xref: /linux/net/ipv4/ipmr.c (revision 19f2e267a5d0d26282a64f8f788c482852c95324)
1 /*
2  *	IP multicast routing support for mrouted 3.6/3.8
3  *
4  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *	  Linux Consultancy and Custom Driver Development
6  *
7  *	This program is free software; you can redistribute it and/or
8  *	modify it under the terms of the GNU General Public License
9  *	as published by the Free Software Foundation; either version
10  *	2 of the License, or (at your option) any later version.
11  *
12  *	Fixes:
13  *	Michael Chastain	:	Incorrect size of copying.
14  *	Alan Cox		:	Added the cache manager code
15  *	Alan Cox		:	Fixed the clone/copy bug and device race.
16  *	Mike McLagan		:	Routing by source
17  *	Malcolm Beattie		:	Buffer handling fixes.
18  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
19  *	SVR Anand		:	Fixed several multicast bugs and problems.
20  *	Alexey Kuznetsov	:	Status, optimisations and more.
21  *	Brad Parker		:	Better behaviour on mrouted upcall
22  *					overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
25  *					Relax this requirement to work with older peers.
26  *
27  */
28 
29 #include <linux/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/cache.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/icmp.h>
56 #include <net/udp.h>
57 #include <net/raw.h>
58 #include <linux/notifier.h>
59 #include <linux/if_arp.h>
60 #include <linux/netfilter_ipv4.h>
61 #include <linux/compat.h>
62 #include <linux/export.h>
63 #include <linux/rhashtable.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69 #include <net/nexthop.h>
70 #include <net/switchdev.h>
71 
72 #include <linux/nospec.h>
73 
74 struct ipmr_rule {
75 	struct fib_rule		common;
76 };
77 
78 struct ipmr_result {
79 	struct mr_table		*mrt;
80 };
81 
82 /* Big lock, protecting vif table, mrt cache and mroute socket state.
83  * Note that the changes are semaphored via rtnl_lock.
84  */
85 
86 static DEFINE_RWLOCK(mrt_lock);
87 
88 /* Multicast router control variables */
89 
90 /* Special spinlock for queue of unresolved entries */
91 static DEFINE_SPINLOCK(mfc_unres_lock);
92 
93 /* We return to original Alan's scheme. Hash table of resolved
94  * entries is changed only in process context and protected
95  * with weak lock mrt_lock. Queue of unresolved entries is protected
96  * with strong spinlock mfc_unres_lock.
97  *
98  * In this case data path is free of exclusive locks at all.
99  */
100 
101 static struct kmem_cache *mrt_cachep __ro_after_init;
102 
103 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
104 static void ipmr_free_table(struct mr_table *mrt);
105 
106 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
107 			  struct net_device *dev, struct sk_buff *skb,
108 			  struct mfc_cache *cache, int local);
109 static int ipmr_cache_report(struct mr_table *mrt,
110 			     struct sk_buff *pkt, vifi_t vifi, int assert);
111 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
112 				 int cmd);
113 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
114 static void mroute_clean_tables(struct mr_table *mrt, bool all);
115 static void ipmr_expire_process(struct timer_list *t);
116 
117 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
118 #define ipmr_for_each_table(mrt, net) \
119 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
120 
121 static struct mr_table *ipmr_mr_table_iter(struct net *net,
122 					   struct mr_table *mrt)
123 {
124 	struct mr_table *ret;
125 
126 	if (!mrt)
127 		ret = list_entry_rcu(net->ipv4.mr_tables.next,
128 				     struct mr_table, list);
129 	else
130 		ret = list_entry_rcu(mrt->list.next,
131 				     struct mr_table, list);
132 
133 	if (&ret->list == &net->ipv4.mr_tables)
134 		return NULL;
135 	return ret;
136 }
137 
138 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
139 {
140 	struct mr_table *mrt;
141 
142 	ipmr_for_each_table(mrt, net) {
143 		if (mrt->id == id)
144 			return mrt;
145 	}
146 	return NULL;
147 }
148 
149 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
150 			   struct mr_table **mrt)
151 {
152 	int err;
153 	struct ipmr_result res;
154 	struct fib_lookup_arg arg = {
155 		.result = &res,
156 		.flags = FIB_LOOKUP_NOREF,
157 	};
158 
159 	/* update flow if oif or iif point to device enslaved to l3mdev */
160 	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
161 
162 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
163 			       flowi4_to_flowi(flp4), 0, &arg);
164 	if (err < 0)
165 		return err;
166 	*mrt = res.mrt;
167 	return 0;
168 }
169 
170 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
171 			    int flags, struct fib_lookup_arg *arg)
172 {
173 	struct ipmr_result *res = arg->result;
174 	struct mr_table *mrt;
175 
176 	switch (rule->action) {
177 	case FR_ACT_TO_TBL:
178 		break;
179 	case FR_ACT_UNREACHABLE:
180 		return -ENETUNREACH;
181 	case FR_ACT_PROHIBIT:
182 		return -EACCES;
183 	case FR_ACT_BLACKHOLE:
184 	default:
185 		return -EINVAL;
186 	}
187 
188 	arg->table = fib_rule_get_table(rule, arg);
189 
190 	mrt = ipmr_get_table(rule->fr_net, arg->table);
191 	if (!mrt)
192 		return -EAGAIN;
193 	res->mrt = mrt;
194 	return 0;
195 }
196 
197 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
198 {
199 	return 1;
200 }
201 
202 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
203 	FRA_GENERIC_POLICY,
204 };
205 
206 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
207 			       struct fib_rule_hdr *frh, struct nlattr **tb,
208 			       struct netlink_ext_ack *extack)
209 {
210 	return 0;
211 }
212 
213 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
214 			     struct nlattr **tb)
215 {
216 	return 1;
217 }
218 
219 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
220 			  struct fib_rule_hdr *frh)
221 {
222 	frh->dst_len = 0;
223 	frh->src_len = 0;
224 	frh->tos     = 0;
225 	return 0;
226 }
227 
228 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
229 	.family		= RTNL_FAMILY_IPMR,
230 	.rule_size	= sizeof(struct ipmr_rule),
231 	.addr_size	= sizeof(u32),
232 	.action		= ipmr_rule_action,
233 	.match		= ipmr_rule_match,
234 	.configure	= ipmr_rule_configure,
235 	.compare	= ipmr_rule_compare,
236 	.fill		= ipmr_rule_fill,
237 	.nlgroup	= RTNLGRP_IPV4_RULE,
238 	.policy		= ipmr_rule_policy,
239 	.owner		= THIS_MODULE,
240 };
241 
242 static int __net_init ipmr_rules_init(struct net *net)
243 {
244 	struct fib_rules_ops *ops;
245 	struct mr_table *mrt;
246 	int err;
247 
248 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
249 	if (IS_ERR(ops))
250 		return PTR_ERR(ops);
251 
252 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
253 
254 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
255 	if (IS_ERR(mrt)) {
256 		err = PTR_ERR(mrt);
257 		goto err1;
258 	}
259 
260 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
261 	if (err < 0)
262 		goto err2;
263 
264 	net->ipv4.mr_rules_ops = ops;
265 	return 0;
266 
267 err2:
268 	ipmr_free_table(mrt);
269 err1:
270 	fib_rules_unregister(ops);
271 	return err;
272 }
273 
274 static void __net_exit ipmr_rules_exit(struct net *net)
275 {
276 	struct mr_table *mrt, *next;
277 
278 	rtnl_lock();
279 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
280 		list_del(&mrt->list);
281 		ipmr_free_table(mrt);
282 	}
283 	fib_rules_unregister(net->ipv4.mr_rules_ops);
284 	rtnl_unlock();
285 }
286 
287 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
288 {
289 	return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR);
290 }
291 
292 static unsigned int ipmr_rules_seq_read(struct net *net)
293 {
294 	return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
295 }
296 
297 bool ipmr_rule_default(const struct fib_rule *rule)
298 {
299 	return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
300 }
301 EXPORT_SYMBOL(ipmr_rule_default);
302 #else
303 #define ipmr_for_each_table(mrt, net) \
304 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
305 
306 static struct mr_table *ipmr_mr_table_iter(struct net *net,
307 					   struct mr_table *mrt)
308 {
309 	if (!mrt)
310 		return net->ipv4.mrt;
311 	return NULL;
312 }
313 
314 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
315 {
316 	return net->ipv4.mrt;
317 }
318 
319 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
320 			   struct mr_table **mrt)
321 {
322 	*mrt = net->ipv4.mrt;
323 	return 0;
324 }
325 
326 static int __net_init ipmr_rules_init(struct net *net)
327 {
328 	struct mr_table *mrt;
329 
330 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
331 	if (IS_ERR(mrt))
332 		return PTR_ERR(mrt);
333 	net->ipv4.mrt = mrt;
334 	return 0;
335 }
336 
337 static void __net_exit ipmr_rules_exit(struct net *net)
338 {
339 	rtnl_lock();
340 	ipmr_free_table(net->ipv4.mrt);
341 	net->ipv4.mrt = NULL;
342 	rtnl_unlock();
343 }
344 
345 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
346 {
347 	return 0;
348 }
349 
350 static unsigned int ipmr_rules_seq_read(struct net *net)
351 {
352 	return 0;
353 }
354 
355 bool ipmr_rule_default(const struct fib_rule *rule)
356 {
357 	return true;
358 }
359 EXPORT_SYMBOL(ipmr_rule_default);
360 #endif
361 
362 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
363 				const void *ptr)
364 {
365 	const struct mfc_cache_cmp_arg *cmparg = arg->key;
366 	struct mfc_cache *c = (struct mfc_cache *)ptr;
367 
368 	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
369 	       cmparg->mfc_origin != c->mfc_origin;
370 }
371 
372 static const struct rhashtable_params ipmr_rht_params = {
373 	.head_offset = offsetof(struct mr_mfc, mnode),
374 	.key_offset = offsetof(struct mfc_cache, cmparg),
375 	.key_len = sizeof(struct mfc_cache_cmp_arg),
376 	.nelem_hint = 3,
377 	.locks_mul = 1,
378 	.obj_cmpfn = ipmr_hash_cmp,
