xref: /linux/net/ipv4/ipmr.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  *	IP multicast routing support for mrouted 3.6/3.8
3  *
4  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *	  Linux Consultancy and Custom Driver Development
6  *
7  *	This program is free software; you can redistribute it and/or
8  *	modify it under the terms of the GNU General Public License
9  *	as published by the Free Software Foundation; either version
10  *	2 of the License, or (at your option) any later version.
11  *
12  *	Fixes:
13  *	Michael Chastain	:	Incorrect size of copying.
14  *	Alan Cox		:	Added the cache manager code
15  *	Alan Cox		:	Fixed the clone/copy bug and device race.
16  *	Mike McLagan		:	Routing by source
17  *	Malcolm Beattie		:	Buffer handling fixes.
18  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
19  *	SVR Anand		:	Fixed several multicast bugs and problems.
20  *	Alexey Kuznetsov	:	Status, optimisations and more.
21  *	Brad Parker		:	Better behaviour on mrouted upcall
22  *					overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
25  *					Relax this requirement to work with older peers.
26  *
27  */
28 
29 #include <asm/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ipip.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 
69 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
70 #define CONFIG_IP_PIMSM	1
71 #endif
72 
73 struct mr_table {
74 	struct list_head	list;
75 #ifdef CONFIG_NET_NS
76 	struct net		*net;
77 #endif
78 	u32			id;
79 	struct sock __rcu	*mroute_sk;
80 	struct timer_list	ipmr_expire_timer;
81 	struct list_head	mfc_unres_queue;
82 	struct list_head	mfc_cache_array[MFC_LINES];
83 	struct vif_device	vif_table[MAXVIFS];
84 	int			maxvif;
85 	atomic_t		cache_resolve_queue_len;
86 	int			mroute_do_assert;
87 	int			mroute_do_pim;
88 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
89 	int			mroute_reg_vif_num;
90 #endif
91 };
92 
93 struct ipmr_rule {
94 	struct fib_rule		common;
95 };
96 
97 struct ipmr_result {
98 	struct mr_table		*mrt;
99 };
100 
101 /* Big lock, protecting vif table, mrt cache and mroute socket state.
102  * Note that the changes are semaphored via rtnl_lock.
103  */
104 
105 static DEFINE_RWLOCK(mrt_lock);
106 
107 /*
108  *	Multicast router control variables
109  */
110 
111 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
112 
113 /* Special spinlock for queue of unresolved entries */
114 static DEFINE_SPINLOCK(mfc_unres_lock);
115 
116 /* We return to original Alan's scheme. Hash table of resolved
117  * entries is changed only in process context and protected
118  * with weak lock mrt_lock. Queue of unresolved entries is protected
119  * with strong spinlock mfc_unres_lock.
120  *
121  * In this case data path is free of exclusive locks at all.
122  */
123 
124 static struct kmem_cache *mrt_cachep __read_mostly;
125 
126 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
127 static int ip_mr_forward(struct net *net, struct mr_table *mrt,
128 			 struct sk_buff *skb, struct mfc_cache *cache,
129 			 int local);
130 static int ipmr_cache_report(struct mr_table *mrt,
131 			     struct sk_buff *pkt, vifi_t vifi, int assert);
132 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
133 			      struct mfc_cache *c, struct rtmsg *rtm);
134 static void ipmr_expire_process(unsigned long arg);
135 
136 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
137 #define ipmr_for_each_table(mrt, net) \
138 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
139 
140 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
141 {
142 	struct mr_table *mrt;
143 
144 	ipmr_for_each_table(mrt, net) {
145 		if (mrt->id == id)
146 			return mrt;
147 	}
148 	return NULL;
149 }
150 
151 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
152 			   struct mr_table **mrt)
153 {
154 	struct ipmr_result res;
155 	struct fib_lookup_arg arg = { .result = &res, };
156 	int err;
157 
158 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
159 			       flowi4_to_flowi(flp4), 0, &arg);
160 	if (err < 0)
161 		return err;
162 	*mrt = res.mrt;
163 	return 0;
164 }
165 
166 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
167 			    int flags, struct fib_lookup_arg *arg)
168 {
169 	struct ipmr_result *res = arg->result;
170 	struct mr_table *mrt;
171 
172 	switch (rule->action) {
173 	case FR_ACT_TO_TBL:
174 		break;
175 	case FR_ACT_UNREACHABLE:
176 		return -ENETUNREACH;
177 	case FR_ACT_PROHIBIT:
178 		return -EACCES;
179 	case FR_ACT_BLACKHOLE:
180 	default:
181 		return -EINVAL;
182 	}
183 
184 	mrt = ipmr_get_table(rule->fr_net, rule->table);
185 	if (mrt == NULL)
186 		return -EAGAIN;
187 	res->mrt = mrt;
188 	return 0;
189 }
190 
191 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
192 {
193 	return 1;
194 }
195 
196 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
197 	FRA_GENERIC_POLICY,
198 };
199 
200 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
201 			       struct fib_rule_hdr *frh, struct nlattr **tb)
202 {
203 	return 0;
204 }
205 
206 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
207 			     struct nlattr **tb)
208 {
209 	return 1;
210 }
211 
212 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
213 			  struct fib_rule_hdr *frh)
214 {
215 	frh->dst_len = 0;
216 	frh->src_len = 0;
217 	frh->tos     = 0;
218 	return 0;
219 }
220 
221 static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
222 	.family		= RTNL_FAMILY_IPMR,
223 	.rule_size	= sizeof(struct ipmr_rule),
224 	.addr_size	= sizeof(u32),
225 	.action		= ipmr_rule_action,
226 	.match		= ipmr_rule_match,
227 	.configure	= ipmr_rule_configure,
228 	.compare	= ipmr_rule_compare,
229 	.default_pref	= fib_default_rule_pref,
230 	.fill		= ipmr_rule_fill,
231 	.nlgroup	= RTNLGRP_IPV4_RULE,
232 	.policy		= ipmr_rule_policy,
233 	.owner		= THIS_MODULE,
234 };
235 
236 static int __net_init ipmr_rules_init(struct net *net)
237 {
238 	struct fib_rules_ops *ops;
239 	struct mr_table *mrt;
240 	int err;
241 
242 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
243 	if (IS_ERR(ops))
244 		return PTR_ERR(ops);
245 
246 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
247 
248 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
249 	if (mrt == NULL) {
250 		err = -ENOMEM;
251 		goto err1;
252 	}
253 
254 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
255 	if (err < 0)
256 		goto err2;
257 
258 	net->ipv4.mr_rules_ops = ops;
259 	return 0;
260 
261 err2:
262 	kfree(mrt);
263 err1:
264 	fib_rules_unregister(ops);
265 	return err;
266 }
267 
268 static void __net_exit ipmr_rules_exit(struct net *net)
269 {
270 	struct mr_table *mrt, *next;
271 
272 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
273 		list_del(&mrt->list);
274 		kfree(mrt);
275 	}
276 	fib_rules_unregister(net->ipv4.mr_rules_ops);
277 }
278 #else
279 #define ipmr_for_each_table(mrt, net) \
280 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
281 
282 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
283 {
284 	return net->ipv4.mrt;
285 }
286 
287 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
288 			   struct mr_table **mrt)
289 {
290 	*mrt = net->ipv4.mrt;
291 	return 0;
292 }
293 
294 static int __net_init ipmr_rules_init(struct net *net)
295 {
296 	net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
297 	return net->ipv4.mrt ? 0 : -ENOMEM;
298 }
299 
300 static void __net_exit ipmr_rules_exit(struct net *net)
301 {
302 	kfree(net->ipv4.mrt);
303 }
304 #endif
305 
306 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
307 {
308 	struct mr_table *mrt;
309 	unsigned int i;
310 
311 	mrt = ipmr_get_table(net, id);
312 	if (mrt != NULL)
313 		return mrt;
314 
315 	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
316 	if (mrt == NULL)
317 		return NULL;
318 	write_pnet(&mrt->net, net);
319 	mrt->id = id;
320 
321 	/* Forwarding cache */
322 	for (i = 0; i < MFC_LINES; i++)
323 		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
324 
325 	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
326 
327 	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
328 		    (unsigned long)mrt);
329 
330 #ifdef CONFIG_IP_PIMSM
331 	mrt->mroute_reg_vif_num = -1;
332 #endif
333 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
334 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
335 #endif
336 	return mrt;
337 }
338 
339 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
340 
341 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
342 {
343 	struct net *net = dev_net(dev);
344 
345 	dev_close(dev);
346 
347 	dev = __dev_get_by_name(net, "tunl0");
348 	if (dev) {
349 		const struct net_device_ops *ops = dev->netdev_ops;
350 		struct ifreq ifr;
351 		struct ip_tunnel_parm p;
352 
353 		memset(&p, 0, sizeof(p));
354 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
355 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
356 		p.iph.version = 4;
357 		p.iph.ihl = 5;
358 		p.iph.protocol = IPPROTO_IPIP;
359 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
360 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
361 
362 		if (ops->ndo_do_ioctl) {
363 			mm_segment_t oldfs = get_fs();
364 
365 			set_fs(KERNEL_DS);
366 			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
367 			set_fs(oldfs);
368 		}
369 	}
370 }
371 
372 static
373 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
374 {
375 	struct net_device  *dev;
376 
377 	dev = __dev_get_by_name(net, "tunl0");
378 
379 	if (dev) {
