xref: /linux/net/ipv4/ipmr.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	IP multicast routing support for mrouted 3.6/3.8
4  *
5  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
6  *	  Linux Consultancy and Custom Driver Development
7  *
8  *	Fixes:
9  *	Michael Chastain	:	Incorrect size of copying.
10  *	Alan Cox		:	Added the cache manager code
11  *	Alan Cox		:	Fixed the clone/copy bug and device race.
12  *	Mike McLagan		:	Routing by source
13  *	Malcolm Beattie		:	Buffer handling fixes.
14  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
15  *	SVR Anand		:	Fixed several multicast bugs and problems.
16  *	Alexey Kuznetsov	:	Status, optimisations and more.
17  *	Brad Parker		:	Better behaviour on mrouted upcall
18  *					overflow.
19  *      Carlos Picoto           :       PIMv1 Support
20  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
21  *					Relax this requirement to work with older peers.
22  */
23 
24 #include <linux/uaccess.h>
25 #include <linux/types.h>
26 #include <linux/cache.h>
27 #include <linux/capability.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/kernel.h>
31 #include <linux/fcntl.h>
32 #include <linux/stat.h>
33 #include <linux/socket.h>
34 #include <linux/in.h>
35 #include <linux/inet.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/igmp.h>
39 #include <linux/proc_fs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mroute.h>
42 #include <linux/init.h>
43 #include <linux/if_ether.h>
44 #include <linux/slab.h>
45 #include <net/net_namespace.h>
46 #include <net/ip.h>
47 #include <net/protocol.h>
48 #include <linux/skbuff.h>
49 #include <net/route.h>
50 #include <net/icmp.h>
51 #include <net/udp.h>
52 #include <net/raw.h>
53 #include <linux/notifier.h>
54 #include <linux/if_arp.h>
55 #include <linux/netfilter_ipv4.h>
56 #include <linux/compat.h>
57 #include <linux/export.h>
58 #include <linux/rhashtable.h>
59 #include <net/ip_tunnels.h>
60 #include <net/checksum.h>
61 #include <net/netlink.h>
62 #include <net/fib_rules.h>
63 #include <linux/netconf.h>
64 #include <net/rtnh.h>
65 
66 #include <linux/nospec.h>
67 
68 struct ipmr_rule {
69 	struct fib_rule		common;
70 };
71 
72 struct ipmr_result {
73 	struct mr_table		*mrt;
74 };
75 
76 /* Big lock, protecting vif table, mrt cache and mroute socket state.
77  * Note that the changes are semaphored via rtnl_lock.
78  */
79 
80 static DEFINE_RWLOCK(mrt_lock);
81 
82 /* Multicast router control variables */
83 
84 /* Special spinlock for queue of unresolved entries */
85 static DEFINE_SPINLOCK(mfc_unres_lock);
86 
87 /* We return to original Alan's scheme. Hash table of resolved
88  * entries is changed only in process context and protected
89  * with weak lock mrt_lock. Queue of unresolved entries is protected
90  * with strong spinlock mfc_unres_lock.
91  *
92  * In this case data path is free of exclusive locks at all.
93  */
94 
95 static struct kmem_cache *mrt_cachep __ro_after_init;
96 
97 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
98 static void ipmr_free_table(struct mr_table *mrt);
99 
100 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
101 			  struct net_device *dev, struct sk_buff *skb,
102 			  struct mfc_cache *cache, int local);
103 static int ipmr_cache_report(struct mr_table *mrt,
104 			     struct sk_buff *pkt, vifi_t vifi, int assert);
105 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
106 				 int cmd);
107 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
108 static void mroute_clean_tables(struct mr_table *mrt, int flags);
109 static void ipmr_expire_process(struct timer_list *t);
110 
111 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
112 #define ipmr_for_each_table(mrt, net) \
113 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
114 
115 static struct mr_table *ipmr_mr_table_iter(struct net *net,
116 					   struct mr_table *mrt)
117 {
118 	struct mr_table *ret;
119 
120 	if (!mrt)
121 		ret = list_entry_rcu(net->ipv4.mr_tables.next,
122 				     struct mr_table, list);
123 	else
124 		ret = list_entry_rcu(mrt->list.next,
125 				     struct mr_table, list);
126 
127 	if (&ret->list == &net->ipv4.mr_tables)
128 		return NULL;
129 	return ret;
130 }
131 
132 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
133 {
134 	struct mr_table *mrt;
135 
136 	ipmr_for_each_table(mrt, net) {
137 		if (mrt->id == id)
138 			return mrt;
139 	}
140 	return NULL;
141 }
142 
143 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
144 			   struct mr_table **mrt)
145 {
146 	int err;
147 	struct ipmr_result res;
148 	struct fib_lookup_arg arg = {
149 		.result = &res,
150 		.flags = FIB_LOOKUP_NOREF,
151 	};
152 
153 	/* update flow if oif or iif point to device enslaved to l3mdev */
154 	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
155 
156 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
157 			       flowi4_to_flowi(flp4), 0, &arg);
158 	if (err < 0)
159 		return err;
160 	*mrt = res.mrt;
161 	return 0;
162 }
163 
164 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
165 			    int flags, struct fib_lookup_arg *arg)
166 {
167 	struct ipmr_result *res = arg->result;
168 	struct mr_table *mrt;
169 
170 	switch (rule->action) {
171 	case FR_ACT_TO_TBL:
172 		break;
173 	case FR_ACT_UNREACHABLE:
174 		return -ENETUNREACH;
175 	case FR_ACT_PROHIBIT:
176 		return -EACCES;
177 	case FR_ACT_BLACKHOLE:
178 	default:
179 		return -EINVAL;
180 	}
181 
182 	arg->table = fib_rule_get_table(rule, arg);
183 
184 	mrt = ipmr_get_table(rule->fr_net, arg->table);
185 	if (!mrt)
186 		return -EAGAIN;
187 	res->mrt = mrt;
188 	return 0;
189 }
190 
191 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
192 {
193 	return 1;
194 }
195 
196 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
197 	FRA_GENERIC_POLICY,
198 };
199 
200 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
201 			       struct fib_rule_hdr *frh, struct nlattr **tb,
202 			       struct netlink_ext_ack *extack)
203 {
204 	return 0;
205 }
206 
207 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
208 			     struct nlattr **tb)
209 {
210 	return 1;
211 }
212 
213 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
214 			  struct fib_rule_hdr *frh)
215 {
216 	frh->dst_len = 0;
217 	frh->src_len = 0;
218 	frh->tos     = 0;
219 	return 0;
220 }
221 
222 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
223 	.family		= RTNL_FAMILY_IPMR,
224 	.rule_size	= sizeof(struct ipmr_rule),
225 	.addr_size	= sizeof(u32),
226 	.action		= ipmr_rule_action,
227 	.match		= ipmr_rule_match,
228 	.configure	= ipmr_rule_configure,
229 	.compare	= ipmr_rule_compare,
230 	.fill		= ipmr_rule_fill,
231 	.nlgroup	= RTNLGRP_IPV4_RULE,
232 	.policy		= ipmr_rule_policy,
233 	.owner		= THIS_MODULE,
234 };
235 
236 static int __net_init ipmr_rules_init(struct net *net)
237 {
238 	struct fib_rules_ops *ops;
239 	struct mr_table *mrt;
240 	int err;
241 
242 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
243 	if (IS_ERR(ops))
244 		return PTR_ERR(ops);
245 
246 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
247 
248 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
249 	if (IS_ERR(mrt)) {
250 		err = PTR_ERR(mrt);
251 		goto err1;
252 	}
253 
254 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
255 	if (err < 0)
256 		goto err2;
257 
258 	net->ipv4.mr_rules_ops = ops;
259 	return 0;
260 
261 err2:
262 	ipmr_free_table(mrt);
263 err1:
264 	fib_rules_unregister(ops);
265 	return err;
266 }
267 
268 static void __net_exit ipmr_rules_exit(struct net *net)
269 {
270 	struct mr_table *mrt, *next;
271 
272 	rtnl_lock();
273 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
274 		list_del(&mrt->list);
275 		ipmr_free_table(mrt);
276 	}
277 	fib_rules_unregister(net->ipv4.mr_rules_ops);
278 	rtnl_unlock();
279 }
280 
281 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
282 			   struct netlink_ext_ack *extack)
283 {
284 	return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
285 }
286 
287 static unsigned int ipmr_rules_seq_read(struct net *net)
288 {
289 	return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
290 }
291 
292 bool ipmr_rule_default(const struct fib_rule *rule)
293 {
294 	return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
295 }
296 EXPORT_SYMBOL(ipmr_rule_default);
297 #else
298 #define ipmr_for_each_table(mrt, net) \
299 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
300 
301 static struct mr_table *ipmr_mr_table_iter(struct net *net,
302 					   struct mr_table *mrt)
303 {
304 	if (!mrt)
305 		return net->ipv4.mrt;
306 	return NULL;
307 }
308 
309 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
310 {
311 	return net->ipv4.mrt;
312 }
313 
314 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
315 			   struct mr_table **mrt)
316 {
317 	*mrt = net->ipv4.mrt;
318 	return 0;
319 }
320 
321 static int __net_init ipmr_rules_init(struct net *net)
322 {
323 	struct mr_table *mrt;
324 
325 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
326 	if (IS_ERR(mrt))
327 		return PTR_ERR(mrt);
328 	net->ipv4.mrt = mrt;
329 	return 0;
330 }
331 
332 static void __net_exit ipmr_rules_exit(struct net *net)
333 {
334 	rtnl_lock();
335 	ipmr_free_table(net->ipv4.mrt);
336 	net->ipv4.mrt = NULL;
337 	rtnl_unlock();
338 }
339 
340 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
341 			   struct netlink_ext_ack *extack)
342 {
343 	return 0;
344 }
345 
346 static unsigned int ipmr_rules_seq_read(struct net *net)
347 {
348 	return 0;
349 }
350 
351 bool ipmr_rule_default(const struct fib_rule *rule)
352 {
353 	return true;
354 }
355 EXPORT_SYMBOL(ipmr_rule_default);
356 #endif
357 
358 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
359 				const void *ptr)
360 {
361 	const struct mfc_cache_cmp_arg *cmparg = arg->key;
362 	struct mfc_cache *c = (struct mfc_cache *)ptr;
363 
364 	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
365 	       cmparg->mfc_origin != c->mfc_origin;
366 }
367 
368 static const struct rhashtable_params ipmr_rht_params = {