379 	.automatic_shrinking = true,
380 };
381 
382 static void ipmr_new_table_set(struct mr_table *mrt,
383 			       struct net *net)
384 {
385 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
386 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
387 #endif
388 }
389 
390 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
391 	.mfc_mcastgrp = htonl(INADDR_ANY),
392 	.mfc_origin = htonl(INADDR_ANY),
393 };
394 
395 static struct mr_table_ops ipmr_mr_table_ops = {
396 	.rht_params = &ipmr_rht_params,
397 	.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
398 };
399 
400 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
401 {
402 	struct mr_table *mrt;
403 
404 	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
405 	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
406 		return ERR_PTR(-EINVAL);
407 
408 	mrt = ipmr_get_table(net, id);
409 	if (mrt)
410 		return mrt;
411 
412 	return mr_table_alloc(net, id, &ipmr_mr_table_ops,
413 			      ipmr_expire_process, ipmr_new_table_set);
414 }
415 
416 static void ipmr_free_table(struct mr_table *mrt)
417 {
418 	del_timer_sync(&mrt->ipmr_expire_timer);
419 	mroute_clean_tables(mrt, true);
420 	rhltable_destroy(&mrt->mfc_hash);
421 	kfree(mrt);
422 }
423 
424 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
425 
426 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
427 {
428 	struct net *net = dev_net(dev);
429 
430 	dev_close(dev);
431 
432 	dev = __dev_get_by_name(net, "tunl0");
433 	if (dev) {
434 		const struct net_device_ops *ops = dev->netdev_ops;
435 		struct ifreq ifr;
436 		struct ip_tunnel_parm p;
437 
438 		memset(&p, 0, sizeof(p));
439 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
440 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
441 		p.iph.version = 4;
442 		p.iph.ihl = 5;
443 		p.iph.protocol = IPPROTO_IPIP;
444 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
445 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
446 
447 		if (ops->ndo_do_ioctl) {
448 			mm_segment_t oldfs = get_fs();
449 
450 			set_fs(KERNEL_DS);
451 			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
452 			set_fs(oldfs);
453 		}
454 	}
455 }
456 
457 /* Initialize ipmr pimreg/tunnel in_device */
458 static bool ipmr_init_vif_indev(const struct net_device *dev)
459 {
460 	struct in_device *in_dev;
461 
462 	ASSERT_RTNL();
463 
464 	in_dev = __in_dev_get_rtnl(dev);
465 	if (!in_dev)
466 		return false;
467 	ipv4_devconf_setall(in_dev);
468 	neigh_parms_data_state_setall(in_dev->arp_parms);
469 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
470 
471 	return true;
472 }
473 
474 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
475 {
476 	struct net_device  *dev;
477 
478 	dev = __dev_get_by_name(net, "tunl0");
479 
480 	if (dev) {
481 		const struct net_device_ops *ops = dev->netdev_ops;
482 		int err;
483 		struct ifreq ifr;
484 		struct ip_tunnel_parm p;
485 
486 		memset(&p, 0, sizeof(p));
487 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
488 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
489 		p.iph.version = 4;
490 		p.iph.ihl = 5;
491 		p.iph.protocol = IPPROTO_IPIP;
492 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
493 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
494 
495 		if (ops->ndo_do_ioctl) {
496 			mm_segment_t oldfs = get_fs();
497 
498 			set_fs(KERNEL_DS);
499 			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
500 			set_fs(oldfs);
501 		} else {
502 			err = -EOPNOTSUPP;
503 		}
504 		dev = NULL;
505 
506 		if (err == 0 &&
507 		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
508 			dev->flags |= IFF_MULTICAST;
509 			if (!ipmr_init_vif_indev(dev))
510 				goto failure;
511 			if (dev_open(dev, NULL))
512 				goto failure;
513 			dev_hold(dev);
514 		}
515 	}
516 	return dev;
517 
518 failure:
519 	unregister_netdevice(dev);
520 	return NULL;
521 }
522 
523 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
524 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
525 {
526 	struct net *net = dev_net(dev);
527 	struct mr_table *mrt;
528 	struct flowi4 fl4 = {
529 		.flowi4_oif	= dev->ifindex,
530 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
531 		.flowi4_mark	= skb->mark,
532 	};
533 	int err;
534 
535 	err = ipmr_fib_lookup(net, &fl4, &mrt);
536 	if (err < 0) {
537 		kfree_skb(skb);
538 		return err;
539 	}
540 
541 	read_lock(&mrt_lock);
542 	dev->stats.tx_bytes += skb->len;
543 	dev->stats.tx_packets++;
544 	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
545 	read_unlock(&mrt_lock);
546 	kfree_skb(skb);
547 	return NETDEV_TX_OK;
548 }
549 
550 static int reg_vif_get_iflink(const struct net_device *dev)
551 {
552 	return 0;
553 }
554 
555 static const struct net_device_ops reg_vif_netdev_ops = {
556 	.ndo_start_xmit	= reg_vif_xmit,
557 	.ndo_get_iflink = reg_vif_get_iflink,
558 };
559 
560 static void reg_vif_setup(struct net_device *dev)
561 {
562 	dev->type		= ARPHRD_PIMREG;
563 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
564 	dev->flags		= IFF_NOARP;
565 	dev->netdev_ops		= &reg_vif_netdev_ops;
566 	dev->needs_free_netdev	= true;
567 	dev->features		|= NETIF_F_NETNS_LOCAL;
568 }
569 
570 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
571 {
572 	struct net_device *dev;
573 	char name[IFNAMSIZ];
574 
575 	if (mrt->id == RT_TABLE_DEFAULT)
576 		sprintf(name, "pimreg");
577 	else
578 		sprintf(name, "pimreg%u", mrt->id);
579 
580 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
581 
582 	if (!dev)
583 		return NULL;
584 
585 	dev_net_set(dev, net);
586 
587 	if (register_netdevice(dev)) {
588 		free_netdev(dev);
589 		return NULL;
590 	}
591 
592 	if (!ipmr_init_vif_indev(dev))
593 		goto failure;
594 	if (dev_open(dev, NULL))
595 		goto failure;
596 
597 	dev_hold(dev);
598 
599 	return dev;
600 
601 failure:
602 	unregister_netdevice(dev);
603 	return NULL;
604 }
605 
606 /* called with rcu_read_lock() */
607 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
608 		     unsigned int pimlen)
609 {
610 	struct net_device *reg_dev = NULL;
611 	struct iphdr *encap;
612 
613 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
614 	/* Check that:
615 	 * a. packet is really sent to a multicast group
616 	 * b. packet is not a NULL-REGISTER
617 	 * c. packet is not truncated
618 	 */
619 	if (!ipv4_is_multicast(encap->daddr) ||
620 	    encap->tot_len == 0 ||
621 	    ntohs(encap->tot_len) + pimlen > skb->len)
622 		return 1;
623 
624 	read_lock(&mrt_lock);
625 	if (mrt->mroute_reg_vif_num >= 0)
626 		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
627 	read_unlock(&mrt_lock);
628 
629 	if (!reg_dev)
630 		return 1;
631 
632 	skb->mac_header = skb->network_header;
633 	skb_pull(skb, (u8 *)encap - skb->data);
634 	skb_reset_network_header(skb);
635 	skb->protocol = htons(ETH_P_IP);
636 	skb->ip_summed = CHECKSUM_NONE;
637 
638 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
639 
640 	netif_rx(skb);
641 
642 	return NET_RX_SUCCESS;
643 }
644 #else
645 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
646 {
647 	return NULL;
648 }
649 #endif
650 
651 static int call_ipmr_vif_entry_notifiers(struct net *net,
652 					 enum fib_event_type event_type,
653 					 struct vif_device *vif,
654 					 vifi_t vif_index, u32 tb_id)
655 {
656 	return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
657 				     vif, vif_index, tb_id,
658 				     &net->ipv4.ipmr_seq);
659 }
660 
661 static int call_ipmr_mfc_entry_notifiers(struct net *net,
662 					 enum fib_event_type event_type,
663 					 struct mfc_cache *mfc, u32 tb_id)
664 {
665 	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
666 				     &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
667 }
668 
669 /**
670  *	vif_delete - Delete a VIF entry
671  *	@notify: Set to 1, if the caller is a notifier_call
672  */
673 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
674 		      struct list_head *head)
675 {
676 	struct net *net = read_pnet(&mrt->net);
677 	struct vif_device *v;
678 	struct net_device *dev;
679 	struct in_device *in_dev;
680 
681 	if (vifi < 0 || vifi >= mrt->maxvif)
682 		return -EADDRNOTAVAIL;
683 
684 	v = &mrt->vif_table[vifi];
685 
686 	if (VIF_EXISTS(mrt, vifi))
687 		call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi,
688 					      mrt->id);
689 
690 	write_lock_bh(&mrt_lock);
691 	dev = v->dev;
692 	v->dev = NULL;
693 
694 	if (!dev) {
695 		write_unlock_bh(&mrt_lock);
696 		return -EADDRNOTAVAIL;
697 	}
698 
699 	if (vifi == mrt->mroute_reg_vif_num)
700 		mrt->mroute_reg_vif_num = -1;
701 
702 	if (vifi + 1 == mrt->maxvif) {
703 		int tmp;
704 
705 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
706 			if (VIF_EXISTS(mrt, tmp))
707 				break;
708 		}
709 		mrt->maxvif = tmp+1;
710 	}
711 
712 	write_unlock_bh(&mrt_lock);
713 
714 	dev_set_allmulti(dev, -1);
715 
716 	in_dev = __in_dev_get_rtnl(dev);
717 	if (in_dev) {
718 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
719 		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
720 					    NETCONFA_MC_FORWARDING,
721 					    dev->ifindex, &in_dev->cnf);
722 		ip_rt_multicast_event(in_dev);
723 	}
724 
725 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
726 		unregister_netdevice_queue(dev, head);
727 
728 	dev_put(dev);
729 	return 0;
730 }
731 
732 static void ipmr_cache_free_rcu(struct rcu_head *head)
733 {
734 	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
735 
736 	kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
737 }
738 
739 static void ipmr_cache_free(struct mfc_cache *c)
740 {
741 	call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
742 }
743 
744 /* Destroy an unresolved cache entry, killing queued skbs
745  * and reporting error to netlink readers.