380 		const struct net_device_ops *ops = dev->netdev_ops;
381 		int err;
382 		struct ifreq ifr;
383 		struct ip_tunnel_parm p;
384 		struct in_device  *in_dev;
385 
386 		memset(&p, 0, sizeof(p));
387 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
388 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
389 		p.iph.version = 4;
390 		p.iph.ihl = 5;
391 		p.iph.protocol = IPPROTO_IPIP;
392 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
393 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
394 
395 		if (ops->ndo_do_ioctl) {
396 			mm_segment_t oldfs = get_fs();
397 
398 			set_fs(KERNEL_DS);
399 			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
400 			set_fs(oldfs);
401 		} else {
402 			err = -EOPNOTSUPP;
403 		}
404 		dev = NULL;
405 
406 		if (err == 0 &&
407 		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
408 			dev->flags |= IFF_MULTICAST;
409 
410 			in_dev = __in_dev_get_rtnl(dev);
411 			if (in_dev == NULL)
412 				goto failure;
413 
414 			ipv4_devconf_setall(in_dev);
415 			IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
416 
417 			if (dev_open(dev))
418 				goto failure;
419 			dev_hold(dev);
420 		}
421 	}
422 	return dev;
423 
424 failure:
425 	/* allow the register to be completed before unregistering. */
426 	rtnl_unlock();
427 	rtnl_lock();
428 
429 	unregister_netdevice(dev);
430 	return NULL;
431 }
432 
433 #ifdef CONFIG_IP_PIMSM
434 
435 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
436 {
437 	struct net *net = dev_net(dev);
438 	struct mr_table *mrt;
439 	struct flowi4 fl4 = {
440 		.flowi4_oif	= dev->ifindex,
441 		.flowi4_iif	= skb->skb_iif,
442 		.flowi4_mark	= skb->mark,
443 	};
444 	int err;
445 
446 	err = ipmr_fib_lookup(net, &fl4, &mrt);
447 	if (err < 0) {
448 		kfree_skb(skb);
449 		return err;
450 	}
451 
452 	read_lock(&mrt_lock);
453 	dev->stats.tx_bytes += skb->len;
454 	dev->stats.tx_packets++;
455 	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
456 	read_unlock(&mrt_lock);
457 	kfree_skb(skb);
458 	return NETDEV_TX_OK;
459 }
460 
461 static const struct net_device_ops reg_vif_netdev_ops = {
462 	.ndo_start_xmit	= reg_vif_xmit,
463 };
464 
465 static void reg_vif_setup(struct net_device *dev)
466 {
467 	dev->type		= ARPHRD_PIMREG;
468 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
469 	dev->flags		= IFF_NOARP;
470 	dev->netdev_ops		= &reg_vif_netdev_ops,
471 	dev->destructor		= free_netdev;
472 	dev->features		|= NETIF_F_NETNS_LOCAL;
473 }
474 
475 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
476 {
477 	struct net_device *dev;
478 	struct in_device *in_dev;
479 	char name[IFNAMSIZ];
480 
481 	if (mrt->id == RT_TABLE_DEFAULT)
482 		sprintf(name, "pimreg");
483 	else
484 		sprintf(name, "pimreg%u", mrt->id);
485 
486 	dev = alloc_netdev(0, name, reg_vif_setup);
487 
488 	if (dev == NULL)
489 		return NULL;
490 
491 	dev_net_set(dev, net);
492 
493 	if (register_netdevice(dev)) {
494 		free_netdev(dev);
495 		return NULL;
496 	}
497 	dev->iflink = 0;
498 
499 	rcu_read_lock();
500 	in_dev = __in_dev_get_rcu(dev);
501 	if (!in_dev) {
502 		rcu_read_unlock();
503 		goto failure;
504 	}
505 
506 	ipv4_devconf_setall(in_dev);
507 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
508 	rcu_read_unlock();
509 
510 	if (dev_open(dev))
511 		goto failure;
512 
513 	dev_hold(dev);
514 
515 	return dev;
516 
517 failure:
518 	/* allow the register to be completed before unregistering. */
519 	rtnl_unlock();
520 	rtnl_lock();
521 
522 	unregister_netdevice(dev);
523 	return NULL;
524 }
525 #endif
526 
527 /*
528  *	Delete a VIF entry
529  *	@notify: Set to 1, if the caller is a notifier_call
530  */
531 
532 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
533 		      struct list_head *head)
534 {
535 	struct vif_device *v;
536 	struct net_device *dev;
537 	struct in_device *in_dev;
538 
539 	if (vifi < 0 || vifi >= mrt->maxvif)
540 		return -EADDRNOTAVAIL;
541 
542 	v = &mrt->vif_table[vifi];
543 
544 	write_lock_bh(&mrt_lock);
545 	dev = v->dev;
546 	v->dev = NULL;
547 
548 	if (!dev) {
549 		write_unlock_bh(&mrt_lock);
550 		return -EADDRNOTAVAIL;
551 	}
552 
553 #ifdef CONFIG_IP_PIMSM
554 	if (vifi == mrt->mroute_reg_vif_num)
555 		mrt->mroute_reg_vif_num = -1;
556 #endif
557 
558 	if (vifi + 1 == mrt->maxvif) {
559 		int tmp;
560 
561 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
562 			if (VIF_EXISTS(mrt, tmp))
563 				break;
564 		}
565 		mrt->maxvif = tmp+1;
566 	}
567 
568 	write_unlock_bh(&mrt_lock);
569 
570 	dev_set_allmulti(dev, -1);
571 
572 	in_dev = __in_dev_get_rtnl(dev);
573 	if (in_dev) {
574 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
575 		ip_rt_multicast_event(in_dev);
576 	}
577 
578 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
579 		unregister_netdevice_queue(dev, head);
580 
581 	dev_put(dev);
582 	return 0;
583 }
584 
585 static void ipmr_cache_free_rcu(struct rcu_head *head)
586 {
587 	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
588 
589 	kmem_cache_free(mrt_cachep, c);
590 }
591 
592 static inline void ipmr_cache_free(struct mfc_cache *c)
593 {
594 	call_rcu(&c->rcu, ipmr_cache_free_rcu);
595 }
596 
597 /* Destroy an unresolved cache entry, killing queued skbs
598  * and reporting error to netlink readers.
599  */
600 
601 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
602 {
603 	struct net *net = read_pnet(&mrt->net);
604 	struct sk_buff *skb;
605 	struct nlmsgerr *e;
606 
607 	atomic_dec(&mrt->cache_resolve_queue_len);
608 
609 	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
610 		if (ip_hdr(skb)->version == 0) {
611 			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
612 			nlh->nlmsg_type = NLMSG_ERROR;
613 			nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
614 			skb_trim(skb, nlh->nlmsg_len);
615 			e = NLMSG_DATA(nlh);
616 			e->error = -ETIMEDOUT;
617 			memset(&e->msg, 0, sizeof(e->msg));
618 
619 			rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
620 		} else {
621 			kfree_skb(skb);
622 		}
623 	}
624 
625 	ipmr_cache_free(c);
626 }
627 
628 
629 /* Timer process for the unresolved queue. */
630 
631 static void ipmr_expire_process(unsigned long arg)
632 {
633 	struct mr_table *mrt = (struct mr_table *)arg;
634 	unsigned long now;
635 	unsigned long expires;
636 	struct mfc_cache *c, *next;
637 
638 	if (!spin_trylock(&mfc_unres_lock)) {
639 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
640 		return;
641 	}
642 
643 	if (list_empty(&mrt->mfc_unres_queue))
644 		goto out;
645 
646 	now = jiffies;
647 	expires = 10*HZ;
648 
649 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
650 		if (time_after(c->mfc_un.unres.expires, now)) {
651 			unsigned long interval = c->mfc_un.unres.expires - now;
652 			if (interval < expires)
653 				expires = interval;
654 			continue;
655 		}
656 
657 		list_del(&c->list);
658 		ipmr_destroy_unres(mrt, c);
659 	}
660 
661 	if (!list_empty(&mrt->mfc_unres_queue))
662 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
663 
664 out:
665 	spin_unlock(&mfc_unres_lock);
666 }
667 
668 /* Fill oifs list. It is called under write locked mrt_lock. */
669 
670 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
671 				   unsigned char *ttls)
672 {
673 	int vifi;
674 
675 	cache->mfc_un.res.minvif = MAXVIFS;
676 	cache->mfc_un.res.maxvif = 0;
677 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
678 
679 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
680 		if (VIF_EXISTS(mrt, vifi) &&
681 		    ttls[vifi] && ttls[vifi] < 255) {
682 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
683 			if (cache->mfc_un.res.minvif > vifi)
684 				cache->mfc_un.res.minvif = vifi;
685 			if (cache->mfc_un.res.maxvif <= vifi)
686 				cache->mfc_un.res.maxvif = vifi + 1;
687 		}
688 	}
689 }
690 
691 static int vif_add(struct net *net, struct mr_table *mrt,
692 		   struct vifctl *vifc, int mrtsock)
693 {
694 	int vifi = vifc->vifc_vifi;
695 	struct vif_device *v = &mrt->vif_table[vifi];
696 	struct net_device *dev;
697 	struct in_device *in_dev;
698 	int err;
699 
700 	/* Is vif busy ? */
701 	if (VIF_EXISTS(mrt, vifi))
702 		return -EADDRINUSE;
703 
704 	switch (vifc->vifc_flags) {
705 #ifdef CONFIG_IP_PIMSM
706 	case VIFF_REGISTER:
707 		/*
708 		 * Special Purpose VIF in PIM
709 		 * All the packets will be sent to the daemon
710 		 */
711 		if (mrt->mroute_reg_vif_num >= 0)
712 			return -EADDRINUSE;
713 		dev = ipmr_reg_vif(net, mrt);
714 		if (!dev)
715 			return -ENOBUFS;
716 		err = dev_set_allmulti(dev, 1);
717 		if (err) {
718 			unregister_netdevice(dev);
719 			dev_put(dev);
720 			return err;
721 		}
722 		break;
723 #endif
724 	case VIFF_TUNNEL:
725 		dev = ipmr_new_tunnel(net, vifc);
726 		if (!dev)
727 			return -ENOBUFS;
728 		err = dev_set_allmulti(dev, 1);
729 		if (err) {
730 			ipmr_del_tunnel(dev, vifc);
731 			dev_put(dev);
732 			return err;
733 		}
734 		break;
735 
736 	case VIFF_USE_IFINDEX:
737 	case 0:
738 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
739 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
740 			if (dev && __in_dev_get_rtnl(dev) == NULL) {
741 				dev_put(dev);
742 				return -EADDRNOTAVAIL;
743 			}
744 		} else {
745 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
746 		}
747 		if (!dev)
748 			return -EADDRNOTAVAIL;
749 		err = dev_set_allmulti(dev, 1);
750 		if (err) {
751 			dev_put(dev);
752 			return err;
753 		}
754 		break;
755 	default:
756 		return -EINVAL;
757 	}
758 
759 	in_dev = __in_dev_get_rtnl(dev);
