ct; 1942 1943 vif = c->_c.mfc_parent; 1944 c->_c.mfc_un.res.pkt++; 1945 c->_c.mfc_un.res.bytes += skb->len; 1946 c->_c.mfc_un.res.lastuse = jiffies; 1947 1948 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { 1949 struct mfc_cache *cache_proxy; 1950 1951 /* For an (*,G) entry, we only check that the incomming 1952 * interface is part of the static tree. 1953 */ 1954 cache_proxy = mr_mfc_find_any_parent(mrt, vif); 1955 if (cache_proxy && 1956 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255) 1957 goto forward; 1958 } 1959 1960 /* Wrong interface: drop packet and (maybe) send PIM assert. */ 1961 if (mrt->vif_table[vif].dev != dev) { 1962 if (rt_is_output_route(skb_rtable(skb))) { 1963 /* It is our own packet, looped back. 1964 * Very complicated situation... 1965 * 1966 * The best workaround until routing daemons will be 1967 * fixed is not to redistribute packet, if it was 1968 * send through wrong interface. It means, that 1969 * multicast applications WILL NOT work for 1970 * (S,G), which have default multicast route pointing 1971 * to wrong oif. In any case, it is not a good 1972 * idea to use multicasting applications on router. 1973 */ 1974 goto dont_forward; 1975 } 1976 1977 c->_c.mfc_un.res.wrong_if++; 1978 1979 if (true_vifi >= 0 && mrt->mroute_do_assert && 1980 /* pimsm uses asserts, when switching from RPT to SPT, 1981 * so that we cannot check that packet arrived on an oif. 1982 * It is bad, but otherwise we would need to move pretty 1983 * large chunk of pimd to kernel. Ough... --ANK 1984 */ 1985 (mrt->mroute_do_pim || 1986 c->_c.mfc_un.res.ttls[true_vifi] < 255) && 1987 time_after(jiffies, 1988 c->_c.mfc_un.res.last_assert + 1989 MFC_ASSERT_THRESH)) { 1990 c->_c.mfc_un.res.last_assert = jiffies; 1991 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 1992 if (mrt->mroute_do_wrvifwhole) 1993 ipmr_cache_report(mrt, skb, true_vifi, 1994 IGMPMSG_WRVIFWHOLE); 1995 } 1996 goto dont_forward; 1997 } 1998 1999 forward: 2000 mrt->vif_table[vif].pkt_in++; 2001 mrt->vif_table[vif].bytes_in += skb->len; 2002 2003 /* Forward the frame */ 2004 if (c->mfc_origin == htonl(INADDR_ANY) && 2005 c->mfc_mcastgrp == htonl(INADDR_ANY)) { 2006 if (true_vifi >= 0 && 2007 true_vifi != c->_c.mfc_parent && 2008 ip_hdr(skb)->ttl > 2009 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) { 2010 /* It's an (*,*) entry and the packet is not coming from 2011 * the upstream: forward the packet to the upstream 2012 * only. 2013 */ 2014 psend = c->_c.mfc_parent; 2015 goto last_forward; 2016 } 2017 goto dont_forward; 2018 } 2019 for (ct = c->_c.mfc_un.res.maxvif - 1; 2020 ct >= c->_c.mfc_un.res.minvif; ct--) { 2021 /* For (*,G) entry, don't forward to the incoming interface */ 2022 if ((c->mfc_origin != htonl(INADDR_ANY) || 2023 ct != true_vifi) && 2024 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) { 2025 if (psend != -1) { 2026 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2027 2028 if (skb2) 2029 ipmr_queue_xmit(net, mrt, true_vifi, 2030 skb2, psend); 2031 } 2032 psend = ct; 2033 } 2034 } 2035 last_forward: 2036 if (psend != -1) { 2037 if (local) { 2038 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2039 2040 if (skb2) 2041 ipmr_queue_xmit(net, mrt, true_vifi, skb2, 2042 psend); 2043 } else { 2044 ipmr_queue_xmit(net, mrt, true_vifi, skb, psend); 2045 return; 2046 } 2047 } 2048 2049 dont_forward: 2050 if (!local) 2051 kfree_skb(skb); 2052 } 2053 2054 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 2055 { 2056 struct rtable *rt = skb_rtable(skb); 2057 struct iphdr *iph = ip_hdr(skb); 2058 struct flowi4 fl4 = { 2059 .daddr = iph->daddr, 2060 .saddr = iph->saddr, 2061 .flowi4_tos = RT_TOS(iph->tos), 2062 .flowi4_oif = (rt_is_output_route(rt) ? 2063 skb->dev->ifindex : 0), 2064 .flowi4_iif = (rt_is_output_route(rt) ? 