746  */
747 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
748 {
749 	struct net *net = read_pnet(&mrt->net);
750 	struct sk_buff *skb;
751 	struct nlmsgerr *e;
752 
753 	atomic_dec(&mrt->cache_resolve_queue_len);
754 
755 	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
756 		if (ip_hdr(skb)->version == 0) {
757 			struct nlmsghdr *nlh = skb_pull(skb,
758 							sizeof(struct iphdr));
759 			nlh->nlmsg_type = NLMSG_ERROR;
760 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
761 			skb_trim(skb, nlh->nlmsg_len);
762 			e = nlmsg_data(nlh);
763 			e->error = -ETIMEDOUT;
764 			memset(&e->msg, 0, sizeof(e->msg));
765 
766 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
767 		} else {
768 			kfree_skb(skb);
769 		}
770 	}
771 
772 	ipmr_cache_free(c);
773 }
774 
775 /* Timer process for the unresolved queue. */
776 static void ipmr_expire_process(struct timer_list *t)
777 {
778 	struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
779 	struct mr_mfc *c, *next;
780 	unsigned long expires;
781 	unsigned long now;
782 
783 	if (!spin_trylock(&mfc_unres_lock)) {
784 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
785 		return;
786 	}
787 
788 	if (list_empty(&mrt->mfc_unres_queue))
789 		goto out;
790 
791 	now = jiffies;
792 	expires = 10*HZ;
793 
794 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
795 		if (time_after(c->mfc_un.unres.expires, now)) {
796 			unsigned long interval = c->mfc_un.unres.expires - now;
797 			if (interval < expires)
798 				expires = interval;
799 			continue;
800 		}
801 
802 		list_del(&c->list);
803 		mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
804 		ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
805 	}
806 
807 	if (!list_empty(&mrt->mfc_unres_queue))
808 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
809 
810 out:
811 	spin_unlock(&mfc_unres_lock);
812 }
813 
814 /* Fill oifs list. It is called under write locked mrt_lock. */
815 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
816 				   unsigned char *ttls)
817 {
818 	int vifi;
819 
820 	cache->mfc_un.res.minvif = MAXVIFS;
821 	cache->mfc_un.res.maxvif = 0;
822 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
823 
824 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
825 		if (VIF_EXISTS(mrt, vifi) &&
826 		    ttls[vifi] && ttls[vifi] < 255) {
827 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
828 			if (cache->mfc_un.res.minvif > vifi)
829 				cache->mfc_un.res.minvif = vifi;
830 			if (cache->mfc_un.res.maxvif <= vifi)
831 				cache->mfc_un.res.maxvif = vifi + 1;
832 		}
833 	}
834 	cache->mfc_un.res.lastuse = jiffies;
835 }
836 
837 static int vif_add(struct net *net, struct mr_table *mrt,
838 		   struct vifctl *vifc, int mrtsock)
839 {
840 	int vifi = vifc->vifc_vifi;
841 	struct switchdev_attr attr = {
842 		.id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
843 	};
844 	struct vif_device *v = &mrt->vif_table[vifi];
845 	struct net_device *dev;
846 	struct in_device *in_dev;
847 	int err;
848 
849 	/* Is vif busy ? */
850 	if (VIF_EXISTS(mrt, vifi))
851 		return -EADDRINUSE;
852 
853 	switch (vifc->vifc_flags) {
854 	case VIFF_REGISTER:
855 		if (!ipmr_pimsm_enabled())
856 			return -EINVAL;
857 		/* Special Purpose VIF in PIM
858 		 * All the packets will be sent to the daemon
859 		 */
860 		if (mrt->mroute_reg_vif_num >= 0)
861 			return -EADDRINUSE;
862 		dev = ipmr_reg_vif(net, mrt);
863 		if (!dev)
864 			return -ENOBUFS;
865 		err = dev_set_allmulti(dev, 1);
866 		if (err) {
867 			unregister_netdevice(dev);
868 			dev_put(dev);
869 			return err;
870 		}
871 		break;
872 	case VIFF_TUNNEL:
873 		dev = ipmr_new_tunnel(net, vifc);
874 		if (!dev)
875 			return -ENOBUFS;
876 		err = dev_set_allmulti(dev, 1);
877 		if (err) {
878 			ipmr_del_tunnel(dev, vifc);
879 			dev_put(dev);
880 			return err;
881 		}
882 		break;
883 	case VIFF_USE_IFINDEX:
884 	case 0:
885 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
886 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
887 			if (dev && !__in_dev_get_rtnl(dev)) {
888 				dev_put(dev);
889 				return -EADDRNOTAVAIL;
890 			}
891 		} else {
892 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
893 		}
894 		if (!dev)
895 			return -EADDRNOTAVAIL;
896 		err = dev_set_allmulti(dev, 1);
897 		if (err) {
898 			dev_put(dev);
899 			return err;
900 		}
901 		break;
902 	default:
903 		return -EINVAL;
904 	}
905 
906 	in_dev = __in_dev_get_rtnl(dev);
907 	if (!in_dev) {
908 		dev_put(dev);
909 		return -EADDRNOTAVAIL;
910 	}
911 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
912 	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
913 				    dev->ifindex, &in_dev->cnf);
914 	ip_rt_multicast_event(in_dev);
915 
916 	/* Fill in the VIF structures */
917 	vif_device_init(v, dev, vifc->vifc_rate_limit,
918 			vifc->vifc_threshold,
919 			vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
920 			(VIFF_TUNNEL | VIFF_REGISTER));
921 
922 	attr.orig_dev = dev;
923 	if (!switchdev_port_attr_get(dev, &attr)) {
924 		memcpy(v->dev_parent_id.id, attr.u.ppid.id, attr.u.ppid.id_len);
925 		v->dev_parent_id.id_len = attr.u.ppid.id_len;
926 	} else {
927 		v->dev_parent_id.id_len = 0;
928 	}
929 
930 	v->local = vifc->vifc_lcl_addr.s_addr;
931 	v->remote = vifc->vifc_rmt_addr.s_addr;
932 
933 	/* And finish update writing critical data */
934 	write_lock_bh(&mrt_lock);
935 	v->dev = dev;
936 	if (v->flags & VIFF_REGISTER)
937 		mrt->mroute_reg_vif_num = vifi;
938 	if (vifi+1 > mrt->maxvif)
939 		mrt->maxvif = vifi+1;
940 	write_unlock_bh(&mrt_lock);
941 	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id);
942 	return 0;
943 }
944 
945 /* called with rcu_read_lock() */
946 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
947 					 __be32 origin,
948 					 __be32 mcastgrp)
949 {
950 	struct mfc_cache_cmp_arg arg = {
951 			.mfc_mcastgrp = mcastgrp,
952 			.mfc_origin = origin
953 	};
954 
955 	return mr_mfc_find(mrt, &arg);
956 }
957 
958 /* Look for a (*,G) entry */
959 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
960 					     __be32 mcastgrp, int vifi)
961 {
962 	struct mfc_cache_cmp_arg arg = {
963 			.mfc_mcastgrp = mcastgrp,
964 			.mfc_origin = htonl(INADDR_ANY)
965 	};
966 
967 	if (mcastgrp == htonl(INADDR_ANY))
968 		return mr_mfc_find_any_parent(mrt, vifi);
969 	return mr_mfc_find_any(mrt, vifi, &arg);
970 }
971 
972 /* Look for a (S,G,iif) entry if parent != -1 */
973 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
974 						__be32 origin, __be32 mcastgrp,
975 						int parent)
976 {
977 	struct mfc_cache_cmp_arg arg = {
978 			.mfc_mcastgrp = mcastgrp,
979 			.mfc_origin = origin,
980 	};
981 
982 	return mr_mfc_find_parent(mrt, &arg, parent);
983 }
984 
985 /* Allocate a multicast cache entry */
986 static struct mfc_cache *ipmr_cache_alloc(void)
987 {
988 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
989 
990 	if (c) {
991 		c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
992 		c->_c.mfc_un.res.minvif = MAXVIFS;
993 		c->_c.free = ipmr_cache_free_rcu;
994 		refcount_set(&c->_c.mfc_un.res.refcount, 1);
995 	}
996 	return c;
997 }
998 
999 static struct mfc_cache *ipmr_cache_alloc_unres(void)
1000 {
1001 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
1002 
1003 	if (c) {
1004 		skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
1005 		c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
1006 	}
1007 	return c;
1008 }
1009 
1010 /* A cache entry has gone into a resolved state from queued */
1011 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
1012 			       struct mfc_cache *uc, struct mfc_cache *c)
1013 {
1014 	struct sk_buff *skb;
1015 	struct nlmsgerr *e;
1016 
1017 	/* Play the pending entries through our router */
1018 	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1019 		if (ip_hdr(skb)->version == 0) {
1020 			struct nlmsghdr *nlh = skb_pull(skb,
1021 							sizeof(struct iphdr));
1022 
1023 			if (mr_fill_mroute(mrt, skb, &c->_c,
1024 					   nlmsg_data(nlh)) > 0) {
1025 				nlh->nlmsg_len = skb_tail_pointer(skb) -
1026 						 (u8 *)nlh;
1027 			} else {
1028 				nlh->nlmsg_type = NLMSG_ERROR;
1029 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1030 				skb_trim(skb, nlh->nlmsg_len);
1031 				e = nlmsg_data(nlh);
1032 				e->error = -EMSGSIZE;
1033 				memset(&e->msg, 0, sizeof(e->msg));
1034 			}
1035 
1036 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1037 		} else {
1038 			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1039 		}
1040 	}
1041 }
1042 
1043 /* Bounce a cache query up to mrouted and netlink.
1044  *
1045  * Called under mrt_lock.
1046  */
1047 static int ipmr_cache_report(struct mr_table *mrt,
1048 			     struct sk_buff *pkt, vifi_t vifi, int assert)
1049 {
1050 	const int ihl = ip_hdrlen(pkt);
1051 	struct sock *mroute_sk;
1052 	struct igmphdr *igmp;
1053 	struct igmpmsg *msg;
1054 	struct sk_buff *skb;
1055 	int ret;
1056 
1057 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1058 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1059 	else
1060 		skb = alloc_skb(128, GFP_ATOMIC);
1061 
1062 	if (!skb)
1063 		return -ENOBUFS;
1064 
1065 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1066 		/* Ugly, but we have no choice with this interface.
1067 		 * Duplicate old header, fix ihl, length etc.
1068 		 * And all this only to mangle msg->im_msgtype and
1069 		 * to set msg->im_mbz to "mbz" :-)
1070 		 */
1071 		skb_push(skb, sizeof(struct iphdr));
1072 		skb_reset_network_header(skb);
1073 		skb_reset_transport_header(skb);
1074 		msg = (struct igmpmsg *)skb_network_header(skb);
1075 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1076 		msg->im_msgtype = assert;
1077 		msg->im_mbz = 0;
1078 		if (assert == IGMPMSG_WRVIFWHOLE)
1079 			msg->im_vif = vifi;
1080 		else
1081 			msg->im_vif = mrt->mroute_reg_vif_num;
1082 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1083 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1084 					     sizeof(struct iphdr));
1085 	} else {
1086 		/* Copy the IP header */
1087 		skb_set_network_header(skb, skb->len);
1088 		skb_put(skb, ihl);
1089 		skb_copy_to_linear_data(skb, pkt->data, ihl);
1090 		/* Flag to the kernel this is a route add */
1091 		ip_hdr(skb)->protocol = 0;
1092 		msg = (struct igmpmsg *)skb_network_header(skb);
1093 		msg->im_vif = vifi;
1094 		skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1095 		/* Add our header */
1096 		igmp = skb_put(skb, sizeof(struct igmphdr));
1097 		igmp->type = assert;
1098 		msg->im_msgtype = assert;
1099 		igmp->code = 0;
1100 		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1101 		skb->transport_header = skb->network_header;
1102 	}
1103 
1104 	rcu_read_lock();
1105 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1106 	if (!mroute_sk) {
1107 		rcu_read_unlock();
1108 		kfree_skb(skb);
1109 		return -EINVAL;
1110 	}
1111 
1112 	igmpmsg_netlink_event(mrt, skb);
1113 
1114 	/* Deliver to mrouted */
1115 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1116 	rcu_read_unlock();
1117 	if (ret < 0) {
1118 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1119 		kfree_skb(skb);
1120 	}
1121 
1122 	return ret;
1123 }
1124 
1125 /* Queue a packet for resolution. It gets locked cache entry! */
1126 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1127 				 struct sk_buff *skb, struct net_device *dev)
1128 {
1129 	const struct iphdr *iph = ip_hdr(skb);
1130 	struct mfc_cache *c;
1131 	bool found = false;
1132 	int err;
1133 
1134 	spin_lock_bh(&mfc_unres_lock);
1135 	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1136 		if (c->mfc_mcastgrp == iph->daddr &&
1137 		    c->mfc_origin == iph->saddr) {
1138 			found = true;
1139 			break;
1140 		}
1141 	}
1142 
1143 	if (!found) {
1144 		/* Create a new entry if allowable */
1145 		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1146 		    (c = ipmr_cache_alloc_unres()) == NULL) {
1147 			spin_unlock_bh(&mfc_unres_lock);
1148 
1149 			kfree_skb(skb);
1150 			return -ENOBUFS;
1151 		}
1152 
1153 		/* Fill in the new cache entry */
1154 		c->_c.mfc_parent = -1;
1155 		c->mfc_origin	= iph->saddr;
1156 		c->mfc_mcastgrp	= iph->daddr;
1157 
1158 		/* Reflect first query at mrouted. */
1159 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1160 
1161 		if (err < 0) {
1162 			/* If the report failed throw the cache entry
1163 			   out - Brad Parker
1164 			 */
1165 			spin_unlock_bh(&mfc_unres_lock);
1166 
1167 			ipmr_cache_free(c);
1168 			kfree_skb(skb);
1169 			return err;
1170 		}
1171 
1172 		atomic_inc(&mrt->cache_resolve_queue_len);
1173 		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1174 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1175 
1176 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1177 			mod_timer(&mrt->ipmr_expire_timer,
1178 				  c->_c.mfc_un.unres.expires);
1179 	}
1180 
1181 	/* See if we can append the packet */
1182 	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1183 		kfree_skb(skb);
1184 		err = -ENOBUFS;
1185 	} else {
1186 		if (dev) {
1187 			skb->dev = dev;
1188 			skb->skb_iif = dev->ifindex;
1189 		}
1190 		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1191 		err = 0;
1192 	}
1193 
1194 	spin_unlock_bh(&mfc_unres_lock);
1195 	return err;
1196 }
1197 
1198 /* MFC cache manipulation by user space mroute daemon */
1199 
1200 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1201 {
1202 	struct net *net = read_pnet(&mrt->net);
1203 	struct mfc_cache *c;
1204 
1205 	/* The entries are added/deleted only under RTNL */
1206 	rcu_read_lock();
1207 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1208 				   mfc->mfcc_mcastgrp.s_addr, parent);
1209 	rcu_read_unlock();
1210 	if (!c)
1211 		return -ENOENT;
1212 	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1213 	list_del_rcu(&c->_c.list);
1214 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1215 	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1216 	mr_cache_put(&c->_c);
1217 
1218 	return 0;
1219 }
1220 
1221 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1222 			struct mfcctl *mfc, int mrtsock, int parent)
1223 {
1224 	struct mfc_cache *uc, *c;
1225 	struct mr_mfc *_uc;
1226 	bool found;
1227 	int ret;
1228 
1229 	if (mfc->mfcc_parent >= MAXVIFS)
1230 		return -ENFILE;
1231 
1232 	/* The entries are added/deleted only under RTNL */
1233 	rcu_read_lock();
1234 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1235 				   mfc->mfcc_mcastgrp.s_addr, parent);
1236 	rcu_read_unlock();
1237 	if (c) {
1238 		write_lock_bh(&mrt_lock);
1239 		c->_c.mfc_parent = mfc->mfcc_parent;
1240 		ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1241 		if (!mrtsock)
1242 			c->_c.mfc_flags |= MFC_STATIC;
1243 		write_unlock_bh(&mrt_lock);
1244 		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1245 					      mrt->id);
1246 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1247 		return 0;
1248 	}
1249 
1250 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1251 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1252 		return -EINVAL;
1253 
1254 	c = ipmr_cache_alloc();
1255 	if (!c)
1256 		return -ENOMEM;
1257 
1258 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1259 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1260 	c->_c.mfc_parent = mfc->mfcc_parent;
1261 	ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1262 	if (!mrtsock)
1263 		c->_c.mfc_flags |= MFC_STATIC;
1264 
1265 	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1266 				  ipmr_rht_params);
1267 	if (ret) {
1268 		pr_err("ipmr: rhtable insert error %d\n", ret);
1269 		ipmr_cache_free(c);
1270 		return ret;
1271 	}
1272 	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1273 	/* Check to see if we resolved a queued list. If so we
1274 	 * need to send on the frames and tidy up.