760 	if (!in_dev) {
761 		dev_put(dev);
762 		return -EADDRNOTAVAIL;
763 	}
764 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
765 	ip_rt_multicast_event(in_dev);
766 
767 	/* Fill in the VIF structures */
768 
769 	v->rate_limit = vifc->vifc_rate_limit;
770 	v->local = vifc->vifc_lcl_addr.s_addr;
771 	v->remote = vifc->vifc_rmt_addr.s_addr;
772 	v->flags = vifc->vifc_flags;
773 	if (!mrtsock)
774 		v->flags |= VIFF_STATIC;
775 	v->threshold = vifc->vifc_threshold;
776 	v->bytes_in = 0;
777 	v->bytes_out = 0;
778 	v->pkt_in = 0;
779 	v->pkt_out = 0;
780 	v->link = dev->ifindex;
781 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
782 		v->link = dev->iflink;
783 
784 	/* And finish update writing critical data */
785 	write_lock_bh(&mrt_lock);
786 	v->dev = dev;
787 #ifdef CONFIG_IP_PIMSM
788 	if (v->flags & VIFF_REGISTER)
789 		mrt->mroute_reg_vif_num = vifi;
790 #endif
791 	if (vifi+1 > mrt->maxvif)
792 		mrt->maxvif = vifi+1;
793 	write_unlock_bh(&mrt_lock);
794 	return 0;
795 }
796 
797 /* called with rcu_read_lock() */
798 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
799 					 __be32 origin,
800 					 __be32 mcastgrp)
801 {
802 	int line = MFC_HASH(mcastgrp, origin);
803 	struct mfc_cache *c;
804 
805 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
806 		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
807 			return c;
808 	}
809 	return NULL;
810 }
811 
812 /*
813  *	Allocate a multicast cache entry
814  */
815 static struct mfc_cache *ipmr_cache_alloc(void)
816 {
817 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
818 
819 	if (c)
820 		c->mfc_un.res.minvif = MAXVIFS;
821 	return c;
822 }
823 
824 static struct mfc_cache *ipmr_cache_alloc_unres(void)
825 {
826 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
827 
828 	if (c) {
829 		skb_queue_head_init(&c->mfc_un.unres.unresolved);
830 		c->mfc_un.unres.expires = jiffies + 10*HZ;
831 	}
832 	return c;
833 }
834 
835 /*
836  *	A cache entry has gone into a resolved state from queued
837  */
838 
839 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
840 			       struct mfc_cache *uc, struct mfc_cache *c)
841 {
842 	struct sk_buff *skb;
843 	struct nlmsgerr *e;
844 
845 	/* Play the pending entries through our router */
846 
847 	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
848 		if (ip_hdr(skb)->version == 0) {
849 			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
850 
851 			if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
852 				nlh->nlmsg_len = skb_tail_pointer(skb) -
853 						 (u8 *)nlh;
854 			} else {
855 				nlh->nlmsg_type = NLMSG_ERROR;
856 				nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
857 				skb_trim(skb, nlh->nlmsg_len);
858 				e = NLMSG_DATA(nlh);
859 				e->error = -EMSGSIZE;
860 				memset(&e->msg, 0, sizeof(e->msg));
861 			}
862 
863 			rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
864 		} else {
865 			ip_mr_forward(net, mrt, skb, c, 0);
866 		}
867 	}
868 }
869 
870 /*
871  *	Bounce a cache query up to mrouted. We could use netlink for this but mrouted
872  *	expects the following bizarre scheme.
873  *
874  *	Called under mrt_lock.
875  */
876 
877 static int ipmr_cache_report(struct mr_table *mrt,
878 			     struct sk_buff *pkt, vifi_t vifi, int assert)
879 {
880 	struct sk_buff *skb;
881 	const int ihl = ip_hdrlen(pkt);
882 	struct igmphdr *igmp;
883 	struct igmpmsg *msg;
884 	struct sock *mroute_sk;
885 	int ret;
886 
887 #ifdef CONFIG_IP_PIMSM
888 	if (assert == IGMPMSG_WHOLEPKT)
889 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
890 	else
891 #endif
892 		skb = alloc_skb(128, GFP_ATOMIC);
893 
894 	if (!skb)
895 		return -ENOBUFS;
896 
897 #ifdef CONFIG_IP_PIMSM
898 	if (assert == IGMPMSG_WHOLEPKT) {
899 		/* Ugly, but we have no choice with this interface.
900 		 * Duplicate old header, fix ihl, length etc.
901 		 * And all this only to mangle msg->im_msgtype and
902 		 * to set msg->im_mbz to "mbz" :-)
903 		 */
904 		skb_push(skb, sizeof(struct iphdr));
905 		skb_reset_network_header(skb);
906 		skb_reset_transport_header(skb);
907 		msg = (struct igmpmsg *)skb_network_header(skb);
908 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
909 		msg->im_msgtype = IGMPMSG_WHOLEPKT;
910 		msg->im_mbz = 0;
911 		msg->im_vif = mrt->mroute_reg_vif_num;
912 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
913 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
914 					     sizeof(struct iphdr));
915 	} else
916 #endif
917 	{
918 
919 	/* Copy the IP header */
920 
921 	skb->network_header = skb->tail;
922 	skb_put(skb, ihl);
923 	skb_copy_to_linear_data(skb, pkt->data, ihl);
924 	ip_hdr(skb)->protocol = 0;	/* Flag to the kernel this is a route add */
925 	msg = (struct igmpmsg *)skb_network_header(skb);
926 	msg->im_vif = vifi;
927 	skb_dst_set(skb, dst_clone(skb_dst(pkt)));
928 
929 	/* Add our header */
930 
931 	igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
932 	igmp->type	=
933 	msg->im_msgtype = assert;
934 	igmp->code	= 0;
935 	ip_hdr(skb)->tot_len = htons(skb->len);		/* Fix the length */
936 	skb->transport_header = skb->network_header;
937 	}
938 
939 	rcu_read_lock();
940 	mroute_sk = rcu_dereference(mrt->mroute_sk);
941 	if (mroute_sk == NULL) {
942 		rcu_read_unlock();
943 		kfree_skb(skb);
944 		return -EINVAL;
945 	}
946 
947 	/* Deliver to mrouted */
948 
949 	ret = sock_queue_rcv_skb(mroute_sk, skb);
950 	rcu_read_unlock();
951 	if (ret < 0) {
952 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
953 		kfree_skb(skb);
954 	}
955 
956 	return ret;
957 }
958 
959 /*
960  *	Queue a packet for resolution. It gets locked cache entry!
961  */
962 
963 static int
964 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
965 {
966 	bool found = false;
967 	int err;
968 	struct mfc_cache *c;
969 	const struct iphdr *iph = ip_hdr(skb);
970 
971 	spin_lock_bh(&mfc_unres_lock);
972 	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
973 		if (c->mfc_mcastgrp == iph->daddr &&
974 		    c->mfc_origin == iph->saddr) {
975 			found = true;
976 			break;
977 		}
978 	}
979 
980 	if (!found) {
981 		/* Create a new entry if allowable */
982 
983 		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
984 		    (c = ipmr_cache_alloc_unres()) == NULL) {
985 			spin_unlock_bh(&mfc_unres_lock);
986 
987 			kfree_skb(skb);
988 			return -ENOBUFS;
989 		}
990 
991 		/* Fill in the new cache entry */
992 
993 		c->mfc_parent	= -1;
994 		c->mfc_origin	= iph->saddr;
995 		c->mfc_mcastgrp	= iph->daddr;
996 
997 		/* Reflect first query at mrouted. */
998 
999 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1000 		if (err < 0) {
1001 			/* If the report failed throw the cache entry
1002 			   out - Brad Parker
1003 			 */
1004 			spin_unlock_bh(&mfc_unres_lock);
1005 
1006 			ipmr_cache_free(c);
1007 			kfree_skb(skb);
1008 			return err;
1009 		}
1010 
1011 		atomic_inc(&mrt->cache_resolve_queue_len);
1012 		list_add(&c->list, &mrt->mfc_unres_queue);
1013 
1014 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1015 			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1016 	}
1017 
1018 	/* See if we can append the packet */
1019 
1020 	if (c->mfc_un.unres.unresolved.qlen > 3) {
1021 		kfree_skb(skb);
1022 		err = -ENOBUFS;
1023 	} else {
1024 		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1025 		err = 0;
1026 	}
1027 
1028 	spin_unlock_bh(&mfc_unres_lock);
1029 	return err;
1030 }
1031 
1032 /*
1033  *	MFC cache manipulation by user space mroute daemon
1034  */
1035 
1036 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1037 {
1038 	int line;
1039 	struct mfc_cache *c, *next;
1040 
1041 	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1042 
1043 	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1044 		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1045 		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1046 			list_del_rcu(&c->list);
1047 
1048 			ipmr_cache_free(c);
1049 			return 0;
1050 		}
1051 	}
1052 	return -ENOENT;
1053 }
1054 
1055 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1056 			struct mfcctl *mfc, int mrtsock)
1057 {
1058 	bool found = false;
1059 	int line;
1060 	struct mfc_cache *uc, *c;
1061 
1062 	if (mfc->mfcc_parent >= MAXVIFS)
1063 		return -ENFILE;
1064 
1065 	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1066 
1067 	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1068 		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1069 		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1070 			found = true;
1071 			break;
1072 		}
1073 	}
1074 
1075 	if (found) {
1076 		write_lock_bh(&mrt_lock);
1077 		c->mfc_parent = mfc->mfcc_parent;
1078 		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1079 		if (!mrtsock)
1080 			c->mfc_flags |= MFC_STATIC;
1081 		write_unlock_bh(&mrt_lock);
1082 		return 0;
1083 	}
1084 
1085 	if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1086 		return -EINVAL;
1087 
1088 	c = ipmr_cache_alloc();
1089 	if (c == NULL)
1090 		return -ENOMEM;
1091 
1092 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1093 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1094 	c->mfc_parent = mfc->mfcc_parent;
1095 	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1096 	if (!mrtsock)
1097 		c->mfc_flags |= MFC_STATIC;
1098 
1099 	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1100 
1101 	/*
1102 	 *	Check to see if we resolved a queued list. If so we
1103 	 *	need to send on the frames and tidy up.