369 	.head_offset = offsetof(struct mr_mfc, mnode),
370 	.key_offset = offsetof(struct mfc_cache, cmparg),
371 	.key_len = sizeof(struct mfc_cache_cmp_arg),
372 	.nelem_hint = 3,
373 	.obj_cmpfn = ipmr_hash_cmp,
374 	.automatic_shrinking = true,
375 };
376 
377 static void ipmr_new_table_set(struct mr_table *mrt,
378 			       struct net *net)
379 {
380 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
381 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
382 #endif
383 }
384 
385 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
386 	.mfc_mcastgrp = htonl(INADDR_ANY),
387 	.mfc_origin = htonl(INADDR_ANY),
388 };
389 
390 static struct mr_table_ops ipmr_mr_table_ops = {
391 	.rht_params = &ipmr_rht_params,
392 	.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
393 };
394 
395 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
396 {
397 	struct mr_table *mrt;
398 
399 	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
400 	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
401 		return ERR_PTR(-EINVAL);
402 
403 	mrt = ipmr_get_table(net, id);
404 	if (mrt)
405 		return mrt;
406 
407 	return mr_table_alloc(net, id, &ipmr_mr_table_ops,
408 			      ipmr_expire_process, ipmr_new_table_set);
409 }
410 
411 static void ipmr_free_table(struct mr_table *mrt)
412 {
413 	del_timer_sync(&mrt->ipmr_expire_timer);
414 	mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
415 				 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
416 	rhltable_destroy(&mrt->mfc_hash);
417 	kfree(mrt);
418 }
419 
420 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
421 
422 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
423 {
424 	struct net *net = dev_net(dev);
425 
426 	dev_close(dev);
427 
428 	dev = __dev_get_by_name(net, "tunl0");
429 	if (dev) {
430 		const struct net_device_ops *ops = dev->netdev_ops;
431 		struct ifreq ifr;
432 		struct ip_tunnel_parm p;
433 
434 		memset(&p, 0, sizeof(p));
435 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
436 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
437 		p.iph.version = 4;
438 		p.iph.ihl = 5;
439 		p.iph.protocol = IPPROTO_IPIP;
440 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
441 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
442 
443 		if (ops->ndo_do_ioctl) {
444 			mm_segment_t oldfs = get_fs();
445 
446 			set_fs(KERNEL_DS);
447 			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
448 			set_fs(oldfs);
449 		}
450 	}
451 }
452 
453 /* Initialize ipmr pimreg/tunnel in_device */
454 static bool ipmr_init_vif_indev(const struct net_device *dev)
455 {
456 	struct in_device *in_dev;
457 
458 	ASSERT_RTNL();
459 
460 	in_dev = __in_dev_get_rtnl(dev);
461 	if (!in_dev)
462 		return false;
463 	ipv4_devconf_setall(in_dev);
464 	neigh_parms_data_state_setall(in_dev->arp_parms);
465 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
466 
467 	return true;
468 }
469 
470 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
471 {
472 	struct net_device  *dev;
473 
474 	dev = __dev_get_by_name(net, "tunl0");
475 
476 	if (dev) {
477 		const struct net_device_ops *ops = dev->netdev_ops;
478 		int err;
479 		struct ifreq ifr;
480 		struct ip_tunnel_parm p;
481 
482 		memset(&p, 0, sizeof(p));
483 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
484 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
485 		p.iph.version = 4;
486 		p.iph.ihl = 5;
487 		p.iph.protocol = IPPROTO_IPIP;
488 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
489 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
490 
491 		if (ops->ndo_do_ioctl) {
492 			mm_segment_t oldfs = get_fs();
493 
494 			set_fs(KERNEL_DS);
495 			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
496 			set_fs(oldfs);
497 		} else {
498 			err = -EOPNOTSUPP;
499 		}
500 		dev = NULL;
501 
502 		if (err == 0 &&
503 		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
504 			dev->flags |= IFF_MULTICAST;
505 			if (!ipmr_init_vif_indev(dev))
506 				goto failure;
507 			if (dev_open(dev, NULL))
508 				goto failure;
509 			dev_hold(dev);
510 		}
511 	}
512 	return dev;
513 
514 failure:
515 	unregister_netdevice(dev);
516 	return NULL;
517 }
518 
519 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
520 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
521 {
522 	struct net *net = dev_net(dev);
523 	struct mr_table *mrt;
524 	struct flowi4 fl4 = {
525 		.flowi4_oif	= dev->ifindex,
526 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
527 		.flowi4_mark	= skb->mark,
528 	};
529 	int err;
530 
531 	err = ipmr_fib_lookup(net, &fl4, &mrt);
532 	if (err < 0) {
533 		kfree_skb(skb);
534 		return err;
535 	}
536 
537 	read_lock(&mrt_lock);
538 	dev->stats.tx_bytes += skb->len;
539 	dev->stats.tx_packets++;
540 	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
541 	read_unlock(&mrt_lock);
542 	kfree_skb(skb);
543 	return NETDEV_TX_OK;
544 }
545 
546 static int reg_vif_get_iflink(const struct net_device *dev)
547 {
548 	return 0;
549 }
550 
551 static const struct net_device_ops reg_vif_netdev_ops = {
552 	.ndo_start_xmit	= reg_vif_xmit,
553 	.ndo_get_iflink = reg_vif_get_iflink,
554 };
555 
556 static void reg_vif_setup(struct net_device *dev)
557 {
558 	dev->type		= ARPHRD_PIMREG;
559 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
560 	dev->flags		= IFF_NOARP;
561 	dev->netdev_ops		= &reg_vif_netdev_ops;
562 	dev->needs_free_netdev	= true;
563 	dev->features		|= NETIF_F_NETNS_LOCAL;
564 }
565 
566 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
567 {
568 	struct net_device *dev;
569 	char name[IFNAMSIZ];
570 
571 	if (mrt->id == RT_TABLE_DEFAULT)
572 		sprintf(name, "pimreg");
573 	else
574 		sprintf(name, "pimreg%u", mrt->id);
575 
576 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
577 
578 	if (!dev)
579 		return NULL;
580 
581 	dev_net_set(dev, net);
582 
583 	if (register_netdevice(dev)) {
584 		free_netdev(dev);
585 		return NULL;
586 	}
587 
588 	if (!ipmr_init_vif_indev(dev))
589 		goto failure;
590 	if (dev_open(dev, NULL))
591 		goto failure;
592 
593 	dev_hold(dev);
594 
595 	return dev;
596 
597 failure:
598 	unregister_netdevice(dev);
599 	return NULL;
600 }
601 
602 /* called with rcu_read_lock() */
603 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
604 		     unsigned int pimlen)
605 {
606 	struct net_device *reg_dev = NULL;
607 	struct iphdr *encap;
608 
609 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
610 	/* Check that:
611 	 * a. packet is really sent to a multicast group
612 	 * b. packet is not a NULL-REGISTER
613 	 * c. packet is not truncated
614 	 */
615 	if (!ipv4_is_multicast(encap->daddr) ||
616 	    encap->tot_len == 0 ||
617 	    ntohs(encap->tot_len) + pimlen > skb->len)
618 		return 1;
619 
620 	read_lock(&mrt_lock);
621 	if (mrt->mroute_reg_vif_num >= 0)
622 		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
623 	read_unlock(&mrt_lock);
624 
625 	if (!reg_dev)
626 		return 1;
627 
628 	skb->mac_header = skb->network_header;
629 	skb_pull(skb, (u8 *)encap - skb->data);
630 	skb_reset_network_header(skb);
631 	skb->protocol = htons(ETH_P_IP);
632 	skb->ip_summed = CHECKSUM_NONE;
633 
634 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
635 
636 	netif_rx(skb);
637 
638 	return NET_RX_SUCCESS;
639 }
640 #else
641 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
642 {
643 	return NULL;
644 }
645 #endif
646 
647 static int call_ipmr_vif_entry_notifiers(struct net *net,
648 					 enum fib_event_type event_type,
649 					 struct vif_device *vif,
650 					 vifi_t vif_index, u32 tb_id)
651 {
652 	return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
653 				     vif, vif_index, tb_id,
654 				     &net->ipv4.ipmr_seq);
655 }
656 
657 static int call_ipmr_mfc_entry_notifiers(struct net *net,
658 					 enum fib_event_type event_type,
659 					 struct mfc_cache *mfc, u32 tb_id)
660 {
661 	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
662 				     &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
663 }
664 
665 /**
666  *	vif_delete - Delete a VIF entry
667  *	@notify: Set to 1, if the caller is a notifier_call
668  */
669 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
670 		      struct list_head *head)
671 {
672 	struct net *net = read_pnet(&mrt->net);
673 	struct vif_device *v;
674 	struct net_device *dev;
675 	struct in_device *in_dev;
676 
677 	if (vifi < 0 || vifi >= mrt->maxvif)
678 		return -EADDRNOTAVAIL;
679 
680 	v = &mrt->vif_table[vifi];
681 
682 	if (VIF_EXISTS(mrt, vifi))
683 		call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi,
684 					      mrt->id);
685 
686 	write_lock_bh(&mrt_lock);
687 	dev = v->dev;
688 	v->dev = NULL;
689 
690 	if (!dev) {
691 		write_unlock_bh(&mrt_lock);
692 		return -EADDRNOTAVAIL;
693 	}
694 
695 	if (vifi == mrt->mroute_reg_vif_num)
696 		mrt->mroute_reg_vif_num = -1;
697 
698 	if (vifi + 1 == mrt->maxvif) {
699 		int tmp;
700 
701 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
702 			if (VIF_EXISTS(mrt, tmp))
703 				break;
704 		}
705 		mrt->maxvif = tmp+1;
706 	}
707 
708 	write_unlock_bh(&mrt_lock);
709 
710 	dev_set_allmulti(dev, -1);
711 
712 	in_dev = __in_dev_get_rtnl(dev);
713 	if (in_dev) {
714 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
715 		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
716 					    NETCONFA_MC_FORWARDING,
717 					    dev->ifindex, &in_dev->cnf);
718 		ip_rt_multicast_event(in_dev);
719 	}
720 
721 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
722 		unregister_netdevice_queue(dev, head);
723 
724 	dev_put(dev);
725 	return 0;
726 }
727 
728 static void ipmr_cache_free_rcu(struct rcu_head *head)
729 {
730 	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
731 
732 	kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
733 }
734 
735 static void ipmr_cache_free(struct mfc_cache *c)
736 {
737 	call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
738 }
739 
740 /* Destroy an unresolved cache entry, killing queued skbs
741  * and reporting error to netlink readers.