1275 	 */
1276 	found = false;
1277 	spin_lock_bh(&mfc_unres_lock);
1278 	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1279 		uc = (struct mfc_cache *)_uc;
1280 		if (uc->mfc_origin == c->mfc_origin &&
1281 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1282 			list_del(&_uc->list);
1283 			atomic_dec(&mrt->cache_resolve_queue_len);
1284 			found = true;
1285 			break;
1286 		}
1287 	}
1288 	if (list_empty(&mrt->mfc_unres_queue))
1289 		del_timer(&mrt->ipmr_expire_timer);
1290 	spin_unlock_bh(&mfc_unres_lock);
1291 
1292 	if (found) {
1293 		ipmr_cache_resolve(net, mrt, uc, c);
1294 		ipmr_cache_free(uc);
1295 	}
1296 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1297 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1298 	return 0;
1299 }
1300 
1301 /* Close the multicast socket, and clear the vif tables etc */
1302 static void mroute_clean_tables(struct mr_table *mrt, bool all)
1303 {
1304 	struct net *net = read_pnet(&mrt->net);
1305 	struct mr_mfc *c, *tmp;
1306 	struct mfc_cache *cache;
1307 	LIST_HEAD(list);
1308 	int i;
1309 
1310 	/* Shut down all active vif entries */
1311 	for (i = 0; i < mrt->maxvif; i++) {
1312 		if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1313 			continue;
1314 		vif_delete(mrt, i, 0, &list);
1315 	}
1316 	unregister_netdevice_many(&list);
1317 
1318 	/* Wipe the cache */
1319 	list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1320 		if (!all && (c->mfc_flags & MFC_STATIC))
1321 			continue;
1322 		rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1323 		list_del_rcu(&c->list);
1324 		cache = (struct mfc_cache *)c;
1325 		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1326 					      mrt->id);
1327 		mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1328 		mr_cache_put(c);
1329 	}
1330 
1331 	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1332 		spin_lock_bh(&mfc_unres_lock);
1333 		list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1334 			list_del(&c->list);
1335 			cache = (struct mfc_cache *)c;
1336 			mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1337 			ipmr_destroy_unres(mrt, cache);
1338 		}
1339 		spin_unlock_bh(&mfc_unres_lock);
1340 	}
1341 }
1342 
1343 /* called from ip_ra_control(), before an RCU grace period,
1344  * we dont need to call synchronize_rcu() here
1345  */
1346 static void mrtsock_destruct(struct sock *sk)
1347 {
1348 	struct net *net = sock_net(sk);
1349 	struct mr_table *mrt;
1350 
1351 	rtnl_lock();
1352 	ipmr_for_each_table(mrt, net) {
1353 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1354 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1355 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1356 						    NETCONFA_MC_FORWARDING,
1357 						    NETCONFA_IFINDEX_ALL,
1358 						    net->ipv4.devconf_all);
1359 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1360 			mroute_clean_tables(mrt, false);
1361 		}
1362 	}
1363 	rtnl_unlock();
1364 }
1365 
1366 /* Socket options and virtual interface manipulation. The whole
1367  * virtual interface system is a complete heap, but unfortunately
1368  * that's how BSD mrouted happens to think. Maybe one day with a proper
1369  * MOSPF/PIM router set up we can clean this up.
1370  */
1371 
1372 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1373 			 unsigned int optlen)
1374 {
1375 	struct net *net = sock_net(sk);
1376 	int val, ret = 0, parent = 0;
1377 	struct mr_table *mrt;
1378 	struct vifctl vif;
1379 	struct mfcctl mfc;
1380 	bool do_wrvifwhole;
1381 	u32 uval;
1382 
1383 	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1384 	rtnl_lock();
1385 	if (sk->sk_type != SOCK_RAW ||
1386 	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1387 		ret = -EOPNOTSUPP;
1388 		goto out_unlock;
1389 	}
1390 
1391 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1392 	if (!mrt) {
1393 		ret = -ENOENT;
1394 		goto out_unlock;
1395 	}
1396 	if (optname != MRT_INIT) {
1397 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1398 		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1399 			ret = -EACCES;
1400 			goto out_unlock;
1401 		}
1402 	}
1403 
1404 	switch (optname) {
1405 	case MRT_INIT:
1406 		if (optlen != sizeof(int)) {
1407 			ret = -EINVAL;
1408 			break;
1409 		}
1410 		if (rtnl_dereference(mrt->mroute_sk)) {
1411 			ret = -EADDRINUSE;
1412 			break;
1413 		}
1414 
1415 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1416 		if (ret == 0) {
1417 			rcu_assign_pointer(mrt->mroute_sk, sk);
1418 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1419 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1420 						    NETCONFA_MC_FORWARDING,
1421 						    NETCONFA_IFINDEX_ALL,
1422 						    net->ipv4.devconf_all);
1423 		}
1424 		break;
1425 	case MRT_DONE:
1426 		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1427 			ret = -EACCES;
1428 		} else {
1429 			/* We need to unlock here because mrtsock_destruct takes
1430 			 * care of rtnl itself and we can't change that due to
1431 			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1432 			 */
1433 			rtnl_unlock();
1434 			ret = ip_ra_control(sk, 0, NULL);
1435 			goto out;
1436 		}
1437 		break;
1438 	case MRT_ADD_VIF:
1439 	case MRT_DEL_VIF:
1440 		if (optlen != sizeof(vif)) {
1441 			ret = -EINVAL;
1442 			break;
1443 		}
1444 		if (copy_from_user(&vif, optval, sizeof(vif))) {
1445 			ret = -EFAULT;
1446 			break;
1447 		}
1448 		if (vif.vifc_vifi >= MAXVIFS) {
1449 			ret = -ENFILE;
1450 			break;
1451 		}
1452 		if (optname == MRT_ADD_VIF) {
1453 			ret = vif_add(net, mrt, &vif,
1454 				      sk == rtnl_dereference(mrt->mroute_sk));
1455 		} else {
1456 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1457 		}
1458 		break;
1459 	/* Manipulate the forwarding caches. These live
1460 	 * in a sort of kernel/user symbiosis.
1461 	 */
1462 	case MRT_ADD_MFC:
1463 	case MRT_DEL_MFC:
1464 		parent = -1;
1465 		/* fall through */
1466 	case MRT_ADD_MFC_PROXY:
1467 	case MRT_DEL_MFC_PROXY:
1468 		if (optlen != sizeof(mfc)) {
1469 			ret = -EINVAL;
1470 			break;
1471 		}
1472 		if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1473 			ret = -EFAULT;
1474 			break;
1475 		}
1476 		if (parent == 0)
1477 			parent = mfc.mfcc_parent;
1478 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1479 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1480 		else
1481 			ret = ipmr_mfc_add(net, mrt, &mfc,
1482 					   sk == rtnl_dereference(mrt->mroute_sk),
1483 					   parent);
1484 		break;
1485 	/* Control PIM assert. */
1486 	case MRT_ASSERT:
1487 		if (optlen != sizeof(val)) {
1488 			ret = -EINVAL;
1489 			break;
1490 		}
1491 		if (get_user(val, (int __user *)optval)) {
1492 			ret = -EFAULT;
1493 			break;
1494 		}
1495 		mrt->mroute_do_assert = val;
1496 		break;
1497 	case MRT_PIM:
1498 		if (!ipmr_pimsm_enabled()) {
1499 			ret = -ENOPROTOOPT;
1500 			break;
1501 		}
1502 		if (optlen != sizeof(val)) {
1503 			ret = -EINVAL;
1504 			break;
1505 		}
1506 		if (get_user(val, (int __user *)optval)) {
1507 			ret = -EFAULT;
1508 			break;
1509 		}
1510 
1511 		do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1512 		val = !!val;
1513 		if (val != mrt->mroute_do_pim) {
1514 			mrt->mroute_do_pim = val;
1515 			mrt->mroute_do_assert = val;
1516 			mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1517 		}
1518 		break;
1519 	case MRT_TABLE:
1520 		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1521 			ret = -ENOPROTOOPT;
1522 			break;
1523 		}
1524 		if (optlen != sizeof(uval)) {
1525 			ret = -EINVAL;
1526 			break;
1527 		}
1528 		if (get_user(uval, (u32 __user *)optval)) {
1529 			ret = -EFAULT;
1530 			break;
1531 		}
1532 
1533 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1534 			ret = -EBUSY;
1535 		} else {
1536 			mrt = ipmr_new_table(net, uval);
1537 			if (IS_ERR(mrt))
1538 				ret = PTR_ERR(mrt);
1539 			else
1540 				raw_sk(sk)->ipmr_table = uval;
1541 		}
1542 		break;
1543 	/* Spurious command, or MRT_VERSION which you cannot set. */
1544 	default:
1545 		ret = -ENOPROTOOPT;
1546 	}
1547 out_unlock:
1548 	rtnl_unlock();
1549 out:
1550 	return ret;
1551 }
1552 
1553 /* Getsock opt support for the multicast routing system. */
1554 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1555 {
1556 	int olr;
1557 	int val;
1558 	struct net *net = sock_net(sk);
1559 	struct mr_table *mrt;
1560 
1561 	if (sk->sk_type != SOCK_RAW ||
1562 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1563 		return -EOPNOTSUPP;
1564 
1565 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1566 	if (!mrt)
1567 		return -ENOENT;
1568 
1569 	switch (optname) {
1570 	case MRT_VERSION:
1571 		val = 0x0305;
1572 		break;
1573 	case MRT_PIM:
1574 		if (!ipmr_pimsm_enabled())
1575 			return -ENOPROTOOPT;
1576 		val = mrt->mroute_do_pim;
1577 		break;
1578 	case MRT_ASSERT:
1579 		val = mrt->mroute_do_assert;
1580 		break;
1581 	default:
1582 		return -ENOPROTOOPT;
1583 	}
1584 
1585 	if (get_user(olr, optlen))
1586 		return -EFAULT;
1587 	olr = min_t(unsigned int, olr, sizeof(int));
1588 	if (olr < 0)
1589 		return -EINVAL;
1590 	if (put_user(olr, optlen))
1591 		return -EFAULT;
1592 	if (copy_to_user(optval, &val, olr))
1593 		return -EFAULT;
1594 	return 0;
1595 }
1596 
1597 /* The IP multicast ioctl support routines. */
1598 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1599 {
1600 	struct sioc_sg_req sr;
1601 	struct sioc_vif_req vr;
1602 	struct vif_device *vif;
1603 	struct mfc_cache *c;
1604 	struct net *net = sock_net(sk);
1605 	struct mr_table *mrt;
1606 
1607 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1608 	if (!mrt)
1609 		return -ENOENT;
1610 
1611 	switch (cmd) {
1612 	case SIOCGETVIFCNT:
1613 		if (copy_from_user(&vr, arg, sizeof(vr)))
1614 			return -EFAULT;
1615 		if (vr.vifi >= mrt->maxvif)
1616 			return -EINVAL;
1617 		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1618 		read_lock(&mrt_lock);
1619 		vif = &mrt->vif_table[vr.vifi];