1104 	 */
1105 	found = false;
1106 	spin_lock_bh(&mfc_unres_lock);
1107 	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1108 		if (uc->mfc_origin == c->mfc_origin &&
1109 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1110 			list_del(&uc->list);
1111 			atomic_dec(&mrt->cache_resolve_queue_len);
1112 			found = true;
1113 			break;
1114 		}
1115 	}
1116 	if (list_empty(&mrt->mfc_unres_queue))
1117 		del_timer(&mrt->ipmr_expire_timer);
1118 	spin_unlock_bh(&mfc_unres_lock);
1119 
1120 	if (found) {
1121 		ipmr_cache_resolve(net, mrt, uc, c);
1122 		ipmr_cache_free(uc);
1123 	}
1124 	return 0;
1125 }
1126 
1127 /*
1128  *	Close the multicast socket, and clear the vif tables etc
1129  */
1130 
1131 static void mroute_clean_tables(struct mr_table *mrt)
1132 {
1133 	int i;
1134 	LIST_HEAD(list);
1135 	struct mfc_cache *c, *next;
1136 
1137 	/* Shut down all active vif entries */
1138 
1139 	for (i = 0; i < mrt->maxvif; i++) {
1140 		if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1141 			vif_delete(mrt, i, 0, &list);
1142 	}
1143 	unregister_netdevice_many(&list);
1144 
1145 	/* Wipe the cache */
1146 
1147 	for (i = 0; i < MFC_LINES; i++) {
1148 		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1149 			if (c->mfc_flags & MFC_STATIC)
1150 				continue;
1151 			list_del_rcu(&c->list);
1152 			ipmr_cache_free(c);
1153 		}
1154 	}
1155 
1156 	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1157 		spin_lock_bh(&mfc_unres_lock);
1158 		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1159 			list_del(&c->list);
1160 			ipmr_destroy_unres(mrt, c);
1161 		}
1162 		spin_unlock_bh(&mfc_unres_lock);
1163 	}
1164 }
1165 
1166 /* called from ip_ra_control(), before an RCU grace period,
1167  * we dont need to call synchronize_rcu() here
1168  */
1169 static void mrtsock_destruct(struct sock *sk)
1170 {
1171 	struct net *net = sock_net(sk);
1172 	struct mr_table *mrt;
1173 
1174 	rtnl_lock();
1175 	ipmr_for_each_table(mrt, net) {
1176 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1177 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1178 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1179 			mroute_clean_tables(mrt);
1180 		}
1181 	}
1182 	rtnl_unlock();
1183 }
1184 
1185 /*
1186  *	Socket options and virtual interface manipulation. The whole
1187  *	virtual interface system is a complete heap, but unfortunately
1188  *	that's how BSD mrouted happens to think. Maybe one day with a proper
1189  *	MOSPF/PIM router set up we can clean this up.
1190  */
1191 
1192 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1193 {
1194 	int ret;
1195 	struct vifctl vif;
1196 	struct mfcctl mfc;
1197 	struct net *net = sock_net(sk);
1198 	struct mr_table *mrt;
1199 
1200 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1201 	if (mrt == NULL)
1202 		return -ENOENT;
1203 
1204 	if (optname != MRT_INIT) {
1205 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1206 		    !capable(CAP_NET_ADMIN))
1207 			return -EACCES;
1208 	}
1209 
1210 	switch (optname) {
1211 	case MRT_INIT:
1212 		if (sk->sk_type != SOCK_RAW ||
1213 		    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1214 			return -EOPNOTSUPP;
1215 		if (optlen != sizeof(int))
1216 			return -ENOPROTOOPT;
1217 
1218 		rtnl_lock();
1219 		if (rtnl_dereference(mrt->mroute_sk)) {
1220 			rtnl_unlock();
1221 			return -EADDRINUSE;
1222 		}
1223 
1224 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1225 		if (ret == 0) {
1226 			rcu_assign_pointer(mrt->mroute_sk, sk);
1227 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1228 		}
1229 		rtnl_unlock();
1230 		return ret;
1231 	case MRT_DONE:
1232 		if (sk != rcu_access_pointer(mrt->mroute_sk))
1233 			return -EACCES;
1234 		return ip_ra_control(sk, 0, NULL);
1235 	case MRT_ADD_VIF:
1236 	case MRT_DEL_VIF:
1237 		if (optlen != sizeof(vif))
1238 			return -EINVAL;
1239 		if (copy_from_user(&vif, optval, sizeof(vif)))
1240 			return -EFAULT;
1241 		if (vif.vifc_vifi >= MAXVIFS)
1242 			return -ENFILE;
1243 		rtnl_lock();
1244 		if (optname == MRT_ADD_VIF) {
1245 			ret = vif_add(net, mrt, &vif,
1246 				      sk == rtnl_dereference(mrt->mroute_sk));
1247 		} else {
1248 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1249 		}
1250 		rtnl_unlock();
1251 		return ret;
1252 
1253 		/*
1254 		 *	Manipulate the forwarding caches. These live
1255 		 *	in a sort of kernel/user symbiosis.
1256 		 */
1257 	case MRT_ADD_MFC:
1258 	case MRT_DEL_MFC:
1259 		if (optlen != sizeof(mfc))
1260 			return -EINVAL;
1261 		if (copy_from_user(&mfc, optval, sizeof(mfc)))
1262 			return -EFAULT;
1263 		rtnl_lock();
1264 		if (optname == MRT_DEL_MFC)
1265 			ret = ipmr_mfc_delete(mrt, &mfc);
1266 		else
1267 			ret = ipmr_mfc_add(net, mrt, &mfc,
1268 					   sk == rtnl_dereference(mrt->mroute_sk));
1269 		rtnl_unlock();
1270 		return ret;
1271 		/*
1272 		 *	Control PIM assert.
1273 		 */
1274 	case MRT_ASSERT:
1275 	{
1276 		int v;
1277 		if (get_user(v, (int __user *)optval))
1278 			return -EFAULT;
1279 		mrt->mroute_do_assert = (v) ? 1 : 0;
1280 		return 0;
1281 	}
1282 #ifdef CONFIG_IP_PIMSM
1283 	case MRT_PIM:
1284 	{
1285 		int v;
1286 
1287 		if (get_user(v, (int __user *)optval))
1288 			return -EFAULT;
1289 		v = (v) ? 1 : 0;
1290 
1291 		rtnl_lock();
1292 		ret = 0;
1293 		if (v != mrt->mroute_do_pim) {
1294 			mrt->mroute_do_pim = v;
1295 			mrt->mroute_do_assert = v;
1296 		}
1297 		rtnl_unlock();
1298 		return ret;
1299 	}
1300 #endif
1301 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1302 	case MRT_TABLE:
1303 	{
1304 		u32 v;
1305 
1306 		if (optlen != sizeof(u32))
1307 			return -EINVAL;
1308 		if (get_user(v, (u32 __user *)optval))
1309 			return -EFAULT;
1310 
1311 		rtnl_lock();
1312 		ret = 0;
1313 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1314 			ret = -EBUSY;
1315 		} else {
1316 			if (!ipmr_new_table(net, v))
1317 				ret = -ENOMEM;
1318 			raw_sk(sk)->ipmr_table = v;
1319 		}
1320 		rtnl_unlock();
1321 		return ret;
1322 	}
1323 #endif
1324 	/*
1325 	 *	Spurious command, or MRT_VERSION which you cannot
1326 	 *	set.
1327 	 */
1328 	default:
1329 		return -ENOPROTOOPT;
1330 	}
1331 }
1332 
1333 /*
1334  *	Getsock opt support for the multicast routing system.
1335  */
1336 
1337 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1338 {
1339 	int olr;
1340 	int val;
1341 	struct net *net = sock_net(sk);
1342 	struct mr_table *mrt;
1343 
1344 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1345 	if (mrt == NULL)
1346 		return -ENOENT;
1347 
1348 	if (optname != MRT_VERSION &&
1349 #ifdef CONFIG_IP_PIMSM
1350 	   optname != MRT_PIM &&
1351 #endif
1352 	   optname != MRT_ASSERT)
1353 		return -ENOPROTOOPT;
1354 
1355 	if (get_user(olr, optlen))
1356 		return -EFAULT;
1357 
1358 	olr = min_t(unsigned int, olr, sizeof(int));
1359 	if (olr < 0)
1360 		return -EINVAL;
1361 
1362 	if (put_user(olr, optlen))
1363 		return -EFAULT;
1364 	if (optname == MRT_VERSION)
1365 		val = 0x0305;
1366 #ifdef CONFIG_IP_PIMSM
1367 	else if (optname == MRT_PIM)
1368 		val = mrt->mroute_do_pim;
1369 #endif
1370 	else
1371 		val = mrt->mroute_do_assert;
1372 	if (copy_to_user(optval, &val, olr))
1373 		return -EFAULT;
1374 	return 0;
1375 }
1376 
1377 /*
1378  *	The IP multicast ioctl support routines.