2065 LOOPBACK_IFINDEX : 2066 skb->dev->ifindex), 2067 .flowi4_mark = skb->mark, 2068 }; 2069 struct mr_table *mrt; 2070 int err; 2071 2072 err = ipmr_fib_lookup(net, &fl4, &mrt); 2073 if (err) 2074 return ERR_PTR(err); 2075 return mrt; 2076 } 2077 2078 /* Multicast packets for forwarding arrive here 2079 * Called with rcu_read_lock(); 2080 */ 2081 int ip_mr_input(struct sk_buff *skb) 2082 { 2083 struct mfc_cache *cache; 2084 struct net *net = dev_net(skb->dev); 2085 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 2086 struct mr_table *mrt; 2087 struct net_device *dev; 2088 2089 /* skb->dev passed in is the loX master dev for vrfs. 2090 * As there are no vifs associated with loopback devices, 2091 * get the proper interface that does have a vif associated with it. 2092 */ 2093 dev = skb->dev; 2094 if (netif_is_l3_master(skb->dev)) { 2095 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif); 2096 if (!dev) { 2097 kfree_skb(skb); 2098 return -ENODEV; 2099 } 2100 } 2101 2102 /* Packet is looped back after forward, it should not be 2103 * forwarded second time, but still can be delivered locally. 2104 */ 2105 if (IPCB(skb)->flags & IPSKB_FORWARDED) 2106 goto dont_forward; 2107 2108 mrt = ipmr_rt_fib_lookup(net, skb); 2109 if (IS_ERR(mrt)) { 2110 kfree_skb(skb); 2111 return PTR_ERR(mrt); 2112 } 2113 if (!local) { 2114 if (IPCB(skb)->opt.router_alert) { 2115 if (ip_call_ra_chain(skb)) 2116 return 0; 2117 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 2118 /* IGMPv1 (and broken IGMPv2 implementations sort of 2119 * Cisco IOS <= 11.2(8)) do not put router alert 2120 * option to IGMP packets destined to routable 2121 * groups. It is very bad, because it means 2122 * that we can forward NO IGMP messages. 2123 */ 2124 struct sock *mroute_sk; 2125 2126 mroute_sk = rcu_dereference(mrt->mroute_sk); 2127 if (mroute_sk) { 2128 nf_reset(skb); 2129 raw_rcv(mroute_sk, skb); 2130 return 0; 2131 } 2132 } 2133 } 2134 2135 /* already under rcu_read_lock() */ 2136 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 2137 if (!cache) { 2138 int vif = ipmr_find_vif(mrt, dev); 2139 2140 if (vif >= 0) 2141 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 2142 vif); 2143 } 2144 2145 /* No usable cache entry */ 2146 if (!cache) { 2147 int vif; 2148 2149 if (local) { 2150 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2151 ip_local_deliver(skb); 2152 if (!skb2) 2153 return -ENOBUFS; 2154 skb = skb2; 2155 } 2156 2157 read_lock(&mrt_lock); 2158 vif = ipmr_find_vif(mrt, dev); 2159 if (vif >= 0) { 2160 int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev); 2161 read_unlock(&mrt_lock); 2162 2163 return err2; 2164 } 2165 read_unlock(&mrt_lock); 2166 kfree_skb(skb); 2167 return -ENODEV; 2168 } 2169 2170 read_lock(&mrt_lock); 2171 ip_mr_forward(net, mrt, dev, skb, cache, local); 2172 read_unlock(&mrt_lock); 2173 2174 if (local) 2175 return ip_local_deliver(skb); 2176 2177 return 0; 2178 2179 dont_forward: 2180 if (local) 2181 return ip_local_deliver(skb); 2182 kfree_skb(skb); 2183 return 0; 2184 } 2185 2186 #ifdef CONFIG_IP_PIMSM_V1 2187 /* Handle IGMP messages of PIMv1 */ 2188 int pim_rcv_v1(struct sk_buff *skb) 2189 { 2190 struct igmphdr *pim; 2191 struct net *net = dev_net(skb->dev); 2192 struct mr_table *mrt; 2193 2194 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2195 goto drop; 2196 2197 pim = igmp_hdr(skb); 2198 2199 mrt = ipmr_rt_fib_lookup(net, skb); 2200 if (IS_ERR(mrt)) 2201 goto drop; 2202 if (!mrt->mroute_do_pim || 2203 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 2204 goto drop; 2205 2206 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2207 drop: 2208 kfree_skb(skb); 2209 } 2210 return 0; 2211 } 2212 #endif 2213 2214 #ifdef CONFIG_IP_PIMSM_V2 2215 static int pim_rcv(struct sk_buff *skb) 2216 { 2217 struct pimreghdr *pim; 2218 struct net *net = dev_net(skb->dev); 2219 struct mr_table *mrt; 2220 2221 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2222 goto drop; 2223 2224 pim = (struct pimreghdr *)skb_transport_header(skb); 2225 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) || 2226 (pim->flags & PIM_NULL_REGISTER) || 2227 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 2228 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 2229 goto drop; 2230 2231 mrt = ipmr_rt_fib_lookup(net, skb); 2232 if (IS_ERR(mrt)) 2233 goto drop; 2234 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2235 drop: 2236 kfree_skb(skb); 2237 } 2238 return 0; 2239 } 2240 #endif 2241 2242 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2243 __be32 saddr, __be32 daddr, 2244 struct rtmsg *rtm, u32 portid) 2245 { 2246 struct mfc_cache *cache; 2247 struct mr_table *mrt; 2248 int err; 2249 2250 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2251 if (!mrt) 2252 return -ENOENT; 2253 2254 rcu_read_lock(); 2255 cache = ipmr_cache_find(mrt, saddr, daddr); 2256 if (!cache && skb->dev) { 2257 int vif = ipmr_find_vif(mrt, skb->dev); 2258 2259 if (vif >= 0) 2260 cache = ipmr_cache_find_any(mrt, daddr, vif); 2261 } 2262 if (!cache) { 2263 struct sk_buff *skb2; 2264 struct iphdr *iph; 2265 struct net_device *dev; 2266 int vif = -1; 2267 2268 dev = skb->dev; 2269 read_lock(&mrt_lock); 2270 if (dev) 2271 vif = ipmr_find_vif(mrt, dev); 2272 if (vif < 0) { 2273 read_unlock(&mrt_lock); 2274 rcu_read_unlock(); 2275 return -ENODEV; 2276 } 2277 skb2 = skb_clone(skb, GFP_ATOMIC); 2278 if (!skb2) { 2279 read_unlock(&mrt_lock); 2280 rcu_read_unlock(); 2281 return -ENOMEM; 2282 } 2283 2284 NETLINK_CB(skb2).portid = portid; 2285 skb_push(skb2, sizeof(struct iphdr)); 2286 skb_reset_network_header(skb2); 2287 iph = ip_hdr(skb2); 2288 iph->ihl = sizeof(struct iphdr) >> 2; 2289 iph->saddr = saddr; 2290 iph->daddr = daddr; 2291 iph->version = 0; 2292 err = ipmr_cache_unresolved(mrt, vif, skb2, dev); 2293 read_unlock(&mrt_lock); 2294 rcu_read_unlock(); 2295 return err; 2296 } 2297 2298 read_lock(&mrt_lock); 2299 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm); 2300 read_unlock(&mrt_lock); 2301 rcu_read_unlock(); 2302 return err; 2303 } 2304 2305 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2306 u32 portid, u32 seq, struct mfc_cache *c, int cmd, 2307 int flags) 2308 { 2309 struct nlmsghdr *nlh; 2310 struct rtmsg *rtm; 2311 int err; 2312 2313 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2314 if (!nlh) 2315 return -EMSGSIZE; 2316 2317 rtm = nlmsg_data(nlh); 2318 rtm->rtm_family = RTNL_FAMILY_IPMR; 2319 rtm->rtm_dst_len = 32; 2320 rtm->rtm_src_len = 32; 2321 rtm->rtm_tos = 0; 2322 rtm->rtm_table = mrt->id; 2323 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2324 goto nla_put_failure; 2325 rtm->rtm_type = RTN_MULTICAST; 2326 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2327 if (c->_c.mfc_flags & MFC_STATIC) 2328 rtm->rtm_protocol = RTPROT_STATIC; 2329 else 2330 rtm->rtm_protocol = RTPROT_MROUTED; 2331 rtm->rtm_flags = 0; 2332 2333 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) || 2334 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp)) 2335 goto nla_put_failure; 2336 err = mr_fill_mroute(mrt, skb, &c->_c, rtm); 2337 /* do not break the dump if cache is unresolved */ 2338 if (err < 0 && err != -ENOENT) 2339 goto nla_put_failure; 2340 2341 nlmsg_end(skb, nlh); 2342 return 0; 2343 2344 nla_put_failure: 2345 nlmsg_cancel(skb, nlh); 2346 return -EMSGSIZE; 2347 } 2348 2349 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2350 u32 portid, u32 seq, struct mr_mfc *c, int cmd, 2351 int flags) 2352 { 2353 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c, 2354 cmd, flags); 2355 } 2356 2357 static size_t mroute_msgsize(bool unresolved, int maxvif) 2358 { 2359 size_t len = 2360 NLMSG_ALIGN(sizeof(struct rtmsg)) 2361 + nla_total_size(4) /* RTA_TABLE */ 2362 + nla_total_size(4) /* RTA_SRC */ 2363 + nla_total_size(4) /* RTA_DST */ 2364 ; 2365 2366 if (!unresolved) 2367 len = len 2368 + nla_total_size(4) /* RTA_IIF */ 2369 + nla_total_size(0) /* RTA_MULTIPATH */ 2370 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2371 /* RTA_MFC_STATS */ 2372 + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) 2373 ; 2374 2375 return len; 2376 } 2377 2378 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 2379 int cmd) 2380 { 2381 struct net *net = read_pnet(&mrt->net); 2382 struct sk_buff *skb; 2383 int err = -ENOBUFS; 2384 2385 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS, 2386 mrt->maxvif), 2387 GFP_ATOMIC); 2388 if (!skb) 2389 goto errout; 2390 2391 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2392 if (err < 0) 2393 goto errout; 2394 2395 