1620 		if (VIF_EXISTS(mrt, vr.vifi)) {
1621 			vr.icount = vif->pkt_in;
1622 			vr.ocount = vif->pkt_out;
1623 			vr.ibytes = vif->bytes_in;
1624 			vr.obytes = vif->bytes_out;
1625 			read_unlock(&mrt_lock);
1626 
1627 			if (copy_to_user(arg, &vr, sizeof(vr)))
1628 				return -EFAULT;
1629 			return 0;
1630 		}
1631 		read_unlock(&mrt_lock);
1632 		return -EADDRNOTAVAIL;
1633 	case SIOCGETSGCNT:
1634 		if (copy_from_user(&sr, arg, sizeof(sr)))
1635 			return -EFAULT;
1636 
1637 		rcu_read_lock();
1638 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1639 		if (c) {
1640 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1641 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1642 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1643 			rcu_read_unlock();
1644 
1645 			if (copy_to_user(arg, &sr, sizeof(sr)))
1646 				return -EFAULT;
1647 			return 0;
1648 		}
1649 		rcu_read_unlock();
1650 		return -EADDRNOTAVAIL;
1651 	default:
1652 		return -ENOIOCTLCMD;
1653 	}
1654 }
1655 
1656 #ifdef CONFIG_COMPAT
1657 struct compat_sioc_sg_req {
1658 	struct in_addr src;
1659 	struct in_addr grp;
1660 	compat_ulong_t pktcnt;
1661 	compat_ulong_t bytecnt;
1662 	compat_ulong_t wrong_if;
1663 };
1664 
1665 struct compat_sioc_vif_req {
1666 	vifi_t	vifi;		/* Which iface */
1667 	compat_ulong_t icount;
1668 	compat_ulong_t ocount;
1669 	compat_ulong_t ibytes;
1670 	compat_ulong_t obytes;
1671 };
1672 
1673 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1674 {
1675 	struct compat_sioc_sg_req sr;
1676 	struct compat_sioc_vif_req vr;
1677 	struct vif_device *vif;
1678 	struct mfc_cache *c;
1679 	struct net *net = sock_net(sk);
1680 	struct mr_table *mrt;
1681 
1682 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1683 	if (!mrt)
1684 		return -ENOENT;
1685 
1686 	switch (cmd) {
1687 	case SIOCGETVIFCNT:
1688 		if (copy_from_user(&vr, arg, sizeof(vr)))
1689 			return -EFAULT;
1690 		if (vr.vifi >= mrt->maxvif)
1691 			return -EINVAL;
1692 		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1693 		read_lock(&mrt_lock);
1694 		vif = &mrt->vif_table[vr.vifi];
1695 		if (VIF_EXISTS(mrt, vr.vifi)) {
1696 			vr.icount = vif->pkt_in;
1697 			vr.ocount = vif->pkt_out;
1698 			vr.ibytes = vif->bytes_in;
1699 			vr.obytes = vif->bytes_out;
1700 			read_unlock(&mrt_lock);
1701 
1702 			if (copy_to_user(arg, &vr, sizeof(vr)))
1703 				return -EFAULT;
1704 			return 0;
1705 		}
1706 		read_unlock(&mrt_lock);
1707 		return -EADDRNOTAVAIL;
1708 	case SIOCGETSGCNT:
1709 		if (copy_from_user(&sr, arg, sizeof(sr)))
1710 			return -EFAULT;
1711 
1712 		rcu_read_lock();
1713 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1714 		if (c) {
1715 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1716 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1717 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1718 			rcu_read_unlock();
1719 
1720 			if (copy_to_user(arg, &sr, sizeof(sr)))
1721 				return -EFAULT;
1722 			return 0;
1723 		}
1724 		rcu_read_unlock();
1725 		return -EADDRNOTAVAIL;
1726 	default:
1727 		return -ENOIOCTLCMD;
1728 	}
1729 }
1730 #endif
1731 
1732 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1733 {
1734 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1735 	struct net *net = dev_net(dev);
1736 	struct mr_table *mrt;
1737 	struct vif_device *v;
1738 	int ct;
1739 
1740 	if (event != NETDEV_UNREGISTER)
1741 		return NOTIFY_DONE;
1742 
1743 	ipmr_for_each_table(mrt, net) {
1744 		v = &mrt->vif_table[0];
1745 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1746 			if (v->dev == dev)
1747 				vif_delete(mrt, ct, 1, NULL);
1748 		}
1749 	}
1750 	return NOTIFY_DONE;
1751 }
1752 
1753 static struct notifier_block ip_mr_notifier = {
1754 	.notifier_call = ipmr_device_event,
1755 };
1756 
1757 /* Encapsulate a packet by attaching a valid IPIP header to it.
1758  * This avoids tunnel drivers and other mess and gives us the speed so
1759  * important for multicast video.
1760  */
1761 static void ip_encap(struct net *net, struct sk_buff *skb,
1762 		     __be32 saddr, __be32 daddr)
1763 {
1764 	struct iphdr *iph;
1765 	const struct iphdr *old_iph = ip_hdr(skb);
1766 
1767 	skb_push(skb, sizeof(struct iphdr));
1768 	skb->transport_header = skb->network_header;
1769 	skb_reset_network_header(skb);
1770 	iph = ip_hdr(skb);
1771 
1772 	iph->version	=	4;
1773 	iph->tos	=	old_iph->tos;
1774 	iph->ttl	=	old_iph->ttl;
1775 	iph->frag_off	=	0;
1776 	iph->daddr	=	daddr;
1777 	iph->saddr	=	saddr;
1778 	iph->protocol	=	IPPROTO_IPIP;
1779 	iph->ihl	=	5;
1780 	iph->tot_len	=	htons(skb->len);
1781 	ip_select_ident(net, skb, NULL);
1782 	ip_send_check(iph);
1783 
1784 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1785 	nf_reset(skb);
1786 }
1787 
1788 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1789 				      struct sk_buff *skb)
1790 {
1791 	struct ip_options *opt = &(IPCB(skb)->opt);
1792 
1793 	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1794 	IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1795 
1796 	if (unlikely(opt->optlen))
1797 		ip_forward_options(skb);
1798 
1799 	return dst_output(net, sk, skb);
1800 }
1801 
1802 #ifdef CONFIG_NET_SWITCHDEV
1803 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1804 				   int in_vifi, int out_vifi)
1805 {
1806 	struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1807 	struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1808 
1809 	if (!skb->offload_l3_fwd_mark)
1810 		return false;
1811 	if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1812 		return false;
1813 	return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1814 					&in_vif->dev_parent_id);
1815 }
1816 #else
1817 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1818 				   int in_vifi, int out_vifi)
1819 {
1820 	return false;
1821 }
1822 #endif
1823 
1824 /* Processing handlers for ipmr_forward */
1825 
1826 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1827 			    int in_vifi, struct sk_buff *skb, int vifi)
1828 {
1829 	const struct iphdr *iph = ip_hdr(skb);
1830 	struct vif_device *vif = &mrt->vif_table[vifi];
1831 	struct net_device *dev;
1832 	struct rtable *rt;
1833 	struct flowi4 fl4;
1834 	int    encap = 0;
1835 
1836 	if (!vif->dev)
1837 		goto out_free;
1838 
1839 	if (vif->flags & VIFF_REGISTER) {
1840 		vif->pkt_out++;
1841 		vif->bytes_out += skb->len;
1842 		vif->dev->stats.tx_bytes += skb->len;
1843 		vif->dev->stats.tx_packets++;
1844 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1845 		goto out_free;
1846 	}
1847 
1848 	if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1849 		goto out_free;
1850 
1851 	if (vif->flags & VIFF_TUNNEL) {
1852 		rt = ip_route_output_ports(net, &fl4, NULL,
1853 					   vif->remote, vif->local,
1854 					   0, 0,
1855 					   IPPROTO_IPIP,
1856 					   RT_TOS(iph->tos), vif->link);
1857 		if (IS_ERR(rt))
1858 			goto out_free;
1859 		encap = sizeof(struct iphdr);
1860 	} else {
1861 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1862 					   0, 0,
1863 					   IPPROTO_IPIP,
1864 					   RT_TOS(iph->tos), vif->link);
1865 		if (IS_ERR(rt))
1866 			goto out_free;
1867 	}
1868 
1869 	dev = rt->dst.dev;
1870 
1871 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1872 		/* Do not fragment multicasts. Alas, IPv4 does not
1873 		 * allow to send ICMP, so that packets will disappear
1874 		 * to blackhole.
1875 		 */
1876 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1877 		ip_rt_put(rt);
1878 		goto out_free;
1879 	}
1880 
1881 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1882 
1883 	if (skb_cow(skb, encap)) {
1884 		ip_rt_put(rt);
1885 		goto out_free;
1886 	}
1887 
1888 	vif->pkt_out++;
1889 	vif->bytes_out += skb->len;
1890 
1891 	skb_dst_drop(skb);
1892 	skb_dst_set(skb, &rt->dst);
1893 	ip_decrease_ttl(ip_hdr(skb));
1894 
1895 	/* FIXME: forward and output firewalls used to be called here.
1896 	 * What do we do with netfilter? -- RR
1897 	 */
1898 	if (vif->flags & VIFF_TUNNEL) {
1899 		ip_encap(net, skb, vif->local, vif->remote);
1900 		/* FIXME: extra output firewall step used to be here. --RR */
1901 		vif->dev->stats.tx_packets++;
1902 		vif->dev->stats.tx_bytes += skb->len;
1903 	}
1904 
1905 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1906 
1907 	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1908 	 * not only before forwarding, but after forwarding on all output
1909 	 * interfaces. It is clear, if mrouter runs a multicasting
1910 	 * program, it should receive packets not depending to what interface
1911 	 * program is joined.
1912 	 * If we will not make it, the program will have to join on all
1913 	 * interfaces. On the other hand, multihoming host (or router, but
1914 	 * not mrouter) cannot join to more than one interface - it will
1915 	 * result in receiving multiple packets.
1916 	 */
1917 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1918 		net, NULL, skb, skb->dev, dev,
1919 		ipmr_forward_finish);
1920 	return;
1921 
1922 out_free:
1923 	kfree_skb(skb);
1924 }
1925 
1926 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1927 {
1928 	int ct;
1929 
1930 	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1931 		if (mrt->vif_table[ct].dev == dev)
1932 			break;
1933 	}
1934 	return ct;
1935 }
1936 
1937 /* "local" means that we should preserve one skb (for local delivery) */
1938 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1939 			  struct net_device *dev, struct sk_buff *skb,
1940 			  struct mfc_cache *c, int local)
1941 {
1942 	int true_vifi = ipmr_find_vif(mrt, dev);
1943 	int psend = -1;
1944 	int vif, ct;
1945 
1946 	vif = c->_c.mfc_parent;
1947 	c->_c.mfc_un.res.pkt++;
1948 	c->_c.mfc_un.res.bytes += skb->len;
1949 	c->_c.mfc_un.res.lastuse = jiffies;
1950 
1951 	if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1952 		struct mfc_cache *cache_proxy;
1953 
1954 		/* For an (*,G) entry, we only check that the incomming
1955 		 * interface is part of the static tree.