1379  */
1380 
1381 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1382 {
1383 	struct sioc_sg_req sr;
1384 	struct sioc_vif_req vr;
1385 	struct vif_device *vif;
1386 	struct mfc_cache *c;
1387 	struct net *net = sock_net(sk);
1388 	struct mr_table *mrt;
1389 
1390 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1391 	if (mrt == NULL)
1392 		return -ENOENT;
1393 
1394 	switch (cmd) {
1395 	case SIOCGETVIFCNT:
1396 		if (copy_from_user(&vr, arg, sizeof(vr)))
1397 			return -EFAULT;
1398 		if (vr.vifi >= mrt->maxvif)
1399 			return -EINVAL;
1400 		read_lock(&mrt_lock);
1401 		vif = &mrt->vif_table[vr.vifi];
1402 		if (VIF_EXISTS(mrt, vr.vifi)) {
1403 			vr.icount = vif->pkt_in;
1404 			vr.ocount = vif->pkt_out;
1405 			vr.ibytes = vif->bytes_in;
1406 			vr.obytes = vif->bytes_out;
1407 			read_unlock(&mrt_lock);
1408 
1409 			if (copy_to_user(arg, &vr, sizeof(vr)))
1410 				return -EFAULT;
1411 			return 0;
1412 		}
1413 		read_unlock(&mrt_lock);
1414 		return -EADDRNOTAVAIL;
1415 	case SIOCGETSGCNT:
1416 		if (copy_from_user(&sr, arg, sizeof(sr)))
1417 			return -EFAULT;
1418 
1419 		rcu_read_lock();
1420 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1421 		if (c) {
1422 			sr.pktcnt = c->mfc_un.res.pkt;
1423 			sr.bytecnt = c->mfc_un.res.bytes;
1424 			sr.wrong_if = c->mfc_un.res.wrong_if;
1425 			rcu_read_unlock();
1426 
1427 			if (copy_to_user(arg, &sr, sizeof(sr)))
1428 				return -EFAULT;
1429 			return 0;
1430 		}
1431 		rcu_read_unlock();
1432 		return -EADDRNOTAVAIL;
1433 	default:
1434 		return -ENOIOCTLCMD;
1435 	}
1436 }
1437 
1438 #ifdef CONFIG_COMPAT
1439 struct compat_sioc_sg_req {
1440 	struct in_addr src;
1441 	struct in_addr grp;
1442 	compat_ulong_t pktcnt;
1443 	compat_ulong_t bytecnt;
1444 	compat_ulong_t wrong_if;
1445 };
1446 
1447 struct compat_sioc_vif_req {
1448 	vifi_t	vifi;		/* Which iface */
1449 	compat_ulong_t icount;
1450 	compat_ulong_t ocount;
1451 	compat_ulong_t ibytes;
1452 	compat_ulong_t obytes;
1453 };
1454 
1455 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1456 {
1457 	struct compat_sioc_sg_req sr;
1458 	struct compat_sioc_vif_req vr;
1459 	struct vif_device *vif;
1460 	struct mfc_cache *c;
1461 	struct net *net = sock_net(sk);
1462 	struct mr_table *mrt;
1463 
1464 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1465 	if (mrt == NULL)
1466 		return -ENOENT;
1467 
1468 	switch (cmd) {
1469 	case SIOCGETVIFCNT:
1470 		if (copy_from_user(&vr, arg, sizeof(vr)))
1471 			return -EFAULT;
1472 		if (vr.vifi >= mrt->maxvif)
1473 			return -EINVAL;
1474 		read_lock(&mrt_lock);
1475 		vif = &mrt->vif_table[vr.vifi];
1476 		if (VIF_EXISTS(mrt, vr.vifi)) {
1477 			vr.icount = vif->pkt_in;
1478 			vr.ocount = vif->pkt_out;
1479 			vr.ibytes = vif->bytes_in;
1480 			vr.obytes = vif->bytes_out;
1481 			read_unlock(&mrt_lock);
1482 
1483 			if (copy_to_user(arg, &vr, sizeof(vr)))
1484 				return -EFAULT;
1485 			return 0;
1486 		}
1487 		read_unlock(&mrt_lock);
1488 		return -EADDRNOTAVAIL;
1489 	case SIOCGETSGCNT:
1490 		if (copy_from_user(&sr, arg, sizeof(sr)))
1491 			return -EFAULT;
1492 
1493 		rcu_read_lock();
1494 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1495 		if (c) {
1496 			sr.pktcnt = c->mfc_un.res.pkt;
1497 			sr.bytecnt = c->mfc_un.res.bytes;
1498 			sr.wrong_if = c->mfc_un.res.wrong_if;
1499 			rcu_read_unlock();
1500 
1501 			if (copy_to_user(arg, &sr, sizeof(sr)))
1502 				return -EFAULT;
1503 			return 0;
1504 		}
1505 		rcu_read_unlock();
1506 		return -EADDRNOTAVAIL;
1507 	default:
1508 		return -ENOIOCTLCMD;
1509 	}
1510 }
1511 #endif
1512 
1513 
1514 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1515 {
1516 	struct net_device *dev = ptr;
1517 	struct net *net = dev_net(dev);
1518 	struct mr_table *mrt;
1519 	struct vif_device *v;
1520 	int ct;
1521 
1522 	if (event != NETDEV_UNREGISTER)
1523 		return NOTIFY_DONE;
1524 
1525 	ipmr_for_each_table(mrt, net) {
1526 		v = &mrt->vif_table[0];
1527 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1528 			if (v->dev == dev)
1529 				vif_delete(mrt, ct, 1, NULL);
1530 		}
1531 	}
1532 	return NOTIFY_DONE;
1533 }
1534 
1535 
1536 static struct notifier_block ip_mr_notifier = {
1537 	.notifier_call = ipmr_device_event,
1538 };
1539 
1540 /*
1541  *	Encapsulate a packet by attaching a valid IPIP header to it.
1542  *	This avoids tunnel drivers and other mess and gives us the speed so
1543  *	important for multicast video.
1544  */
1545 
1546 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1547 {
1548 	struct iphdr *iph;
1549 	const struct iphdr *old_iph = ip_hdr(skb);
1550 
1551 	skb_push(skb, sizeof(struct iphdr));
1552 	skb->transport_header = skb->network_header;
1553 	skb_reset_network_header(skb);
1554 	iph = ip_hdr(skb);
1555 
1556 	iph->version	=	4;
1557 	iph->tos	=	old_iph->tos;
1558 	iph->ttl	=	old_iph->ttl;
1559 	iph->frag_off	=	0;
1560 	iph->daddr	=	daddr;
1561 	iph->saddr	=	saddr;
1562 	iph->protocol	=	IPPROTO_IPIP;
1563 	iph->ihl	=	5;
1564 	iph->tot_len	=	htons(skb->len);
1565 	ip_select_ident(iph, skb_dst(skb), NULL);
1566 	ip_send_check(iph);
1567 
1568 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1569 	nf_reset(skb);
1570 }
1571 
1572 static inline int ipmr_forward_finish(struct sk_buff *skb)
1573 {
1574 	struct ip_options *opt = &(IPCB(skb)->opt);
1575 
1576 	IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1577 	IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1578 
1579 	if (unlikely(opt->optlen))
1580 		ip_forward_options(skb);
1581 
1582 	return dst_output(skb);
1583 }
1584 
1585 /*
1586  *	Processing handlers for ipmr_forward
1587  */
1588 
1589 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1590 			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1591 {
1592 	const struct iphdr *iph = ip_hdr(skb);
1593 	struct vif_device *vif = &mrt->vif_table[vifi];
1594 	struct net_device *dev;
1595 	struct rtable *rt;
1596 	struct flowi4 fl4;
1597 	int    encap = 0;
1598 
1599 	if (vif->dev == NULL)
1600 		goto out_free;
1601 
1602 #ifdef CONFIG_IP_PIMSM
1603 	if (vif->flags & VIFF_REGISTER) {
1604 		vif->pkt_out++;
1605 		vif->bytes_out += skb->len;
1606 		vif->dev->stats.tx_bytes += skb->len;
1607 		vif->dev->stats.tx_packets++;
1608 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1609 		goto out_free;
1610 	}
1611 #endif
1612 
1613 	if (vif->flags & VIFF_TUNNEL) {
1614 		rt = ip_route_output_ports(net, &fl4, NULL,
1615 					   vif->remote, vif->local,
1616 					   0, 0,
1617 					   IPPROTO_IPIP,
1618 					   RT_TOS(iph->tos), vif->link);
1619 		if (IS_ERR(rt))
1620 			goto out_free;
1621 		encap = sizeof(struct iphdr);
1622 	} else {
1623 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1624 					   0, 0,
1625 					   IPPROTO_IPIP,
1626 					   RT_TOS(iph->tos), vif->link);
1627 		if (IS_ERR(rt))
1628 			goto out_free;
1629 	}
1630 
1631 	dev = rt->dst.dev;
1632 
1633 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1634 		/* Do not fragment multicasts. Alas, IPv4 does not
1635 		 * allow to send ICMP, so that packets will disappear
1636 		 * to blackhole.
1637 		 */
1638 
1639 		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1640 		ip_rt_put(rt);
1641 		goto out_free;
1642 	}
1643 
1644 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1645 
1646 	if (skb_cow(skb, encap)) {
1647 		ip_rt_put(rt);
1648 		goto out_free;
1649 	}
1650 
1651 	vif->pkt_out++;
1652 	vif->bytes_out += skb->len;
1653 
1654 	skb_dst_drop(skb);
1655 	skb_dst_set(skb, &rt->dst);
1656 	ip_decrease_ttl(ip_hdr(skb));
1657 
1658 	/* FIXME: forward and output firewalls used to be called here.