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); 2396 return; 2397 2398 errout: 2399 kfree_skb(skb); 2400 if (err < 0) 2401 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); 2402 } 2403 2404 static size_t igmpmsg_netlink_msgsize(size_t payloadlen) 2405 { 2406 size_t len = 2407 NLMSG_ALIGN(sizeof(struct rtgenmsg)) 2408 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */ 2409 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */ 2410 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */ 2411 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */ 2412 /* IPMRA_CREPORT_PKT */ 2413 + nla_total_size(payloadlen) 2414 ; 2415 2416 return len; 2417 } 2418 2419 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt) 2420 { 2421 struct net *net = read_pnet(&mrt->net); 2422 struct nlmsghdr *nlh; 2423 struct rtgenmsg *rtgenm; 2424 struct igmpmsg *msg; 2425 struct sk_buff *skb; 2426 struct nlattr *nla; 2427 int payloadlen; 2428 2429 payloadlen = pkt->len - sizeof(struct igmpmsg); 2430 msg = (struct igmpmsg *)skb_network_header(pkt); 2431 2432 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC); 2433 if (!skb) 2434 goto errout; 2435 2436 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT, 2437 sizeof(struct rtgenmsg), 0); 2438 if (!nlh) 2439 goto errout; 2440 rtgenm = nlmsg_data(nlh); 2441 rtgenm->rtgen_family = RTNL_FAMILY_IPMR; 2442 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) || 2443 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) || 2444 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR, 2445 msg->im_src.s_addr) || 2446 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR, 2447 msg->im_dst.s_addr)) 2448 goto nla_put_failure; 2449 2450 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen); 2451 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg), 2452 nla_data(nla), payloadlen)) 2453 goto nla_put_failure; 2454 2455 nlmsg_end(skb, nlh); 2456 2457 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC); 2458 return; 2459 2460 nla_put_failure: 2461 nlmsg_cancel(skb, nlh); 2462 errout: 2463 kfree_skb(skb); 2464 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS); 2465 } 2466 2467 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb, 2468 const struct nlmsghdr *nlh, 2469 struct nlattr **tb, 2470 struct netlink_ext_ack *extack) 2471 { 2472 struct rtmsg *rtm; 2473 int i, err; 2474 2475 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) { 2476 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request"); 2477 return -EINVAL; 2478 } 2479 2480 if (!netlink_strict_get_check(skb)) 2481 return nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, 2482 rtm_ipv4_policy, extack); 2483 2484 rtm = nlmsg_data(nlh); 2485 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) || 2486 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) || 2487 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol || 2488 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) { 2489 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request"); 2490 return -EINVAL; 2491 } 2492 2493 err = nlmsg_parse_strict(nlh, sizeof(*rtm), tb, RTA_MAX, 2494 rtm_ipv4_policy, extack); 2495 if (err) 2496 return err; 2497 2498 if ((tb[RTA_SRC] && !rtm->rtm_src_len) || 2499 (tb[RTA_DST] && !rtm->rtm_dst_len)) { 2500 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4"); 2501 return -EINVAL; 2502 } 2503 2504 for (i = 0; i <= RTA_MAX; i++) { 2505 if (!tb[i]) 2506 continue; 2507 2508 switch (i) { 2509 case RTA_SRC: 2510 case RTA_DST: 2511 case RTA_TABLE: 2512 break; 2513 default: 2514 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request"); 2515 return -EINVAL; 2516 } 2517 } 2518 2519 return 0; 2520 } 2521 2522 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 2523 struct netlink_ext_ack *extack) 2524 { 2525 struct net *net = sock_net(in_skb->sk); 2526 struct nlattr *tb[RTA_MAX + 1]; 2527 struct sk_buff *skb = NULL; 2528 struct mfc_cache *cache; 2529 struct mr_table *mrt; 2530 __be32 src, grp; 2531 u32 tableid; 2532 int err; 2533 2534 err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack); 2535 if (err < 0) 2536 goto errout; 2537 2538 