1956 		 */
1957 		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1958 		if (cache_proxy &&
1959 		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1960 			goto forward;
1961 	}
1962 
1963 	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1964 	if (mrt->vif_table[vif].dev != dev) {
1965 		if (rt_is_output_route(skb_rtable(skb))) {
1966 			/* It is our own packet, looped back.
1967 			 * Very complicated situation...
1968 			 *
1969 			 * The best workaround until routing daemons will be
1970 			 * fixed is not to redistribute packet, if it was
1971 			 * send through wrong interface. It means, that
1972 			 * multicast applications WILL NOT work for
1973 			 * (S,G), which have default multicast route pointing
1974 			 * to wrong oif. In any case, it is not a good
1975 			 * idea to use multicasting applications on router.
1976 			 */
1977 			goto dont_forward;
1978 		}
1979 
1980 		c->_c.mfc_un.res.wrong_if++;
1981 
1982 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1983 		    /* pimsm uses asserts, when switching from RPT to SPT,
1984 		     * so that we cannot check that packet arrived on an oif.
1985 		     * It is bad, but otherwise we would need to move pretty
1986 		     * large chunk of pimd to kernel. Ough... --ANK
1987 		     */
1988 		    (mrt->mroute_do_pim ||
1989 		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
1990 		    time_after(jiffies,
1991 			       c->_c.mfc_un.res.last_assert +
1992 			       MFC_ASSERT_THRESH)) {
1993 			c->_c.mfc_un.res.last_assert = jiffies;
1994 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1995 			if (mrt->mroute_do_wrvifwhole)
1996 				ipmr_cache_report(mrt, skb, true_vifi,
1997 						  IGMPMSG_WRVIFWHOLE);
1998 		}
1999 		goto dont_forward;
2000 	}
2001 
2002 forward:
2003 	mrt->vif_table[vif].pkt_in++;
2004 	mrt->vif_table[vif].bytes_in += skb->len;
2005 
2006 	/* Forward the frame */
2007 	if (c->mfc_origin == htonl(INADDR_ANY) &&
2008 	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2009 		if (true_vifi >= 0 &&
2010 		    true_vifi != c->_c.mfc_parent &&
2011 		    ip_hdr(skb)->ttl >
2012 				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2013 			/* It's an (*,*) entry and the packet is not coming from
2014 			 * the upstream: forward the packet to the upstream
2015 			 * only.
2016 			 */
2017 			psend = c->_c.mfc_parent;
2018 			goto last_forward;
2019 		}
2020 		goto dont_forward;
2021 	}
2022 	for (ct = c->_c.mfc_un.res.maxvif - 1;
2023 	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2024 		/* For (*,G) entry, don't forward to the incoming interface */
2025 		if ((c->mfc_origin != htonl(INADDR_ANY) ||
2026 		     ct != true_vifi) &&
2027 		    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2028 			if (psend != -1) {
2029 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2030 
2031 				if (skb2)
2032 					ipmr_queue_xmit(net, mrt, true_vifi,
2033 							skb2, psend);
2034 			}
2035 			psend = ct;
2036 		}
2037 	}
2038 last_forward:
2039 	if (psend != -1) {
2040 		if (local) {
2041 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2042 
2043 			if (skb2)
2044 				ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2045 						psend);
2046 		} else {
2047 			ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2048 			return;
2049 		}
2050 	}
2051 
2052 dont_forward:
2053 	if (!local)
2054 		kfree_skb(skb);
2055 }
2056 
2057 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2058 {
2059 	struct rtable *rt = skb_rtable(skb);
2060 	struct iphdr *iph = ip_hdr(skb);
2061 	struct flowi4 fl4 = {
2062 		.daddr = iph->daddr,
2063 		.saddr = iph->saddr,
2064 		.flowi4_tos = RT_TOS(iph->tos),
2065 		.flowi4_oif = (rt_is_output_route(rt) ?
2066 			       skb->dev->ifindex : 0),
2067 		.flowi4_iif = (rt_is_output_route(rt) ?
2068 			       LOOPBACK_IFINDEX :
2069 			       skb->dev->ifindex),
2070 		.flowi4_mark = skb->mark,
2071 	};
2072 	struct mr_table *mrt;
2073 	int err;
2074 
2075 	err = ipmr_fib_lookup(net, &fl4, &mrt);
2076 	if (err)
2077 		return ERR_PTR(err);
2078 	return mrt;
2079 }
2080 
2081 /* Multicast packets for forwarding arrive here
2082  * Called with rcu_read_lock();
2083  */
2084 int ip_mr_input(struct sk_buff *skb)
2085 {
2086 	struct mfc_cache *cache;
2087 	struct net *net = dev_net(skb->dev);
2088 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2089 	struct mr_table *mrt;
2090 	struct net_device *dev;
2091 
2092 	/* skb->dev passed in is the loX master dev for vrfs.
2093 	 * As there are no vifs associated with loopback devices,
2094 	 * get the proper interface that does have a vif associated with it.
2095 	 */
2096 	dev = skb->dev;
2097 	if (netif_is_l3_master(skb->dev)) {
2098 		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2099 		if (!dev) {
2100 			kfree_skb(skb);
2101 			return -ENODEV;
2102 		}
2103 	}
2104 
2105 	/* Packet is looped back after forward, it should not be
2106 	 * forwarded second time, but still can be delivered locally.
2107 	 */
2108 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2109 		goto dont_forward;
2110 
2111 	mrt = ipmr_rt_fib_lookup(net, skb);
2112 	if (IS_ERR(mrt)) {
2113 		kfree_skb(skb);
2114 		return PTR_ERR(mrt);
2115 	}
2116 	if (!local) {
2117 		if (IPCB(skb)->opt.router_alert) {
2118 			if (ip_call_ra_chain(skb))
2119 				return 0;
2120 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2121 			/* IGMPv1 (and broken IGMPv2 implementations sort of
2122 			 * Cisco IOS <= 11.2(8)) do not put router alert
2123 			 * option to IGMP packets destined to routable
2124 			 * groups. It is very bad, because it means
2125 			 * that we can forward NO IGMP messages.
2126 			 */
2127 			struct sock *mroute_sk;
2128 
2129 			mroute_sk = rcu_dereference(mrt->mroute_sk);
2130 			if (mroute_sk) {
2131 				nf_reset(skb);
2132 				raw_rcv(mroute_sk, skb);
2133 				return 0;
2134 			}
2135 		    }
2136 	}
2137 
2138 	/* already under rcu_read_lock() */
2139 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2140 	if (!cache) {
2141 		int vif = ipmr_find_vif(mrt, dev);
2142 
2143 		if (vif >= 0)
2144 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2145 						    vif);
2146 	}
2147 
2148 	/* No usable cache entry */
2149 	if (!cache) {
2150 		int vif;
2151 
2152 		if (local) {
2153 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2154 			ip_local_deliver(skb);
2155 			if (!skb2)
2156 				return -ENOBUFS;
2157 			skb = skb2;
2158 		}
2159 
2160 		read_lock(&mrt_lock);
2161 		vif = ipmr_find_vif(mrt, dev);
2162 		if (vif >= 0) {
2163 			int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
2164 			read_unlock(&mrt_lock);
2165 
2166 			return err2;
2167 		}
2168 		read_unlock(&mrt_lock);
2169 		kfree_skb(skb);
2170 		return -ENODEV;
2171 	}
2172 
2173 	read_lock(&mrt_lock);
2174 	ip_mr_forward(net, mrt, dev, skb, cache, local);
2175 	read_unlock(&mrt_lock);
2176 
2177 	if (local)
2178 		return ip_local_deliver(skb);
2179 
2180 	return 0;
2181 
2182 dont_forward:
2183 	if (local)
2184 		return ip_local_deliver(skb);
2185 	kfree_skb(skb);
2186 	return 0;
2187 }
2188 
2189 #ifdef CONFIG_IP_PIMSM_V1
2190 /* Handle IGMP messages of PIMv1 */
2191 int pim_rcv_v1(struct sk_buff *skb)
2192 {
2193 	struct igmphdr *pim;
2194 	struct net *net = dev_net(skb->dev);
2195 	struct mr_table *mrt;
2196 
2197 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2198 		goto drop;
2199 
2200 	pim = igmp_hdr(skb);
2201 
2202 	mrt = ipmr_rt_fib_lookup(net, skb);
2203 	if (IS_ERR(mrt))
2204 		goto drop;
2205 	if (!mrt->mroute_do_pim ||
2206 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2207 		goto drop;
2208 
2209 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2210 drop:
2211 		kfree_skb(skb);
2212 	}
2213 	return 0;
2214 }
2215 #endif
2216 
2217 #ifdef CONFIG_IP_PIMSM_V2
2218 static int pim_rcv(struct sk_buff *skb)
2219 {
2220 	struct pimreghdr *pim;
2221 	struct net *net = dev_net(skb->dev);
2222 	struct mr_table *mrt;
2223 
2224 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2225 		goto drop;
2226 
2227 	pim = (struct pimreghdr *)skb_transport_header(skb);
2228 	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2229 	    (pim->flags & PIM_NULL_REGISTER) ||
2230 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2231 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2232 		goto drop;
2233 
2234 	mrt = ipmr_rt_fib_lookup(net, skb);
2235 	if (IS_ERR(mrt))
2236 		goto drop;
2237 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2238 drop:
2239 		kfree_skb(skb);
2240 	}
2241 	return 0;
2242 }
2243 #endif
2244 
2245 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2246 		   __be32 saddr, __be32 daddr,
2247 		   struct rtmsg *rtm, u32 portid)
2248 {
2249 	struct mfc_cache *cache;
2250 	struct mr_table *mrt;
2251 	int err;
2252 
2253 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2254 	if (!mrt)
2255 		return -ENOENT;
2256 
2257 	rcu_read_lock();
2258 	cache = ipmr_cache_find(mrt, saddr, daddr);
2259 	if (!cache && skb->dev) {
2260 		int vif = ipmr_find_vif(mrt, skb->dev);
2261 
2262 		if (vif >= 0)
2263 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2264 	}
2265 	if (!cache) {
2266 		struct sk_buff *skb2;
2267 		struct iphdr *iph;
2268 		struct net_device *dev;
2269 		int vif = -1;
2270 
2271 		dev = skb->dev;
2272 		read_lock(&mrt_lock);
2273 		if (dev)
2274 			vif = ipmr_find_vif(mrt, dev);
2275 		if (vif < 0) {
2276 			read_unlock(&mrt_lock);
2277 			rcu_read_unlock();
2278 			return -ENODEV;
2279 		}
2280 		skb2 = skb_clone(skb, GFP_ATOMIC);
2281 		if (!skb2) {
2282 			read_unlock(&mrt_lock);
2283 			rcu_read_unlock();
2284 			return -ENOMEM;
2285 		}
2286 
2287 		NETLINK_CB(skb2).portid = portid;
2288 		skb_push(skb2, sizeof(struct iphdr));
2289 		skb_reset_network_header(skb2);
2290 		iph = ip_hdr(skb2);
2291 		iph->ihl = sizeof(struct iphdr) >> 2;
2292 		iph->saddr = saddr;
2293 		iph->daddr = daddr;
2294 		iph->version = 0;
2295 		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2296 		read_unlock(&mrt_lock);
2297 		rcu_read_unlock();
2298 		return err;
2299 	}
2300 
2301 	read_lock(&mrt_lock);
2302 	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2303 	read_unlock(&mrt_lock);
2304 	rcu_read_unlock();
2305 	return err;
2306 }
2307 
2308 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2309 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2310 			    int flags)
2311 {
2312 	struct nlmsghdr *nlh;
2313 	struct rtmsg *rtm;
2314 	int err;
2315 
2316 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2317 	if (!nlh)
2318 		return -EMSGSIZE;
2319 
2320 	rtm = nlmsg_data(nlh);
2321 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2322 	rtm->rtm_dst_len  = 32;
2323 	rtm->rtm_src_len  = 32;
2324 	rtm->rtm_tos      = 0;
2325 	rtm->rtm_table    = mrt->id;
2326 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2327 		goto nla_put_failure;
2328 	rtm->rtm_type     = RTN_MULTICAST;
2329 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2330 	if (c->_c.mfc_flags & MFC_STATIC)