1659 	 * What do we do with netfilter? -- RR
1660 	 */
1661 	if (vif->flags & VIFF_TUNNEL) {
1662 		ip_encap(skb, vif->local, vif->remote);
1663 		/* FIXME: extra output firewall step used to be here. --RR */
1664 		vif->dev->stats.tx_packets++;
1665 		vif->dev->stats.tx_bytes += skb->len;
1666 	}
1667 
1668 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1669 
1670 	/*
1671 	 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1672 	 * not only before forwarding, but after forwarding on all output
1673 	 * interfaces. It is clear, if mrouter runs a multicasting
1674 	 * program, it should receive packets not depending to what interface
1675 	 * program is joined.
1676 	 * If we will not make it, the program will have to join on all
1677 	 * interfaces. On the other hand, multihoming host (or router, but
1678 	 * not mrouter) cannot join to more than one interface - it will
1679 	 * result in receiving multiple packets.
1680 	 */
1681 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1682 		ipmr_forward_finish);
1683 	return;
1684 
1685 out_free:
1686 	kfree_skb(skb);
1687 }
1688 
1689 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1690 {
1691 	int ct;
1692 
1693 	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1694 		if (mrt->vif_table[ct].dev == dev)
1695 			break;
1696 	}
1697 	return ct;
1698 }
1699 
1700 /* "local" means that we should preserve one skb (for local delivery) */
1701 
1702 static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1703 			 struct sk_buff *skb, struct mfc_cache *cache,
1704 			 int local)
1705 {
1706 	int psend = -1;
1707 	int vif, ct;
1708 
1709 	vif = cache->mfc_parent;
1710 	cache->mfc_un.res.pkt++;
1711 	cache->mfc_un.res.bytes += skb->len;
1712 
1713 	/*
1714 	 * Wrong interface: drop packet and (maybe) send PIM assert.
1715 	 */
1716 	if (mrt->vif_table[vif].dev != skb->dev) {
1717 		int true_vifi;
1718 
1719 		if (rt_is_output_route(skb_rtable(skb))) {
1720 			/* It is our own packet, looped back.
1721 			 * Very complicated situation...
1722 			 *
1723 			 * The best workaround until routing daemons will be
1724 			 * fixed is not to redistribute packet, if it was
1725 			 * send through wrong interface. It means, that
1726 			 * multicast applications WILL NOT work for
1727 			 * (S,G), which have default multicast route pointing
1728 			 * to wrong oif. In any case, it is not a good
1729 			 * idea to use multicasting applications on router.
1730 			 */
1731 			goto dont_forward;
1732 		}
1733 
1734 		cache->mfc_un.res.wrong_if++;
1735 		true_vifi = ipmr_find_vif(mrt, skb->dev);
1736 
1737 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1738 		    /* pimsm uses asserts, when switching from RPT to SPT,
1739 		     * so that we cannot check that packet arrived on an oif.
1740 		     * It is bad, but otherwise we would need to move pretty
1741 		     * large chunk of pimd to kernel. Ough... --ANK
1742 		     */
1743 		    (mrt->mroute_do_pim ||
1744 		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1745 		    time_after(jiffies,
1746 			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1747 			cache->mfc_un.res.last_assert = jiffies;
1748 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1749 		}
1750 		goto dont_forward;
1751 	}
1752 
1753 	mrt->vif_table[vif].pkt_in++;
1754 	mrt->vif_table[vif].bytes_in += skb->len;
1755 
1756 	/*
1757 	 *	Forward the frame
1758 	 */
1759 	for (ct = cache->mfc_un.res.maxvif - 1;
1760 	     ct >= cache->mfc_un.res.minvif; ct--) {
1761 		if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1762 			if (psend != -1) {
1763 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1764 
1765 				if (skb2)
1766 					ipmr_queue_xmit(net, mrt, skb2, cache,
1767 							psend);
1768 			}
1769 			psend = ct;
1770 		}
1771 	}
1772 	if (psend != -1) {
1773 		if (local) {
1774 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1775 
1776 			if (skb2)
1777 				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1778 		} else {
1779 			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1780 			return 0;
1781 		}
1782 	}
1783 
1784 dont_forward:
1785 	if (!local)
1786 		kfree_skb(skb);
1787 	return 0;
1788 }
1789 
1790 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1791 {
1792 	struct rtable *rt = skb_rtable(skb);
1793 	struct iphdr *iph = ip_hdr(skb);
1794 	struct flowi4 fl4 = {
1795 		.daddr = iph->daddr,
1796 		.saddr = iph->saddr,
1797 		.flowi4_tos = RT_TOS(iph->tos),
1798 		.flowi4_oif = rt->rt_oif,
1799 		.flowi4_iif = rt->rt_iif,
1800 		.flowi4_mark = rt->rt_mark,
1801 	};
1802 	struct mr_table *mrt;
1803 	int err;
1804 
1805 	err = ipmr_fib_lookup(net, &fl4, &mrt);
1806 	if (err)
1807 		return ERR_PTR(err);
1808 	return mrt;
1809 }
1810 
1811 /*
1812  *	Multicast packets for forwarding arrive here
1813  *	Called with rcu_read_lock();
1814  */
1815 
1816 int ip_mr_input(struct sk_buff *skb)
1817 {
1818 	struct mfc_cache *cache;
1819 	struct net *net = dev_net(skb->dev);
1820 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1821 	struct mr_table *mrt;
1822 
1823 	/* Packet is looped back after forward, it should not be
1824 	 * forwarded second time, but still can be delivered locally.
1825 	 */
1826 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1827 		goto dont_forward;
1828 
1829 	mrt = ipmr_rt_fib_lookup(net, skb);
1830 	if (IS_ERR(mrt)) {
1831 		kfree_skb(skb);
1832 		return PTR_ERR(mrt);
1833 	}
1834 	if (!local) {
1835 		if (IPCB(skb)->opt.router_alert) {
1836 			if (ip_call_ra_chain(skb))
1837 				return 0;
1838 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1839 			/* IGMPv1 (and broken IGMPv2 implementations sort of
1840 			 * Cisco IOS <= 11.2(8)) do not put router alert
1841 			 * option to IGMP packets destined to routable
1842 			 * groups. It is very bad, because it means
1843 			 * that we can forward NO IGMP messages.
1844 			 */
1845 			struct sock *mroute_sk;
1846 
1847 			mroute_sk = rcu_dereference(mrt->mroute_sk);
1848 			if (mroute_sk) {
1849 				nf_reset(skb);
1850 				raw_rcv(mroute_sk, skb);
1851 				return 0;
1852 			}
1853 		    }
1854 	}
1855 
1856 	/* already under rcu_read_lock() */
1857 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1858 
1859 	/*
1860 	 *	No usable cache entry
1861 	 */
1862 	if (cache == NULL) {
1863 		int vif;
1864 
1865 		if (local) {
1866 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1867 			ip_local_deliver(skb);
1868 			if (skb2 == NULL)
1869 				return -ENOBUFS;
1870 			skb = skb2;
1871 		}
1872 
1873 		read_lock(&mrt_lock);
1874 		vif = ipmr_find_vif(mrt, skb->dev);
1875 		if (vif >= 0) {
1876 			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1877 			read_unlock(&mrt_lock);
1878 
1879 			return err2;
1880 		}
1881 		read_unlock(&mrt_lock);
1882 		kfree_skb(skb);
1883 		return -ENODEV;
1884 	}
1885 
1886 	read_lock(&mrt_lock);
1887 	ip_mr_forward(net, mrt, skb, cache, local);
1888 	read_unlock(&mrt_lock);
1889 
1890 	if (local)
1891 		return ip_local_deliver(skb);
1892 
1893 	return 0;
1894 
1895 dont_forward:
1896 	if (local)
1897 		return ip_local_deliver(skb);
1898 	kfree_skb(skb);
1899 	return 0;
1900 }
1901 
1902 #ifdef CONFIG_IP_PIMSM
1903 /* called with rcu_read_lock() */
1904 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1905 		     unsigned int pimlen)
1906 {
1907 	struct net_device *reg_dev = NULL;
1908 	struct iphdr *encap;
1909 
1910 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1911 	/*
1912 	 * Check that:
1913 	 * a. packet is really sent to a multicast group
1914 	 * b. packet is not a NULL-REGISTER
1915 	 * c. packet is not truncated
1916 	 */
1917 	if (!ipv4_is_multicast(encap->daddr) ||
1918 	    encap->tot_len == 0 ||
1919 	    ntohs(encap->tot_len) + pimlen > skb->len)
1920 		return 1;
1921 
1922 	read_lock(&mrt_lock);
1923 	if (mrt->mroute_reg_vif_num >= 0)
1924 		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1925 	read_unlock(&mrt_lock);
1926 
1927 	if (reg_dev == NULL)
1928 		return 1;
1929 
1930 	skb->mac_header = skb->network_header;
1931 	skb_pull(skb, (u8 *)encap - skb->data);
1932 	skb_reset_network_header(skb);
1933 	skb->protocol = htons(ETH_P_IP);
1934 	skb->ip_summed = CHECKSUM_NONE;
1935 	skb->pkt_type = PACKET_HOST;
1936 
1937 	skb_tunnel_rx(skb, reg_dev);
1938 
1939 	netif_rx(skb);
1940 
1941 	return NET_RX_SUCCESS;
1942 }
1943 #endif
1944 
1945 #ifdef CONFIG_IP_PIMSM_V1
1946 /*