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0; 2539 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0; 2540 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0; 2541 2542 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT); 2543 if (!mrt) { 2544 err = -ENOENT; 2545 goto errout_free; 2546 } 2547 2548 /* entries are added/deleted only under RTNL */ 2549 rcu_read_lock(); 2550 cache = ipmr_cache_find(mrt, src, grp); 2551 rcu_read_unlock(); 2552 if (!cache) { 2553 err = -ENOENT; 2554 goto errout_free; 2555 } 2556 2557 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL); 2558 if (!skb) { 2559 err = -ENOBUFS; 2560 goto errout_free; 2561 } 2562 2563 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid, 2564 nlh->nlmsg_seq, cache, 2565 RTM_NEWROUTE, 0); 2566 if (err < 0) 2567 goto errout_free; 2568 2569 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 2570 2571 errout: 2572 return err; 2573 2574 errout_free: 2575 kfree_skb(skb); 2576 goto errout; 2577 } 2578 2579 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2580 { 2581 struct fib_dump_filter filter = {}; 2582 int err; 2583 2584 if (cb->strict_check) { 2585 err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh, 2586 &filter, cb); 2587 if (err < 0) 2588 return err; 2589 } 2590 2591 if (filter.table_id) { 2592 struct mr_table *mrt; 2593 2594 mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id); 2595 if (!mrt) { 2596 if (filter.dump_all_families) 2597 return skb->len; 2598 2599 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist"); 2600 return -ENOENT; 2601 } 2602 err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute, 2603 &mfc_unres_lock, &filter); 2604 return skb->len ? : err; 2605 } 2606 2607 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter, 2608 _ipmr_fill_mroute, &mfc_unres_lock, &filter); 2609 } 2610 2611 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = { 2612 [RTA_SRC] = { .type = NLA_U32 }, 2613 [RTA_DST] = { .type = NLA_U32 }, 2614 [RTA_IIF] = { .type = NLA_U32 }, 2615 [RTA_TABLE] = { .type = NLA_U32 }, 2616 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 2617 }; 2618 2619 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol) 2620 { 2621 switch (rtm_protocol) { 2622 case RTPROT_STATIC: 2623 case RTPROT_MROUTED: 2624 return true; 2625 } 2626 return false; 2627 } 2628 2629 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc) 2630 { 2631 struct rtnexthop *rtnh = nla_data(nla); 2632 int remaining = nla_len(nla), vifi = 0; 2633 2634 while (rtnh_ok(rtnh, remaining)) { 2635 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops; 2636 if (++vifi == MAXVIFS) 2637 break; 2638 rtnh = rtnh_next(rtnh, &remaining); 2639 } 2640 2641 return remaining > 0 ? -EINVAL : vifi; 2642 } 2643 2644 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */ 2645 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh, 2646 struct mfcctl *mfcc, int *mrtsock, 2647 struct mr_table **mrtret, 2648 struct netlink_ext_ack *extack) 2649 { 2650 struct net_device *dev = NULL; 2651 u32 tblid = RT_TABLE_DEFAULT; 2652 struct mr_table *mrt; 2653 struct nlattr *attr; 2654 struct rtmsg *rtm; 2655 int ret, rem; 2656 2657 ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy, 2658 extack); 2659 if (ret < 0) 2660 goto out; 2661 rtm = nlmsg_data(nlh); 2662 2663 ret = -EINVAL; 2664 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 || 2665 rtm->rtm_type != RTN_MULTICAST || 2666 rtm->rtm_scope != RT_SCOPE_UNIVERSE || 2667 !ipmr_rtm_validate_proto(rtm->rtm_protocol)) 2668 goto out; 2669 2670 memset(mfcc, 0, sizeof(*mfcc)); 2671 mfcc->mfcc_parent = -1; 2672 ret = 0; 2673 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) { 2674 switch (nla_type(attr)) { 2675 case RTA_SRC: 2676 mfcc->mfcc_origin.s_addr = nla_get_be32(attr); 2677 break; 2678 case RTA_DST: 2679 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr); 2680 break; 2681 case RTA_IIF: 2682 dev = __dev_get_by_index(net, nla_get_u32(attr)); 2683 if (!dev) { 2684 ret = -ENODEV; 2685 goto out; 2686 } 2687 break; 2688 case RTA_MULTIPATH: 2689 if (ipmr_nla_get_ttls(attr, mfcc) < 0) { 2690 ret = -EINVAL; 2691 goto out; 2692 } 2693 break; 2694 case RTA_PREFSRC: 2695 ret = 1; 2696 break; 2697 case RTA_TABLE: 2698 tblid = nla_get_u32(attr); 2699 break; 2700 } 2701 } 2702 mrt = ipmr_get_table(net, tblid); 2703 if (!mrt) { 2704 ret = -ENOENT; 2705 goto out; 2706 } 2707 *mrtret = mrt; 2708 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0; 2709 if (dev) 2710 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev); 2711 2712 out: 2713 return ret; 2714 } 2715 2716 /* takes care of both newroute and delroute */ 2717 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh, 2718 struct netlink_ext_ack *extack) 2719 { 2720 struct net *net = sock_net(skb->sk); 2721 int ret, mrtsock, parent; 2722 struct mr_table *tbl; 2723 struct mfcctl mfcc; 2724 2725 mrtsock = 0; 2726 tbl = NULL; 2727 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack); 2728 if (ret < 0) 2729 return ret; 2730 2731 parent = ret ? mfcc.mfcc_parent : -1; 2732 if (nlh->nlmsg_type == RTM_NEWROUTE) 2733 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent); 2734 else 2735 return ipmr_mfc_delete(tbl, &mfcc, parent); 2736 } 2737 2738 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb) 2739 { 2740 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len); 2741 2742 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) || 2743 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) || 2744 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM, 2745 mrt->mroute_reg_vif_num) || 2746 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT, 2747 mrt->mroute_do_assert) || 2748 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) || 2749 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE, 2750 mrt->mroute_do_wrvifwhole)) 2751 return false; 2752 2753 return true; 2754 } 2755 2756 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb) 2757 { 2758 struct nlattr *vif_nest; 2759 struct vif_device *vif; 2760 2761 /* if the VIF doesn't exist just continue */ 2762 if (!VIF_EXISTS(mrt, vifid)) 2763 return true; 2764 2765 vif = &mrt->vif_table[vifid]; 2766 vif_nest = nla_nest_start(skb, IPMRA_VIF); 2767 if (!vif_nest) 2768 return false; 2769 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) || 2770 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) || 2771 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) || 2772 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in, 2773 IPMRA_VIFA_PAD) || 2774 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out, 2775 IPMRA_VIFA_PAD) || 2776 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in, 2777 IPMRA_VIFA_PAD) || 2778 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out, 2779 IPMRA_VIFA_PAD) || 2780 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) || 2781 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) { 2782 nla_nest_cancel(skb, vif_nest); 2783 return false; 2784 } 2785 nla_nest_end(skb, vif_nest); 2786 2787 return true; 2788 } 2789 2790 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh, 2791 struct netlink_ext_ack *extack) 2792 { 2793 struct ifinfomsg *ifm; 2794 2795 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) { 2796 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump"); 2797 return -EINVAL; 2798 } 2799 2800 if (nlmsg_attrlen(nlh, sizeof(*ifm))) { 2801 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump"); 2802 return -EINVAL; 2803 } 2804 2805 ifm = nlmsg_data(nlh); 2806 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags || 2807 ifm->ifi_change || ifm->ifi_index) { 2808 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request"); 2809 return -EINVAL; 2810 } 2811 2812 return 0; 2813 } 2814 2815 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb) 2816 { 2817 struct net *net = sock_net(skb->sk); 2818 struct nlmsghdr *nlh = NULL; 2819 unsigned int t = 0, s_t; 2820 unsigned int e = 0, s_e; 2821 struct mr_table *mrt; 2822 2823 if (cb->strict_check) { 2824 int err = ipmr_valid_dumplink(cb->nlh, cb->extack); 2825 2826 if (err < 0) 2827 return err; 2828 } 2829 2830 s_t = cb->args[0]; 2831 s_e = cb->args[1]; 2832 2833 ipmr_for_each_table(mrt, net) { 2834 struct nlattr *vifs, *af; 2835 struct ifinfomsg *hdr; 