2331 		rtm->rtm_protocol = RTPROT_STATIC;
2332 	else
2333 		rtm->rtm_protocol = RTPROT_MROUTED;
2334 	rtm->rtm_flags    = 0;
2335 
2336 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2337 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2338 		goto nla_put_failure;
2339 	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2340 	/* do not break the dump if cache is unresolved */
2341 	if (err < 0 && err != -ENOENT)
2342 		goto nla_put_failure;
2343 
2344 	nlmsg_end(skb, nlh);
2345 	return 0;
2346 
2347 nla_put_failure:
2348 	nlmsg_cancel(skb, nlh);
2349 	return -EMSGSIZE;
2350 }
2351 
2352 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2353 			     u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2354 			     int flags)
2355 {
2356 	return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2357 				cmd, flags);
2358 }
2359 
2360 static size_t mroute_msgsize(bool unresolved, int maxvif)
2361 {
2362 	size_t len =
2363 		NLMSG_ALIGN(sizeof(struct rtmsg))
2364 		+ nla_total_size(4)	/* RTA_TABLE */
2365 		+ nla_total_size(4)	/* RTA_SRC */
2366 		+ nla_total_size(4)	/* RTA_DST */
2367 		;
2368 
2369 	if (!unresolved)
2370 		len = len
2371 		      + nla_total_size(4)	/* RTA_IIF */
2372 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2373 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2374 						/* RTA_MFC_STATS */
2375 		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2376 		;
2377 
2378 	return len;
2379 }
2380 
2381 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2382 				 int cmd)
2383 {
2384 	struct net *net = read_pnet(&mrt->net);
2385 	struct sk_buff *skb;
2386 	int err = -ENOBUFS;
2387 
2388 	skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2389 				       mrt->maxvif),
2390 			GFP_ATOMIC);
2391 	if (!skb)
2392 		goto errout;
2393 
2394 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2395 	if (err < 0)
2396 		goto errout;
2397 
2398 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2399 	return;
2400 
2401 errout:
2402 	kfree_skb(skb);
2403 	if (err < 0)
2404 		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2405 }
2406 
2407 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2408 {
2409 	size_t len =
2410 		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2411 		+ nla_total_size(1)	/* IPMRA_CREPORT_MSGTYPE */
2412 		+ nla_total_size(4)	/* IPMRA_CREPORT_VIF_ID */
2413 		+ nla_total_size(4)	/* IPMRA_CREPORT_SRC_ADDR */
2414 		+ nla_total_size(4)	/* IPMRA_CREPORT_DST_ADDR */
2415 					/* IPMRA_CREPORT_PKT */
2416 		+ nla_total_size(payloadlen)
2417 		;
2418 
2419 	return len;
2420 }
2421 
2422 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
2423 {
2424 	struct net *net = read_pnet(&mrt->net);
2425 	struct nlmsghdr *nlh;
2426 	struct rtgenmsg *rtgenm;
2427 	struct igmpmsg *msg;
2428 	struct sk_buff *skb;
2429 	struct nlattr *nla;
2430 	int payloadlen;
2431 
2432 	payloadlen = pkt->len - sizeof(struct igmpmsg);
2433 	msg = (struct igmpmsg *)skb_network_header(pkt);
2434 
2435 	skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2436 	if (!skb)
2437 		goto errout;
2438 
2439 	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2440 			sizeof(struct rtgenmsg), 0);
2441 	if (!nlh)
2442 		goto errout;
2443 	rtgenm = nlmsg_data(nlh);
2444 	rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2445 	if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2446 	    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) ||
2447 	    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2448 			    msg->im_src.s_addr) ||
2449 	    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2450 			    msg->im_dst.s_addr))
2451 		goto nla_put_failure;
2452 
2453 	nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2454 	if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2455 				  nla_data(nla), payloadlen))
2456 		goto nla_put_failure;
2457 
2458 	nlmsg_end(skb, nlh);
2459 
2460 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2461 	return;
2462 
2463 nla_put_failure:
2464 	nlmsg_cancel(skb, nlh);
2465 errout:
2466 	kfree_skb(skb);
2467 	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2468 }
2469 
2470 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2471 			     struct netlink_ext_ack *extack)
2472 {
2473 	struct net *net = sock_net(in_skb->sk);
2474 	struct nlattr *tb[RTA_MAX + 1];
2475 	struct sk_buff *skb = NULL;
2476 	struct mfc_cache *cache;
2477 	struct mr_table *mrt;
2478 	struct rtmsg *rtm;
2479 	__be32 src, grp;
2480 	u32 tableid;
2481 	int err;
2482 
2483 	err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX,
2484 			  rtm_ipv4_policy, extack);
2485 	if (err < 0)
2486 		goto errout;
2487 
2488 	rtm = nlmsg_data(nlh);
2489 
2490 	src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2491 	grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2492 	tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2493 
2494 	mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2495 	if (!mrt) {
2496 		err = -ENOENT;
2497 		goto errout_free;
2498 	}
2499 
2500 	/* entries are added/deleted only under RTNL */
2501 	rcu_read_lock();
2502 	cache = ipmr_cache_find(mrt, src, grp);
2503 	rcu_read_unlock();
2504 	if (!cache) {
2505 		err = -ENOENT;
2506 		goto errout_free;
2507 	}
2508 
2509 	skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2510 	if (!skb) {
2511 		err = -ENOBUFS;
2512 		goto errout_free;
2513 	}
2514 
2515 	err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2516 			       nlh->nlmsg_seq, cache,
2517 			       RTM_NEWROUTE, 0);
2518 	if (err < 0)
2519 		goto errout_free;
2520 
2521 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2522 
2523 errout:
2524 	return err;
2525 
2526 errout_free:
2527 	kfree_skb(skb);
2528 	goto errout;
2529 }
2530 
2531 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2532 {
2533 	struct fib_dump_filter filter = {};
2534 	int err;
2535 
2536 	if (cb->strict_check) {
2537 		err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2538 					    &filter, cb);
2539 		if (err < 0)
2540 			return err;
2541 	}
2542 
2543 	if (filter.table_id) {
2544 		struct mr_table *mrt;
2545 
2546 		mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id);
2547 		if (!mrt) {
2548 			if (filter.dump_all_families)
2549 				return skb->len;
2550 
2551 			NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2552 			return -ENOENT;
2553 		}
2554 		err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2555 				    &mfc_unres_lock, &filter);
2556 		return skb->len ? : err;
2557 	}
2558 
2559 	return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2560 				_ipmr_fill_mroute, &mfc_unres_lock, &filter);
2561 }
2562 
2563 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2564 	[RTA_SRC]	= { .type = NLA_U32 },
2565 	[RTA_DST]	= { .type = NLA_U32 },
2566 	[RTA_IIF]	= { .type = NLA_U32 },
2567 	[RTA_TABLE]	= { .type = NLA_U32 },
2568 	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2569 };
2570 
2571 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2572 {
2573 	switch (rtm_protocol) {
2574 	case RTPROT_STATIC:
2575 	case RTPROT_MROUTED:
2576 		return true;
2577 	}
2578 	return false;
2579 }
2580 
2581 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2582 {
2583 	struct rtnexthop *rtnh = nla_data(nla);
2584 	int remaining = nla_len(nla), vifi = 0;
2585 
2586 	while (rtnh_ok(rtnh, remaining)) {
2587 		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2588 		if (++vifi == MAXVIFS)
2589 			break;
2590 		rtnh = rtnh_next(rtnh, &remaining);
2591 	}
2592 
2593 	return remaining > 0 ? -EINVAL : vifi;
2594 }
2595 
2596 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2597 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2598 			    struct mfcctl *mfcc, int *mrtsock,
2599 			    struct mr_table **mrtret,
2600 			    struct netlink_ext_ack *extack)
2601 {
2602 	struct net_device *dev = NULL;
2603 	u32 tblid = RT_TABLE_DEFAULT;
2604 	struct mr_table *mrt;
2605 	struct nlattr *attr;
2606 	struct rtmsg *rtm;
2607 	int ret, rem;
2608 
2609 	ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy,
2610 			     extack);
2611 	if (ret < 0)
2612 		goto out;
2613 	rtm = nlmsg_data(nlh);
2614 
2615 	ret = -EINVAL;
2616 	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2617 	    rtm->rtm_type != RTN_MULTICAST ||
2618 	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2619 	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2620 		goto out;
2621 
2622 	memset(mfcc, 0, sizeof(*mfcc));
2623 	mfcc->mfcc_parent = -1;
2624 	ret = 0;
2625 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2626 		switch (nla_type(attr)) {
2627 		case RTA_SRC:
2628 			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2629 			break;
2630 		case RTA_DST:
2631 			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2632 			break;
2633 		case RTA_IIF:
2634 			dev = __dev_get_by_index(net, nla_get_u32(attr));
2635 			if (!dev) {
2636 				ret = -ENODEV;
2637 				goto out;
2638 			}
2639 			break;
2640 		case RTA_MULTIPATH:
2641 			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2642 				ret = -EINVAL;
2643 				goto out;
2644 			}
2645 			break;
2646 		case RTA_PREFSRC:
2647 			ret = 1;
2648 			break;
2649 		case RTA_TABLE:
2650 			tblid = nla_get_u32(attr);
2651 			break;
2652 		}
2653 	}
2654 	mrt = ipmr_get_table(net, tblid);
2655 	if (!mrt) {
2656 		ret = -ENOENT;
2657 		goto out;
2658 	}
2659 	*mrtret = mrt;
2660 	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2661 	if (dev)
2662 		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2663 
2664 out:
2665 	return ret;
2666 }
2667 
2668 /* takes care of both newroute and delroute */
2669 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2670 			  struct netlink_ext_ack *extack)
2671 {
2672 	struct net *net = sock_net(skb->sk);
2673 	int ret, mrtsock, parent;
2674 	struct mr_table *tbl;
2675 	struct mfcctl mfcc;
2676 
2677 	mrtsock = 0;
2678 	tbl = NULL;
2679 	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2680 	if (ret < 0)
2681 		return ret;
2682 
2683 	parent = ret ? mfcc.mfcc_parent : -1;
2684 	if (nlh->nlmsg_type == RTM_NEWROUTE)
2685 		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2686 	else
2687 		return ipmr_mfc_delete(tbl, &mfcc, parent);
2688 }
2689 
2690 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2691 {
2692 	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2693 
2694 	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2695 	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2696 	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2697 			mrt->mroute_reg_vif_num) ||
2698 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2699 		       mrt->mroute_do_assert) ||
2700 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2701 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2702 		       mrt->mroute_do_wrvifwhole))
2703 		return false;
2704 
2705 	return true;
2706 }
2707 
2708 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2709 {
2710 	struct nlattr *vif_nest;
2711 	struct vif_device *vif;
2712 