1947  * Handle IGMP messages of PIMv1
1948  */
1949 
1950 int pim_rcv_v1(struct sk_buff *skb)
1951 {
1952 	struct igmphdr *pim;
1953 	struct net *net = dev_net(skb->dev);
1954 	struct mr_table *mrt;
1955 
1956 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1957 		goto drop;
1958 
1959 	pim = igmp_hdr(skb);
1960 
1961 	mrt = ipmr_rt_fib_lookup(net, skb);
1962 	if (IS_ERR(mrt))
1963 		goto drop;
1964 	if (!mrt->mroute_do_pim ||
1965 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1966 		goto drop;
1967 
1968 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1969 drop:
1970 		kfree_skb(skb);
1971 	}
1972 	return 0;
1973 }
1974 #endif
1975 
1976 #ifdef CONFIG_IP_PIMSM_V2
1977 static int pim_rcv(struct sk_buff *skb)
1978 {
1979 	struct pimreghdr *pim;
1980 	struct net *net = dev_net(skb->dev);
1981 	struct mr_table *mrt;
1982 
1983 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1984 		goto drop;
1985 
1986 	pim = (struct pimreghdr *)skb_transport_header(skb);
1987 	if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
1988 	    (pim->flags & PIM_NULL_REGISTER) ||
1989 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
1990 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
1991 		goto drop;
1992 
1993 	mrt = ipmr_rt_fib_lookup(net, skb);
1994 	if (IS_ERR(mrt))
1995 		goto drop;
1996 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1997 drop:
1998 		kfree_skb(skb);
1999 	}
2000 	return 0;
2001 }
2002 #endif
2003 
2004 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2005 			      struct mfc_cache *c, struct rtmsg *rtm)
2006 {
2007 	int ct;
2008 	struct rtnexthop *nhp;
2009 	u8 *b = skb_tail_pointer(skb);
2010 	struct rtattr *mp_head;
2011 
2012 	/* If cache is unresolved, don't try to parse IIF and OIF */
2013 	if (c->mfc_parent >= MAXVIFS)
2014 		return -ENOENT;
2015 
2016 	if (VIF_EXISTS(mrt, c->mfc_parent))
2017 		RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
2018 
2019 	mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
2020 
2021 	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2022 		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2023 			if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
2024 				goto rtattr_failure;
2025 			nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
2026 			nhp->rtnh_flags = 0;
2027 			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2028 			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2029 			nhp->rtnh_len = sizeof(*nhp);
2030 		}
2031 	}
2032 	mp_head->rta_type = RTA_MULTIPATH;
2033 	mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
2034 	rtm->rtm_type = RTN_MULTICAST;
2035 	return 1;
2036 
2037 rtattr_failure:
2038 	nlmsg_trim(skb, b);
2039 	return -EMSGSIZE;
2040 }
2041 
2042 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2043 		   __be32 saddr, __be32 daddr,
2044 		   struct rtmsg *rtm, int nowait)
2045 {
2046 	struct mfc_cache *cache;
2047 	struct mr_table *mrt;
2048 	int err;
2049 
2050 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2051 	if (mrt == NULL)
2052 		return -ENOENT;
2053 
2054 	rcu_read_lock();
2055 	cache = ipmr_cache_find(mrt, saddr, daddr);
2056 
2057 	if (cache == NULL) {
2058 		struct sk_buff *skb2;
2059 		struct iphdr *iph;
2060 		struct net_device *dev;
2061 		int vif = -1;
2062 
2063 		if (nowait) {
2064 			rcu_read_unlock();
2065 			return -EAGAIN;
2066 		}
2067 
2068 		dev = skb->dev;
2069 		read_lock(&mrt_lock);
2070 		if (dev)
2071 			vif = ipmr_find_vif(mrt, dev);
2072 		if (vif < 0) {
2073 			read_unlock(&mrt_lock);
2074 			rcu_read_unlock();
2075 			return -ENODEV;
2076 		}
2077 		skb2 = skb_clone(skb, GFP_ATOMIC);
2078 		if (!skb2) {
2079 			read_unlock(&mrt_lock);
2080 			rcu_read_unlock();
2081 			return -ENOMEM;
2082 		}
2083 
2084 		skb_push(skb2, sizeof(struct iphdr));
2085 		skb_reset_network_header(skb2);
2086 		iph = ip_hdr(skb2);
2087 		iph->ihl = sizeof(struct iphdr) >> 2;
2088 		iph->saddr = saddr;
2089 		iph->daddr = daddr;
2090 		iph->version = 0;
2091 		err = ipmr_cache_unresolved(mrt, vif, skb2);
2092 		read_unlock(&mrt_lock);
2093 		rcu_read_unlock();
2094 		return err;
2095 	}
2096 
2097 	read_lock(&mrt_lock);
2098 	if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2099 		cache->mfc_flags |= MFC_NOTIFY;
2100 	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2101 	read_unlock(&mrt_lock);
2102 	rcu_read_unlock();
2103 	return err;
2104 }
2105 
2106 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2107 			    u32 pid, u32 seq, struct mfc_cache *c)
2108 {
2109 	struct nlmsghdr *nlh;
2110 	struct rtmsg *rtm;
2111 
2112 	nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2113 	if (nlh == NULL)
2114 		return -EMSGSIZE;
2115 
2116 	rtm = nlmsg_data(nlh);
2117 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2118 	rtm->rtm_dst_len  = 32;
2119 	rtm->rtm_src_len  = 32;
2120 	rtm->rtm_tos      = 0;
2121 	rtm->rtm_table    = mrt->id;
2122 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2123 		goto nla_put_failure;
2124 	rtm->rtm_type     = RTN_MULTICAST;
2125 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2126 	rtm->rtm_protocol = RTPROT_UNSPEC;
2127 	rtm->rtm_flags    = 0;
2128 
2129 	if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2130 	    nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2131 		goto nla_put_failure;
2132 	if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
2133 		goto nla_put_failure;
2134 
2135 	return nlmsg_end(skb, nlh);
2136 
2137 nla_put_failure:
2138 	nlmsg_cancel(skb, nlh);
2139 	return -EMSGSIZE;
2140 }
2141 
2142 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2143 {
2144 	struct net *net = sock_net(skb->sk);
2145 	struct mr_table *mrt;
2146 	struct mfc_cache *mfc;
2147 	unsigned int t = 0, s_t;
2148 	unsigned int h = 0, s_h;
2149 	unsigned int e = 0, s_e;
2150 
2151 	s_t = cb->args[0];
2152 	s_h = cb->args[1];
2153 	s_e = cb->args[2];
2154 
2155 	rcu_read_lock();
2156 	ipmr_for_each_table(mrt, net) {
2157 		if (t < s_t)
2158 			goto next_table;
2159 		if (t > s_t)
2160 			s_h = 0;
2161 		for (h = s_h; h < MFC_LINES; h++) {
2162 			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2163 				if (e < s_e)
2164 					goto next_entry;
2165 				if (ipmr_fill_mroute(mrt, skb,
2166 						     NETLINK_CB(cb->skb).pid,
2167 						     cb->nlh->nlmsg_seq,
2168 						     mfc) < 0)
2169 					goto done;
2170 next_entry:
2171 				e++;
2172 			}
2173 			e = s_e = 0;
2174 		}
2175 		s_h = 0;
2176 next_table:
2177 		t++;
2178 	}
2179 done:
2180 	rcu_read_unlock();
2181 
2182 	cb->args[2] = e;
2183 	cb->args[1] = h;
2184 	cb->args[0] = t;
2185 
2186 	return skb->len;
2187 }
2188 
2189 #ifdef CONFIG_PROC_FS
2190 /*
2191  *	The /proc interfaces to multicast routing :
2192  *	/proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2193  */
2194 struct ipmr_vif_iter {
2195 	struct seq_net_private p;
2196 	struct mr_table *mrt;
2197 	int ct;
2198 };
2199 
2200 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2201 					   struct ipmr_vif_iter *iter,
2202 					   loff_t pos)
2203 {
2204 	struct mr_table *mrt = iter->mrt;
2205 
2206 	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2207 		if (!VIF_EXISTS(mrt, iter->ct))
2208 			continue;
2209 		if (pos-- == 0)
2210 			return &mrt->vif_table[iter->ct];
2211 	}
2212 	return NULL;
2213 }
2214 
2215 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2216 	__acquires(mrt_lock)
2217 {
2218 	struct ipmr_vif_iter *iter = seq->private;
2219 	struct net *net = seq_file_net(seq);
2220 	struct mr_table *mrt;
2221 
2222 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2223 	if (mrt == NULL)
2224 		return ERR_PTR(-ENOENT);
2225 
2226 	iter->mrt = mrt;
2227 
2228 	read_lock(&mrt_lock);
2229 	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2230 		: SEQ_START_TOKEN;
2231 }
2232 
2233 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2234 {
2235 	struct ipmr_vif_iter *iter = seq->private;
2236 	struct net *net = seq_file_net(seq);
2237 	struct mr_table *mrt = iter->mrt;
2238 
2239 	++*pos;
2240 	if (v == SEQ_START_TOKEN)
2241 		return ipmr_vif_seq_idx(net, iter, 0);
2242 
2243 	while (++iter->ct < mrt->maxvif) {
2244 		if (!VIF_EXISTS(mrt, iter->ct))
2245 			continue;
2246 		return &mrt->vif_table[iter->ct];
2247 	}
2248 	return NULL;
2249 }
2250 
2251 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2252 	__releases(mrt_lock)
2253 {
2254 	read_unlock(&mrt_lock);
2255 }
2256 
