1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * IP multicast routing support for mrouted 3.6/3.8 4 * 5 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 6 * Linux Consultancy and Custom Driver Development 7 * 8 * Fixes: 9 * Michael Chastain : Incorrect size of copying. 10 * Alan Cox : Added the cache manager code 11 * Alan Cox : Fixed the clone/copy bug and device race. 12 * Mike McLagan : Routing by source 13 * Malcolm Beattie : Buffer handling fixes. 14 * Alexey Kuznetsov : Double buffer free and other fixes. 15 * SVR Anand : Fixed several multicast bugs and problems. 16 * Alexey Kuznetsov : Status, optimisations and more. 17 * Brad Parker : Better behaviour on mrouted upcall 18 * overflow. 19 * Carlos Picoto : PIMv1 Support 20 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 21 * Relax this requirement to work with older peers. 22 */ 23 24 #include <linux/uaccess.h> 25 #include <linux/types.h> 26 #include <linux/cache.h> 27 #include <linux/capability.h> 28 #include <linux/errno.h> 29 #include <linux/mm.h> 30 #include <linux/kernel.h> 31 #include <linux/fcntl.h> 32 #include <linux/stat.h> 33 #include <linux/socket.h> 34 #include <linux/in.h> 35 #include <linux/inet.h> 36 #include <linux/netdevice.h> 37 #include <linux/inetdevice.h> 38 #include <linux/igmp.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 #include <linux/mroute.h> 42 #include <linux/init.h> 43 #include <linux/if_ether.h> 44 #include <linux/slab.h> 45 #include <net/net_namespace.h> 46 #include <net/ip.h> 47 #include <net/protocol.h> 48 #include <linux/skbuff.h> 49 #include <net/route.h> 50 #include <net/icmp.h> 51 #include <net/udp.h> 52 #include <net/raw.h> 53 #include <linux/notifier.h> 54 #include <linux/if_arp.h> 55 #include <linux/netfilter_ipv4.h> 56 #include <linux/compat.h> 57 #include <linux/export.h> 58 #include <linux/rhashtable.h> 59 #include <net/ip_tunnels.h> 60 #include <net/checksum.h> 61 #include <net/netlink.h> 62 #include <net/fib_rules.h> 63 #include <linux/netconf.h> 64 #include <net/rtnh.h> 65 #include <net/inet_dscp.h> 66 67 #include <linux/nospec.h> 68 69 struct ipmr_rule { 70 struct fib_rule common; 71 }; 72 73 struct ipmr_result { 74 struct mr_table *mrt; 75 }; 76 77 /* Big lock, protecting vif table, mrt cache and mroute socket state. 78 * Note that the changes are semaphored via rtnl_lock. 79 */ 80 81 static DEFINE_SPINLOCK(mrt_lock); 82 83 static struct net_device *vif_dev_read(const struct vif_device *vif) 84 { 85 return rcu_dereference(vif->dev); 86 } 87 88 /* Multicast router control variables */ 89 90 /* Special spinlock for queue of unresolved entries */ 91 static DEFINE_SPINLOCK(mfc_unres_lock); 92 93 /* We return to original Alan's scheme. Hash table of resolved 94 * entries is changed only in process context and protected 95 * with weak lock mrt_lock. Queue of unresolved entries is protected 96 * with strong spinlock mfc_unres_lock. 97 * 98 * In this case data path is free of exclusive locks at all. 99 */ 100 101 static struct kmem_cache *mrt_cachep __ro_after_init; 102 103 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 104 static void ipmr_free_table(struct mr_table *mrt); 105 106 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 107 struct net_device *dev, struct sk_buff *skb, 108 struct mfc_cache *cache, int local); 109 static int ipmr_cache_report(const struct mr_table *mrt, 110 struct sk_buff *pkt, vifi_t vifi, int assert); 111 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 112 int cmd); 113 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt); 114 static void mroute_clean_tables(struct mr_table *mrt, int flags); 115 static void ipmr_expire_process(struct timer_list *t); 116 117 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 118 #define ipmr_for_each_table(mrt, net) \ 119 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list, \ 120 lockdep_rtnl_is_held() || \ 121 list_empty(&net->ipv4.mr_tables)) 122 123 static struct mr_table *ipmr_mr_table_iter(struct net *net, 124 struct mr_table *mrt) 125 { 126 struct mr_table *ret; 127 128 if (!mrt) 129 ret = list_entry_rcu(net->ipv4.mr_tables.next, 130 struct mr_table, list); 131 else 132 ret = list_entry_rcu(mrt->list.next, 133 struct mr_table, list); 134 135 if (&ret->list == &net->ipv4.mr_tables) 136 return NULL; 137 return ret; 138 } 139 140 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 141 { 142 struct mr_table *mrt; 143 144 ipmr_for_each_table(mrt, net) { 145 if (mrt->id == id) 146 return mrt; 147 } 148 return NULL; 149 } 150 151 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 152 struct mr_table **mrt) 153 { 154 int err; 155 struct ipmr_result res; 156 struct fib_lookup_arg arg = { 157 .result = &res, 158 .flags = FIB_LOOKUP_NOREF, 159 }; 160 161 /* update flow if oif or iif point to device enslaved to l3mdev */ 162 l3mdev_update_flow(net, flowi4_to_flowi(flp4)); 163 164 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 165 flowi4_to_flowi(flp4), 0, &arg); 166 if (err < 0) 167 return err; 168 *mrt = res.mrt; 169 return 0; 170 } 171 172 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 173 int flags, struct fib_lookup_arg *arg) 174 { 175 struct ipmr_result *res = arg->result; 176 struct mr_table *mrt; 177 178 switch (rule->action) { 179 case FR_ACT_TO_TBL: 180 break; 181 case FR_ACT_UNREACHABLE: 182 return -ENETUNREACH; 183 case FR_ACT_PROHIBIT: 184 return -EACCES; 185 case FR_ACT_BLACKHOLE: 186 default: 187 return -EINVAL; 188 } 189 190 arg->table = fib_rule_get_table(rule, arg); 191 192 mrt = ipmr_get_table(rule->fr_net, arg->table); 193 if (!mrt) 194 return -EAGAIN; 195 res->mrt = mrt; 196 return 0; 197 } 198 199 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 200 { 201 return 1; 202 } 203 204 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 205 struct fib_rule_hdr *frh, struct nlattr **tb, 206 struct netlink_ext_ack *extack) 207 { 208 return 0; 209 } 210 211 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 212 struct nlattr **tb) 213 { 214 return 1; 215 } 216 217 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 218 struct fib_rule_hdr *frh) 219 { 220 frh->dst_len = 0; 221 frh->src_len = 0; 222 frh->tos = 0; 223 return 0; 224 } 225 226 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { 227 .family = RTNL_FAMILY_IPMR, 228 .rule_size = sizeof(struct ipmr_rule), 229 .addr_size = sizeof(u32), 230 .action = ipmr_rule_action, 231 .match = ipmr_rule_match, 232 .configure = ipmr_rule_configure, 233 .compare = ipmr_rule_compare, 234 .fill = ipmr_rule_fill, 235 .nlgroup = RTNLGRP_IPV4_RULE, 236 .owner = THIS_MODULE, 237 }; 238 239 static int __net_init ipmr_rules_init(struct net *net) 240 { 241 struct fib_rules_ops *ops; 242 struct mr_table *mrt; 243 int err; 244 245 ops = fib_rules_register(&ipmr_rules_ops_template, net); 246 if (IS_ERR(ops)) 247 return PTR_ERR(ops); 248 249 INIT_LIST_HEAD(&net->ipv4.mr_tables); 250 251 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 252 if (IS_ERR(mrt)) { 253 err = PTR_ERR(mrt); 254 goto err1; 255 } 256 257 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT); 258 if (err < 0) 259 goto err2; 260 261 net->ipv4.mr_rules_ops = ops; 262 return 0; 263 264 err2: 265 rtnl_lock(); 266 ipmr_free_table(mrt); 267 rtnl_unlock(); 268 err1: 269 fib_rules_unregister(ops); 270 return err; 271 } 272 273 static void __net_exit ipmr_rules_exit(struct net *net) 274 { 275 struct mr_table *mrt, *next; 276 277 ASSERT_RTNL(); 278 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 279 list_del(&mrt->list); 280 ipmr_free_table(mrt); 281 } 282 fib_rules_unregister(net->ipv4.mr_rules_ops); 283 } 284 285 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb, 286 struct netlink_ext_ack *extack) 287 { 288 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack); 289 } 290 291 static unsigned int ipmr_rules_seq_read(struct net *net) 292 { 293 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR); 294 } 295 296 bool ipmr_rule_default(const struct fib_rule *rule) 297 { 298 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT; 299 } 300 EXPORT_SYMBOL(ipmr_rule_default); 301 #else 302 #define ipmr_for_each_table(mrt, net) \ 303 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 304 305 static struct mr_table *ipmr_mr_table_iter(struct net *net, 306 struct mr_table *mrt) 307 { 308 if (!mrt) 309 return net->ipv4.mrt; 310 return NULL; 311 } 312 313 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 314 { 315 return net->ipv4.mrt; 316 } 317 318 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 319 struct mr_table **mrt) 320 { 321 *mrt = net->ipv4.mrt; 322 return 0; 323 } 324 325 static int __net_init ipmr_rules_init(struct net *net) 326 { 327 struct mr_table *mrt; 328 329 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 330 if (IS_ERR(mrt)) 331 return PTR_ERR(mrt); 332 net->ipv4.mrt = mrt; 333 return 0; 334 } 335 336 static void __net_exit ipmr_rules_exit(struct net *net) 337 { 338 ASSERT_RTNL(); 339 ipmr_free_table(net->ipv4.mrt); 340 net->ipv4.mrt = NULL; 341 } 342 343 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb, 344 struct netlink_ext_ack *extack) 345 { 346 return 0; 347 } 348 349 static unsigned int ipmr_rules_seq_read(struct net *net) 350 { 351 return 0; 352 } 353 354 bool ipmr_rule_default(const struct fib_rule *rule) 355 { 356 return true; 357 } 358 EXPORT_SYMBOL(ipmr_rule_default); 359 #endif 360 361 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg, 362 const void *ptr) 363 { 364 const struct mfc_cache_cmp_arg *cmparg = arg->key; 365 const struct mfc_cache *c = ptr; 366 367 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp || 368 cmparg->mfc_origin != c->mfc_origin; 369 } 370 371 static const struct rhashtable_params ipmr_rht_params = { 372 .head_offset = offsetof(struct mr_mfc, mnode), 373 .key_offset = offsetof(struct mfc_cache, cmparg), 374 .key_len = sizeof(struct mfc_cache_cmp_arg), 375 .nelem_hint = 3, 376 .obj_cmpfn = ipmr_hash_cmp, 377 .automatic_shrinking = true, 378 }; 379 380 static void ipmr_new_table_set(struct mr_table *mrt, 381 struct net *net) 382 { 383 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 384 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 385 #endif 386 } 387 388 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = { 389 .mfc_mcastgrp = htonl(INADDR_ANY), 390 .mfc_origin = htonl(INADDR_ANY), 391 }; 392 393 static struct mr_table_ops ipmr_mr_table_ops = { 394 .rht_params = &ipmr_rht_params, 395 .cmparg_any = &ipmr_mr_table_ops_cmparg_any, 396 }; 397 398 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 399 { 400 struct mr_table *mrt; 401 402 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ 403 if (id != RT_TABLE_DEFAULT && id >= 1000000000) 404 return ERR_PTR(-EINVAL); 405 406 mrt = ipmr_get_table(net, id); 407 if (mrt) 408 return mrt; 409 410 return mr_table_alloc(net, id, &ipmr_mr_table_ops, 411 ipmr_expire_process, ipmr_new_table_set); 412 } 413 414 static void