742  */
743 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
744 {
745 	struct net *net = read_pnet(&mrt->net);
746 	struct sk_buff *skb;
747 	struct nlmsgerr *e;
748 
749 	atomic_dec(&mrt->cache_resolve_queue_len);
750 
751 	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
752 		if (ip_hdr(skb)->version == 0) {
753 			struct nlmsghdr *nlh = skb_pull(skb,
754 							sizeof(struct iphdr));
755 			nlh->nlmsg_type = NLMSG_ERROR;
756 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
757 			skb_trim(skb, nlh->nlmsg_len);
758 			e = nlmsg_data(nlh);
759 			e->error = -ETIMEDOUT;
760 			memset(&e->msg, 0, sizeof(e->msg));
761 
762 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
763 		} else {
764 			kfree_skb(skb);
765 		}
766 	}
767 
768 	ipmr_cache_free(c);
769 }
770 
771 /* Timer process for the unresolved queue. */
772 static void ipmr_expire_process(struct timer_list *t)
773 {
774 	struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
775 	struct mr_mfc *c, *next;
776 	unsigned long expires;
777 	unsigned long now;
778 
779 	if (!spin_trylock(&mfc_unres_lock)) {
780 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
781 		return;
782 	}
783 
784 	if (list_empty(&mrt->mfc_unres_queue))
785 		goto out;
786 
787 	now = jiffies;
788 	expires = 10*HZ;
789 
790 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
791 		if (time_after(c->mfc_un.unres.expires, now)) {
792 			unsigned long interval = c->mfc_un.unres.expires - now;
793 			if (interval < expires)
794 				expires = interval;
795 			continue;
796 		}
797 
798 		list_del(&c->list);
799 		mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
800 		ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
801 	}
802 
803 	if (!list_empty(&mrt->mfc_unres_queue))
804 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
805 
806 out:
807 	spin_unlock(&mfc_unres_lock);
808 }
809 
810 /* Fill oifs list. It is called under write locked mrt_lock. */
811 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
812 				   unsigned char *ttls)
813 {
814 	int vifi;
815 
816 	cache->mfc_un.res.minvif = MAXVIFS;
817 	cache->mfc_un.res.maxvif = 0;
818 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
819 
820 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
821 		if (VIF_EXISTS(mrt, vifi) &&
822 		    ttls[vifi] && ttls[vifi] < 255) {
823 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
824 			if (cache->mfc_un.res.minvif > vifi)
825 				cache->mfc_un.res.minvif = vifi;
826 			if (cache->mfc_un.res.maxvif <= vifi)
827 				cache->mfc_un.res.maxvif = vifi + 1;
828 		}
829 	}
830 	cache->mfc_un.res.lastuse = jiffies;
831 }
832 
833 static int vif_add(struct net *net, struct mr_table *mrt,
834 		   struct vifctl *vifc, int mrtsock)
835 {
836 	struct netdev_phys_item_id ppid = { };
837 	int vifi = vifc->vifc_vifi;
838 	struct vif_device *v = &mrt->vif_table[vifi];
839 	struct net_device *dev;
840 	struct in_device *in_dev;
841 	int err;
842 
843 	/* Is vif busy ? */
844 	if (VIF_EXISTS(mrt, vifi))
845 		return -EADDRINUSE;
846 
847 	switch (vifc->vifc_flags) {
848 	case VIFF_REGISTER:
849 		if (!ipmr_pimsm_enabled())
850 			return -EINVAL;
851 		/* Special Purpose VIF in PIM
852 		 * All the packets will be sent to the daemon
853 		 */
854 		if (mrt->mroute_reg_vif_num >= 0)
855 			return -EADDRINUSE;
856 		dev = ipmr_reg_vif(net, mrt);
857 		if (!dev)
858 			return -ENOBUFS;
859 		err = dev_set_allmulti(dev, 1);
860 		if (err) {
861 			unregister_netdevice(dev);
862 			dev_put(dev);
863 			return err;
864 		}
865 		break;
866 	case VIFF_TUNNEL:
867 		dev = ipmr_new_tunnel(net, vifc);
868 		if (!dev)
869 			return -ENOBUFS;
870 		err = dev_set_allmulti(dev, 1);
871 		if (err) {
872 			ipmr_del_tunnel(dev, vifc);
873 			dev_put(dev);
874 			return err;
875 		}
876 		break;
877 	case VIFF_USE_IFINDEX:
878 	case 0:
879 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
880 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
881 			if (dev && !__in_dev_get_rtnl(dev)) {
882 				dev_put(dev);
883 				return -EADDRNOTAVAIL;
884 			}
885 		} else {
886 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
887 		}
888 		if (!dev)
889 			return -EADDRNOTAVAIL;
890 		err = dev_set_allmulti(dev, 1);
891 		if (err) {
892 			dev_put(dev);
893 			return err;
894 		}
895 		break;
896 	default:
897 		return -EINVAL;
898 	}
899 
900 	in_dev = __in_dev_get_rtnl(dev);
901 	if (!in_dev) {
902 		dev_put(dev);
903 		return -EADDRNOTAVAIL;
904 	}
905 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
906 	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
907 				    dev->ifindex, &in_dev->cnf);
908 	ip_rt_multicast_event(in_dev);
909 
910 	/* Fill in the VIF structures */
911 	vif_device_init(v, dev, vifc->vifc_rate_limit,
912 			vifc->vifc_threshold,
913 			vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
914 			(VIFF_TUNNEL | VIFF_REGISTER));
915 
916 	err = dev_get_port_parent_id(dev, &ppid, true);
917 	if (err == 0) {
918 		memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
919 		v->dev_parent_id.id_len = ppid.id_len;
920 	} else {
921 		v->dev_parent_id.id_len = 0;
922 	}
923 
924 	v->local = vifc->vifc_lcl_addr.s_addr;
925 	v->remote = vifc->vifc_rmt_addr.s_addr;
926 
927 	/* And finish update writing critical data */
928 	write_lock_bh(&mrt_lock);
929 	v->dev = dev;
930 	if (v->flags & VIFF_REGISTER)
931 		mrt->mroute_reg_vif_num = vifi;
932 	if (vifi+1 > mrt->maxvif)
933 		mrt->maxvif = vifi+1;
934 	write_unlock_bh(&mrt_lock);
935 	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id);
936 	return 0;
937 }
938 
939 /* called with rcu_read_lock() */
940 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
941 					 __be32 origin,
942 					 __be32 mcastgrp)
943 {
944 	struct mfc_cache_cmp_arg arg = {
945 			.mfc_mcastgrp = mcastgrp,
946 			.mfc_origin = origin
947 	};
948 
949 	return mr_mfc_find(mrt, &arg);
950 }
951 
952 /* Look for a (*,G) entry */
953 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
954 					     __be32 mcastgrp, int vifi)
955 {
956 	struct mfc_cache_cmp_arg arg = {
957 			.mfc_mcastgrp = mcastgrp,
958 			.mfc_origin = htonl(INADDR_ANY)
959 	};
960 
961 	if (mcastgrp == htonl(INADDR_ANY))
962 		return mr_mfc_find_any_parent(mrt, vifi);
963 	return mr_mfc_find_any(mrt, vifi, &arg);
964 }
965 
966 /* Look for a (S,G,iif) entry if parent != -1 */
967 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
968 						__be32 origin, __be32 mcastgrp,
969 						int parent)
970 {
971 	struct mfc_cache_cmp_arg arg = {
972 			.mfc_mcastgrp = mcastgrp,
973 			.mfc_origin = origin,
974 	};
975 
976 	return mr_mfc_find_parent(mrt, &arg, parent);
977 }
978 
979 /* Allocate a multicast cache entry */
980 static struct mfc_cache *ipmr_cache_alloc(void)
981 {
982 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
983 
984 	if (c) {
985 		c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
986 		c->_c.mfc_un.res.minvif = MAXVIFS;
987 		c->_c.free = ipmr_cache_free_rcu;
988 		refcount_set(&c->_c.mfc_un.res.refcount, 1);
989 	}
990 	return c;
991 }
992 
993 static struct mfc_cache *ipmr_cache_alloc_unres(void)
994 {
995 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
996 
997 	if (c) {
998 		skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
999 		c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
1000 	}
1001 	return c;
1002 }
1003 
1004 /* A cache entry has gone into a resolved state from queued */
1005 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
1006 			       struct mfc_cache *uc, struct mfc_cache *c)
1007 {
1008 	struct sk_buff *skb;
1009 	struct nlmsgerr *e;
1010 
1011 	/* Play the pending entries through our router */
1012 	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1013 		if (ip_hdr(skb)->version == 0) {
1014 			struct nlmsghdr *nlh = skb_pull(skb,
1015 							sizeof(struct iphdr));
1016 
1017 			if (mr_fill_mroute(mrt, skb, &c->_c,
1018 					   nlmsg_data(nlh)) > 0) {
1019 				nlh->nlmsg_len = skb_tail_pointer(skb) -
1020 						 (u8 *)nlh;
1021 			} else {
1022 				nlh->nlmsg_type = NLMSG_ERROR;
1023 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1024 				skb_trim(skb, nlh->nlmsg_len);
1025 				e = nlmsg_data(nlh);
1026 				e->error = -EMSGSIZE;
1027 				memset(&e->msg, 0, sizeof(e->msg));
1028 			}
1029 
1030 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1031 		} else {
1032 			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1033 		}
1034 	}
1035 }
1036 
1037 /* Bounce a cache query up to mrouted and netlink.
1038  *
1039  * Called under mrt_lock.
1040  */
1041 static int ipmr_cache_report(struct mr_table *mrt,
1042 			     struct sk_buff *pkt, vifi_t vifi, int assert)
1043 {
1044 	const int ihl = ip_hdrlen(pkt);
1045 	struct sock *mroute_sk;
1046 	struct igmphdr *igmp;
1047 	struct igmpmsg *msg;
1048 	struct sk_buff *skb;
1049 	int ret;
1050 
1051 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1052 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1053 	else
1054 		skb = alloc_skb(128, GFP_ATOMIC);
1055 
1056 	if (!skb)
1057 		return -ENOBUFS;
1058 
1059 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1060 		/* Ugly, but we have no choice with this interface.
1061 		 * Duplicate old header, fix ihl, length etc.
1062 		 * And all this only to mangle msg->im_msgtype and
1063 		 * to set msg->im_mbz to "mbz" :-)
1064 		 */
1065 		skb_push(skb, sizeof(struct iphdr));
1066 		skb_reset_network_header(skb);
1067 		skb_reset_transport_header(skb);
1068 		msg = (struct igmpmsg *)skb_network_header(skb);
1069 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1070 		msg->im_msgtype = assert;
1071 		msg->im_mbz = 0;
1072 		if (assert == IGMPMSG_WRVIFWHOLE)
1073 			msg->im_vif = vifi;
1074 		else
1075 			msg->im_vif = mrt->mroute_reg_vif_num;
1076 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1077 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1078 					     sizeof(struct iphdr));
1079 	} else {
1080 		/* Copy the IP header */
1081 		skb_set_network_header(skb, skb->len);
1082 		skb_put(skb, ihl);
1083 		skb_copy_to_linear_data(skb, pkt->data, ihl);
1084 		/* Flag to the kernel this is a route add */
1085 		ip_hdr(skb)->protocol = 0;
1086 		msg = (struct igmpmsg *)skb_network_header(skb);
1087 		msg->im_vif = vifi;
1088 		skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1089 		/* Add our header */
1090 		igmp = skb_put(skb, sizeof(struct igmphdr));
1091 		igmp->type = assert;
1092 		msg->im_msgtype = assert;
1093 		igmp->code = 0;
1094 		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1095 		skb->transport_header = skb->network_header;
1096 	}
1097 
1098 	rcu_read_lock();
1099 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1100 	if (!mroute_sk) {
1101 		rcu_read_unlock();
1102 		kfree_skb(skb);
1103 		return -EINVAL;
1104 	}
1105 
1106 	igmpmsg_netlink_event(mrt, skb);
1107 
1108 	/* Deliver to mrouted */
1109 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1110 	rcu_read_unlock();
1111 	if (ret < 0) {
1112 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1113 		kfree_skb(skb);
1114 	}
1115 
1116 	return ret;
1117 }
1118 
1119 /* Queue a packet for resolution. It gets locked cache entry! */
1120 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1121 				 struct sk_buff *skb, struct net_device *dev)
1122 {
1123 	const struct iphdr *iph = ip_hdr(skb);
1124 	struct mfc_cache *c;
1125 	bool found = false;
1126 	int err;
1127 
1128 	spin_lock_bh(&mfc_unres_lock);
1129 	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1130 		if (c->mfc_mcastgrp == iph->daddr &&
1131 		    c->mfc_origin == iph->saddr) {
1132 			found = true;
1133 			break;
1134 		}
1135 	}
1136 
1137 	if (!found) {
1138 		/* Create a new entry if allowable */
1139 		c = ipmr_cache_alloc_unres();
1140 		if (!c) {
1141 			spin_unlock_bh(&mfc_unres_lock);
1142 
1143 			kfree_skb(skb);
1144 			return -ENOBUFS;
1145 		}
1146 
1147 		/* Fill in the new cache entry */
1148 		c->_c.mfc_parent = -1;
1149 		c->mfc_origin	= iph->saddr;
1150 		c->mfc_mcastgrp	= iph->daddr;
1151 
1152 		/* Reflect first query at mrouted. */
1153 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1154 
1155 		if (err < 0) {
1156 			/* If the report failed throw the cache entry
1157 			   out - Brad Parker
1158 			 */
1159 			spin_unlock_bh(&mfc_unres_lock);
1160 
1161 			ipmr_cache_free(c);
1162 			kfree_skb(skb);
1163 			return err;
1164 		}
1165 
1166 		atomic_inc(&mrt->cache_resolve_queue_len);
1167 		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1168 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1169 
1170 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1171 			mod_timer(&mrt->ipmr_expire_timer,
1172 				  c->_c.mfc_un.unres.expires);
1173 	}
1174 
1175 	/* See if we can append the packet */
1176 	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1177 		kfree_skb(skb);
1178 		err = -ENOBUFS;
1179 	} else {
1180 		if (dev) {
1181 			skb->dev = dev;
1182 			skb->skb_iif = dev->ifindex;
1183 		}
1184 		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1185 		err = 0;
1186 	}
1187 
1188 	spin_unlock_bh(&mfc_unres_lock);
1189 	return err;
1190 }
1191 
1192 /* MFC cache manipulation by user space mroute daemon */
1193 
1194 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1195 {
1196 	struct net *net = read_pnet(&mrt->net);
1197 	struct mfc_cache *c;
1198 
1199 	/* The entries are added/deleted only under RTNL */
1200 	rcu_read_lock();
1201 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1202 				   mfc->mfcc_mcastgrp.s_addr, parent);
1203 	rcu_read_unlock();
1204 	if (!c)
1205 		return -ENOENT;
1206 	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1207 	list_del_rcu(&c->_c.list);
1208 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1209 	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1210 	mr_cache_put(&c->_c);
1211 
1212 	return 0;
1213 }
1214 
1215 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1216 			struct mfcctl *mfc, int mrtsock, int parent)
1217 {
1218 	struct mfc_cache *uc, *c;
1219 	struct mr_mfc *_uc;
1220 	bool found;
1221 	int ret;
1222 
1223 	if (mfc->mfcc_parent >= MAXVIFS)
1224 		return -ENFILE;
1225 
1226 	/* The entries are added/deleted only under RTNL */
1227 	rcu_read_lock();
1228 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1229 				   mfc->mfcc_mcastgrp.s_addr, parent);
1230 	rcu_read_unlock();
1231 	if (c) {
1232 		write_lock_bh(&mrt_lock);
1233 		c->_c.mfc_parent = mfc->mfcc_parent;
1234 		ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1235 		if (!mrtsock)
1236 			c->_c.mfc_flags |= MFC_STATIC;
1237 		write_unlock_bh(&mrt_lock);
1238 		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1239 					      mrt->id);
1240 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1241 		return 0;
1242 	}
1243 
1244 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1245 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1246 		return -EINVAL;
1247 
1248 	c = ipmr_cache_alloc();
1249 	if (!c)
1250 		return -ENOMEM;
1251 
1252 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1253 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1254 	c->_c.mfc_parent = mfc->mfcc_parent;
1255 	ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1256 	if (!mrtsock)
1257 		c->_c.mfc_flags |= MFC_STATIC;
1258 
1259 	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1260 				  ipmr_rht_params);
1261 	if (ret) {
1262 		pr_err("ipmr: rhtable insert error %d\n", ret);
1263 		ipmr_cache_free(c);
1264 		return ret;
1265 	}
1266 	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1267 	/* Check to see if we resolved a queued list. If so we
1268 	 * need to send on the frames and tidy up.