2836 u32 i; 2837 2838 if (t < s_t) 2839 goto skip_table; 2840 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, 2841 cb->nlh->nlmsg_seq, RTM_NEWLINK, 2842 sizeof(*hdr), NLM_F_MULTI); 2843 if (!nlh) 2844 break; 2845 2846 hdr = nlmsg_data(nlh); 2847 memset(hdr, 0, sizeof(*hdr)); 2848 hdr->ifi_family = RTNL_FAMILY_IPMR; 2849 2850 af = nla_nest_start(skb, IFLA_AF_SPEC); 2851 if (!af) { 2852 nlmsg_cancel(skb, nlh); 2853 goto out; 2854 } 2855 2856 if (!ipmr_fill_table(mrt, skb)) { 2857 nlmsg_cancel(skb, nlh); 2858 goto out; 2859 } 2860 2861 vifs = nla_nest_start(skb, IPMRA_TABLE_VIFS); 2862 if (!vifs) { 2863 nla_nest_end(skb, af); 2864 nlmsg_end(skb, nlh); 2865 goto out; 2866 } 2867 for (i = 0; i < mrt->maxvif; i++) { 2868 if (e < s_e) 2869 goto skip_entry; 2870 if (!ipmr_fill_vif(mrt, i, skb)) { 2871 nla_nest_end(skb, vifs); 2872 nla_nest_end(skb, af); 2873 nlmsg_end(skb, nlh); 2874 goto out; 2875 } 2876 skip_entry: 2877 e++; 2878 } 2879 s_e = 0; 2880 e = 0; 2881 nla_nest_end(skb, vifs); 2882 nla_nest_end(skb, af); 2883 nlmsg_end(skb, nlh); 2884 skip_table: 2885 t++; 2886 } 2887 2888 out: 2889 cb->args[1] = e; 2890 cb->args[0] = t; 2891 2892 return skb->len; 2893 } 2894 2895 #ifdef CONFIG_PROC_FS 2896 /* The /proc interfaces to multicast routing : 2897 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2898 */ 2899 2900 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2901 __acquires(mrt_lock) 2902 { 2903 struct mr_vif_iter *iter = seq->private; 2904 struct net *net = seq_file_net(seq); 2905 struct mr_table *mrt; 2906 2907 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2908 if (!mrt) 2909 return ERR_PTR(-ENOENT); 2910 2911 iter->mrt = mrt; 2912 2913 read_lock(&mrt_lock); 2914 return mr_vif_seq_start(seq, pos); 2915 } 2916 2917 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2918 __releases(mrt_lock) 2919 { 2920 read_unlock(&mrt_lock); 2921 } 2922 2923 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2924 { 2925 struct mr_vif_iter *iter = seq->private; 2926 struct mr_table *mrt = iter->mrt; 2927 2928 if (v == SEQ_START_TOKEN) { 2929 seq_puts(seq, 2930 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2931 } else { 2932 const struct vif_device *vif = v; 2933 const char *name = vif->dev ? 2934 vif->dev->name : "none"; 2935 2936 seq_printf(seq, 2937 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2938 vif - mrt->vif_table, 2939 name, vif->bytes_in, vif->pkt_in, 2940 vif->bytes_out, vif->pkt_out, 2941 vif->flags, vif->local, vif->remote); 2942 } 2943 return 0; 2944 } 2945 2946 static const struct seq_operations ipmr_vif_seq_ops = { 2947 .start = ipmr_vif_seq_start, 2948 .next = mr_vif_seq_next, 2949 .stop = ipmr_vif_seq_stop, 2950 .show = ipmr_vif_seq_show, 2951 }; 2952 2953 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2954 { 2955 struct net *net = seq_file_net(seq); 2956 struct mr_table *mrt; 2957 2958 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2959 if (!mrt) 2960 return ERR_PTR(-ENOENT); 2961 2962 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock); 2963 } 2964 2965 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2966 { 2967 int n; 2968 2969 if (v == SEQ_START_TOKEN) { 2970 seq_puts(seq, 2971 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2972 } else { 2973 const struct mfc_cache *mfc = v; 2974 const struct mr_mfc_iter *it = seq->private; 2975 const struct mr_table *mrt = it->mrt; 2976 2977 seq_printf(seq, "%08X %08X %-3hd", 2978 (__force u32) mfc->mfc_mcastgrp, 2979 (__force u32) mfc->mfc_origin, 2980 mfc->_c.mfc_parent); 2981 2982 if (it->cache != &mrt->mfc_unres_queue) { 2983 seq_printf(seq, " %8lu %8lu %8lu", 2984 mfc->_c.mfc_un.res.pkt, 2985 mfc->_c.mfc_un.res.bytes, 2986 mfc->_c.mfc_un.res.wrong_if); 2987 for (n = mfc->_c.mfc_un.res.minvif; 2988 n < mfc->_c.mfc_un.res.maxvif; n++) { 2989 if (VIF_EXISTS(mrt, n) && 2990 mfc->_c.mfc_un.res.ttls[n] < 255) 2991 seq_printf(seq, 2992 " %2d:%-3d", 2993 n, mfc->_c.mfc_un.res.ttls[n]); 2994 } 2995 } else { 2996 /* unresolved mfc_caches don't contain 2997 * pkt, bytes and wrong_if values 2998 */ 2999 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 