ipmr_free_table(struct mr_table *mrt) 415 { 416 timer_shutdown_sync(&mrt->ipmr_expire_timer); 417 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC | 418 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC); 419 rhltable_destroy(&mrt->mfc_hash); 420 kfree(mrt); 421 } 422 423 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 424 425 /* Initialize ipmr pimreg/tunnel in_device */ 426 static bool ipmr_init_vif_indev(const struct net_device *dev) 427 { 428 struct in_device *in_dev; 429 430 ASSERT_RTNL(); 431 432 in_dev = __in_dev_get_rtnl(dev); 433 if (!in_dev) 434 return false; 435 ipv4_devconf_setall(in_dev); 436 neigh_parms_data_state_setall(in_dev->arp_parms); 437 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 438 439 return true; 440 } 441 442 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 443 { 444 struct net_device *tunnel_dev, *new_dev; 445 struct ip_tunnel_parm_kern p = { }; 446 int err; 447 448 tunnel_dev = __dev_get_by_name(net, "tunl0"); 449 if (!tunnel_dev) 450 goto out; 451 452 p.iph.daddr = v->vifc_rmt_addr.s_addr; 453 p.iph.saddr = v->vifc_lcl_addr.s_addr; 454 p.iph.version = 4; 455 p.iph.ihl = 5; 456 p.iph.protocol = IPPROTO_IPIP; 457 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 458 459 if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl) 460 goto out; 461 err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p, 462 SIOCADDTUNNEL); 463 if (err) 464 goto out; 465 466 new_dev = __dev_get_by_name(net, p.name); 467 if (!new_dev) 468 goto out; 469 470 new_dev->flags |= IFF_MULTICAST; 471 if (!ipmr_init_vif_indev(new_dev)) 472 goto out_unregister; 473 if (dev_open(new_dev, NULL)) 474 goto out_unregister; 475 dev_hold(new_dev); 476 err = dev_set_allmulti(new_dev, 1); 477 if (err) { 478 dev_close(new_dev); 479 tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p, 480 SIOCDELTUNNEL); 481 dev_put(new_dev); 482 new_dev = ERR_PTR(err); 483 } 484 return new_dev; 485 486 out_unregister: 487 unregister_netdevice(new_dev); 488 out: 489 return ERR_PTR(-ENOBUFS); 490 } 491 492 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 493 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 494 { 495 struct net *net = dev_net(dev); 496 struct mr_table *mrt; 497 struct flowi4 fl4 = { 498 .flowi4_oif = dev->ifindex, 499 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 500 .flowi4_mark = skb->mark, 501 }; 502 int err; 503 504 err = ipmr_fib_lookup(net, &fl4, &mrt); 505 if (err < 0) { 506 kfree_skb(skb); 507 return err; 508 } 509 510 DEV_STATS_ADD(dev, tx_bytes, skb->len); 511 DEV_STATS_INC(dev, tx_packets); 512 rcu_read_lock(); 513 514 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */ 515 ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num), 516 IGMPMSG_WHOLEPKT); 517 518 rcu_read_unlock(); 519 kfree_skb(skb); 520 return NETDEV_TX_OK; 521 } 522 523 static int reg_vif_get_iflink(const struct net_device *dev) 524 { 525 return 0; 526 } 527 528 static const struct net_device_ops reg_vif_netdev_ops = { 529 .ndo_start_xmit = reg_vif_xmit, 530 .ndo_get_iflink = reg_vif_get_iflink, 531 }; 532 533 static void reg_vif_setup(struct net_device *dev) 534 { 535 dev->type = ARPHRD_PIMREG; 536 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 537 dev->flags = IFF_NOARP; 538 dev->netdev_ops = ®_vif_netdev_ops; 539 dev->needs_free_netdev = true; 540 dev->netns_local = true; 541 } 542 543 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 544 { 545 struct net_device *dev; 546 char name[IFNAMSIZ]; 547 548 if (mrt->id == RT_TABLE_DEFAULT) 549 sprintf(name, "pimreg"); 550 else 551 sprintf(name, "pimreg%u", mrt->id); 552 553 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 554 555 if (!dev) 556 return NULL; 557 558 dev_net_set(dev, net); 559 560 if (register_netdevice(dev)) { 561 free_netdev(dev); 562 return NULL; 563 } 564 565 if (!ipmr_init_vif_indev(dev)) 566 goto failure; 567 if (dev_open(dev, NULL)) 568 goto failure; 569 570 dev_hold(dev); 571 572 return dev; 573 574 failure: 575 unregister_netdevice(dev); 576 return NULL; 577 } 578 579 /* called with rcu_read_lock() */ 580 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 581 unsigned int pimlen) 582 { 583 struct net_device *reg_dev = NULL; 584 struct iphdr *encap; 585 int vif_num; 586 587 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 588 /* Check that: 589 * a. packet is really sent to a multicast group 590 * b. packet is not a NULL-REGISTER 591 * c. packet is not truncated 592 */ 593 if (!ipv4_is_multicast(encap->daddr) || 594 encap->tot_len == 0 || 595 ntohs(encap->tot_len) + pimlen > skb->len) 596 return 1; 597 598 /* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */ 599 vif_num = READ_ONCE(mrt->mroute_reg_vif_num); 600 if (vif_num >= 0) 601 reg_dev = vif_dev_read(&mrt->vif_table[vif_num]); 602 if (!reg_dev) 603 return 1; 604 605 skb->mac_header = skb->network_header; 606 skb_pull(skb, (u8 *)encap - skb->data); 607 skb_reset_network_header(skb); 608 skb->protocol = htons(ETH_P_IP); 609 skb->ip_summed = CHECKSUM_NONE; 610 611 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 612 613 netif_rx(skb); 614 615 return NET_RX_SUCCESS; 616 } 617 #else 618 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 619 { 620 return NULL; 621 } 622 #endif 623 624 static int call_ipmr_vif_entry_notifiers(struct net *net, 625 enum fib_event_type event_type, 626 struct vif_device *vif, 627 struct net_device *vif_dev, 628 vifi_t vif_index, u32 tb_id) 629 { 630 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type, 631 vif, vif_dev, vif_index, tb_id, 632 &net->ipv4.ipmr_seq); 633 } 634 635 static int call_ipmr_mfc_entry_notifiers(struct net *net, 636 enum fib_event_type event_type, 637 struct mfc_cache *mfc, u32 tb_id) 638 { 639 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type, 640 &mfc->_c, tb_id, &net->ipv4.ipmr_seq); 641 } 642 643 /** 644 * vif_delete - Delete a VIF entry 645 * @mrt: Table to delete from 646 * @vifi: VIF identifier to delete 647 * @notify: Set to 1, if the caller is a notifier_call 648 * @head: if unregistering the VIF, place it on this queue 649 */ 650 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 651 struct list_head *head) 652 { 653 struct net *net = read_pnet(&mrt->net); 654 struct vif_device *v; 655 struct net_device *dev; 656 struct in_device *in_dev; 657 658 if (vifi < 0 || vifi >= mrt->maxvif) 659 return -EADDRNOTAVAIL; 660 661 v = &mrt->vif_table[vifi]; 662 663 dev = rtnl_dereference(v->dev); 664 if (!dev) 665 return -EADDRNOTAVAIL; 666 667 spin_lock(&mrt_lock); 668 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev, 669 vifi, mrt->id); 670 RCU_INIT_POINTER(v->dev, NULL); 671 672 if (vifi == mrt->mroute_reg_vif_num) { 673 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */ 674 WRITE_ONCE(mrt->mroute_reg_vif_num, -1); 675 } 676 if (vifi + 1 == mrt->maxvif) { 677 int tmp; 678 679 for (tmp = vifi - 1; tmp >= 0; tmp--) { 680 if (VIF_EXISTS(mrt, tmp)) 681 break; 682 } 683 WRITE_ONCE(mrt->maxvif, tmp + 1); 684 } 685 686 spin_unlock(&mrt_lock); 687 688 dev_set_allmulti(dev, -1); 689 690 in_dev = __in_dev_get_rtnl(dev); 691 if (in_dev) { 692 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 693 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, 694 NETCONFA_MC_FORWARDING, 695 dev->ifindex, &in_dev->cnf); 696 ip_rt_multicast_event(in_dev); 697 } 698 699 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 700 unregister_netdevice_queue(dev, head); 701 702 netdev_put(dev, &v->dev_tracker); 703 return 0; 704 } 705 706 static void ipmr_cache_free_rcu(struct rcu_head *head) 707 { 708 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu); 709 710 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c); 711 } 712 713 static void ipmr_cache_free(struct mfc_cache *c) 714 { 715 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu); 716 } 717 718 /* Destroy an unresolved cache entry, killing queued skbs 719 * and reporting error to netlink readers. 720 */ 721 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 722 { 723 struct net *net = read_pnet(&mrt->net); 724 struct sk_buff *skb; 725 struct nlmsgerr *e; 726 727 atomic_dec(&mrt->cache_resolve_queue_len); 728 729 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) { 730 if (ip_hdr(skb)->version == 0) { 731 struct nlmsghdr *nlh = skb_pull(skb, 732 sizeof(struct iphdr)); 733 nlh->nlmsg_type = NLMSG_ERROR; 734 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 735 skb_trim(skb, nlh->nlmsg_len); 736 e = nlmsg_data(nlh); 737 e->error = -ETIMEDOUT; 738 memset(&e->msg, 0, sizeof(e->msg)); 739 740 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 741 } else { 742 kfree_skb(skb); 743 } 744 } 745 746 ipmr_cache_free(c); 747 } 748 749 /* Timer process for the unresolved queue. */ 750 static void ipmr_expire_process(struct timer_list *t) 751 { 752 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer); 753 struct mr_mfc *c, *next; 754 unsigned long expires; 755 unsigned long now; 756 757 if (!spin_trylock(&mfc_unres_lock)) { 758 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 759 return; 760 } 761 762 if (list_empty(&mrt->mfc_unres_queue)) 763 goto out; 764 765 now = jiffies; 766 expires = 10*HZ; 767 768 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 769 if (time_after(c->mfc_un.unres.expires, now)) { 770 unsigned long interval = c->mfc_un.unres.expires - now; 771 if (interval < expires) 772 expires = interval; 773 continue; 774 } 775 776 list_del(&c->list); 777 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE); 778 ipmr_destroy_unres(mrt, (struct mfc_cache *)c); 779 } 780 781 if (!list_empty(&mrt->mfc_unres_queue)) 782 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 783 784 out: 785 spin_unlock(&mfc_unres_lock); 786 } 787 788 /* Fill oifs list. It is called under locked mrt_lock. */ 789 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache, 790 unsigned char *ttls) 791 { 792 int vifi; 793 794 cache->mfc_un.res.minvif = MAXVIFS; 795 cache->mfc_un.res.maxvif = 0; 796 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 797 798 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 799 if (VIF_EXISTS(mrt, vifi) && 800 ttls[vifi] && ttls[vifi] < 255) { 801 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 802 if (cache->mfc_un.res.minvif > vifi) 803 cache->mfc_un.res.minvif = vifi; 804 if (cache->mfc_un.res.maxvif <= vifi) 805 cache->mfc_un.res.maxvif = vifi + 1; 806 } 807 } 808 cache->mfc_un.res.lastuse = jiffies; 809 } 810 811 static int vif_add(struct net *net, struct mr_table *mrt, 812 struct vifctl *vifc, int mrtsock) 813 { 814 struct netdev_phys_item_id ppid = { }; 815 int vifi = vifc->vifc_vifi; 816 struct vif_device *v = &mrt->vif_table[vifi]; 817 struct net_device *dev; 818 struct in_device *in_dev; 819 int err; 820 821 /* Is vif busy ? */ 822 if (VIF_EXISTS(mrt, vifi)) 823 return -EADDRINUSE; 824 825 switch (vifc->vifc_flags) { 826 case VIFF_REGISTER: 827 if (!ipmr_pimsm_enabled()) 828 return -EINVAL; 829 /* Special Purpose VIF in PIM 830 * All the packets will be sent to the daemon 831 */ 832 if (mrt->mroute_reg_vif_num >= 0) 833 return -EADDRINUSE; 834 dev = ipmr_reg_vif(net, mrt); 835 if (!dev) 836 return -ENOBUFS; 837 err = dev_set_allmulti(dev, 1); 838 if (err) { 839 unregister_netdevice(dev); 840 dev_put(dev); 841 return err; 842 } 843 break; 844 case VIFF_TUNNEL: 845 dev = ipmr_new_tunnel(net, vifc); 846 if (IS_ERR(dev)) 847 return PTR_ERR(dev); 848 break; 849 case VIFF_USE_IFINDEX: 850 case 0: 851 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 852 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 853 if (dev && !