1269 	 */
1270 	found = false;
1271 	spin_lock_bh(&mfc_unres_lock);
1272 	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1273 		uc = (struct mfc_cache *)_uc;
1274 		if (uc->mfc_origin == c->mfc_origin &&
1275 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1276 			list_del(&_uc->list);
1277 			atomic_dec(&mrt->cache_resolve_queue_len);
1278 			found = true;
1279 			break;
1280 		}
1281 	}
1282 	if (list_empty(&mrt->mfc_unres_queue))
1283 		del_timer(&mrt->ipmr_expire_timer);
1284 	spin_unlock_bh(&mfc_unres_lock);
1285 
1286 	if (found) {
1287 		ipmr_cache_resolve(net, mrt, uc, c);
1288 		ipmr_cache_free(uc);
1289 	}
1290 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1291 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1292 	return 0;
1293 }
1294 
1295 /* Close the multicast socket, and clear the vif tables etc */
1296 static void mroute_clean_tables(struct mr_table *mrt, int flags)
1297 {
1298 	struct net *net = read_pnet(&mrt->net);
1299 	struct mr_mfc *c, *tmp;
1300 	struct mfc_cache *cache;
1301 	LIST_HEAD(list);
1302 	int i;
1303 
1304 	/* Shut down all active vif entries */
1305 	if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1306 		for (i = 0; i < mrt->maxvif; i++) {
1307 			if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1308 			     !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1309 			    (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1310 				continue;
1311 			vif_delete(mrt, i, 0, &list);
1312 		}
1313 		unregister_netdevice_many(&list);
1314 	}
1315 
1316 	/* Wipe the cache */
1317 	if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1318 		list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1319 			if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1320 			    (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1321 				continue;
1322 			rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1323 			list_del_rcu(&c->list);
1324 			cache = (struct mfc_cache *)c;
1325 			call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1326 						      mrt->id);
1327 			mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1328 			mr_cache_put(c);
1329 		}
1330 	}
1331 
1332 	if (flags & MRT_FLUSH_MFC) {
1333 		if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1334 			spin_lock_bh(&mfc_unres_lock);
1335 			list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1336 				list_del(&c->list);
1337 				cache = (struct mfc_cache *)c;
1338 				mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1339 				ipmr_destroy_unres(mrt, cache);
1340 			}
1341 			spin_unlock_bh(&mfc_unres_lock);
1342 		}
1343 	}
1344 }
1345 
1346 /* called from ip_ra_control(), before an RCU grace period,
1347  * we dont need to call synchronize_rcu() here
1348  */
1349 static void mrtsock_destruct(struct sock *sk)
1350 {
1351 	struct net *net = sock_net(sk);
1352 	struct mr_table *mrt;
1353 
1354 	rtnl_lock();
1355 	ipmr_for_each_table(mrt, net) {
1356 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1357 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1358 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1359 						    NETCONFA_MC_FORWARDING,
1360 						    NETCONFA_IFINDEX_ALL,
1361 						    net->ipv4.devconf_all);
1362 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1363 			mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1364 		}
1365 	}
1366 	rtnl_unlock();
1367 }
1368 
1369 /* Socket options and virtual interface manipulation. The whole
1370  * virtual interface system is a complete heap, but unfortunately
1371  * that's how BSD mrouted happens to think. Maybe one day with a proper
1372  * MOSPF/PIM router set up we can clean this up.
1373  */
1374 
1375 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1376 			 unsigned int optlen)
1377 {
1378 	struct net *net = sock_net(sk);
1379 	int val, ret = 0, parent = 0;
1380 	struct mr_table *mrt;
1381 	struct vifctl vif;
1382 	struct mfcctl mfc;
1383 	bool do_wrvifwhole;
1384 	u32 uval;
1385 
1386 	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1387 	rtnl_lock();
1388 	if (sk->sk_type != SOCK_RAW ||
1389 	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1390 		ret = -EOPNOTSUPP;
1391 		goto out_unlock;
1392 	}
1393 
1394 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1395 	if (!mrt) {
1396 		ret = -ENOENT;
1397 		goto out_unlock;
1398 	}
1399 	if (optname != MRT_INIT) {
1400 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1401 		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1402 			ret = -EACCES;
1403 			goto out_unlock;
1404 		}
1405 	}
1406 
1407 	switch (optname) {
1408 	case MRT_INIT:
1409 		if (optlen != sizeof(int)) {
1410 			ret = -EINVAL;
1411 			break;
1412 		}
1413 		if (rtnl_dereference(mrt->mroute_sk)) {
1414 			ret = -EADDRINUSE;
1415 			break;
1416 		}
1417 
1418 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1419 		if (ret == 0) {
1420 			rcu_assign_pointer(mrt->mroute_sk, sk);
1421 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1422 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1423 						    NETCONFA_MC_FORWARDING,
1424 						    NETCONFA_IFINDEX_ALL,
1425 						    net->ipv4.devconf_all);
1426 		}
1427 		break;
1428 	case MRT_DONE:
1429 		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1430 			ret = -EACCES;
1431 		} else {
1432 			/* We need to unlock here because mrtsock_destruct takes
1433 			 * care of rtnl itself and we can't change that due to
1434 			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1435 			 */
1436 			rtnl_unlock();
1437 			ret = ip_ra_control(sk, 0, NULL);
1438 			goto out;
1439 		}
1440 		break;
1441 	case MRT_ADD_VIF:
1442 	case MRT_DEL_VIF:
1443 		if (optlen != sizeof(vif)) {
1444 			ret = -EINVAL;
1445 			break;
1446 		}
1447 		if (copy_from_user(&vif, optval, sizeof(vif))) {
1448 			ret = -EFAULT;
1449 			break;
1450 		}
1451 		if (vif.vifc_vifi >= MAXVIFS) {
1452 			ret = -ENFILE;
1453 			break;
1454 		}
1455 		if (optname == MRT_ADD_VIF) {
1456 			ret = vif_add(net, mrt, &vif,
1457 				      sk == rtnl_dereference(mrt->mroute_sk));
1458 		} else {
1459 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1460 		}
1461 		break;
1462 	/* Manipulate the forwarding caches. These live
1463 	 * in a sort of kernel/user symbiosis.
1464 	 */
1465 	case MRT_ADD_MFC:
1466 	case MRT_DEL_MFC:
1467 		parent = -1;
1468 		/* fall through */
1469 	case MRT_ADD_MFC_PROXY:
1470 	case MRT_DEL_MFC_PROXY:
1471 		if (optlen != sizeof(mfc)) {
1472 			ret = -EINVAL;
1473 			break;
1474 		}
1475 		if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1476 			ret = -EFAULT;
1477 			break;
1478 		}
1479 		if (parent == 0)
1480 			parent = mfc.mfcc_parent;
1481 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1482 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1483 		else
1484 			ret = ipmr_mfc_add(net, mrt, &mfc,
1485 					   sk == rtnl_dereference(mrt->mroute_sk),
1486 					   parent);
1487 		break;
1488 	case MRT_FLUSH:
1489 		if (optlen != sizeof(val)) {
1490 			ret = -EINVAL;
1491 			break;
1492 		}
1493 		if (get_user(val, (int __user *)optval)) {
1494 			ret = -EFAULT;
1495 			break;
1496 		}
1497 		mroute_clean_tables(mrt, val);
1498 		break;
1499 	/* Control PIM assert. */
1500 	case MRT_ASSERT:
1501 		if (optlen != sizeof(val)) {
1502 			ret = -EINVAL;
1503 			break;
1504 		}
1505 		if (get_user(val, (int __user *)optval)) {
1506 			ret = -EFAULT;
1507 			break;
1508 		}
1509 		mrt->mroute_do_assert = val;
1510 		break;
1511 	case MRT_PIM:
1512 		if (!ipmr_pimsm_enabled()) {
1513 			ret = -ENOPROTOOPT;
1514 			break;
1515 		}
1516 		if (optlen != sizeof(val)) {
1517 			ret = -EINVAL;
1518 			break;
1519 		}
1520 		if (get_user(val, (int __user *)optval)) {
1521 			ret = -EFAULT;
1522 			break;
1523 		}
1524 
1525 		do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1526 		val = !!val;
1527 		if (val != mrt->mroute_do_pim) {
1528 			mrt->mroute_do_pim = val;
1529 			mrt->mroute_do_assert = val;
1530 			mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1531 		}
1532 		break;
1533 	case MRT_TABLE:
1534 		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1535 			ret = -ENOPROTOOPT;
1536 			break;
1537 		}
1538 		if (optlen != sizeof(uval)) {
1539 			ret = -EINVAL;
1540 			break;
1541 		}
1542 		if (get_user(uval, (u32 __user *)optval)) {
1543 			ret = -EFAULT;
1544 			break;
1545 		}
1546 
1547 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1548 			ret = -EBUSY;
1549 		} else {
1550 			mrt = ipmr_new_table(net, uval);
1551 			if (IS_ERR(mrt))
1552 				ret = PTR_ERR(mrt);
1553 			else
1554 				raw_sk(sk)->ipmr_table = uval;
1555 		}
1556 		break;
1557 	/* Spurious command, or MRT_VERSION which you cannot set. */
1558 	default:
1559 		ret = -ENOPROTOOPT;
1560 	}
1561 out_unlock:
1562 	rtnl_unlock();
1563 out:
1564 	return ret;
1565 }
1566 
1567 /* Getsock opt support for the multicast routing system. */
1568 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1569 {
1570 	int olr;
1571 	int val;
1572 	struct net *net = sock_net(sk);
1573 	struct mr_table *mrt;
1574 
1575 	if (sk->sk_type != SOCK_RAW ||
1576 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1577 		return -EOPNOTSUPP;
1578 
1579 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1580 	if (!mrt)
1581 		return -ENOENT;
1582 
1583 	switch (optname) {
1584 	case MRT_VERSION:
1585 		val = 0x0305;
1586 		break;
1587 	case MRT_PIM:
1588 		if (!ipmr_pimsm_enabled())
1589 			return -ENOPROTOOPT;
1590 		val = mrt->mroute_do_pim;
1591 		break;
1592 	case MRT_ASSERT:
1593 		val = mrt->mroute_do_assert;
1594 		break;
1595 	default:
1596 		return -ENOPROTOOPT;
1597 	}
1598 
1599 	if (get_user(olr, optlen))
1600 		return -EFAULT;
1601 	olr = min_t(unsigned int, olr, sizeof(int));
1602 	if (olr < 0)
1603 		return -EINVAL;
1604 	if (put_user(olr, optlen))
1605 		return -EFAULT;
1606 	if (copy_to_user(optval, &val, olr))
1607 		return -EFAULT;
1608 	return 0;
1609 }
1610 
1611 /* The IP multicast ioctl support routines. */
1612 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1613 {
1614 	struct sioc_sg_req sr;
1615 	struct sioc_vif_req vr;
1616 	struct vif_device *vif;
1617 	struct mfc_cache *c;
1618 	struct net *net = sock_net(sk);
1619 	struct mr_table *mrt;
1620 
1621 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1622 	if (!mrt)
1623 		return -ENOENT;
1624 
1625 	switch (cmd) {
1626 	case SIOCGETVIFCNT:
1627 		if (copy_from_user(&vr, arg, sizeof(vr)))
1628 			return -EFAULT;
1629 		if (vr.vifi >= mrt->maxvif)