2257 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2258 {
2259 	struct ipmr_vif_iter *iter = seq->private;
2260 	struct mr_table *mrt = iter->mrt;
2261 
2262 	if (v == SEQ_START_TOKEN) {
2263 		seq_puts(seq,
2264 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2265 	} else {
2266 		const struct vif_device *vif = v;
2267 		const char *name =  vif->dev ? vif->dev->name : "none";
2268 
2269 		seq_printf(seq,
2270 			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2271 			   vif - mrt->vif_table,
2272 			   name, vif->bytes_in, vif->pkt_in,
2273 			   vif->bytes_out, vif->pkt_out,
2274 			   vif->flags, vif->local, vif->remote);
2275 	}
2276 	return 0;
2277 }
2278 
2279 static const struct seq_operations ipmr_vif_seq_ops = {
2280 	.start = ipmr_vif_seq_start,
2281 	.next  = ipmr_vif_seq_next,
2282 	.stop  = ipmr_vif_seq_stop,
2283 	.show  = ipmr_vif_seq_show,
2284 };
2285 
2286 static int ipmr_vif_open(struct inode *inode, struct file *file)
2287 {
2288 	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2289 			    sizeof(struct ipmr_vif_iter));
2290 }
2291 
2292 static const struct file_operations ipmr_vif_fops = {
2293 	.owner	 = THIS_MODULE,
2294 	.open    = ipmr_vif_open,
2295 	.read    = seq_read,
2296 	.llseek  = seq_lseek,
2297 	.release = seq_release_net,
2298 };
2299 
2300 struct ipmr_mfc_iter {
2301 	struct seq_net_private p;
2302 	struct mr_table *mrt;
2303 	struct list_head *cache;
2304 	int ct;
2305 };
2306 
2307 
2308 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2309 					  struct ipmr_mfc_iter *it, loff_t pos)
2310 {
2311 	struct mr_table *mrt = it->mrt;
2312 	struct mfc_cache *mfc;
2313 
2314 	rcu_read_lock();
2315 	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2316 		it->cache = &mrt->mfc_cache_array[it->ct];
2317 		list_for_each_entry_rcu(mfc, it->cache, list)
2318 			if (pos-- == 0)
2319 				return mfc;
2320 	}
2321 	rcu_read_unlock();
2322 
2323 	spin_lock_bh(&mfc_unres_lock);
2324 	it->cache = &mrt->mfc_unres_queue;
2325 	list_for_each_entry(mfc, it->cache, list)
2326 		if (pos-- == 0)
2327 			return mfc;
2328 	spin_unlock_bh(&mfc_unres_lock);
2329 
2330 	it->cache = NULL;
2331 	return NULL;
2332 }
2333 
2334 
2335 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2336 {
2337 	struct ipmr_mfc_iter *it = seq->private;
2338 	struct net *net = seq_file_net(seq);
2339 	struct mr_table *mrt;
2340 
2341 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2342 	if (mrt == NULL)
2343 		return ERR_PTR(-ENOENT);
2344 
2345 	it->mrt = mrt;
2346 	it->cache = NULL;
2347 	it->ct = 0;
2348 	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2349 		: SEQ_START_TOKEN;
2350 }
2351 
2352 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2353 {
2354 	struct mfc_cache *mfc = v;
2355 	struct ipmr_mfc_iter *it = seq->private;
2356 	struct net *net = seq_file_net(seq);
2357 	struct mr_table *mrt = it->mrt;
2358 
2359 	++*pos;
2360 
2361 	if (v == SEQ_START_TOKEN)
2362 		return ipmr_mfc_seq_idx(net, seq->private, 0);
2363 
2364 	if (mfc->list.next != it->cache)
2365 		return list_entry(mfc->list.next, struct mfc_cache, list);
2366 
2367 	if (it->cache == &mrt->mfc_unres_queue)
2368 		goto end_of_list;
2369 
2370 	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2371 
2372 	while (++it->ct < MFC_LINES) {
2373 		it->cache = &mrt->mfc_cache_array[it->ct];
2374 		if (list_empty(it->cache))
2375 			continue;
2376 		return list_first_entry(it->cache, struct mfc_cache, list);
2377 	}
2378 
2379 	/* exhausted cache_array, show unresolved */
2380 	rcu_read_unlock();
2381 	it->cache = &mrt->mfc_unres_queue;
2382 	it->ct = 0;
2383 
2384 	spin_lock_bh(&mfc_unres_lock);
2385 	if (!list_empty(it->cache))
2386 		return list_first_entry(it->cache, struct mfc_cache, list);
2387 
2388 end_of_list:
2389 	spin_unlock_bh(&mfc_unres_lock);
2390 	it->cache = NULL;
2391 
2392 	return NULL;
2393 }
2394 
2395 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2396 {
2397 	struct ipmr_mfc_iter *it = seq->private;
2398 	struct mr_table *mrt = it->mrt;
2399 
2400 	if (it->cache == &mrt->mfc_unres_queue)
2401 		spin_unlock_bh(&mfc_unres_lock);
2402 	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2403 		rcu_read_unlock();
2404 }
2405 
2406 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2407 {
2408 	int n;
2409 
2410 	if (v == SEQ_START_TOKEN) {
2411 		seq_puts(seq,
2412 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2413 	} else {
2414 		const struct mfc_cache *mfc = v;
2415 		const struct ipmr_mfc_iter *it = seq->private;
2416 		const struct mr_table *mrt = it->mrt;
2417 
2418 		seq_printf(seq, "%08X %08X %-3hd",
2419 			   (__force u32) mfc->mfc_mcastgrp,
2420 			   (__force u32) mfc->mfc_origin,
2421 			   mfc->mfc_parent);
2422 
2423 		if (it->cache != &mrt->mfc_unres_queue) {
2424 			seq_printf(seq, " %8lu %8lu %8lu",
2425 				   mfc->mfc_un.res.pkt,
2426 				   mfc->mfc_un.res.bytes,
2427 				   mfc->mfc_un.res.wrong_if);
2428 			for (n = mfc->mfc_un.res.minvif;
2429 			     n < mfc->mfc_un.res.maxvif; n++) {
2430 				if (VIF_EXISTS(mrt, n) &&
2431 				    mfc->mfc_un.res.ttls[n] < 255)
2432 					seq_printf(seq,
2433 					   " %2d:%-3d",
2434 					   n, mfc->mfc_un.res.ttls[n]);
2435 			}
2436 		} else {
2437 			/* unresolved mfc_caches don't contain
2438 			 * pkt, bytes and wrong_if values
2439 			 */
2440 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2441 		}
2442 		seq_putc(seq, '\n');
2443 	}
2444 	return 0;
2445 }
2446 
2447 static const struct seq_operations ipmr_mfc_seq_ops = {
2448 	.start = ipmr_mfc_seq_start,
2449 	.next  = ipmr_mfc_seq_next,
2450 	.stop  = ipmr_mfc_seq_stop,
2451 	.show  = ipmr_mfc_seq_show,
2452 };
2453 
2454 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2455 {
2456 	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2457 			    sizeof(struct ipmr_mfc_iter));
2458 }
2459 
2460 static const struct file_operations ipmr_mfc_fops = {
2461 	.owner	 = THIS_MODULE,
2462 	.open    = ipmr_mfc_open,
2463 	.read    = seq_read,
2464 	.llseek  = seq_lseek,
2465 	.release = seq_release_net,
2466 };
2467 #endif
2468 
2469 #ifdef CONFIG_IP_PIMSM_V2
2470 static const struct net_protocol pim_protocol = {
2471 	.handler	=	pim_rcv,
2472 	.netns_ok	=	1,
2473 };
2474 #endif
2475 
2476 
2477 /*
2478  *	Setup for IP multicast routing
2479  */
2480 static int __net_init ipmr_net_init(struct net *net)
2481 {
2482 	int err;
2483 
2484 	err = ipmr_rules_init(net);
2485 	if (err < 0)
2486 		goto fail;
2487 
2488 #ifdef CONFIG_PROC_FS
2489 	err = -ENOMEM;
2490 	if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
2491 		goto proc_vif_fail;
2492 	if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
2493 		goto proc_cache_fail;
2494 #endif
2495 	return 0;
2496 
2497 #ifdef CONFIG_PROC_FS
2498 proc_cache_fail:
2499 	proc_net_remove(net, "ip_mr_vif");
2500 proc_vif_fail:
2501 	ipmr_rules_exit(net);
2502 #endif
2503 fail:
2504 	return err;
2505 }
2506 
2507 static void __net_exit ipmr_net_exit(struct net *net)
2508 {
2509 #ifdef CONFIG_PROC_FS
2510 	proc_net_remove(net, "ip_mr_cache");
2511 	proc_net_remove(net, "ip_mr_vif");
2512 #endif
2513 	ipmr_rules_exit(net);
2514 }
2515 
2516 static struct pernet_operations ipmr_net_ops = {
2517 	.init = ipmr_net_init,
2518 	.exit = ipmr_net_exit,
2519 };
2520 
2521 int __init ip_mr_init(void)
2522 {
2523 	int err;
2524 
2525 	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2526 				       sizeof(struct mfc_cache),
2527 				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2528 				       NULL);
2529 	if (!mrt_cachep)
2530 		return -ENOMEM;
2531 
2532 	err = register_pernet_subsys(&ipmr_net_ops);
2533 	if (err)
2534 		goto reg_pernet_fail;
2535 
2536 	err = register_netdevice_notifier(&ip_mr_notifier);
2537 	if (err)
2538 		goto reg_notif_fail;
2539 #ifdef CONFIG_IP_PIMSM_V2
2540 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2541 		pr_err("%s: can't add PIM protocol\n", __func__);
2542 		err = -EAGAIN;
2543 		goto add_proto_fail;
2544 	}
2545 #endif
2546 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2547 		      NULL, ipmr_rtm_dumproute, NULL);
2548 	return 0;
2549 
2550 #ifdef CONFIG_IP_PIMSM_V2
2551 add_proto_fail:
2552 	unregister_netdevice_notifier(&ip_mr_notifier);
2553 #endif
2554 reg_notif_fail:
2555 	unregister_pernet_subsys(&ipmr_net_ops);
2556 reg_pernet_fail:
2557 	kmem_cache_destroy(mrt_cachep);
2558 	return err;
2559 }
2560