2713 	/* if the VIF doesn't exist just continue */
2714 	if (!VIF_EXISTS(mrt, vifid))
2715 		return true;
2716 
2717 	vif = &mrt->vif_table[vifid];
2718 	vif_nest = nla_nest_start(skb, IPMRA_VIF);
2719 	if (!vif_nest)
2720 		return false;
2721 	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
2722 	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2723 	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2724 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2725 			      IPMRA_VIFA_PAD) ||
2726 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2727 			      IPMRA_VIFA_PAD) ||
2728 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2729 			      IPMRA_VIFA_PAD) ||
2730 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2731 			      IPMRA_VIFA_PAD) ||
2732 	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2733 	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2734 		nla_nest_cancel(skb, vif_nest);
2735 		return false;
2736 	}
2737 	nla_nest_end(skb, vif_nest);
2738 
2739 	return true;
2740 }
2741 
2742 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2743 			       struct netlink_ext_ack *extack)
2744 {
2745 	struct ifinfomsg *ifm;
2746 
2747 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2748 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2749 		return -EINVAL;
2750 	}
2751 
2752 	if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2753 		NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2754 		return -EINVAL;
2755 	}
2756 
2757 	ifm = nlmsg_data(nlh);
2758 	if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2759 	    ifm->ifi_change || ifm->ifi_index) {
2760 		NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2761 		return -EINVAL;
2762 	}
2763 
2764 	return 0;
2765 }
2766 
2767 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2768 {
2769 	struct net *net = sock_net(skb->sk);
2770 	struct nlmsghdr *nlh = NULL;
2771 	unsigned int t = 0, s_t;
2772 	unsigned int e = 0, s_e;
2773 	struct mr_table *mrt;
2774 
2775 	if (cb->strict_check) {
2776 		int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2777 
2778 		if (err < 0)
2779 			return err;
2780 	}
2781 
2782 	s_t = cb->args[0];
2783 	s_e = cb->args[1];
2784 
2785 	ipmr_for_each_table(mrt, net) {
2786 		struct nlattr *vifs, *af;
2787 		struct ifinfomsg *hdr;
2788 		u32 i;
2789 
2790 		if (t < s_t)
2791 			goto skip_table;
2792 		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2793 				cb->nlh->nlmsg_seq, RTM_NEWLINK,
2794 				sizeof(*hdr), NLM_F_MULTI);
2795 		if (!nlh)
2796 			break;
2797 
2798 		hdr = nlmsg_data(nlh);
2799 		memset(hdr, 0, sizeof(*hdr));
2800 		hdr->ifi_family = RTNL_FAMILY_IPMR;
2801 
2802 		af = nla_nest_start(skb, IFLA_AF_SPEC);
2803 		if (!af) {
2804 			nlmsg_cancel(skb, nlh);
2805 			goto out;
2806 		}
2807 
2808 		if (!ipmr_fill_table(mrt, skb)) {
2809 			nlmsg_cancel(skb, nlh);
2810 			goto out;
2811 		}
2812 
2813 		vifs = nla_nest_start(skb, IPMRA_TABLE_VIFS);
2814 		if (!vifs) {
2815 			nla_nest_end(skb, af);
2816 			nlmsg_end(skb, nlh);
2817 			goto out;
2818 		}
2819 		for (i = 0; i < mrt->maxvif; i++) {
2820 			if (e < s_e)
2821 				goto skip_entry;
2822 			if (!ipmr_fill_vif(mrt, i, skb)) {
2823 				nla_nest_end(skb, vifs);
2824 				nla_nest_end(skb, af);
2825 				nlmsg_end(skb, nlh);
2826 				goto out;
2827 			}
2828 skip_entry:
2829 			e++;
2830 		}
2831 		s_e = 0;
2832 		e = 0;
2833 		nla_nest_end(skb, vifs);
2834 		nla_nest_end(skb, af);
2835 		nlmsg_end(skb, nlh);
2836 skip_table:
2837 		t++;
2838 	}
2839 
2840 out:
2841 	cb->args[1] = e;
2842 	cb->args[0] = t;
2843 
2844 	return skb->len;
2845 }
2846 
2847 #ifdef CONFIG_PROC_FS
2848 /* The /proc interfaces to multicast routing :
2849  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2850  */
2851 
2852 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2853 	__acquires(mrt_lock)
2854 {
2855 	struct mr_vif_iter *iter = seq->private;
2856 	struct net *net = seq_file_net(seq);
2857 	struct mr_table *mrt;
2858 
2859 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2860 	if (!mrt)
2861 		return ERR_PTR(-ENOENT);
2862 
2863 	iter->mrt = mrt;
2864 
2865 	read_lock(&mrt_lock);
2866 	return mr_vif_seq_start(seq, pos);
2867 }
2868 
2869 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2870 	__releases(mrt_lock)
2871 {
2872 	read_unlock(&mrt_lock);
2873 }
2874 
2875 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2876 {
2877 	struct mr_vif_iter *iter = seq->private;
2878 	struct mr_table *mrt = iter->mrt;
2879 
2880 	if (v == SEQ_START_TOKEN) {
2881 		seq_puts(seq,
2882 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2883 	} else {
2884 		const struct vif_device *vif = v;
2885 		const char *name =  vif->dev ?
2886 				    vif->dev->name : "none";
2887 
2888 		seq_printf(seq,
2889 			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2890 			   vif - mrt->vif_table,
2891 			   name, vif->bytes_in, vif->pkt_in,
2892 			   vif->bytes_out, vif->pkt_out,
2893 			   vif->flags, vif->local, vif->remote);
2894 	}
2895 	return 0;
2896 }
2897 
2898 static const struct seq_operations ipmr_vif_seq_ops = {
2899 	.start = ipmr_vif_seq_start,
2900 	.next  = mr_vif_seq_next,
2901 	.stop  = ipmr_vif_seq_stop,
2902 	.show  = ipmr_vif_seq_show,
2903 };
2904 
2905 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2906 {
2907 	struct net *net = seq_file_net(seq);
2908 	struct mr_table *mrt;
2909 
2910 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2911 	if (!mrt)
2912 		return ERR_PTR(-ENOENT);
2913 
2914 	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2915 }
2916 
2917 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2918 {
2919 	int n;
2920 
2921 	if (v == SEQ_START_TOKEN) {
2922 		seq_puts(seq,
2923 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2924 	} else {
2925 		const struct mfc_cache *mfc = v;
2926 		const struct mr_mfc_iter *it = seq->private;
2927 		const struct mr_table *mrt = it->mrt;
2928 
2929 		seq_printf(seq, "%08X %08X %-3hd",
2930 			   (__force u32) mfc->mfc_mcastgrp,
2931 			   (__force u32) mfc->mfc_origin,
2932 			   mfc->_c.mfc_parent);
2933 
2934 		if (it->cache != &mrt->mfc_unres_queue) {
2935 			seq_printf(seq, " %8lu %8lu %8lu",
2936 				   mfc->_c.mfc_un.res.pkt,
2937 				   mfc->_c.mfc_un.res.bytes,
2938 				   mfc->_c.mfc_un.res.wrong_if);
2939 			for (n = mfc->_c.mfc_un.res.minvif;
2940 			     n < mfc->_c.mfc_un.res.maxvif; n++) {
2941 				if (VIF_EXISTS(mrt, n) &&
2942 				    mfc->_c.mfc_un.res.ttls[n] < 255)
2943 					seq_printf(seq,
2944 					   " %2d:%-3d",
2945 					   n, mfc->_c.mfc_un.res.ttls[n]);
2946 			}
2947 		} else {
2948 			/* unresolved mfc_caches don't contain
2949 			 * pkt, bytes and wrong_if values
2950 			 */
2951 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2952 		}
2953 		seq_putc(seq, '\n');
2954 	}
2955 	return 0;
2956 }
2957 
2958 static const struct seq_operations ipmr_mfc_seq_ops = {
2959 	.start = ipmr_mfc_seq_start,
2960 	.next  = mr_mfc_seq_next,
2961 	.stop  = mr_mfc_seq_stop,
2962 	.show  = ipmr_mfc_seq_show,
2963 };
2964 #endif
2965 
2966 #ifdef CONFIG_IP_PIMSM_V2
2967 static const struct net_protocol pim_protocol = {
2968 	.handler	=	pim_rcv,
2969 	.netns_ok	=	1,
2970 };
2971 #endif
2972 
2973 static unsigned int ipmr_seq_read(struct net *net)
2974 {
2975 	ASSERT_RTNL();
2976 
2977 	return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
2978 }
2979 
2980 static int ipmr_dump(struct net *net, struct notifier_block *nb)
2981 {
2982 	return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
2983 		       ipmr_mr_table_iter, &mrt_lock);
2984 }
2985 
2986 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
2987 	.family		= RTNL_FAMILY_IPMR,
2988 	.fib_seq_read	= ipmr_seq_read,
2989 	.fib_dump	= ipmr_dump,
2990 	.owner		= THIS_MODULE,
2991 };
2992 
2993 static int __net_init ipmr_notifier_init(struct net *net)
2994 {
2995 	struct fib_notifier_ops *ops;
2996 
2997 	net->ipv4.ipmr_seq = 0;
2998 
2999 	ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3000 	if (IS_ERR(ops))
3001 		return PTR_ERR(ops);
3002 	net->ipv4.ipmr_notifier_ops = ops;
3003 
3004 	return 0;
3005 }
3006 
3007 static void __net_exit ipmr_notifier_exit(struct net *net)
3008 {
3009 	fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3010 	net->ipv4.ipmr_notifier_ops = NULL;
3011 }
3012 
3013 /* Setup for IP multicast routing */
3014 static int __net_init ipmr_net_init(struct net *net)
3015 {
3016 	int err;
3017 
3018 	err = ipmr_notifier_init(net);
3019 	if (err)
3020 		goto ipmr_notifier_fail;
3021 
3022 	err = ipmr_rules_init(net);
3023 	if (err < 0)
3024 		goto ipmr_rules_fail;
3025 
3026 #ifdef CONFIG_PROC_FS
3027 	err = -ENOMEM;
3028 	if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3029 			sizeof(struct mr_vif_iter)))
3030 		goto proc_vif_fail;
3031 	if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3032 			sizeof(struct mr_mfc_iter)))
3033 		goto proc_cache_fail;
3034 #endif
3035 	return 0;
3036 
3037 #ifdef CONFIG_PROC_FS
3038 proc_cache_fail:
3039 	remove_proc_entry("ip_mr_vif", net->proc_net);
3040 proc_vif_fail:
3041 	ipmr_rules_exit(net);
3042 #endif
3043 ipmr_rules_fail:
3044 	ipmr_notifier_exit(net);
3045 ipmr_notifier_fail:
3046 	return err;
3047 }
3048 
3049 static void __net_exit ipmr_net_exit(struct net *net)
3050 {
3051 #ifdef CONFIG_PROC_FS
3052 	remove_proc_entry("ip_mr_cache", net->proc_net);
3053 	remove_proc_entry("ip_mr_vif", net->proc_net);
3054 #endif
3055 	ipmr_notifier_exit(net);
3056 	ipmr_rules_exit(net);
3057 }
3058 
3059 static struct pernet_operations ipmr_net_ops = {
3060 	.init = ipmr_net_init,
3061 	.exit = ipmr_net_exit,
3062 };
3063 
3064 int __init ip_mr_init(void)
3065 {
3066 	int err;
3067 
3068 	mrt_cachep = kmem_cache_create("ip_mrt_cache",
3069 				       sizeof(struct mfc_cache),
3070 				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3071 				       NULL);
3072 
3073 	err = register_pernet_subsys(&ipmr_net_ops);
3074 	if (err)
3075 		goto reg_pernet_fail;
3076 
3077 	err = register_netdevice_notifier(&ip_mr_notifier);
3078 	if (err)
3079 		goto reg_notif_fail;
3080 #ifdef CONFIG_IP_PIMSM_V2
3081 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3082 		pr_err("%s: can't add PIM protocol\n", __func__);
3083 		err = -EAGAIN;
3084 		goto add_proto_fail;
3085 	}
3086 #endif
3087 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3088 		      ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3089 	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3090 		      ipmr_rtm_route, NULL, 0);
3091 	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3092 		      ipmr_rtm_route, NULL, 0);
3093 
3094 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3095 		      NULL, ipmr_rtm_dumplink, 0);
3096 	return 0;
3097 
3098 #ifdef CONFIG_IP_PIMSM_V2
3099 add_proto_fail:
3100 	unregister_netdevice_notifier(&ip_mr_notifier);
3101 #endif
3102 reg_notif_fail:
3103 	unregister_pernet_subsys(&ipmr_net_ops);
3104 reg_pernet_fail:
3105 	kmem_cache_destroy(mrt_cachep);
3106 	return err;
3107 }
3108