1630 			return -EINVAL;
1631 		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1632 		read_lock(&mrt_lock);
1633 		vif = &mrt->vif_table[vr.vifi];
1634 		if (VIF_EXISTS(mrt, vr.vifi)) {
1635 			vr.icount = vif->pkt_in;
1636 			vr.ocount = vif->pkt_out;
1637 			vr.ibytes = vif->bytes_in;
1638 			vr.obytes = vif->bytes_out;
1639 			read_unlock(&mrt_lock);
1640 
1641 			if (copy_to_user(arg, &vr, sizeof(vr)))
1642 				return -EFAULT;
1643 			return 0;
1644 		}
1645 		read_unlock(&mrt_lock);
1646 		return -EADDRNOTAVAIL;
1647 	case SIOCGETSGCNT:
1648 		if (copy_from_user(&sr, arg, sizeof(sr)))
1649 			return -EFAULT;
1650 
1651 		rcu_read_lock();
1652 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1653 		if (c) {
1654 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1655 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1656 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1657 			rcu_read_unlock();
1658 
1659 			if (copy_to_user(arg, &sr, sizeof(sr)))
1660 				return -EFAULT;
1661 			return 0;
1662 		}
1663 		rcu_read_unlock();
1664 		return -EADDRNOTAVAIL;
1665 	default:
1666 		return -ENOIOCTLCMD;
1667 	}
1668 }
1669 
1670 #ifdef CONFIG_COMPAT
1671 struct compat_sioc_sg_req {
1672 	struct in_addr src;
1673 	struct in_addr grp;
1674 	compat_ulong_t pktcnt;
1675 	compat_ulong_t bytecnt;
1676 	compat_ulong_t wrong_if;
1677 };
1678 
1679 struct compat_sioc_vif_req {
1680 	vifi_t	vifi;		/* Which iface */
1681 	compat_ulong_t icount;
1682 	compat_ulong_t ocount;
1683 	compat_ulong_t ibytes;
1684 	compat_ulong_t obytes;
1685 };
1686 
1687 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1688 {
1689 	struct compat_sioc_sg_req sr;
1690 	struct compat_sioc_vif_req vr;
1691 	struct vif_device *vif;
1692 	struct mfc_cache *c;
1693 	struct net *net = sock_net(sk);
1694 	struct mr_table *mrt;
1695 
1696 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1697 	if (!mrt)
1698 		return -ENOENT;
1699 
1700 	switch (cmd) {
1701 	case SIOCGETVIFCNT:
1702 		if (copy_from_user(&vr, arg, sizeof(vr)))
1703 			return -EFAULT;
1704 		if (vr.vifi >= mrt->maxvif)
1705 			return -EINVAL;
1706 		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1707 		read_lock(&mrt_lock);
1708 		vif = &mrt->vif_table[vr.vifi];
1709 		if (VIF_EXISTS(mrt, vr.vifi)) {
1710 			vr.icount = vif->pkt_in;
1711 			vr.ocount = vif->pkt_out;
1712 			vr.ibytes = vif->bytes_in;
1713 			vr.obytes = vif->bytes_out;
1714 			read_unlock(&mrt_lock);
1715 
1716 			if (copy_to_user(arg, &vr, sizeof(vr)))
1717 				return -EFAULT;
1718 			return 0;
1719 		}
1720 		read_unlock(&mrt_lock);
1721 		return -EADDRNOTAVAIL;
1722 	case SIOCGETSGCNT:
1723 		if (copy_from_user(&sr, arg, sizeof(sr)))
1724 			return -EFAULT;
1725 
1726 		rcu_read_lock();
1727 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1728 		if (c) {
1729 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1730 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1731 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1732 			rcu_read_unlock();
1733 
1734 			if (copy_to_user(arg, &sr, sizeof(sr)))
1735 				return -EFAULT;
1736 			return 0;
1737 		}
1738 		rcu_read_unlock();
1739 		return -EADDRNOTAVAIL;
1740 	default:
1741 		return -ENOIOCTLCMD;
1742 	}
1743 }
1744 #endif
1745 
1746 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1747 {
1748 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1749 	struct net *net = dev_net(dev);
1750 	struct mr_table *mrt;
1751 	struct vif_device *v;
1752 	int ct;
1753 
1754 	if (event != NETDEV_UNREGISTER)
1755 		return NOTIFY_DONE;
1756 
1757 	ipmr_for_each_table(mrt, net) {
1758 		v = &mrt->vif_table[0];
1759 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1760 			if (v->dev == dev)
1761 				vif_delete(mrt, ct, 1, NULL);
1762 		}
1763 	}
1764 	return NOTIFY_DONE;
1765 }
1766 
1767 static struct notifier_block ip_mr_notifier = {
1768 	.notifier_call = ipmr_device_event,
1769 };
1770 
1771 /* Encapsulate a packet by attaching a valid IPIP header to it.
1772  * This avoids tunnel drivers and other mess and gives us the speed so
1773  * important for multicast video.
1774  */
1775 static void ip_encap(struct net *net, struct sk_buff *skb,
1776 		     __be32 saddr, __be32 daddr)
1777 {
1778 	struct iphdr *iph;
1779 	const struct iphdr *old_iph = ip_hdr(skb);
1780 
1781 	skb_push(skb, sizeof(struct iphdr));
1782 	skb->transport_header = skb->network_header;
1783 	skb_reset_network_header(skb);
1784 	iph = ip_hdr(skb);
1785 
1786 	iph->version	=	4;
1787 	iph->tos	=	old_iph->tos;
1788 	iph->ttl	=	old_iph->ttl;
1789 	iph->frag_off	=	0;
1790 	iph->daddr	=	daddr;
1791 	iph->saddr	=	saddr;
1792 	iph->protocol	=	IPPROTO_IPIP;
1793 	iph->ihl	=	5;
1794 	iph->tot_len	=	htons(skb->len);
1795 	ip_select_ident(net, skb, NULL);
1796 	ip_send_check(iph);
1797 
1798 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1799 	nf_reset_ct(skb);
1800 }
1801 
1802 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1803 				      struct sk_buff *skb)
1804 {
1805 	struct ip_options *opt = &(IPCB(skb)->opt);
1806 
1807 	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1808 	IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1809 
1810 	if (unlikely(opt->optlen))
1811 		ip_forward_options(skb);
1812 
1813 	return dst_output(net, sk, skb);
1814 }
1815 
1816 #ifdef CONFIG_NET_SWITCHDEV
1817 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1818 				   int in_vifi, int out_vifi)
1819 {
1820 	struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1821 	struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1822 
1823 	if (!skb->offload_l3_fwd_mark)
1824 		return false;
1825 	if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1826 		return false;
1827 	return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1828 					&in_vif->dev_parent_id);
1829 }
1830 #else
1831 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1832 				   int in_vifi, int out_vifi)
1833 {
1834 	return false;
1835 }
1836 #endif
1837 
1838 /* Processing handlers for ipmr_forward */
1839 
1840 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1841 			    int in_vifi, struct sk_buff *skb, int vifi)
1842 {
1843 	const struct iphdr *iph = ip_hdr(skb);
1844 	struct vif_device *vif = &mrt->vif_table[vifi];
1845 	struct net_device *dev;
1846 	struct rtable *rt;
1847 	struct flowi4 fl4;
1848 	int    encap = 0;
1849 
1850 	if (!vif->dev)
1851 		goto out_free;
1852 
1853 	if (vif->flags & VIFF_REGISTER) {
1854 		vif->pkt_out++;
1855 		vif->bytes_out += skb->len;
1856 		vif->dev->stats.tx_bytes += skb->len;
1857 		vif->dev->stats.tx_packets++;
1858 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1859 		goto out_free;
1860 	}
1861 
1862 	if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1863 		goto out_free;
1864 
1865 	if (vif->flags & VIFF_TUNNEL) {
1866 		rt = ip_route_output_ports(net, &fl4, NULL,
1867 					   vif->remote, vif->local,
1868 					   0, 0,
1869 					   IPPROTO_IPIP,
1870 					   RT_TOS(iph->tos), vif->link);
1871 		if (IS_ERR(rt))
1872 			goto out_free;
1873 		encap = sizeof(struct iphdr);
1874 	} else {
1875 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1876 					   0, 0,
1877 					   IPPROTO_IPIP,
1878 					   RT_TOS(iph->tos), vif->link);
1879 		if (IS_ERR(rt))
1880 			goto out_free;
1881 	}
1882 
1883 	dev = rt->dst.dev;
1884 
1885 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1886 		/* Do not fragment multicasts. Alas, IPv4 does not
1887 		 * allow to send ICMP, so that packets will disappear
1888 		 * to blackhole.
1889 		 */
1890 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1891 		ip_rt_put(rt);
1892 		goto out_free;
1893 	}
1894 
1895 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1896 
1897 	if (skb_cow(skb, encap)) {
1898 		ip_rt_put(rt);
1899 		goto out_free;
1900 	}
1901 
1902 	vif->pkt_out++;
1903 	vif->bytes_out += skb->len;
1904 
1905 	skb_dst_drop(skb);
1906 	skb_dst_set(skb, &rt->dst);
1907 	ip_decrease_ttl(ip_hdr(skb));
1908 
1909 	/* FIXME: forward and output firewalls used to be called here.
1910 	 * What do we do with netfilter? -- RR
1911 	 */
1912 	if (vif->flags & VIFF_TUNNEL) {
1913 		ip_encap(net, skb, vif->local, vif->remote);
1914 		/* FIXME: extra output firewall step used to be here. --RR */
1915 		vif->dev->stats.tx_packets++;
1916 		vif->dev->stats.tx_bytes += skb->len;
1917 	}
1918 
1919 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1920 
1921 	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1922 	 * not only before forwarding, but after forwarding on all output
1923 	 * interfaces. It is clear, if mrouter runs a multicasting
1924 	 * program, it should receive packets not depending to what interface
1925 	 * program is joined.
1926 	 * If we will not make it, the program will have to join on all
1927 	 * interfaces. On the other hand, multihoming host (or router, but
1928 	 * not mrouter) cannot join to more than one interface - it will
1929 	 * result in receiving multiple packets.
1930 	 */
1931 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1932 		net, NULL, skb, skb->dev, dev,
1933 		ipmr_forward_finish);
1934 	return;
1935 
1936 out_free:
1937 	kfree_skb(skb);
1938 }
1939 
1940 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1941 {
1942 	int ct;
1943 
1944 	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1945 		if (mrt->vif_table[ct].dev == dev)
1946 			break;
1947 	}
1948 	return ct;
1949 }
1950 
1951 /* "local" means that we should preserve one skb (for local delivery) */
1952 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1953 			  struct net_device *dev, struct sk_buff *skb,
1954 			  struct mfc_cache *c, int local)
1955 {
1956 	int true_vifi = ipmr_find_vif(mrt, dev);
1957 	int psend = -1;
1958 	int vif, ct;
1959 
1960 	vif = c->_c.mfc_parent;
1961 	c->_c.mfc_un.res.pkt++;
1962 	c->_c.mfc_un.res.bytes += skb->len;
1963 	c->_c.mfc_un.res.lastuse = jiffies;
1964 
1965 	if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1966 		struct mfc_cache *cache_proxy;
1967 
1968 		/* For an (*,G) entry, we only check that the incomming
1969 		 * interface is part of the static tree.
1970 		 */
1971 		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1972 		if (cache_proxy &&
1973 		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1974 			goto forward;
1975 	}
1976 
1977 	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1978 	if (mrt->vif_table[vif].dev != dev) {
1979 		if (rt_is_output_route(skb_rtable(skb))) {
1980 			/* It is our own packet, looped back.
