xref: /linux/net/ipv4/ip_output.c (revision dfff0fa65ab15db45acd64b3189787d37ab163cd)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82 
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 
85 /* Generate a checksum for an outgoing IP datagram. */
86 __inline__ void ip_send_check(struct iphdr *iph)
87 {
88 	iph->check = 0;
89 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
90 }
91 
92 int __ip_local_out(struct sk_buff *skb)
93 {
94 	struct iphdr *iph = ip_hdr(skb);
95 
96 	iph->tot_len = htons(skb->len);
97 	ip_send_check(iph);
98 	return nf_hook(PF_INET, NF_INET_LOCAL_OUT, skb, NULL, skb_dst(skb)->dev,
99 		       dst_output);
100 }
101 
102 int ip_local_out(struct sk_buff *skb)
103 {
104 	int err;
105 
106 	err = __ip_local_out(skb);
107 	if (likely(err == 1))
108 		err = dst_output(skb);
109 
110 	return err;
111 }
112 EXPORT_SYMBOL_GPL(ip_local_out);
113 
114 /* dev_loopback_xmit for use with netfilter. */
115 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
116 {
117 	skb_reset_mac_header(newskb);
118 	__skb_pull(newskb, skb_network_offset(newskb));
119 	newskb->pkt_type = PACKET_LOOPBACK;
120 	newskb->ip_summed = CHECKSUM_UNNECESSARY;
121 	WARN_ON(!skb_dst(newskb));
122 	netif_rx(newskb);
123 	return 0;
124 }
125 
126 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
127 {
128 	int ttl = inet->uc_ttl;
129 
130 	if (ttl < 0)
131 		ttl = dst_metric(dst, RTAX_HOPLIMIT);
132 	return ttl;
133 }
134 
135 /*
136  *		Add an ip header to a skbuff and send it out.
137  *
138  */
139 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
140 			  __be32 saddr, __be32 daddr, struct ip_options *opt)
141 {
142 	struct inet_sock *inet = inet_sk(sk);
143 	struct rtable *rt = skb_rtable(skb);
144 	struct iphdr *iph;
145 
146 	/* Build the IP header. */
147 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
148 	skb_reset_network_header(skb);
149 	iph = ip_hdr(skb);
150 	iph->version  = 4;
151 	iph->ihl      = 5;
152 	iph->tos      = inet->tos;
153 	if (ip_dont_fragment(sk, &rt->u.dst))
154 		iph->frag_off = htons(IP_DF);
155 	else
156 		iph->frag_off = 0;
157 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
158 	iph->daddr    = rt->rt_dst;
159 	iph->saddr    = rt->rt_src;
160 	iph->protocol = sk->sk_protocol;
161 	ip_select_ident(iph, &rt->u.dst, sk);
162 
163 	if (opt && opt->optlen) {
164 		iph->ihl += opt->optlen>>2;
165 		ip_options_build(skb, opt, daddr, rt, 0);
166 	}
167 
168 	skb->priority = sk->sk_priority;
169 	skb->mark = sk->sk_mark;
170 
171 	/* Send it out. */
172 	return ip_local_out(skb);
173 }
174 
175 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
176 
177 static inline int ip_finish_output2(struct sk_buff *skb)
178 {
179 	struct dst_entry *dst = skb_dst(skb);
180 	struct rtable *rt = (struct rtable *)dst;
181 	struct net_device *dev = dst->dev;
182 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
183 
184 	if (rt->rt_type == RTN_MULTICAST) {
185 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
186 	} else if (rt->rt_type == RTN_BROADCAST)
187 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
188 
189 	/* Be paranoid, rather than too clever. */
190 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
191 		struct sk_buff *skb2;
192 
193 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
194 		if (skb2 == NULL) {
195 			kfree_skb(skb);
196 			return -ENOMEM;
197 		}
198 		if (skb->sk)
199 			skb_set_owner_w(skb2, skb->sk);
200 		kfree_skb(skb);
201 		skb = skb2;
202 	}
203 
204 	if (dst->hh)
205 		return neigh_hh_output(dst->hh, skb);
206 	else if (dst->neighbour)
207 		return dst->neighbour->output(skb);
208 
209 	if (net_ratelimit())
210 		printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
211 	kfree_skb(skb);
212 	return -EINVAL;
213 }
214 
215 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
216 {
217 	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
218 
219 	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
220 	       skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
221 }
222 
223 static int ip_finish_output(struct sk_buff *skb)
224 {
225 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
226 	/* Policy lookup after SNAT yielded a new policy */
227 	if (skb_dst(skb)->xfrm != NULL) {
228 		IPCB(skb)->flags |= IPSKB_REROUTED;
229 		return dst_output(skb);
230 	}
231 #endif
232 	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
233 		return ip_fragment(skb, ip_finish_output2);
234 	else
235 		return ip_finish_output2(skb);
236 }
237 
238 int ip_mc_output(struct sk_buff *skb)
239 {
240 	struct sock *sk = skb->sk;
241 	struct rtable *rt = skb_rtable(skb);
242 	struct net_device *dev = rt->u.dst.dev;
243 
244 	/*
245 	 *	If the indicated interface is up and running, send the packet.
246 	 */
247 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
248 
249 	skb->dev = dev;
250 	skb->protocol = htons(ETH_P_IP);
251 
252 	/*
253 	 *	Multicasts are looped back for other local users
254 	 */
255 
256 	if (rt->rt_flags&RTCF_MULTICAST) {
257 		if ((!sk || inet_sk(sk)->mc_loop)
258 #ifdef CONFIG_IP_MROUTE
259 		/* Small optimization: do not loopback not local frames,
260 		   which returned after forwarding; they will be  dropped
261 		   by ip_mr_input in any case.