__in_dev_get_rtnl(dev)) { 854 dev_put(dev); 855 return -EADDRNOTAVAIL; 856 } 857 } else { 858 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 859 } 860 if (!dev) 861 return -EADDRNOTAVAIL; 862 err = dev_set_allmulti(dev, 1); 863 if (err) { 864 dev_put(dev); 865 return err; 866 } 867 break; 868 default: 869 return -EINVAL; 870 } 871 872 in_dev = __in_dev_get_rtnl(dev); 873 if (!in_dev) { 874 dev_put(dev); 875 return -EADDRNOTAVAIL; 876 } 877 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 878 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, 879 dev->ifindex, &in_dev->cnf); 880 ip_rt_multicast_event(in_dev); 881 882 /* Fill in the VIF structures */ 883 vif_device_init(v, dev, vifc->vifc_rate_limit, 884 vifc->vifc_threshold, 885 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0), 886 (VIFF_TUNNEL | VIFF_REGISTER)); 887 888 err = dev_get_port_parent_id(dev, &ppid, true); 889 if (err == 0) { 890 memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len); 891 v->dev_parent_id.id_len = ppid.id_len; 892 } else { 893 v->dev_parent_id.id_len = 0; 894 } 895 896 v->local = vifc->vifc_lcl_addr.s_addr; 897 v->remote = vifc->vifc_rmt_addr.s_addr; 898 899 /* And finish update writing critical data */ 900 spin_lock(&mrt_lock); 901 rcu_assign_pointer(v->dev, dev); 902 netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC); 903 if (v->flags & VIFF_REGISTER) { 904 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */ 905 WRITE_ONCE(mrt->mroute_reg_vif_num, vifi); 906 } 907 if (vifi+1 > mrt->maxvif) 908 WRITE_ONCE(mrt->maxvif, vifi + 1); 909 spin_unlock(&mrt_lock); 910 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev, 911 vifi, mrt->id); 912 return 0; 913 } 914 915 /* called with rcu_read_lock() */ 916 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 917 __be32 origin, 918 __be32 mcastgrp) 919 { 920 struct mfc_cache_cmp_arg arg = { 921 .mfc_mcastgrp = mcastgrp, 922 .mfc_origin = origin 923 }; 924 925 return mr_mfc_find(mrt, &arg); 926 } 927 928 /* Look for a (*,G) entry */ 929 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, 930 __be32 mcastgrp, int vifi) 931 { 932 struct mfc_cache_cmp_arg arg = { 933 .mfc_mcastgrp = mcastgrp, 934 .mfc_origin = htonl(INADDR_ANY) 935 }; 936 937 if (mcastgrp == htonl(INADDR_ANY)) 938 return mr_mfc_find_any_parent(mrt, vifi); 939 return mr_mfc_find_any(mrt, vifi, &arg); 940 } 941 942 /* Look for a (S,G,iif) entry if parent != -1 */ 943 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt, 944 __be32 origin, __be32 mcastgrp, 945 int parent) 946 { 947 struct mfc_cache_cmp_arg arg = { 948 .mfc_mcastgrp = mcastgrp, 949 .mfc_origin = origin, 950 }; 951 952 return mr_mfc_find_parent(mrt, &arg, parent); 953 } 954 955 /* Allocate a multicast cache entry */ 956 static struct mfc_cache *ipmr_cache_alloc(void) 957 { 958 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 959 960 if (c) { 961 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1; 962 c->_c.mfc_un.res.minvif = MAXVIFS; 963 c->_c.free = ipmr_cache_free_rcu; 964 refcount_set(&c->_c.mfc_un.res.refcount, 1); 965 } 966 return c; 967 } 968 969 static struct mfc_cache *ipmr_cache_alloc_unres(void) 970 { 971 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 972 973 if (c) { 974 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved); 975 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ; 976 } 977 return c; 978 } 979 980 /* A cache entry has gone into a resolved state from queued */ 981 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 982 struct mfc_cache *uc, struct mfc_cache *c) 983 { 984 struct sk_buff *skb; 985 struct nlmsgerr *e; 986 987 /* Play the pending entries through our router */ 988 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) { 989 if (ip_hdr(skb)->version == 0) { 990 struct nlmsghdr *nlh = skb_pull(skb, 991 sizeof(struct iphdr)); 992 993 if (mr_fill_mroute(mrt, skb, &c->_c, 994 nlmsg_data(nlh)) > 0) { 995 nlh->nlmsg_len = skb_tail_pointer(skb) - 996 (u8 *)nlh; 997 } else { 998 nlh->nlmsg_type = NLMSG_ERROR; 999 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 1000 skb_trim(skb, nlh->nlmsg_len); 1001 e = nlmsg_data(nlh); 1002 e->error = -EMSGSIZE; 1003 memset(&e->msg, 0, sizeof(e->msg)); 1004 } 1005 1006 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 1007 } else { 1008 rcu_read_lock(); 1009 ip_mr_forward(net, mrt, skb->dev, skb, c, 0); 1010 rcu_read_unlock(); 1011 } 1012 } 1013 } 1014 1015 /* Bounce a cache query up to mrouted and netlink. 1016 * 1017 * Called under rcu_read_lock(). 1018 */ 1019 static int ipmr_cache_report(const struct mr_table *mrt, 1020 struct sk_buff *pkt, vifi_t vifi, int assert) 1021 { 1022 const int ihl = ip_hdrlen(pkt); 1023 struct sock *mroute_sk; 1024 struct igmphdr *igmp; 1025 struct igmpmsg *msg; 1026 struct sk_buff *skb; 1027 int ret; 1028 1029 mroute_sk = rcu_dereference(mrt->mroute_sk); 1030 if (!mroute_sk) 1031 return -EINVAL; 1032 1033 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) 1034 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 1035 else 1036 skb = alloc_skb(128, GFP_ATOMIC); 1037 1038 if (!skb) 1039 return -ENOBUFS; 1040 1041 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) { 1042 /* Ugly, but we have no choice with this interface. 1043 * Duplicate old header, fix ihl, length etc. 1044 * And all this only to mangle msg->im_msgtype and 1045 * to set msg->im_mbz to "mbz" :-) 1046 */ 1047 skb_push(skb, sizeof(struct iphdr)); 1048 skb_reset_network_header(skb); 1049 skb_reset_transport_header(skb); 1050 msg = (struct igmpmsg *)skb_network_header(skb); 1051 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 1052 msg->im_msgtype = assert; 1053 msg->im_mbz = 0; 1054 if (assert == IGMPMSG_WRVIFWHOLE) { 1055 msg->im_vif = vifi; 1056 msg->im_vif_hi = vifi >> 8; 1057 } else { 1058 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */ 1059 int vif_num = READ_ONCE(mrt->mroute_reg_vif_num); 1060 1061 msg->im_vif = vif_num; 1062 msg->im_vif_hi = vif_num >> 8; 1063 } 1064 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 1065 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 1066 sizeof(struct iphdr)); 1067 } else { 1068 /* Copy the IP header */ 1069 skb_set_network_header(skb, skb->len); 1070 skb_put(skb, ihl); 1071 skb_copy_to_linear_data(skb, pkt->data, ihl); 1072 /* Flag to the kernel this is a route add */ 1073 ip_hdr(skb)->protocol = 0; 1074 msg = (struct igmpmsg *)skb_network_header(skb); 1075 msg->im_vif = vifi; 1076 msg->im_vif_hi = vifi >> 8; 1077 ipv4_pktinfo_prepare(mroute_sk, pkt, false); 1078 memcpy(skb->cb, pkt->cb, sizeof(skb->cb)); 1079 /* Add our header */ 1080 igmp = skb_put(skb, sizeof(struct igmphdr)); 1081 igmp->type = assert; 1082 msg->im_msgtype = assert; 1083 igmp->code = 0; 1084 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 1085 skb->transport_header = skb->network_header; 1086 } 1087 1088 igmpmsg_netlink_event(mrt, skb); 1089 1090 /* Deliver to mrouted */ 1091 ret = sock_queue_rcv_skb(mroute_sk, skb); 1092 1093 if (ret < 0) { 1094 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 1095 kfree_skb(skb); 1096 } 1097 1098 return ret; 1099 } 1100 1101 /* Queue a packet for resolution. It gets locked cache entry! */ 1102 /* Called under rcu_read_lock() */ 1103 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, 1104 struct sk_buff *skb, struct net_device *dev) 1105 { 1106 const struct iphdr *iph = ip_hdr(skb); 1107 struct mfc_cache *c; 1108 bool found = false; 1109 int err; 1110 1111 spin_lock_bh(&mfc_unres_lock); 1112 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) { 1113 if (c->mfc_mcastgrp == iph->daddr && 1114 c->mfc_origin == iph->saddr) { 1115 found = true; 1116 break; 1117 } 1118 } 1119 1120 if (!found) { 1121 /* Create a new entry if allowable */ 1122 c = ipmr_cache_alloc_unres(); 1123 if (!c) { 1124 spin_unlock_bh(&mfc_unres_lock); 1125 1126 kfree_skb(skb); 1127 return -ENOBUFS; 1128 } 1129 1130 /* Fill in the new cache entry */ 1131 c->_c.mfc_parent = -1; 1132 c->mfc_origin = iph->saddr; 1133 c->mfc_mcastgrp = iph->daddr; 1134 1135 /* Reflect first query at mrouted. */ 1136 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1137 1138 if (err < 0) { 1139 /* If the report failed throw the cache entry 1140 out - Brad Parker 1141 */ 1142 spin_unlock_bh(&mfc_unres_lock); 1143 1144 ipmr_cache_free(c); 1145 kfree_skb(skb); 1146 return err; 1147 } 1148 1149 atomic_inc(&mrt->cache_resolve_queue_len); 1150 list_add(&c->_c.list, &mrt->mfc_unres_queue); 1151 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1152 1153 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1154 mod_timer(&mrt->ipmr_expire_timer, 1155 c->_c.mfc_un.unres.expires); 1156 } 1157 1158 /* See if we can append the packet */ 1159 if (c->_c.mfc_un.unres.unresolved.qlen > 3) { 1160 kfree_skb(skb); 1161 err = -ENOBUFS; 1162 } else { 1163 if (dev) { 1164 skb->dev = dev; 1165 skb->skb_iif = dev->ifindex; 1166 } 1167 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb); 1168 err = 0; 1169 } 1170 1171 spin_unlock_bh(&mfc_unres_lock); 1172 return err; 1173 } 1174 1175 /* MFC cache manipulation by user space mroute daemon */ 1176 1177 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) 1178 { 1179 struct net *net = read_pnet(&mrt->net); 1180 struct mfc_cache *c; 1181 1182 /* The entries are added/deleted only under RTNL */ 1183 rcu_read_lock(); 1184 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1185 mfc->mfcc_mcastgrp.s_addr, parent); 1186 rcu_read_unlock(); 1187 if (!c) 1188 return -ENOENT; 1189 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params); 1190 list_del_rcu(&c->_c.list); 1191 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id); 1192 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1193 mr_cache_put(&c->_c); 1194 1195 return 0; 1196 } 1197 1198 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1199 struct mfcctl *mfc, int mrtsock, int parent) 1200 { 1201 struct mfc_cache *uc, *c; 1202 struct mr_mfc *_uc; 1203 bool found; 1204 int ret; 1205 1206 if (mfc->mfcc_parent >= MAXVIFS) 1207 return -ENFILE; 1208 1209 /* The entries are added/deleted only under RTNL */ 1210 rcu_read_lock(); 1211 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1212 mfc->mfcc_mcastgrp.s_addr, parent); 1213 rcu_read_unlock(); 1214 if (c) { 1215 spin_lock(&mrt_lock); 1216 c->_c.mfc_parent = mfc->mfcc_parent; 1217 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1218 if (!mrtsock) 1219 c->_c.mfc_flags |= MFC_STATIC; 1220 spin_unlock(&mrt_lock); 1221 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c, 1222 mrt->id); 1223 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1224 return 0; 1225 } 1226 1227 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && 1228 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1229 return -EINVAL; 1230 1231 c = ipmr_cache_alloc(); 1232 if (!c) 1233 return -ENOMEM; 1234 1235 c->mfc_origin = mfc->mfcc_origin.s_addr; 1236 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1237 c->_c.mfc_parent = mfc->mfcc_parent; 1238 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1239 if (!mrtsock) 1240 c->_c.mfc_flags |= MFC_STATIC; 1241 1242 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode, 1243 ipmr_rht_params); 1244 if (ret) { 1245 pr_err("ipmr: rhtable insert error %d\n", ret); 1246 ipmr_cache_free(c); 1247 return ret; 1248 } 1249 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list); 1250 /* Check to see if we resolved a queued list. If so we 1251 * need to send on the frames and tidy up. 1252 */ 1253 found = false; 1254 spin_lock_bh(&mfc_unres_lock); 1255 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) { 1256 uc = (struct mfc_cache *)_uc; 1257 if (uc->mfc_origin == c->mfc_origin && 1258 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1259 list_del(&_uc->list); 1260 atomic_dec(&mrt->cache_resolve_queue_len); 1261 found = true; 1262 break; 1263 } 1264 } 1265 if (list_empty(&mrt->mfc_unres_queue)) 1266 del_timer(&mrt->ipmr_expire_timer); 1267 spin_unlock_bh(&mfc_unres_lock); 1268 1269 if (found) { 1270 ipmr_cache_resolve(net, mrt, uc, c); 1271 ipmr_cache_free(uc); 1272 } 1273 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id); 1274 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1275 return 0; 1276 } 1277 1278 /* Close the multicast socket, and clear the vif tables etc */ 1279 static void mroute_clean_tables(struct mr_table *mrt, int flags) 1280 { 1281 struct net *net = read_pnet(&mrt->net); 1282 struct mr_mfc *c, *tmp; 1283 struct mfc_cache *cache; 1284 LIST_HEAD(list); 1285 int i; 1286 1287 /* Shut down all active vif entries */ 1288 if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) { 1289 for (i = 0; i < mrt->maxvif; i++) { 1290 if (((mrt->vif_table[i].flags & VIFF_STATIC) && 1291 !(flags & MRT_FLUSH_VIFS_STATIC)) || 1292 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS))) 1293 continue; 1294 vif_delete(mrt, i, 0, &list); 1295 } 1296 unregister_netdevice_many(&list); 1297 } 1298 1299 /* Wipe the cache */ 1300 if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) { 1301 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) { 1302 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) || 1303 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC))) 1304 continue; 1305 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params); 1306 list_del_rcu(&c->list); 1307 cache = (struct mfc_cache *)c; 1308 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache, 1309 mrt->id); 1310 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1311 mr_cache_put(c); 1312 } 1313 } 1314 1315 if (flags & MRT_FLUSH_MFC) { 1316 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1317 spin_lock_bh(&mfc_unres_lock); 1318 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) { 1319 list_del(&c->list); 1320 cache = (struct mfc_cache *)c; 1321 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1322 ipmr_destroy_unres(mrt, cache); 1323 } 1324 spin_unlock_bh(&mfc_unres_lock); 1325 } 1326 } 1327 } 1328 1329 /* called from ip_ra_control(), before an RCU grace period, 1330 * we don't need to call synchronize_rcu() here 1331 */ 1332 static void mrtsock_destruct(struct sock *sk) 1333 { 1334 struct net *net = sock_net(sk); 1335 struct mr_table *mrt; 1336 1337 rtnl_lock(); 1338 ipmr_for_each_table(mrt, net) { 1339 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1340 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1341 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1342 NETCONFA_MC_FORWARDING, 1343 NETCONFA_IFINDEX_ALL, 1344 net->ipv4.devconf_all); 1345 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1346 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC); 1347 } 1348 } 1349 rtnl_unlock(); 1350 } 1351 1352 /* Socket options and virtual interface manipulation. The whole 1353 * virtual interface system is a complete heap, but unfortunately 1354 * that's how BSD mrouted happens to think. Maybe one day with a proper 1355 * MOSPF/PIM router set up we can clean this up. 1356 */ 1357 1358 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval, 1359 unsigned int optlen) 1360 { 1361 struct net *net = sock_net(sk); 1362 int val, ret = 0, parent = 0; 1363 struct mr_table *mrt; 1364 struct vifctl vif; 1365 struct mfcctl mfc; 1366 bool do_wrvifwhole; 1367 u32 uval; 1368 1369 /* There's one exception to the lock - MRT_DONE which needs to unlock */ 1370 rtnl_lock(); 1371 if (sk->sk_type != SOCK_RAW || 1372 inet_sk(sk)->inet_num != IPPROTO_IGMP) { 1373 ret = -EOPNOTSUPP; 1374 goto out_unlock; 1375 } 1376 1377 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1378 if (!mrt) { 1379 ret = -ENOENT; 1380 goto out_unlock; 1381 } 1382 if (optname != MRT_INIT) { 1383 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1384 !ns_capable(net->user_ns, CAP_NET_ADMIN)) { 1385 ret = -EACCES; 1386 goto out_unlock; 1387 } 1388 } 1389 1390 switch (optname) { 1391 case MRT_INIT: 1392 if (optlen != sizeof(int)) { 1393 ret = -EINVAL; 1394 break; 1395 } 1396 if (rtnl_dereference(mrt->mroute_sk)) { 1397 ret = -EADDRINUSE; 1398 break; 1399 } 1400 1401 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1402 if (ret == 0) { 1403 rcu_assign_pointer(mrt->mroute_sk, sk); 1404 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1405 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1406 NETCONFA_MC_FORWARDING, 1407 NETCONFA_IFINDEX_ALL, 1408 net->ipv4.devconf_all); 1409 } 1410 break; 1411 case MRT_DONE: 1412 if (sk != rcu_access_pointer(mrt->mroute_sk)) { 1413 ret = -EACCES; 1414 } else { 1415 /* We need to unlock here because mrtsock_destruct takes 1416 * care of rtnl itself and we can't change that due to 1417 * the IP_ROUTER_ALERT setsockopt which runs without it. 1418 */ 1419 rtnl_unlock(); 1420 ret = ip_ra_control(sk, 0, NULL); 1421 goto out; 1422 } 1423 break; 1424 case MRT_ADD_VIF: 1425 case MRT_DEL_VIF: 1426 if (optlen != sizeof(vif)) { 1427 ret = -EINVAL; 1428 break; 1429 } 1430 if (copy_from_sockptr(&vif, optval, sizeof(vif))) { 1431 ret = -EFAULT; 1432 break; 1433 } 1434 if (vif.vifc_vifi >= MAXVIFS) { 1435 ret = -ENFILE; 1436 break; 1437 } 1438 if (optname == MRT_ADD_VIF) { 1439 ret = vif_add(net, mrt, &vif, 1440 sk == rtnl_dereference(mrt->mroute_sk)); 1441 } else { 1442 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1443 } 1444 break; 1445 /* Manipulate the forwarding caches. These live 1446 * in a sort of kernel/user symbiosis. 1447 */ 1448 case MRT_ADD_MFC: 1449 case MRT_DEL_MFC: 1450 parent = -1; 1451 fallthrough; 1452 case MRT_ADD_MFC_PROXY: 1453 case MRT_DEL_MFC_PROXY: 1454 if (optlen != sizeof(mfc)) { 1455 ret = -EINVAL; 1456 break; 1457 } 1458 if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) { 1459 ret = -EFAULT; 1460 break; 1461 } 1462 if (parent == 0) 1463 parent = mfc.mfcc_parent; 1464 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) 1465 ret = ipmr_mfc_delete(mrt, &mfc, parent); 1466 else 1467 ret = ipmr_mfc_add(net, mrt, &mfc, 1468 sk == rtnl_dereference(mrt->mroute_sk), 1469 parent); 1470 break; 1471 case MRT_FLUSH: 1472 if (optlen != sizeof(val)) { 1473 ret = -EINVAL; 1474 break; 1475 } 1476 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1477 ret = -EFAULT; 1478 break; 1479 } 1480 mroute_clean_tables(mrt, val); 1481 break; 1482 /* Control PIM assert. */ 1483 case MRT_ASSERT: 1484 if (optlen != sizeof(val)) { 1485 ret = -EINVAL; 1486 break; 1487 } 1488 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1489 ret = -EFAULT; 1490 break; 1491 } 1492 mrt->mroute_do_assert = val; 1493 break; 1494 case MRT_PIM: 1495 if (!ipmr_pimsm_enabled()) { 1496 ret = -ENOPROTOOPT; 1497 break; 1498 } 1499 if (optlen != sizeof(val)) { 1500 ret = -EINVAL; 1501 break; 1502 } 1503 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1504 ret = -EFAULT; 1505 break; 1506 } 1507 1508 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE); 1509 val = !!val; 1510 if (val != mrt->mroute_do_pim) { 1511 mrt->mroute_do_pim = val; 1512 mrt->mroute_do_assert = val; 1513 mrt->mroute_do_wrvifwhole = do_wrvifwhole; 1514 } 1515 break; 1516 case MRT_TABLE: 1517 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) { 1518 ret = -ENOPROTOOPT; 1519 break; 1520 } 1521 if (optlen != sizeof(uval)) { 1522 ret = -EINVAL; 1523 break; 1524 } 1525 if (copy_from_sockptr(&uval, optval, sizeof(uval))) { 1526 ret = -EFAULT; 1527 break; 1528 } 1529 1530 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1531 ret = -EBUSY; 1532 } else { 1533 mrt = ipmr_new_table(net, uval); 1534 if (IS_ERR(mrt)) 1535 ret = PTR_ERR(mrt); 1536 else 1537 raw_sk(sk)->ipmr_table = uval; 1538 } 1539 break; 1540 /* Spurious command, or MRT_VERSION which you cannot set. */ 1541 default: 1542 ret = -ENOPROTOOPT; 1543 } 1544 out_unlock: 1545 rtnl_unlock(); 1546 out: 1547 return ret; 1548 } 1549 1550 /* Execute if this ioctl is a special mroute ioctl */ 1551 int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1552 { 1553 switch (cmd) { 1554 /* These userspace buffers will be consumed by ipmr_ioctl() */ 1555 case SIOCGETVIFCNT: { 1556 struct sioc_vif_req buffer; 1557 1558 return sock_ioctl_inout(sk, cmd, arg, &buffer, 1559 sizeof(buffer)); 1560 } 1561 case SIOCGETSGCNT: { 1562 struct sioc_sg_req buffer; 1563 1564 return sock_ioctl_inout(sk, cmd, arg, &buffer, 1565 sizeof(buffer)); 1566 } 1567 } 1568 /* return code > 0 means that the ioctl was not executed */ 1569 return 1; 1570 } 1571 1572 /* Getsock opt support for the multicast routing system. */ 1573 int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval, 1574 sockptr_t optlen) 1575 { 1576 int olr; 1577 int val; 1578 struct net *net = sock_net(sk); 1579 struct mr_table *mrt; 1580 1581 if (sk->sk_type != SOCK_RAW || 1582 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1583 return -EOPNOTSUPP; 1584 1585 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1586 if (!mrt) 1587 return -ENOENT; 1588 1589 switch (optname) { 1590 case MRT_VERSION: 1591 val = 0x0305; 1592 break; 1593 case MRT_PIM: 1594 if (!ipmr_pimsm_enabled()) 1595 return -ENOPROTOOPT; 1596 val = mrt->mroute_do_pim; 1597 break; 1598 case MRT_ASSERT: 1599 val = mrt->mroute_do_assert; 1600 break; 1601 default: 1602 return -ENOPROTOOPT; 1603 } 1604 1605 if (copy_from_sockptr(&olr, optlen, sizeof(int))) 