3000 } 3001 seq_putc(seq, '\n'); 3002 } 3003 return 0; 3004 } 3005 3006 static const struct seq_operations ipmr_mfc_seq_ops = { 3007 .start = ipmr_mfc_seq_start, 3008 .next = mr_mfc_seq_next, 3009 .stop = mr_mfc_seq_stop, 3010 .show = ipmr_mfc_seq_show, 3011 }; 3012 #endif 3013 3014 #ifdef CONFIG_IP_PIMSM_V2 3015 static const struct net_protocol pim_protocol = { 3016 .handler = pim_rcv, 3017 .netns_ok = 1, 3018 }; 3019 #endif 3020 3021 static unsigned int ipmr_seq_read(struct net *net) 3022 { 3023 ASSERT_RTNL(); 3024 3025 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net); 3026 } 3027 3028 static int ipmr_dump(struct net *net, struct notifier_block *nb) 3029 { 3030 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump, 3031 ipmr_mr_table_iter, &mrt_lock); 3032 } 3033 3034 static const struct fib_notifier_ops ipmr_notifier_ops_template = { 3035 .family = RTNL_FAMILY_IPMR, 3036 .fib_seq_read = ipmr_seq_read, 3037 .fib_dump = ipmr_dump, 3038 .owner = THIS_MODULE, 3039 }; 3040 3041 static int __net_init ipmr_notifier_init(struct net *net) 3042 { 3043 struct fib_notifier_ops *ops; 3044 3045 net->ipv4.ipmr_seq = 0; 3046 3047 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net); 3048 if (IS_ERR(ops)) 3049 return PTR_ERR(ops); 3050 net->ipv4.ipmr_notifier_ops = ops; 3051 3052 return 0; 3053 } 3054 3055 static void __net_exit ipmr_notifier_exit(struct net *net) 3056 { 3057 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops); 3058 net->ipv4.ipmr_notifier_ops = NULL; 3059 } 3060 3061 /* Setup for IP multicast routing */ 3062 static int __net_init ipmr_net_init(struct net *net) 3063 { 3064 int err; 3065 3066 err = ipmr_notifier_init(net); 3067 if (err) 3068 goto ipmr_notifier_fail; 3069 3070 err = ipmr_rules_init(net); 3071 if (err < 0) 3072 goto ipmr_rules_fail; 3073 3074 #ifdef CONFIG_PROC_FS 3075 err = -ENOMEM; 3076 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops, 3077 sizeof(struct mr_vif_iter))) 3078 goto proc_vif_fail; 3079 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops, 3080 sizeof(struct mr_mfc_iter))) 3081 goto proc_cache_fail; 3082 #endif 3083 return 0; 3084 3085 #ifdef CONFIG_PROC_FS 3086 proc_cache_fail: 3087 remove_proc_entry("ip_mr_vif", net->proc_net); 3088 proc_vif_fail: 3089 ipmr_rules_exit(net); 3090 #endif 3091 ipmr_rules_fail: 3092 ipmr_notifier_exit(net); 3093 ipmr_notifier_fail: 3094 return err; 3095 } 3096 3097 static void __net_exit ipmr_net_exit(struct net *net) 3098 { 3099 #ifdef CONFIG_PROC_FS 3100 remove_proc_entry("ip_mr_cache", net->proc_net); 3101 remove_proc_entry("ip_mr_vif", net->proc_net); 3102 #endif 3103 ipmr_notifier_exit(net); 3104 ipmr_rules_exit(net); 3105 } 3106 3107 static struct pernet_operations ipmr_net_ops = { 3108 .init = ipmr_net_init, 3109 .exit = ipmr_net_exit, 3110 }; 3111 3112 int __init ip_mr_init(void) 3113 { 3114 int err; 3115 3116 mrt_cachep = kmem_cache_create("ip_mrt_cache", 3117 sizeof(struct mfc_cache), 3118 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 3119 NULL); 3120 3121 err = register_pernet_subsys(&ipmr_net_ops); 3122 if (err) 3123 goto reg_pernet_fail; 3124 3125 err = register_netdevice_notifier(&ip_mr_notifier); 3126 if (err) 3127 goto reg_notif_fail; 3128 #ifdef CONFIG_IP_PIMSM_V2 3129 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 3130 pr_err("%s: can't add PIM protocol\n", __func__); 3131 err = -EAGAIN; 3132 goto add_proto_fail; 3133 } 3134 #endif 3135 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 3136 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0); 3137 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE, 3138 ipmr_rtm_route, NULL, 0); 3139 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE, 3140 ipmr_rtm_route, NULL, 0); 3141 3142 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK, 3143 NULL, ipmr_rtm_dumplink, 0); 3144 return 0; 3145 3146 #ifdef CONFIG_IP_PIMSM_V2 3147 add_proto_fail: 3148 unregister_netdevice_notifier(&ip_mr_notifier); 3149 #endif 3150 reg_notif_fail: 3151 unregister_pernet_subsys(&ipmr_net_ops); 3152 reg_pernet_fail: 3153 kmem_cache_destroy(mrt_cachep); 3154 return err; 3155 } 3156