1981 			 * Very complicated situation...
1982 			 *
1983 			 * The best workaround until routing daemons will be
1984 			 * fixed is not to redistribute packet, if it was
1985 			 * send through wrong interface. It means, that
1986 			 * multicast applications WILL NOT work for
1987 			 * (S,G), which have default multicast route pointing
1988 			 * to wrong oif. In any case, it is not a good
1989 			 * idea to use multicasting applications on router.
1990 			 */
1991 			goto dont_forward;
1992 		}
1993 
1994 		c->_c.mfc_un.res.wrong_if++;
1995 
1996 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1997 		    /* pimsm uses asserts, when switching from RPT to SPT,
1998 		     * so that we cannot check that packet arrived on an oif.
1999 		     * It is bad, but otherwise we would need to move pretty
2000 		     * large chunk of pimd to kernel. Ough... --ANK
2001 		     */
2002 		    (mrt->mroute_do_pim ||
2003 		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2004 		    time_after(jiffies,
2005 			       c->_c.mfc_un.res.last_assert +
2006 			       MFC_ASSERT_THRESH)) {
2007 			c->_c.mfc_un.res.last_assert = jiffies;
2008 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
2009 			if (mrt->mroute_do_wrvifwhole)
2010 				ipmr_cache_report(mrt, skb, true_vifi,
2011 						  IGMPMSG_WRVIFWHOLE);
2012 		}
2013 		goto dont_forward;
2014 	}
2015 
2016 forward:
2017 	mrt->vif_table[vif].pkt_in++;
2018 	mrt->vif_table[vif].bytes_in += skb->len;
2019 
2020 	/* Forward the frame */
2021 	if (c->mfc_origin == htonl(INADDR_ANY) &&
2022 	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2023 		if (true_vifi >= 0 &&
2024 		    true_vifi != c->_c.mfc_parent &&
2025 		    ip_hdr(skb)->ttl >
2026 				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2027 			/* It's an (*,*) entry and the packet is not coming from
2028 			 * the upstream: forward the packet to the upstream
2029 			 * only.
2030 			 */
2031 			psend = c->_c.mfc_parent;
2032 			goto last_forward;
2033 		}
2034 		goto dont_forward;
2035 	}
2036 	for (ct = c->_c.mfc_un.res.maxvif - 1;
2037 	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2038 		/* For (*,G) entry, don't forward to the incoming interface */
2039 		if ((c->mfc_origin != htonl(INADDR_ANY) ||
2040 		     ct != true_vifi) &&
2041 		    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2042 			if (psend != -1) {
2043 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2044 
2045 				if (skb2)
2046 					ipmr_queue_xmit(net, mrt, true_vifi,
2047 							skb2, psend);
2048 			}
2049 			psend = ct;
2050 		}
2051 	}
2052 last_forward:
2053 	if (psend != -1) {
2054 		if (local) {
2055 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2056 
2057 			if (skb2)
2058 				ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2059 						psend);
2060 		} else {
2061 			ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2062 			return;
2063 		}
2064 	}
2065 
2066 dont_forward:
2067 	if (!local)
2068 		kfree_skb(skb);
2069 }
2070 
2071 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2072 {
2073 	struct rtable *rt = skb_rtable(skb);
2074 	struct iphdr *iph = ip_hdr(skb);
2075 	struct flowi4 fl4 = {
2076 		.daddr = iph->daddr,
2077 		.saddr = iph->saddr,
2078 		.flowi4_tos = RT_TOS(iph->tos),
2079 		.flowi4_oif = (rt_is_output_route(rt) ?
2080 			       skb->dev->ifindex : 0),
2081 		.flowi4_iif = (rt_is_output_route(rt) ?
2082 			       LOOPBACK_IFINDEX :
2083 			       skb->dev->ifindex),
2084 		.flowi4_mark = skb->mark,
2085 	};
2086 	struct mr_table *mrt;
2087 	int err;
2088 
2089 	err = ipmr_fib_lookup(net, &fl4, &mrt);
2090 	if (err)
2091 		return ERR_PTR(err);
2092 	return mrt;
2093 }
2094 
2095 /* Multicast packets for forwarding arrive here
2096  * Called with rcu_read_lock();
2097  */
2098 int ip_mr_input(struct sk_buff *skb)
2099 {
2100 	struct mfc_cache *cache;
2101 	struct net *net = dev_net(skb->dev);
2102 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2103 	struct mr_table *mrt;
2104 	struct net_device *dev;
2105 
2106 	/* skb->dev passed in is the loX master dev for vrfs.
2107 	 * As there are no vifs associated with loopback devices,
2108 	 * get the proper interface that does have a vif associated with it.
2109 	 */
2110 	dev = skb->dev;
2111 	if (netif_is_l3_master(skb->dev)) {
2112 		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2113 		if (!dev) {
2114 			kfree_skb(skb);
2115 			return -ENODEV;
2116 		}
2117 	}
2118 
2119 	/* Packet is looped back after forward, it should not be
2120 	 * forwarded second time, but still can be delivered locally.
2121 	 */
2122 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2123 		goto dont_forward;
2124 
2125 	mrt = ipmr_rt_fib_lookup(net, skb);
2126 	if (IS_ERR(mrt)) {
2127 		kfree_skb(skb);
2128 		return PTR_ERR(mrt);
2129 	}
2130 	if (!local) {
2131 		if (IPCB(skb)->opt.router_alert) {
2132 			if (ip_call_ra_chain(skb))
2133 				return 0;
2134 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2135 			/* IGMPv1 (and broken IGMPv2 implementations sort of
2136 			 * Cisco IOS <= 11.2(8)) do not put router alert
2137 			 * option to IGMP packets destined to routable
2138 			 * groups. It is very bad, because it means
2139 			 * that we can forward NO IGMP messages.
2140 			 */
2141 			struct sock *mroute_sk;
2142 
2143 			mroute_sk = rcu_dereference(mrt->mroute_sk);
2144 			if (mroute_sk) {
2145 				nf_reset_ct(skb);
2146 				raw_rcv(mroute_sk, skb);
2147 				return 0;
2148 			}
2149 		    }
2150 	}
2151 
2152 	/* already under rcu_read_lock() */
2153 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2154 	if (!cache) {
2155 		int vif = ipmr_find_vif(mrt, dev);
2156 
2157 		if (vif >= 0)
2158 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2159 						    vif);
2160 	}
2161 
2162 	/* No usable cache entry */
2163 	if (!cache) {
2164 		int vif;
2165 
2166 		if (local) {
2167 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2168 			ip_local_deliver(skb);
2169 			if (!skb2)
2170 				return -ENOBUFS;
2171 			skb = skb2;
2172 		}
2173 
2174 		read_lock(&mrt_lock);
2175 		vif = ipmr_find_vif(mrt, dev);
2176 		if (vif >= 0) {
2177 			int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
2178 			read_unlock(&mrt_lock);
2179 
2180 			return err2;
2181 		}
2182 		read_unlock(&mrt_lock);
2183 		kfree_skb(skb);
2184 		return -ENODEV;
2185 	}
2186 
2187 	read_lock(&mrt_lock);
2188 	ip_mr_forward(net, mrt, dev, skb, cache, local);
2189 	read_unlock(&mrt_lock);
2190 
2191 	if (local)
2192 		return ip_local_deliver(skb);
2193 
2194 	return 0;
2195 
2196 dont_forward:
2197 	if (local)
2198 		return ip_local_deliver(skb);
2199 	kfree_skb(skb);
2200 	return 0;
2201 }
2202 
2203 #ifdef CONFIG_IP_PIMSM_V1
2204 /* Handle IGMP messages of PIMv1 */
2205 int pim_rcv_v1(struct sk_buff *skb)
2206 {
2207 	struct igmphdr *pim;
2208 	struct net *net = dev_net(skb->dev);
2209 	struct mr_table *mrt;
2210 
2211 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2212 		goto drop;
2213 
2214 	pim = igmp_hdr(skb);
2215 
2216 	mrt = ipmr_rt_fib_lookup(net, skb);
2217 	if (IS_ERR(mrt))
2218 		goto drop;
2219 	if (!mrt->mroute_do_pim ||
2220 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2221 		goto drop;
2222 
2223 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2224 drop:
2225 		kfree_skb(skb);
2226 	}
2227 	return 0;
2228 }
2229 #endif
2230 
2231 #ifdef CONFIG_IP_PIMSM_V2
2232 static int pim_rcv(struct sk_buff *skb)
2233 {
2234 	struct pimreghdr *pim;
2235 	struct net *net = dev_net(skb->dev);
2236 	struct mr_table *mrt;
2237 
2238 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2239 		goto drop;
2240 
2241 	pim = (struct pimreghdr *)skb_transport_header(skb);
2242 	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2243 	    (pim->flags & PIM_NULL_REGISTER) ||
2244 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2245 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2246 		goto drop;
2247 
2248 	mrt = ipmr_rt_fib_lookup(net, skb);
2249 	if (IS_ERR(mrt))
2250 		goto drop;
2251 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2252 drop:
2253 		kfree_skb(skb);
2254 	}
2255 	return 0;
2256 }
2257 #endif
2258 
2259 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2260 		   __be32 saddr, __be32 daddr,
2261 		   struct rtmsg *rtm, u32 portid)
2262 {
2263 	struct mfc_cache *cache;
2264 	struct mr_table *mrt;
2265 	int err;
2266 
2267 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2268 	if (!mrt)
2269 		return -ENOENT;
2270 
2271 	rcu_read_lock();
2272 	cache = ipmr_cache_find(mrt, saddr, daddr);
2273 	if (!cache && skb->dev) {
2274 		int vif = ipmr_find_vif(mrt, skb->dev);
2275 
2276 		if (vif >= 0)
2277 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2278 	}
2279 	if (!cache) {
2280 		struct sk_buff *skb2;
2281 		struct iphdr *iph;
2282 		struct net_device *dev;
2283 		int vif = -1;
2284 
2285 		dev = skb->dev;
2286 		read_lock(&mrt_lock);
2287 		if (dev)
2288 			vif = ipmr_find_vif(mrt, dev);
2289 		if (vif < 0) {
2290 			read_unlock(&mrt_lock);
2291 			rcu_read_unlock();
2292 			return -ENODEV;
2293 		}
2294 
2295 		skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2296 		if (!skb2) {
2297 			read_unlock(&mrt_lock);
2298 			rcu_read_unlock();
2299 			return -ENOMEM;
2300 		}
2301 
2302 		NETLINK_CB(skb2).portid = portid;
2303 		skb_push(skb2, sizeof(struct iphdr));
2304 		skb_reset_network_header(skb2);
2305 		iph = ip_hdr(skb2);
2306 		iph->ihl = sizeof(struct iphdr) >> 2;
2307 		iph->saddr = saddr;
2308 		iph->daddr = daddr;
2309 		iph->version = 0;
2310 		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2311 		read_unlock(&mrt_lock);
2312 		rcu_read_unlock();
2313 		return err;
2314 	}
2315 
2316 	read_lock(&mrt_lock);
2317 	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2318 	read_unlock(&mrt_lock);
2319 	rcu_read_unlock();
2320 	return err;
2321 }
2322 
2323 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2324 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2325 			    int flags)
2326 {
2327 	struct nlmsghdr *nlh;
2328 	struct rtmsg *rtm;
2329 	int err;
2330 
2331 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2332 	if (!nlh)
2333 		return -EMSGSIZE;
2334 
2335 	rtm = nlmsg_data(nlh);
2336 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2337 	rtm->rtm_dst_len  = 32;
2338 	rtm->rtm_src_len  = 32;
2339 	rtm->rtm_tos      = 0;
2340 	rtm->rtm_table    = mrt->id;
2341 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2342 		goto nla_put_failure;
2343 	rtm->rtm_type     = RTN_MULTICAST;
2344 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2345 	if (c->_c.mfc_flags & MFC_STATIC)
2346 		rtm->rtm_protocol = RTPROT_STATIC;
2347 	else
2348 		rtm->rtm_protocol = RTPROT_MROUTED;
2349 	rtm->rtm_flags    = 0;
2350 
2351 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2352 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2353 		goto nla_put_failure;
2354 	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2355 	/* do not break the dump if cache is unresolved */
2356 	if (err < 0 && err != -ENOENT)
2357 		goto nla_put_failure;
2358 
2359 	nlmsg_end(skb, nlh);
2360 	return 0;
2361 
2362 nla_put_failure:
2363 	nlmsg_cancel(skb, nlh);
2364 	return -EMSGSIZE;
2365 }
2366 
2367 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2368 			     u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2369 			     int flags)
2370 {