1606 return -EFAULT; 1607 if (olr < 0) 1608 return -EINVAL; 1609 1610 olr = min_t(unsigned int, olr, sizeof(int)); 1611 1612 if (copy_to_sockptr(optlen, &olr, sizeof(int))) 1613 return -EFAULT; 1614 if (copy_to_sockptr(optval, &val, olr)) 1615 return -EFAULT; 1616 return 0; 1617 } 1618 1619 /* The IP multicast ioctl support routines. */ 1620 int ipmr_ioctl(struct sock *sk, int cmd, void *arg) 1621 { 1622 struct vif_device *vif; 1623 struct mfc_cache *c; 1624 struct net *net = sock_net(sk); 1625 struct sioc_vif_req *vr; 1626 struct sioc_sg_req *sr; 1627 struct mr_table *mrt; 1628 1629 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1630 if (!mrt) 1631 return -ENOENT; 1632 1633 switch (cmd) { 1634 case SIOCGETVIFCNT: 1635 vr = (struct sioc_vif_req *)arg; 1636 if (vr->vifi >= mrt->maxvif) 1637 return -EINVAL; 1638 vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif); 1639 rcu_read_lock(); 1640 vif = &mrt->vif_table[vr->vifi]; 1641 if (VIF_EXISTS(mrt, vr->vifi)) { 1642 vr->icount = READ_ONCE(vif->pkt_in); 1643 vr->ocount = READ_ONCE(vif->pkt_out); 1644 vr->ibytes = READ_ONCE(vif->bytes_in); 1645 vr->obytes = READ_ONCE(vif->bytes_out); 1646 rcu_read_unlock(); 1647 1648 return 0; 1649 } 1650 rcu_read_unlock(); 1651 return -EADDRNOTAVAIL; 1652 case SIOCGETSGCNT: 1653 sr = (struct sioc_sg_req *)arg; 1654 1655 rcu_read_lock(); 1656 c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr); 1657 if (c) { 1658 sr->pktcnt = c->_c.mfc_un.res.pkt; 1659 sr->bytecnt = c->_c.mfc_un.res.bytes; 1660 sr->wrong_if = c->_c.mfc_un.res.wrong_if; 1661 rcu_read_unlock(); 1662 return 0; 1663 } 1664 rcu_read_unlock(); 1665 return -EADDRNOTAVAIL; 1666 default: 1667 return -ENOIOCTLCMD; 1668 } 1669 } 1670 1671 #ifdef CONFIG_COMPAT 1672 struct compat_sioc_sg_req { 1673 struct in_addr src; 1674 struct in_addr grp; 1675 compat_ulong_t pktcnt; 1676 compat_ulong_t bytecnt; 1677 compat_ulong_t wrong_if; 1678 }; 1679 1680 struct compat_sioc_vif_req { 1681 vifi_t vifi; /* Which iface */ 1682 compat_ulong_t icount; 1683 compat_ulong_t ocount; 1684 compat_ulong_t ibytes; 1685 compat_ulong_t obytes; 1686 }; 1687 1688 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1689 { 1690 struct compat_sioc_sg_req sr; 1691 struct compat_sioc_vif_req vr; 1692 struct vif_device *vif; 1693 struct mfc_cache *c; 1694 struct net *net = sock_net(sk); 1695 struct mr_table *mrt; 1696 1697 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1698 if (!mrt) 1699 return -ENOENT; 1700 1701 switch (cmd) { 1702 case SIOCGETVIFCNT: 1703 if (copy_from_user(&vr, arg, sizeof(vr))) 1704 return -EFAULT; 1705 if (vr.vifi >= mrt->maxvif) 1706 return -EINVAL; 1707 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif); 1708 rcu_read_lock(); 1709 vif = &mrt->vif_table[vr.vifi]; 1710 if (VIF_EXISTS(mrt, vr.vifi)) { 1711 vr.icount = READ_ONCE(vif->pkt_in); 1712 vr.ocount = READ_ONCE(vif->pkt_out); 1713 vr.ibytes = READ_ONCE(vif->bytes_in); 1714 vr.obytes = READ_ONCE(vif->bytes_out); 1715 rcu_read_unlock(); 1716 1717 if (copy_to_user(arg, &vr, sizeof(vr))) 1718 return -EFAULT; 1719 return 0; 1720 } 1721 rcu_read_unlock(); 1722 return -EADDRNOTAVAIL; 1723 case SIOCGETSGCNT: 1724 if (copy_from_user(&sr, arg, sizeof(sr))) 1725 return -EFAULT; 1726 1727 rcu_read_lock(); 1728 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1729 if (c) { 1730 sr.pktcnt = c->_c.mfc_un.res.pkt; 1731 sr.bytecnt = c->_c.mfc_un.res.bytes; 1732 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1733 rcu_read_unlock(); 1734 1735 if (copy_to_user(arg, &sr, sizeof(sr))) 1736 return -EFAULT; 1737 return 0; 1738 } 1739 rcu_read_unlock(); 1740 return -EADDRNOTAVAIL; 1741 default: 1742 return -ENOIOCTLCMD; 1743 } 1744 } 1745 #endif 1746 1747 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1748 { 1749 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1750 struct net *net = dev_net(dev); 1751 struct mr_table *mrt; 1752 struct vif_device *v; 1753 int ct; 1754 1755 if (event != NETDEV_UNREGISTER) 1756 return NOTIFY_DONE; 1757 1758 ipmr_for_each_table(mrt, net) { 1759 v = &mrt->vif_table[0]; 1760 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1761 if (rcu_access_pointer(v->dev) == dev) 1762 vif_delete(mrt, ct, 1, NULL); 1763 } 1764 } 1765 return NOTIFY_DONE; 1766 } 1767 1768 static struct notifier_block ip_mr_notifier = { 1769 .notifier_call = ipmr_device_event, 1770 }; 1771 1772 /* Encapsulate a packet by attaching a valid IPIP header to it. 1773 * This avoids tunnel drivers and other mess and gives us the speed so 1774 * important for multicast video. 1775 */ 1776 static void ip_encap(struct net *net, struct sk_buff *skb, 1777 __be32 saddr, __be32 daddr) 1778 { 1779 struct iphdr *iph; 1780 const struct iphdr *old_iph = ip_hdr(skb); 1781 1782 skb_push(skb, sizeof(struct iphdr)); 1783 skb->transport_header = skb->network_header; 1784 skb_reset_network_header(skb); 1785 iph = ip_hdr(skb); 1786 1787 iph->version = 4; 1788 iph->tos = old_iph->tos; 1789 iph->ttl = old_iph->ttl; 1790 iph->frag_off = 0; 1791 iph->daddr = daddr; 1792 iph->saddr = saddr; 1793 iph->protocol = IPPROTO_IPIP; 1794 iph->ihl = 5; 1795 iph->tot_len = htons(skb->len); 1796 ip_select_ident(net, skb, NULL); 1797 ip_send_check(iph); 1798 1799 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1800 nf_reset_ct(skb); 1801 } 1802 1803 static inline int ipmr_forward_finish(struct net *net, struct sock *sk, 1804 struct sk_buff *skb) 1805 { 1806 struct ip_options *opt = &(IPCB(skb)->opt); 1807 1808 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS); 1809 1810 if (unlikely(opt->optlen)) 1811 ip_forward_options(skb); 1812 1813 return dst_output(net, sk, skb); 1814 } 1815 1816 #ifdef CONFIG_NET_SWITCHDEV 1817 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1818 int in_vifi, int out_vifi) 1819 { 1820 struct vif_device *out_vif = &mrt->vif_table[out_vifi]; 1821 struct vif_device *in_vif = &mrt->vif_table[in_vifi]; 1822 1823 if (!skb->offload_l3_fwd_mark) 1824 return false; 1825 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len) 1826 return false; 1827 return netdev_phys_item_id_same(&out_vif->dev_parent_id, 1828 &in_vif->dev_parent_id); 1829 } 1830 #else 1831 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1832 int in_vifi, int out_vifi) 1833 { 1834 return false; 1835 } 1836 #endif 1837 1838 /* Processing handlers for ipmr_forward, under rcu_read_lock() */ 1839 1840 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1841 int in_vifi, struct sk_buff *skb, int vifi) 1842 { 1843 const struct iphdr *iph = ip_hdr(skb); 1844 struct vif_device *vif = &mrt->vif_table[vifi]; 1845 struct net_device *vif_dev; 1846 struct net_device *dev; 1847 struct rtable *rt; 1848 struct flowi4 fl4; 1849 int encap = 0; 1850 1851 vif_dev = vif_dev_read(vif); 1852 if (!vif_dev) 1853 goto out_free; 1854 1855 if (vif->flags & VIFF_REGISTER) { 1856 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1); 1857 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len); 1858 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len); 1859 DEV_STATS_INC(vif_dev, tx_packets); 1860 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1861 goto out_free; 1862 } 1863 1864 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi)) 1865 goto out_free; 1866 1867 if (vif->flags & VIFF_TUNNEL) { 1868 rt = ip_route_output_ports(net, &fl4, NULL, 1869 vif->remote, vif->local, 1870 0, 0, 1871 IPPROTO_IPIP, 1872 iph->tos & INET_DSCP_MASK, vif->link); 1873 if (IS_ERR(rt)) 1874 goto out_free; 1875 encap = sizeof(struct iphdr); 1876 } else { 1877 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1878 0, 0, 1879 IPPROTO_IPIP, 1880 iph->tos & INET_DSCP_MASK, vif->link); 1881 if (IS_ERR(rt)) 1882 goto out_free; 1883 } 1884 1885 dev = rt->dst.dev; 1886 1887 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1888 /* Do not fragment multicasts. Alas, IPv4 does not 1889 * allow to send ICMP, so that packets will disappear 1890 * to blackhole. 1891 */ 1892 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 1893 ip_rt_put(rt); 1894 goto out_free; 1895 } 1896 1897 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1898 1899 if (skb_cow(skb, encap)) { 1900 ip_rt_put(rt); 1901 goto out_free; 1902 } 1903 1904 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1); 1905 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len); 1906 1907 skb_dst_drop(skb); 1908 skb_dst_set(skb, &rt->dst); 1909 ip_decrease_ttl(ip_hdr(skb)); 1910 1911 /* FIXME: forward and output firewalls used to be called here. 1912 * What do we do with netfilter? -- RR 1913 */ 1914 if (vif->flags & VIFF_TUNNEL) { 1915 ip_encap(net, skb, vif->local, vif->remote); 1916 /* FIXME: extra output firewall step used to be here. --RR */ 1917 DEV_STATS_INC(vif_dev, tx_packets); 1918 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len); 1919 } 1920 1921 IPCB(skb)->flags |= IPSKB_FORWARDED; 1922 1923 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1924 * not only before forwarding, but after forwarding on all output 1925 * interfaces. It is clear, if mrouter runs a multicasting 1926 * program, it should receive packets not depending to what interface 1927 * program is joined. 1928 * If we will not make it, the program will have to join on all 1929 * interfaces. On the other hand, multihoming host (or router, but 1930 * not mrouter) cannot join to more than one interface - it will 1931 * result in receiving multiple packets. 1932 */ 1933 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, 1934 net, NULL, skb, skb->dev, dev, 1935 ipmr_forward_finish); 1936 return; 1937 1938 out_free: 1939 kfree_skb(skb); 1940 } 1941 1942 /* Called with mrt_lock or rcu_read_lock() */ 1943 static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev) 1944 { 1945 int ct; 1946 /* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */ 1947 for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) { 1948 if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev) 1949 break; 1950 } 1951 return ct; 1952 } 1953 1954 /* "local" means that we should preserve one skb (for local delivery) */ 1955 /* Called uner rcu_read_lock() */ 1956 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 1957 struct net_device *dev, struct sk_buff *skb, 1958 struct mfc_cache *c, int local) 1959 { 1960 int true_vifi = ipmr_find_vif(mrt, dev); 1961 int psend = -1; 1962 int vif, ct; 1963 1964 vif = c->_c.mfc_parent; 1965 c->_c.mfc_un.res.pkt++; 1966 c->_c.mfc_un.res.bytes += skb->len; 1967 c->_c.mfc_un.res.lastuse = jiffies; 1968 1969 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { 1970 struct mfc_cache *cache_proxy; 1971 1972 /* For an (*,G) entry, we only check that the incoming 1973 * interface is part of the static tree. 1974 */ 1975 cache_proxy = mr_mfc_find_any_parent(mrt, vif); 1976 if (cache_proxy && 1977 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255) 1978 goto forward; 1979 } 1980 1981 /* Wrong interface: drop packet and (maybe) send PIM assert. */ 1982 if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) { 1983 if (rt_is_output_route(skb_rtable(skb))) { 1984 /* It is our own packet, looped back. 1985 * Very complicated situation... 