2371 	return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2372 				cmd, flags);
2373 }
2374 
2375 static size_t mroute_msgsize(bool unresolved, int maxvif)
2376 {
2377 	size_t len =
2378 		NLMSG_ALIGN(sizeof(struct rtmsg))
2379 		+ nla_total_size(4)	/* RTA_TABLE */
2380 		+ nla_total_size(4)	/* RTA_SRC */
2381 		+ nla_total_size(4)	/* RTA_DST */
2382 		;
2383 
2384 	if (!unresolved)
2385 		len = len
2386 		      + nla_total_size(4)	/* RTA_IIF */
2387 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2388 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2389 						/* RTA_MFC_STATS */
2390 		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2391 		;
2392 
2393 	return len;
2394 }
2395 
2396 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2397 				 int cmd)
2398 {
2399 	struct net *net = read_pnet(&mrt->net);
2400 	struct sk_buff *skb;
2401 	int err = -ENOBUFS;
2402 
2403 	skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2404 				       mrt->maxvif),
2405 			GFP_ATOMIC);
2406 	if (!skb)
2407 		goto errout;
2408 
2409 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2410 	if (err < 0)
2411 		goto errout;
2412 
2413 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2414 	return;
2415 
2416 errout:
2417 	kfree_skb(skb);
2418 	if (err < 0)
2419 		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2420 }
2421 
2422 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2423 {
2424 	size_t len =
2425 		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2426 		+ nla_total_size(1)	/* IPMRA_CREPORT_MSGTYPE */
2427 		+ nla_total_size(4)	/* IPMRA_CREPORT_VIF_ID */
2428 		+ nla_total_size(4)	/* IPMRA_CREPORT_SRC_ADDR */
2429 		+ nla_total_size(4)	/* IPMRA_CREPORT_DST_ADDR */
2430 					/* IPMRA_CREPORT_PKT */
2431 		+ nla_total_size(payloadlen)
2432 		;
2433 
2434 	return len;
2435 }
2436 
2437 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
2438 {
2439 	struct net *net = read_pnet(&mrt->net);
2440 	struct nlmsghdr *nlh;
2441 	struct rtgenmsg *rtgenm;
2442 	struct igmpmsg *msg;
2443 	struct sk_buff *skb;
2444 	struct nlattr *nla;
2445 	int payloadlen;
2446 
2447 	payloadlen = pkt->len - sizeof(struct igmpmsg);
2448 	msg = (struct igmpmsg *)skb_network_header(pkt);
2449 
2450 	skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2451 	if (!skb)
2452 		goto errout;
2453 
2454 	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2455 			sizeof(struct rtgenmsg), 0);
2456 	if (!nlh)
2457 		goto errout;
2458 	rtgenm = nlmsg_data(nlh);
2459 	rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2460 	if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2461 	    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) ||
2462 	    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2463 			    msg->im_src.s_addr) ||
2464 	    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2465 			    msg->im_dst.s_addr))
2466 		goto nla_put_failure;
2467 
2468 	nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2469 	if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2470 				  nla_data(nla), payloadlen))
2471 		goto nla_put_failure;
2472 
2473 	nlmsg_end(skb, nlh);
2474 
2475 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2476 	return;
2477 
2478 nla_put_failure:
2479 	nlmsg_cancel(skb, nlh);
2480 errout:
2481 	kfree_skb(skb);
2482 	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2483 }
2484 
2485 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2486 				       const struct nlmsghdr *nlh,
2487 				       struct nlattr **tb,
2488 				       struct netlink_ext_ack *extack)
2489 {
2490 	struct rtmsg *rtm;
2491 	int i, err;
2492 
2493 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2494 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2495 		return -EINVAL;
2496 	}
2497 
2498 	if (!netlink_strict_get_check(skb))
2499 		return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2500 					      rtm_ipv4_policy, extack);
2501 
2502 	rtm = nlmsg_data(nlh);
2503 	if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2504 	    (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2505 	    rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2506 	    rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2507 		NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2508 		return -EINVAL;
2509 	}
2510 
2511 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2512 					    rtm_ipv4_policy, extack);
2513 	if (err)
2514 		return err;
2515 
2516 	if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2517 	    (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2518 		NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2519 		return -EINVAL;
2520 	}
2521 
2522 	for (i = 0; i <= RTA_MAX; i++) {
2523 		if (!tb[i])
2524 			continue;
2525 
2526 		switch (i) {
2527 		case RTA_SRC:
2528 		case RTA_DST:
2529 		case RTA_TABLE:
2530 			break;
2531 		default:
2532 			NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2533 			return -EINVAL;
2534 		}
2535 	}
2536 
2537 	return 0;
2538 }
2539 
2540 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2541 			     struct netlink_ext_ack *extack)
2542 {
2543 	struct net *net = sock_net(in_skb->sk);
2544 	struct nlattr *tb[RTA_MAX + 1];
2545 	struct sk_buff *skb = NULL;
2546 	struct mfc_cache *cache;
2547 	struct mr_table *mrt;
2548 	__be32 src, grp;
2549 	u32 tableid;
2550 	int err;
2551 
2552 	err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2553 	if (err < 0)
2554 		goto errout;
2555 
2556 	src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2557 	grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2558 	tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2559 
2560 	mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2561 	if (!mrt) {
2562 		err = -ENOENT;
2563 		goto errout_free;
2564 	}
2565 
2566 	/* entries are added/deleted only under RTNL */
2567 	rcu_read_lock();
2568 	cache = ipmr_cache_find(mrt, src, grp);
2569 	rcu_read_unlock();
2570 	if (!cache) {
2571 		err = -ENOENT;
2572 		goto errout_free;
2573 	}
2574 
2575 	skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2576 	if (!skb) {
2577 		err = -ENOBUFS;
2578 		goto errout_free;
2579 	}
2580 
2581 	err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2582 			       nlh->nlmsg_seq, cache,
2583 			       RTM_NEWROUTE, 0);
2584 	if (err < 0)
2585 		goto errout_free;
2586 
2587 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2588 
2589 errout:
2590 	return err;
2591 
2592 errout_free:
2593 	kfree_skb(skb);
2594 	goto errout;
2595 }
2596 
2597 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2598 {
2599 	struct fib_dump_filter filter = {};
2600 	int err;
2601 
2602 	if (cb->strict_check) {
2603 		err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2604 					    &filter, cb);
2605 		if (err < 0)
2606 			return err;
2607 	}
2608 
2609 	if (filter.table_id) {
2610 		struct mr_table *mrt;
2611 
2612 		mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id);
2613 		if (!mrt) {
2614 			if (filter.dump_all_families)
2615 				return skb->len;
2616 
2617 			NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2618 			return -ENOENT;
2619 		}
2620 		err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2621 				    &mfc_unres_lock, &filter);
2622 		return skb->len ? : err;
2623 	}
2624 
2625 	return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2626 				_ipmr_fill_mroute, &mfc_unres_lock, &filter);
2627 }
2628 
2629 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2630 	[RTA_SRC]	= { .type = NLA_U32 },
2631 	[RTA_DST]	= { .type = NLA_U32 },
2632 	[RTA_IIF]	= { .type = NLA_U32 },
2633 	[RTA_TABLE]	= { .type = NLA_U32 },
2634 	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2635 };
2636 
2637 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2638 {
2639 	switch (rtm_protocol) {
2640 	case RTPROT_STATIC:
2641 	case RTPROT_MROUTED:
2642 		return true;
2643 	}
2644 	return false;
2645 }
2646 
2647 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2648 {
2649 	struct rtnexthop *rtnh = nla_data(nla);
2650 	int remaining = nla_len(nla), vifi = 0;
2651 
2652 	while (rtnh_ok(rtnh, remaining)) {
2653 		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2654 		if (++vifi == MAXVIFS)
2655 			break;
2656 		rtnh = rtnh_next(rtnh, &remaining);
2657 	}
2658 
2659 	return remaining > 0 ? -EINVAL : vifi;
2660 }
2661 
2662 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2663 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2664 			    struct mfcctl *mfcc, int *mrtsock,
2665 			    struct mr_table **mrtret,
2666 			    struct netlink_ext_ack *extack)
2667 {
2668 	struct net_device *dev = NULL;
2669 	u32 tblid = RT_TABLE_DEFAULT;
2670 	struct mr_table *mrt;
2671 	struct nlattr *attr;
2672 	struct rtmsg *rtm;
2673 	int ret, rem;
2674 
2675 	ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2676 					rtm_ipmr_policy, extack);
2677 	if (ret < 0)
2678 		goto out;
2679 	rtm = nlmsg_data(nlh);
2680 
2681 	ret = -EINVAL;
2682 	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2683 	    rtm->rtm_type != RTN_MULTICAST ||
2684 	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2685 	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2686 		goto out;
2687 
2688 	memset(mfcc, 0, sizeof(*mfcc));
2689 	mfcc->mfcc_parent = -1;
2690 	ret = 0;
2691 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2692 		switch (nla_type(attr)) {
2693 		case RTA_SRC:
2694 			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2695 			break;
2696 		case RTA_DST:
2697 			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2698 			break;
2699 		case RTA_IIF:
2700 			dev = __dev_get_by_index(net, nla_get_u32(attr));
2701 			if (!dev) {
2702 				ret = -ENODEV;
2703 				goto out;
2704 			}
2705 			break;
2706 		case RTA_MULTIPATH:
2707 			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2708 				ret = -EINVAL;
2709 				goto out;
2710 			}
2711 			break;
2712 		case RTA_PREFSRC:
2713 			ret = 1;
2714 			break;
2715 		case RTA_TABLE:
2716 			tblid = nla_get_u32(attr);
2717 			break;
2718 		}
2719 	}
2720 	mrt = ipmr_get_table(net, tblid);
2721 	if (!mrt) {
2722 		ret = -ENOENT;
2723 		goto out;
2724 	}
2725 	*mrtret = mrt;
2726 	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2727 	if (dev)
2728 		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2729 
2730 out:
2731 	return ret;
2732 }
2733 
2734 /* takes care of both newroute and delroute */
2735 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2736 			  struct netlink_ext_ack *extack)
2737 {
2738 	struct net *net = sock_net(skb->sk);
2739 	int ret, mrtsock, parent;
2740 	struct mr_table *tbl;
2741 	struct mfcctl mfcc;
2742 
2743 	mrtsock = 0;
2744 	tbl = NULL;
2745 	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2746 	if (ret < 0)
2747 		return ret;
2748 
2749 	parent = ret ? mfcc.mfcc_parent : -1;
2750 	if (nlh->nlmsg_type == RTM_NEWROUTE)
2751 		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2752 	else
2753 		return ipmr_mfc_delete(tbl, &mfcc, parent);
2754 }
2755 
2756 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2757 {
2758 	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2759 
2760 	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2761 	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2762 	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2763 			mrt->mroute_reg_vif_num) ||
2764 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2765 		       mrt->mroute_do_assert) ||
2766 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2767 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2768 		       mrt->mroute_do_wrvifwhole))
2769 		return false;
2770 
2771 	return true;
2772 }
2773 
2774 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2775 {
2776 	struct nlattr *vif_nest;
2777 	struct vif_device *vif;
2778 
2779 	/* if the VIF doesn't exist just continue */
2780 	if (!VIF_EXISTS(mrt, vifid))
2781 		return true;
2782 
2783 	vif = &mrt->vif_table[vifid];
2784 	vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2785 	if (!vif_nest)
2786 		return false;
2787 	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
2788 	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2789 	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2790 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2791 			      IPMRA_VIFA_PAD) ||
2792 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2793 			      IPMRA_VIFA_PAD) ||
2794 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2795 			      IPMRA_VIFA_PAD) ||
2796 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2797 			      IPMRA_VIFA_PAD) ||
2798 	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2799 	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2800 		nla_nest_cancel(skb, vif_nest);
2801 		return false;
2802 	}
2803 	nla_nest_end(skb, vif_nest);
2804 
2805 	return true;
2806 }
2807 
2808 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2809 			       struct netlink_ext_ack *extack)
2810 {
2811 	struct ifinfomsg *ifm;
2812 
2813 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2814 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2815 		return -EINVAL;
2816 	}
2817 
2818 	if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2819 		NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2820 		return -EINVAL;
2821 	}
2822 
2823 	ifm = nlmsg_data(nlh);
2824 	if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2825 	    ifm->ifi_change || ifm->ifi_index) {
2826 		NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2827 		return -EINVAL;
2828 	}
2829 
2830 	return 0;
2831 }
2832 
2833 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2834 {
2835 	struct net *net = sock_net(skb->sk);
2836 	struct nlmsghdr *nlh = NULL;
2837 	unsigned int t = 0, s_t;
2838 	unsigned int e = 0, s_e;
2839 	struct mr_table *mrt;
2840 
2841 	if (cb->strict_check) {
2842 		int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2843 
2844 		if (err < 0)
2845 			return err;
2846 	}
2847 
2848 	s_t = cb->args[0];
2849 	s_e = cb->args[1];
2850 
2851 	ipmr_for_each_table(mrt, net) {
2852 		struct nlattr *vifs, *af;
2853 		struct ifinfomsg *hdr;
2854 		u32 i;
2855 
2856 		if (t < s_t)
2857 			goto skip_table;
2858 		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2859 				cb->nlh->nlmsg_seq, RTM_NEWLINK,
2860 				sizeof(*hdr), NLM_F_MULTI);
2861 		if (!nlh)
2862 			break;
2863 
2864 		hdr = nlmsg_data(nlh);
2865 		memset(hdr, 0, sizeof(*hdr));
2866 		hdr->ifi_family = RTNL_FAMILY_IPMR;
2867 
2868 		af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2869 		if (!af) {
2870 			nlmsg_cancel(skb, nlh);
2871 			goto out;
2872 		}
2873 
2874 		if (!ipmr_fill_table(mrt, skb)) {
2875 			nlmsg_cancel(skb, nlh);
2876 			goto out;
2877 		}
2878 
2879 		vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2880 		if (!vifs) {
2881 			nla_nest_end(skb, af);
2882 			nlmsg_end(skb, nlh);
2883 			goto out;
2884 		}
2885 		for (i = 0; i < mrt->maxvif; i++) {
2886 			if (e < s_e)
2887 				goto skip_entry;
2888 			if (!ipmr_fill_vif(mrt, i, skb)) {
2889 				nla_nest_end(skb, vifs);
2890 				nla_nest_end(skb, af);
2891 				nlmsg_end(skb, nlh);
2892 				goto out;
2893 			}
2894 skip_entry:
2895 			e++;
2896 		}
2897 		s_e = 0;
2898 		e = 0;
2899 		nla_nest_end(skb, vifs);
2900 		nla_nest_end(skb, af);
2901 		nlmsg_end(skb, nlh);
2902 skip_table:
2903 		t++;
2904 	}
2905 
2906 out:
2907 	cb->args[1] = e;
2908 	cb->args[0] = t;
2909 
2910 	return skb->len;
2911 }
2912 
2913 #ifdef CONFIG_PROC_FS
2914 /* The /proc interfaces to multicast routing :
2915  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2916  */
2917 
2918 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2919 	__acquires(mrt_lock)
2920 {
2921 	struct mr_vif_iter *iter = seq->private;
2922 	struct net *net = seq_file_net(seq);
2923 	struct mr_table *mrt;
2924 
2925 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2926 	if (!mrt)
2927 		return ERR_PTR(-ENOENT);
2928 
2929 	iter->mrt = mrt;
2930 
2931 	read_lock(&mrt_lock);
2932 	return mr_vif_seq_start(seq, pos);
2933 }
2934 
2935 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2936 	__releases(mrt_lock)
2937 {
2938 	read_unlock(&mrt_lock);
2939 }
2940 
2941 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2942 {
2943 	struct mr_vif_iter *iter = seq->private;
2944 	struct mr_table *mrt = iter->mrt;
2945 
2946 	if (v == SEQ_START_TOKEN) {
2947 		seq_puts(seq,
2948 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2949 	} else {
2950 		const struct vif_device *vif = v;
2951 		const char *name =  vif->dev ?
2952 				    vif->dev->name : "none";
2953 
2954 		seq_printf(seq,
2955 			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2956 			   vif - mrt->vif_table,
2957 			   name, vif->bytes_in, vif->pkt_in,
2958 			   vif->bytes_out, vif->pkt_out,
2959 			   vif->flags, vif->local, vif->remote);
2960 	}
2961 	return 0;
2962 }
2963 
2964 static const struct seq_operations ipmr_vif_seq_ops = {
2965 	.start = ipmr_vif_seq_start,
2966 	.next  = mr_vif_seq_next,
2967 	.stop  = ipmr_vif_seq_stop,
2968 	.show  = ipmr_vif_seq_show,
2969 };
2970 
2971 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2972 {
2973 	struct net *net = seq_file_net(seq);
2974 	struct mr_table *mrt;
2975 
2976 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2977 	if (!mrt)
2978 		return ERR_PTR(-ENOENT);
2979 
2980 	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2981 }
2982 
2983 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2984 {
2985 	int n;
2986 
2987 	if (v == SEQ_START_TOKEN) {
2988 		seq_puts(seq,
2989 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2990 	} else {
2991 		const struct mfc_cache *mfc = v;
2992 		const struct mr_mfc_iter *it = seq->private;
2993 		const struct mr_table *mrt = it->mrt;
2994 
2995 		seq_printf(seq, "%08X %08X %-3hd",
2996 			   (__force u32) mfc->mfc_mcastgrp,
2997 			   (__force u32) mfc->mfc_origin,
2998 			   mfc->_c.mfc_parent);
2999 
3000 		if (it->cache != &mrt->mfc_unres_queue) {
3001 			seq_printf(seq, " %8lu %8lu %8lu",
3002 				   mfc->_c.mfc_un.res.pkt,
3003 				   mfc->_c.mfc_un.res.bytes,
3004 				   mfc->_c.mfc_un.res.wrong_if);
3005 			for (n = mfc->_c.mfc_un.res.minvif;
3006 			     n < mfc->_c.mfc_un.res.maxvif; n++) {
3007 				if (VIF_EXISTS(mrt, n) &&
3008 				    mfc->_c.mfc_un.res.ttls[n] < 255)
3009 					seq_printf(seq,
3010 					   " %2d:%-3d",
3011 					   n, mfc->_c.mfc_un.res.ttls[n]);
3012 			}
3013 		} else {
3014 			/* unresolved mfc_caches don't contain
3015 			 * pkt, bytes and wrong_if values
3016 			 */
3017 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3018 		}
3019 		seq_putc(seq, '\n');
3020 	}
3021 	return 0;
3022 }
3023 
3024 static const struct seq_operations ipmr_mfc_seq_ops = {
3025 	.start = ipmr_mfc_seq_start,
3026 	.next  = mr_mfc_seq_next,
3027 	.stop  = mr_mfc_seq_stop,
3028 	.show  = ipmr_mfc_seq_show,
3029 };
3030 #endif
3031 
3032 #ifdef CONFIG_IP_PIMSM_V2
3033 static const struct net_protocol pim_protocol = {
3034 	.handler	=	pim_rcv,
3035 	.netns_ok	=	1,
3036 };
3037 #endif
3038 
3039 static unsigned int ipmr_seq_read(struct net *net)
3040 {
3041 	ASSERT_RTNL();
3042 
3043 	return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3044 }
3045 
3046 static int ipmr_dump(struct net *net, struct notifier_block *nb,
3047 		     struct netlink_ext_ack *extack)
3048 {
3049 	return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3050 		       ipmr_mr_table_iter, &mrt_lock, extack);
3051 }
3052 
3053 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3054 	.family		= RTNL_FAMILY_IPMR,
3055 	.fib_seq_read	= ipmr_seq_read,
3056 	.fib_dump	= ipmr_dump,
3057 	.owner		= THIS_MODULE,
3058 };
3059 
3060 static int __net_init ipmr_notifier_init(struct net *net)
3061 {
3062 	struct fib_notifier_ops *ops;
3063 
3064 	net->ipv4.ipmr_seq = 0;
3065 
3066 	ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3067 	if (IS_ERR(ops))
3068 		return PTR_ERR(ops);
3069 	net->ipv4.ipmr_notifier_ops = ops;
3070 
3071 	return 0;
3072 }
3073 
3074 static void __net_exit ipmr_notifier_exit(struct net *net)
3075 {
3076 	fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3077 	net->ipv4.ipmr_notifier_ops = NULL;
3078 }
3079 
3080 /* Setup for IP multicast routing */
3081 static int __net_init ipmr_net_init(struct net *net)
3082 {
3083 	int err;
3084 
3085 	err = ipmr_notifier_init(net);
3086 	if (err)
3087 		goto ipmr_notifier_fail;
3088 
3089 	err = ipmr_rules_init(net);
3090 	if (err < 0)
3091 		goto ipmr_rules_fail;
3092 
3093 #ifdef CONFIG_PROC_FS
3094 	err = -ENOMEM;
3095 	if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3096 			sizeof(struct mr_vif_iter)))
3097 		goto proc_vif_fail;
3098 	if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3099 			sizeof(struct mr_mfc_iter)))
3100 		goto proc_cache_fail;
3101 #endif
3102 	return 0;
3103 
3104 #ifdef CONFIG_PROC_FS
3105 proc_cache_fail:
3106 	remove_proc_entry("ip_mr_vif", net->proc_net);
3107 proc_vif_fail:
3108 	ipmr_rules_exit(net);
3109 #endif
3110 ipmr_rules_fail:
3111 	ipmr_notifier_exit(net);
3112 ipmr_notifier_fail:
3113 	return err;
3114 }
3115 
3116 static void __net_exit ipmr_net_exit(struct net *net)
3117 {
3118 #ifdef CONFIG_PROC_FS
3119 	remove_proc_entry("ip_mr_cache", net->proc_net);
3120 	remove_proc_entry("ip_mr_vif", net->proc_net);
3121 #endif
3122 	ipmr_notifier_exit(net);
3123 	ipmr_rules_exit(net);
3124 }
3125 
3126 static struct pernet_operations ipmr_net_ops = {
3127 	.init = ipmr_net_init,
3128 	.exit = ipmr_net_exit,
3129 };
3130 
3131 int __init ip_mr_init(void)
3132 {
3133 	int err;
3134 
3135 	mrt_cachep = kmem_cache_create("ip_mrt_cache",
3136 				       sizeof(struct mfc_cache),
3137 				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3138 				       NULL);
3139 
3140 	err = register_pernet_subsys(&ipmr_net_ops);
3141 	if (err)
3142 		goto reg_pernet_fail;
3143 
3144 	err = register_netdevice_notifier(&ip_mr_notifier);
3145 	if (err)
3146 		goto reg_notif_fail;
3147 #ifdef CONFIG_IP_PIMSM_V2
3148 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3149 		pr_err("%s: can't add PIM protocol\n", __func__);
3150 		err = -EAGAIN;
3151 		goto add_proto_fail;
3152 	}
3153 #endif
3154 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3155 		      ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3156 	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3157 		      ipmr_rtm_route, NULL, 0);
3158 	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3159 		      ipmr_rtm_route, NULL, 0);
3160 
3161 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3162 		      NULL, ipmr_rtm_dumplink, 0);
3163 	return 0;
3164 
3165 #ifdef CONFIG_IP_PIMSM_V2
3166 add_proto_fail:
3167 	unregister_netdevice_notifier(&ip_mr_notifier);
3168 #endif
3169 reg_notif_fail:
3170 	unregister_pernet_subsys(&ipmr_net_ops);
3171 reg_pernet_fail:
3172 	kmem_cache_destroy(mrt_cachep);
3173 	return err;
3174 }
3175