1986 * 1987 * The best workaround until routing daemons will be 1988 * fixed is not to redistribute packet, if it was 1989 * send through wrong interface. It means, that 1990 * multicast applications WILL NOT work for 1991 * (S,G), which have default multicast route pointing 1992 * to wrong oif. In any case, it is not a good 1993 * idea to use multicasting applications on router. 1994 */ 1995 goto dont_forward; 1996 } 1997 1998 c->_c.mfc_un.res.wrong_if++; 1999 2000 if (true_vifi >= 0 && mrt->mroute_do_assert && 2001 /* pimsm uses asserts, when switching from RPT to SPT, 2002 * so that we cannot check that packet arrived on an oif. 2003 * It is bad, but otherwise we would need to move pretty 2004 * large chunk of pimd to kernel. Ough... --ANK 2005 */ 2006 (mrt->mroute_do_pim || 2007 c->_c.mfc_un.res.ttls[true_vifi] < 255) && 2008 time_after(jiffies, 2009 c->_c.mfc_un.res.last_assert + 2010 MFC_ASSERT_THRESH)) { 2011 c->_c.mfc_un.res.last_assert = jiffies; 2012 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 2013 if (mrt->mroute_do_wrvifwhole) 2014 ipmr_cache_report(mrt, skb, true_vifi, 2015 IGMPMSG_WRVIFWHOLE); 2016 } 2017 goto dont_forward; 2018 } 2019 2020 forward: 2021 WRITE_ONCE(mrt->vif_table[vif].pkt_in, 2022 mrt->vif_table[vif].pkt_in + 1); 2023 WRITE_ONCE(mrt->vif_table[vif].bytes_in, 2024 mrt->vif_table[vif].bytes_in + skb->len); 2025 2026 /* Forward the frame */ 2027 if (c->mfc_origin == htonl(INADDR_ANY) && 2028 c->mfc_mcastgrp == htonl(INADDR_ANY)) { 2029 if (true_vifi >= 0 && 2030 true_vifi != c->_c.mfc_parent && 2031 ip_hdr(skb)->ttl > 2032 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) { 2033 /* It's an (*,*) entry and the packet is not coming from 2034 * the upstream: forward the packet to the upstream 2035 * only. 2036 */ 2037 psend = c->_c.mfc_parent; 2038 goto last_forward; 2039 } 2040 goto dont_forward; 2041 } 2042 for (ct = c->_c.mfc_un.res.maxvif - 1; 2043 ct >= c->_c.mfc_un.res.minvif; ct--) { 2044 /* For (*,G) entry, don't forward to the incoming interface */ 2045 if ((c->mfc_origin != htonl(INADDR_ANY) || 2046 ct != true_vifi) && 2047 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) { 2048 if (psend != -1) { 2049 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2050 2051 if (skb2) 2052 ipmr_queue_xmit(net, mrt, true_vifi, 2053 skb2, psend); 2054 } 2055 psend = ct; 2056 } 2057 } 2058 last_forward: 2059 if (psend != -1) { 2060 if (local) { 2061 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2062 2063 if (skb2) 2064 ipmr_queue_xmit(net, mrt, true_vifi, skb2, 2065 psend); 2066 } else { 2067 ipmr_queue_xmit(net, mrt, true_vifi, skb, psend); 2068 return; 2069 } 2070 } 2071 2072 dont_forward: 2073 if (!local) 2074 kfree_skb(skb); 2075 } 2076 2077 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 2078 { 2079 struct rtable *rt = skb_rtable(skb); 2080 struct iphdr *iph = ip_hdr(skb); 2081 struct flowi4 fl4 = { 2082 .daddr = iph->daddr, 2083 .saddr = iph->saddr, 2084 .flowi4_tos = iph->tos & INET_DSCP_MASK, 2085 .flowi4_oif = (rt_is_output_route(rt) ? 2086 skb->dev->ifindex : 0), 2087 .flowi4_iif = (rt_is_output_route(rt) ? 2088 LOOPBACK_IFINDEX : 2089 skb->dev->ifindex), 2090 .flowi4_mark = skb->mark, 2091 }; 2092 struct mr_table *mrt; 2093 int err; 2094 2095 err = ipmr_fib_lookup(net, &fl4, &mrt); 2096 if (err) 2097 return ERR_PTR(err); 2098 return mrt; 2099 } 2100 2101 /* Multicast packets for forwarding arrive here 2102 * Called with rcu_read_lock(); 2103 */ 2104 int ip_mr_input(struct sk_buff *skb) 2105 { 2106 struct mfc_cache *cache; 2107 struct net *net = dev_net(skb->dev); 2108 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 2109 struct mr_table *mrt; 2110 struct net_device *dev; 2111 2112 /* skb->dev passed in is the loX master dev for vrfs. 2113 * As there are no vifs associated with loopback devices, 2114 * get the proper interface that does have a vif associated with it. 2115 */ 2116 dev = skb->dev; 2117 if (netif_is_l3_master(skb->dev)) { 2118 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif); 2119 if (!dev) { 2120 kfree_skb(skb); 2121 return -ENODEV; 2122 } 2123 } 2124 2125 /* Packet is looped back after forward, it should not be 2126 * forwarded second time, but still can be delivered locally. 2127 */ 2128 if (IPCB(skb)->flags & IPSKB_FORWARDED) 2129 goto dont_forward; 2130 2131 mrt = ipmr_rt_fib_lookup(net, skb); 2132 if (IS_ERR(mrt)) { 2133 kfree_skb(skb); 2134 return PTR_ERR(mrt); 2135 } 2136 if (!local) { 2137 if (IPCB(skb)->opt.router_alert) { 2138 if (ip_call_ra_chain(skb)) 2139 return 0; 2140 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 2141 /* IGMPv1 (and broken IGMPv2 implementations sort of 2142 * Cisco IOS <= 11.2(8)) do not put router alert 2143 * option to IGMP packets destined to routable 2144 * groups. It is very bad, because it means 2145 * that we can forward NO IGMP messages. 2146 */ 2147 struct sock *mroute_sk; 2148 2149 mroute_sk = rcu_dereference(mrt->mroute_sk); 2150 if (mroute_sk) { 2151 nf_reset_ct(skb); 2152 raw_rcv(mroute_sk, skb); 2153 return 0; 2154 } 2155 } 2156 } 2157 2158 /* already under rcu_read_lock() */ 2159 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 2160 if (!cache) { 2161 int vif = ipmr_find_vif(mrt, dev); 2162 2163 if (vif >= 0) 2164 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 2165 vif); 2166 } 2167 2168 /* No usable cache entry */ 2169 if (!cache) { 2170 int vif; 2171 2172 if (local) { 2173 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2174 ip_local_deliver(skb); 2175 if (!skb2) 2176 return -ENOBUFS; 2177 skb = skb2; 2178 } 2179 2180 vif = ipmr_find_vif(mrt, dev); 2181 if (vif >= 0) 2182 return ipmr_cache_unresolved(mrt, vif, skb, dev); 2183 kfree_skb(skb); 2184 return -ENODEV; 2185 } 2186 2187 ip_mr_forward(net, mrt, dev, skb, cache, local); 2188 2189 if (local) 2190 return ip_local_deliver(skb); 2191 2192 return 0; 2193 2194 dont_forward: 2195 if (local) 2196 return ip_local_deliver(skb); 2197 kfree_skb(skb); 2198 return 0; 2199 } 2200 2201 #ifdef CONFIG_IP_PIMSM_V1 2202 /* Handle IGMP messages of PIMv1 */ 2203 int pim_rcv_v1(struct sk_buff *skb) 2204 { 2205 struct igmphdr *pim; 2206 struct net *net = dev_net(skb->dev); 2207 struct mr_table *mrt; 2208 2209 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2210 goto drop; 2211 2212 pim = igmp_hdr(skb); 2213 2214 mrt = ipmr_rt_fib_lookup(net, skb); 2215 if (IS_ERR(mrt)) 2216 goto drop; 2217 if (!mrt->mroute_do_pim || 2218 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 2219 goto drop; 2220 2221 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2222 drop: 2223 kfree_skb(skb); 2224 } 2225 return 0; 2226 } 2227 #endif 2228 2229 #ifdef CONFIG_IP_PIMSM_V2 2230 static int pim_rcv(struct sk_buff *skb) 2231 { 2232 struct pimreghdr *pim; 2233 struct net *net = dev_net(skb->dev); 2234 struct mr_table *mrt; 2235 2236 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2237 goto drop; 2238 2239 pim = (struct pimreghdr *)skb_transport_header(skb); 2240 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) || 2241 (pim->flags & PIM_NULL_REGISTER) || 2242 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 2243 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 2244 goto drop; 2245 2246 mrt = ipmr_rt_fib_lookup(net, skb); 2247 if (IS_ERR(mrt)) 2248 goto drop; 2249 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2250 drop: 2251 kfree_skb(skb); 2252 } 2253 return 0; 2254 } 2255 #endif 2256 2257 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2258 __be32 saddr, __be32 daddr, 2259 struct rtmsg *rtm, u32 portid) 2260 { 2261 struct mfc_cache *cache; 2262 struct mr_table *mrt; 2263 int err; 2264 2265 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2266 if (!mrt) 2267 return -ENOENT; 2268 2269 rcu_read_lock(); 2270 cache = ipmr_cache_find(mrt, saddr, daddr); 2271 if (!cache && skb->dev) { 2272 int vif = ipmr_find_vif(mrt, skb->dev); 2273 2274 if (vif >= 0) 2275 cache = ipmr_cache_find_any(mrt, daddr, vif); 2276 } 2277 if (!cache) { 2278 struct sk_buff *skb2; 2279 struct iphdr *iph; 2280 struct net_device *dev; 2281 int vif = -1; 2282 2283 dev = skb->dev; 2284 if (dev) 2285 vif = ipmr_find_vif(mrt, dev); 2286 if (vif < 0) { 2287 rcu_read_unlock(); 2288 return -ENODEV; 2289 } 2290 2291 skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr)); 2292 if (!skb2) { 2293 rcu_read_unlock(); 2294 return -ENOMEM; 2295 } 2296 2297 NETLINK_CB(skb2).portid = portid; 2298 skb_push(skb2, sizeof(struct iphdr)); 2299 skb_reset_network_header(skb2); 2300 iph = ip_hdr(skb2); 2301 iph->ihl = sizeof(struct iphdr) >> 2; 2302 iph->saddr = saddr; 2303 iph->daddr = daddr; 2304 iph->version = 0; 2305 err = ipmr_cache_unresolved(mrt, vif, skb2, dev); 2306 rcu_read_unlock(); 2307 return err; 2308 } 2309 2310 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm); 2311 rcu_read_unlock(); 2312 return err; 2313 } 2314 2315 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2316 u32 portid, u32 seq, struct mfc_cache *c, int cmd, 2317 int flags) 2318 { 2319 struct nlmsghdr *nlh; 2320 struct rtmsg *rtm; 2321 int err; 2322 2323 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2324 if (!nlh) 2325 return -EMSGSIZE; 2326 2327 rtm = nlmsg_data(nlh); 2328 rtm->rtm_family = RTNL_FAMILY_IPMR; 2329 rtm->rtm_dst_len = 32; 2330 rtm->rtm_src_len = 32; 2331 rtm->rtm_tos = 0; 2332 rtm->rtm_table = mrt->id; 2333 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2334 goto nla_put_failure; 2335 rtm->rtm_type = RTN_MULTICAST; 2336 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2337 if (c->_c.mfc_flags & MFC_STATIC) 2338 rtm->rtm_protocol = RTPROT_STATIC; 2339 else 2340 rtm->rtm_protocol = RTPROT_MROUTED; 2341 rtm->rtm_flags = 0; 2342 2343 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) || 2344 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp)) 2345 goto nla_put_failure; 2346 err = mr_fill_mroute(mrt, skb, &c->_c, rtm); 2347 /* do not break the dump if cache is unresolved */ 2348 if (err < 0 && err != -ENOENT) 2349 goto nla_put_failure; 2350 2351 nlmsg_end(skb, nlh); 2352 return 0; 2353 2354 nla_put_failure: 2355 nlmsg_cancel(skb, nlh); 2356 return -EMSGSIZE; 2357 } 2358 2359 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2360 u32 portid, u32 seq, struct mr_mfc *c, int cmd, 2361 int flags) 2362 { 2363 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c, 2364 cmd, flags); 2365 } 2366 2367 static size_t mroute_msgsize(bool unresolved, int maxvif) 2368 { 2369 size_t len = 2370 NLMSG_ALIGN(sizeof(struct rtmsg)) 2371 + nla_total_size(4) /* RTA_TABLE */ 2372 + nla_total_size(4) /* RTA_SRC */ 2373 + nla_total_size(4) /* RTA_DST */ 2374 ; 2375 2376 if (!unresolved) 2377 len = len 2378 + nla_total_size(4) /* RTA_IIF */ 2379 + nla_total_size(0) /* RTA_MULTIPATH */ 2380 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2381 /* RTA_MFC_STATS */ 2382 + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) 2383 ; 2384 2385 return len; 2386 } 2387 2388 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 2389 int cmd) 2390 { 2391 struct net *net = read_pnet(&mrt->net); 2392 struct sk_buff *skb; 2393 int err = -ENOBUFS; 2394 2395 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS, 2396 mrt->maxvif), 2397 GFP_ATOMIC); 2398 if (!skb) 2399 goto errout; 2400 2401 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2402 if (err < 0) 2403 goto errout; 2404 2405 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); 2406 return; 2407 2408 errout: 2409 kfree_skb(skb); 2410 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); 2411 } 2412 2413 static size_t igmpmsg_netlink_msgsize(size_t payloadlen) 2414 { 2415 size_t len = 2416 NLMSG_ALIGN(sizeof(struct rtgenmsg)) 2417 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */ 2418 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */ 2419 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */ 2420 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */ 2421 + nla_total_size(4) /* IPMRA_CREPORT_TABLE */ 2422 /* IPMRA_CREPORT_PKT */ 2423 + nla_total_size(payloadlen) 2424 ; 2425 2426 return len; 2427 } 2428 2429 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt) 2430 { 2431 struct net *net = read_pnet(&mrt->net); 2432 struct nlmsghdr *nlh; 2433 struct rtgenmsg *rtgenm; 2434 struct igmpmsg *msg; 2435 struct sk_buff *skb; 2436 struct nlattr *nla; 2437 int payloadlen; 2438 2439 payloadlen = pkt->len - sizeof(struct igmpmsg); 2440 msg = (struct igmpmsg *)skb_network_header(pkt); 2441 2442 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC); 2443 if (!skb) 2444 goto errout; 2445 2446 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT, 2447 sizeof(struct rtgenmsg), 0); 2448 if (!nlh) 2449 goto errout; 2450 rtgenm = nlmsg_data(nlh); 2451 rtgenm->rtgen_family = RTNL_FAMILY_IPMR; 2452 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) || 2453 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) || 2454 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR, 2455 msg->im_src.s_addr) || 2456 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR, 2457 msg->im_dst.s_addr) || 2458 nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id)) 2459 goto nla_put_failure; 2460 2461 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen); 2462 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg), 2463 nla_data(nla), payloadlen)) 2464 goto nla_put_failure; 2465 2466 nlmsg_end(skb, nlh); 2467 2468 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC); 2469 return; 2470 2471 nla_put_failure: 2472 nlmsg_cancel(skb, nlh); 2473 errout: 2474 kfree_skb(skb); 2475 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS); 2476 } 2477 2478 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb, 2479 const struct nlmsghdr *nlh, 2480 struct nlattr **tb, 2481 struct netlink_ext_ack *extack) 2482 { 2483 struct rtmsg *rtm; 2484 int i, err; 2485 2486 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) { 2487 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request"); 2488 return -EINVAL; 2489 } 2490 2491 if (!netlink_strict_get_check(skb)) 2492 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 2493 rtm_ipv4_policy, extack); 2494 2495 rtm = nlmsg_data(nlh); 2496 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) || 2497 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) || 2498 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol || 2499 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) { 2500 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request"); 2501 return -EINVAL; 2502 } 2503 2504 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, 2505 rtm_ipv4_policy, extack); 2506 if (err) 2507 return err; 2508 2509 if ((tb[RTA_SRC] && !rtm->rtm_src_len) || 2510 (tb[RTA_DST] && !rtm->rtm_dst_len)) { 2511 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4"); 2512 return -EINVAL; 2513 } 2514 2515 for (i = 0; i <= RTA_MAX; i++) { 2516 if (!tb[i]) 2517 continue; 2518 2519 switch (i) { 2520 case RTA_SRC: 2521 case RTA_DST: 2522 case RTA_TABLE: 2523 break; 2524 default: 2525 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request"); 2526 return -EINVAL; 2527 } 2528 } 2529 2530 return 0; 2531 } 2532 2533 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 2534 struct netlink_ext_ack *extack) 2535 { 2536 struct net *net = sock_net(in_skb->sk); 2537 struct nlattr *tb[RTA_MAX + 1]; 2538 struct sk_buff *skb = NULL; 2539 struct mfc_cache *cache; 2540 struct mr_table *mrt; 2541 __be32 src, grp; 2542 u32 tableid; 2543 int err; 2544 2545 err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack); 2546 if (err < 0) 2547 goto errout; 2548 2549 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0; 2550 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0; 2551 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0; 2552 2553 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT); 2554 if (!mrt) { 2555 err = -ENOENT; 2556 goto errout_free; 2557 } 2558 2559 /* entries are added/deleted only under RTNL */ 2560 rcu_read_lock(); 2561 cache = ipmr_cache_find(mrt, src, grp); 2562 rcu_read_unlock(); 2563 if (!cache) { 2564 err = -ENOENT; 2565 goto errout_free; 2566 } 2567 2568 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL); 2569 if (!skb) { 2570 err = -ENOBUFS; 2571 goto errout_free; 2572 } 2573 2574 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid, 2575 nlh->nlmsg_seq, cache, 2576 RTM_NEWROUTE, 0); 2577 if (err < 0) 2578 goto errout_free; 2579 2580 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 2581 2582 errout: 2583 return err; 2584 2585 errout_free: 2586 kfree_skb(skb); 2587 goto errout; 2588 } 2589 2590 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2591 { 2592 struct fib_dump_filter filter = { 2593 .rtnl_held = true, 2594 }; 2595 int err; 2596 2597 if (cb->strict_check) { 2598 err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh, 2599 &filter, cb); 2600 if (err < 0) 2601 return err; 2602 } 2603 2604 if (filter.table_id) { 2605 struct mr_table *mrt; 2606 2607 mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id); 2608 if (!mrt) { 2609 if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR) 2610 return skb->len; 2611 2612 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist"); 2613 return -ENOENT; 2614 } 2615 err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute, 2616 &mfc_unres_lock, &filter); 2617 return skb->len ? : err; 2618 } 2619 2620 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter, 2621 _ipmr_fill_mroute, &mfc_unres_lock, &filter); 2622 } 2623 2624 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = { 2625 [RTA_SRC] = { .type = NLA_U32 }, 2626 [RTA_DST] = { .type = NLA_U32 }, 2627 [RTA_IIF] = { .type = NLA_U32 }, 2628 [RTA_TABLE] = { .type = NLA_U32 }, 2629 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 2630 }; 2631 2632 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol) 2633 { 2634 switch (rtm_protocol) { 2635 case RTPROT_STATIC: 2636 case RTPROT_MROUTED: 2637 return true; 2638 } 2639 return false; 2640 } 2641 2642 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc) 2643 { 2644 struct rtnexthop *rtnh = nla_data(nla); 2645 int remaining = nla_len(nla), vifi = 0; 2646 2647 while (rtnh_ok(rtnh, remaining)) { 2648 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops; 2649 if (++vifi == MAXVIFS) 2650 break; 2651 rtnh = rtnh_next(rtnh, &remaining); 2652 } 2653 2654 return remaining > 0 ? -EINVAL : vifi; 2655 } 2656 2657 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */ 2658 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh, 2659 struct mfcctl *mfcc, int *mrtsock, 2660 struct mr_table **mrtret, 2661 struct netlink_ext_ack *extack) 2662 { 2663 struct net_device *dev = NULL; 2664 u32 tblid = RT_TABLE_DEFAULT; 2665 struct mr_table *mrt; 2666 struct nlattr *attr; 2667 struct rtmsg *rtm; 2668 int ret, rem; 2669 2670 ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX, 2671 rtm_ipmr_policy, extack); 2672 if (ret < 0) 2673 goto out; 2674 rtm = nlmsg_data(nlh); 2675 2676 ret = -EINVAL; 2677 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 || 2678 rtm->rtm_type != RTN_MULTICAST || 2679 rtm->rtm_scope != RT_SCOPE_UNIVERSE || 2680 !ipmr_rtm_validate_proto(rtm->rtm_protocol)) 2681 goto out; 2682 2683 memset(mfcc, 0, sizeof(*mfcc)); 2684 mfcc->mfcc_parent = -1; 2685 ret = 0; 2686 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) { 2687 switch (nla_type(attr)) { 2688 case RTA_SRC: 2689 mfcc->mfcc_origin.s_addr = nla_get_be32(attr); 2690 break; 2691 case RTA_DST: 2692 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr); 2693 break; 2694 case RTA_IIF: 2695 dev = __dev_get_by_index(net, nla_get_u32(attr)); 2696 if (!dev) { 2697 ret = -ENODEV; 2698 goto out; 2699 } 2700 break; 2701 case RTA_MULTIPATH: 2702 if (ipmr_nla_get_ttls(attr, mfcc) < 0) { 2703 ret = -EINVAL; 2704 goto out; 2705 } 2706 break; 2707 case RTA_PREFSRC: 2708 ret = 1; 2709 break; 2710 case RTA_TABLE: 2711 tblid = nla_get_u32(attr); 2712 break; 2713 } 2714 } 2715 mrt = ipmr_get_table(net, tblid); 2716 if (!mrt) { 2717 ret = -ENOENT; 2718 goto out; 2719 } 2720 *mrtret = mrt; 2721 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0; 2722 if (dev) 2723 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev); 2724 2725 out: 2726 return ret; 2727 } 2728 2729 /* takes care of both newroute and delroute */ 2730 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh, 2731 struct netlink_ext_ack *extack) 2732 { 2733 struct net *net = sock_net(skb->sk); 2734 int ret, mrtsock, parent; 2735 struct mr_table *tbl; 2736 struct mfcctl mfcc; 2737 2738 mrtsock = 0; 2739 tbl = NULL; 2740 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack); 2741 if (ret < 0) 2742 return ret; 2743 2744 parent = ret ? mfcc.mfcc_parent : -1; 2745 if (nlh->nlmsg_type == RTM_NEWROUTE) 2746 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent); 2747 else 2748 return ipmr_mfc_delete(tbl, &mfcc, parent); 2749 } 2750 2751 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb) 2752 { 2753 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len); 2754 2755 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) || 2756 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) || 2757 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM, 2758 mrt->mroute_reg_vif_num) || 2759 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT, 2760 mrt->mroute_do_assert) || 2761 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) || 2762 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE, 2763 mrt->mroute_do_wrvifwhole)) 2764 return false; 2765 2766 return true; 2767 } 2768 2769 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb) 2770 { 2771 struct net_device *vif_dev; 2772 struct nlattr *vif_nest; 2773 struct vif_device *vif; 2774 2775 vif = &mrt->vif_table[vifid]; 2776 vif_dev = rtnl_dereference(vif->dev); 2777 /* if the VIF doesn't exist just continue */ 2778 if (!vif_dev) 2779 return true; 2780 2781 vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF); 2782 if (!vif_nest) 2783 return false; 2784 2785 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) || 2786 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) || 2787 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) || 2788 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in, 2789 IPMRA_VIFA_PAD) || 2790 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out, 2791 IPMRA_VIFA_PAD) || 2792 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in, 2793 IPMRA_VIFA_PAD) || 2794 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out, 2795 IPMRA_VIFA_PAD) || 2796 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) || 2797 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) { 2798 nla_nest_cancel(skb, vif_nest); 2799 return false; 2800 } 2801 nla_nest_end(skb, vif_nest); 2802 2803 return true; 2804 } 2805 2806 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh, 2807 struct netlink_ext_ack *extack) 2808 { 2809 struct ifinfomsg *ifm; 2810 2811 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) { 2812 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump"); 2813 return -EINVAL; 2814 } 2815 2816 if (nlmsg_attrlen(nlh, sizeof(*ifm))) { 2817 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump"); 2818 return -EINVAL; 2819 } 2820 2821 ifm = nlmsg_data(nlh); 2822 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags || 2823 ifm->ifi_change || ifm->ifi_index) { 2824 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request"); 2825 return -EINVAL; 2826 } 2827 2828 return 0; 2829 } 2830 2831 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb) 2832 { 2833 struct net *net = sock_net(skb->sk); 2834 struct nlmsghdr *nlh = NULL; 2835 unsigned int t = 0, s_t; 2836 unsigned int e = 0, s_e; 2837 struct mr_table *mrt; 2838 2839 if (cb->strict_check) { 2840 int err = ipmr_valid_dumplink(cb->nlh, cb->extack); 2841 2842 if (err < 0) 2843 return err; 2844 } 2845 2846 s_t = cb->args[0]; 2847 s_e = cb->args[1]; 2848 2849 ipmr_for_each_table(mrt, net) { 2850 struct nlattr *vifs, *af; 2851 struct ifinfomsg *hdr; 2852 u32 i; 2853 2854 if (t < s_t) 2855 goto skip_table; 2856 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, 2857 cb->nlh->nlmsg_seq, RTM_NEWLINK, 2858 sizeof(*hdr), NLM_F_MULTI); 2859 if (!nlh) 2860 break; 2861 2862 hdr = nlmsg_data(nlh); 2863 memset(hdr, 0, sizeof(*hdr)); 2864 hdr->ifi_family = RTNL_FAMILY_IPMR; 2865 2866 af = nla_nest_start_noflag(skb, IFLA_AF_SPEC); 2867 if (!af) { 2868 nlmsg_cancel(skb, nlh); 2869 goto out; 2870 } 2871 2872 if (!ipmr_fill_table(mrt, skb)) { 2873 nlmsg_cancel(skb, nlh); 2874 goto out; 2875 } 2876 2877 vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS); 2878 if (!vifs) { 2879 nla_nest_end(skb, af); 2880 nlmsg_end(skb, nlh); 2881 goto out; 2882 } 2883 for (i = 0; i < mrt->maxvif; i++) { 2884 if (e < s_e) 2885 goto skip_entry; 2886 if (!ipmr_fill_vif(mrt, i, skb)) { 2887 nla_nest_end(skb, vifs); 2888 nla_nest_end(skb, af); 2889 nlmsg_end(skb, nlh); 2890 goto out; 2891 } 2892 skip_entry: 2893 e++; 2894 } 2895 s_e = 0; 2896 e = 0; 2897 nla_nest_end(skb, vifs); 2898 nla_nest_end(skb, af); 2899 nlmsg_end(skb, nlh); 2900 skip_table: 2901 t++; 2902 } 2903 2904 out: 2905 cb->args[1] = e; 2906 cb->args[0] = t; 2907 2908 return skb->len; 2909 } 2910 2911 #ifdef CONFIG_PROC_FS 2912 /* The /proc interfaces to multicast routing : 2913 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2914 */ 2915 2916 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2917 __acquires(RCU) 2918 { 2919 struct mr_vif_iter *iter = seq->private; 2920 struct net *net = seq_file_net(seq); 2921 struct mr_table *mrt; 2922 2923 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2924 if (!mrt) 2925 return ERR_PTR(-ENOENT); 2926 2927 iter->mrt = mrt; 2928 2929 rcu_read_lock(); 2930 return mr_vif_seq_start(seq, pos); 2931 } 2932 2933 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2934 __releases(RCU) 2935 { 2936 rcu_read_unlock(); 2937 } 2938 2939 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2940 { 2941 struct mr_vif_iter *iter = seq->private; 2942 struct mr_table *mrt = iter->mrt; 2943 2944 if (v == SEQ_START_TOKEN) { 2945 seq_puts(seq, 2946 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2947 } else { 2948 const struct vif_device *vif = v; 2949 const struct net_device *vif_dev; 2950 const char *name; 2951 2952 vif_dev = vif_dev_read(vif); 2953 name = vif_dev ? vif_dev->name : "none"; 2954 seq_printf(seq, 2955 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2956 vif - mrt->vif_table, 2957 name, vif->bytes_in, vif->pkt_in, 2958 vif->bytes_out, vif->pkt_out, 2959 vif->flags, vif->local, vif->remote); 2960 } 2961 return 0; 2962 } 2963 2964 static const struct seq_operations ipmr_vif_seq_ops = { 2965 .start = ipmr_vif_seq_start, 2966 .next = mr_vif_seq_next, 2967 .stop = ipmr_vif_seq_stop, 2968 .show = ipmr_vif_seq_show, 2969 }; 2970 2971 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2972 { 2973 struct net *net = seq_file_net(seq); 2974 struct mr_table *mrt; 2975 2976 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2977 if (!mrt) 2978 return ERR_PTR(-ENOENT); 2979 2980 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock); 2981 } 2982 2983 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2984 { 2985 int n; 2986 2987 if (v == SEQ_START_TOKEN) { 2988 seq_puts(seq, 2989 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2990 } else { 2991 const struct mfc_cache *mfc = v; 2992 const struct mr_mfc_iter *it = seq->private; 2993 const struct mr_table *mrt = it->mrt; 2994 2995 seq_printf(seq, "%08X %08X %-3hd", 2996 (__force u32) mfc->mfc_mcastgrp, 2997 (__force u32) mfc->mfc_origin, 2998 mfc->_c.mfc_parent); 2999 3000 if (it->cache != &mrt->mfc_unres_queue) { 3001 seq_printf(seq, " %8lu %8lu %8lu", 3002 mfc->_c.mfc_un.res.pkt, 3003 mfc->_c.mfc_un.res.bytes, 3004 mfc->_c.mfc_un.res.wrong_if); 3005 for (n = mfc->_c.mfc_un.res.minvif; 3006 n < mfc->_c.mfc_un.res.maxvif; n++) { 3007 if (VIF_EXISTS(mrt, n) && 3008 mfc->_c.mfc_un.res.ttls[n] < 255) 3009 seq_printf(seq, 3010 " %2d:%-3d", 3011 n, mfc->_c.mfc_un.res.ttls[n]); 3012 } 3013 } else { 3014 /* unresolved mfc_caches don't contain 3015 * pkt, bytes and wrong_if values 3016 */ 3017 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 3018 } 3019 seq_putc(seq, '\n'); 3020 } 3021 return 0; 3022 } 3023 3024 static const struct seq_operations ipmr_mfc_seq_ops = { 3025 .start = ipmr_mfc_seq_start, 3026 .next = mr_mfc_seq_next, 3027 .stop = mr_mfc_seq_stop, 3028 .show = ipmr_mfc_seq_show, 3029 }; 3030 #endif 3031 3032 #ifdef CONFIG_IP_PIMSM_V2 3033 static const struct net_protocol pim_protocol = { 3034 .handler = pim_rcv, 3035 }; 3036 #endif 3037 3038 static unsigned int ipmr_seq_read(struct net *net) 3039 { 3040 ASSERT_RTNL(); 3041 3042 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net); 3043 } 3044 3045 static int ipmr_dump(struct net *net, struct notifier_block *nb, 3046 struct netlink_ext_ack *extack) 3047 { 3048 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump, 3049 ipmr_mr_table_iter, extack); 3050 } 3051 3052 static const struct fib_notifier_ops ipmr_notifier_ops_template = { 3053 .family = RTNL_FAMILY_IPMR, 3054 .fib_seq_read = ipmr_seq_read, 3055 .fib_dump = ipmr_dump, 3056 .owner = THIS_MODULE, 3057 }; 3058 3059 static int __net_init ipmr_notifier_init(struct net *net) 3060 { 3061 struct fib_notifier_ops *ops; 3062 3063 net->ipv4.ipmr_seq = 0; 3064 3065 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net); 3066 if (IS_ERR(ops)) 3067 return PTR_ERR(ops); 3068 net->ipv4.ipmr_notifier_ops = ops; 3069 3070 return 0; 3071 } 3072 3073 static void __net_exit ipmr_notifier_exit(struct net *net) 3074 { 3075 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops); 3076 net->ipv4.ipmr_notifier_ops = NULL; 3077 } 3078 3079 /* Setup for IP multicast routing */ 3080 static int __net_init ipmr_net_init(struct net *net) 3081 { 3082 int err; 3083 3084 err = ipmr_notifier_init(net); 3085 if (err) 3086 goto ipmr_notifier_fail; 3087 3088 err = ipmr_rules_init(net); 3089 if (err < 0) 3090 goto ipmr_rules_fail; 3091 3092 #ifdef CONFIG_PROC_FS 3093 err = -ENOMEM; 3094 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops, 3095 sizeof(struct mr_vif_iter))) 3096 goto proc_vif_fail; 3097 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops, 3098 sizeof(struct mr_mfc_iter))) 3099 goto proc_cache_fail; 3100 #endif 3101 return 0; 3102 3103 #ifdef CONFIG_PROC_FS 3104 proc_cache_fail: 3105 remove_proc_entry("ip_mr_vif", net->proc_net); 3106 proc_vif_fail: 3107 rtnl_lock(); 3108 ipmr_rules_exit(net); 3109 rtnl_unlock(); 3110 #endif 3111 ipmr_rules_fail: 3112 ipmr_notifier_exit(net); 3113 ipmr_notifier_fail: 3114 return err; 3115 } 3116 3117 static void __net_exit ipmr_net_exit(struct net *net) 3118 { 3119 #ifdef CONFIG_PROC_FS 3120 remove_proc_entry("ip_mr_cache", net->proc_net); 3121 remove_proc_entry("ip_mr_vif", net->proc_net); 3122 #endif 3123 ipmr_notifier_exit(net); 3124 } 3125 3126 static void __net_exit ipmr_net_exit_batch(struct list_head *net_list) 3127 { 3128 struct net *net; 3129 3130 rtnl_lock(); 3131 list_for_each_entry(net, net_list, exit_list) 3132 ipmr_rules_exit(net); 3133 rtnl_unlock(); 3134 } 3135 3136 static struct pernet_operations ipmr_net_ops = { 3137 .init = ipmr_net_init, 3138 .exit = ipmr_net_exit, 3139 .exit_batch = ipmr_net_exit_batch, 3140 }; 3141 3142 int __init ip_mr_init(void) 3143 { 3144 int err; 3145 3146 mrt_cachep = KMEM_CACHE(mfc_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC); 3147 3148 err = register_pernet_subsys(&ipmr_net_ops); 3149 if (err) 3150 goto reg_pernet_fail; 3151 3152 err = register_netdevice_notifier(&ip_mr_notifier); 3153 if (err) 3154 goto reg_notif_fail; 3155 #ifdef CONFIG_IP_PIMSM_V2 3156 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 3157 pr_err("%s: can't add PIM protocol\n", __func__); 3158 err = -EAGAIN; 3159 goto add_proto_fail; 3160 } 3161 #endif 3162 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 3163 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0); 3164 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE, 3165 ipmr_rtm_route, NULL, 0); 3166 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE, 3167 ipmr_rtm_route, NULL, 0); 3168 3169 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK, 3170 NULL, ipmr_rtm_dumplink, 0); 3171 return 0; 3172 3173 #ifdef CONFIG_IP_PIMSM_V2 3174 add_proto_fail: 3175 unregister_netdevice_notifier(&ip_mr_notifier); 3176 #endif 3177 reg_notif_fail: 3178 unregister_pernet_subsys(&ipmr_net_ops); 3179 reg_pernet_fail: 3180 kmem_cache_destroy(mrt_cachep); 3181 return err; 3182 } 3183