262 		   Note, that local frames are looped back to be delivered
263 		   to local recipients.
264 
265 		   This check is duplicated in ip_mr_input at the moment.
266 		 */
267 		    && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
268 #endif
269 		) {
270 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
271 			if (newskb)
272 				NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb,
273 					NULL, newskb->dev,
274 					ip_dev_loopback_xmit);
275 		}
276 
277 		/* Multicasts with ttl 0 must not go beyond the host */
278 
279 		if (ip_hdr(skb)->ttl == 0) {
280 			kfree_skb(skb);
281 			return 0;
282 		}
283 	}
284 
285 	if (rt->rt_flags&RTCF_BROADCAST) {
286 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
287 		if (newskb)
288 			NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb, NULL,
289 				newskb->dev, ip_dev_loopback_xmit);
290 	}
291 
292 	return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, skb->dev,
293 			    ip_finish_output,
294 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
295 }
296 
297 int ip_output(struct sk_buff *skb)
298 {
299 	struct net_device *dev = skb_dst(skb)->dev;
300 
301 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
302 
303 	skb->dev = dev;
304 	skb->protocol = htons(ETH_P_IP);
305 
306 	return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, dev,
307 			    ip_finish_output,
308 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
309 }
310 
311 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
312 {
313 	struct sock *sk = skb->sk;
314 	struct inet_sock *inet = inet_sk(sk);
315 	struct ip_options *opt = inet->opt;
316 	struct rtable *rt;
317 	struct iphdr *iph;
318 
319 	/* Skip all of this if the packet is already routed,
320 	 * f.e. by something like SCTP.
321 	 */
322 	rt = skb_rtable(skb);
323 	if (rt != NULL)
324 		goto packet_routed;
325 
326 	/* Make sure we can route this packet. */
327 	rt = (struct rtable *)__sk_dst_check(sk, 0);
328 	if (rt == NULL) {
329 		__be32 daddr;
330 
331 		/* Use correct destination address if we have options. */
332 		daddr = inet->daddr;
333 		if(opt && opt->srr)
334 			daddr = opt->faddr;
335 
336 		{
337 			struct flowi fl = { .oif = sk->sk_bound_dev_if,
338 					    .nl_u = { .ip4_u =
339 						      { .daddr = daddr,
340 							.saddr = inet->saddr,
341 							.tos = RT_CONN_FLAGS(sk) } },
342 					    .proto = sk->sk_protocol,
343 					    .flags = inet_sk_flowi_flags(sk),
344 					    .uli_u = { .ports =
345 						       { .sport = inet->sport,
346 							 .dport = inet->dport } } };
347 
348 			/* If this fails, retransmit mechanism of transport layer will
349 			 * keep trying until route appears or the connection times
350 			 * itself out.
351 			 */
352 			security_sk_classify_flow(sk, &fl);
353 			if (ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 0))
354 				goto no_route;
355 		}
356 		sk_setup_caps(sk, &rt->u.dst);
357 	}
358 	skb_dst_set(skb, dst_clone(&rt->u.dst));
359 
360 packet_routed:
361 	if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
362 		goto no_route;
363 
364 	/* OK, we know where to send it, allocate and build IP header. */
365 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
366 	skb_reset_network_header(skb);
367 	iph = ip_hdr(skb);
368 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
369 	if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
370 		iph->frag_off = htons(IP_DF);
371 	else
372 		iph->frag_off = 0;
373 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
374 	iph->protocol = sk->sk_protocol;
375 	iph->saddr    = rt->rt_src;
376 	iph->daddr    = rt->rt_dst;
377 	/* Transport layer set skb->h.foo itself. */
378 
379 	if (opt && opt->optlen) {
380 		iph->ihl += opt->optlen >> 2;
381 		ip_options_build(skb, opt, inet->daddr, rt, 0);
382 	}
383 
384 	ip_select_ident_more(iph, &rt->u.dst, sk,
385 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
386 
387 	skb->priority = sk->sk_priority;
388 	skb->mark = sk->sk_mark;
389 
390 	return ip_local_out(skb);
391 
392 no_route:
393 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
394 	kfree_skb(skb);
395 	return -EHOSTUNREACH;
396 }
397 
398 
399 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
400 {
401 	to->pkt_type = from->pkt_type;
402 	to->priority = from->priority;
403 	to->protocol = from->protocol;
404 	skb_dst_drop(to);
405 	skb_dst_set(to, dst_clone(skb_dst(from)));
406 	to->dev = from->dev;
407 	to->mark = from->mark;
408 
409 	/* Copy the flags to each fragment. */
410 	IPCB(to)->flags = IPCB(from)->flags;
411 
412 #ifdef CONFIG_NET_SCHED
413 	to->tc_index = from->tc_index;
414 #endif
415 	nf_copy(to, from);
416 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
417     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
418 	to->nf_trace = from->nf_trace;
419 #endif
420 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
421 	to->ipvs_property = from->ipvs_property;
422 #endif
423 	skb_copy_secmark(to, from);
424 }
425 
426 /*
427  *	This IP datagram is too large to be sent in one piece.  Break it up into
428  *	smaller pieces (each of size equal to IP header plus
429  *	a block of the data of the original IP data part) that will yet fit in a
430  *	single device frame, and queue such a frame for sending.
431  */
432 
433 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
434 {
435 	struct iphdr *iph;
436 	int raw = 0;
437 	int ptr;
438 	struct net_device *dev;
439 	struct sk_buff *skb2;
440 	unsigned int mtu, hlen, left, len, ll_rs, pad;
441 	int offset;
442 	__be16 not_last_frag;
443 	struct rtable *rt = skb_rtable(skb);
444 	int err = 0;
445 
446 	dev = rt->u.dst.dev;
447 
448 	/*
449 	 *	Point into the IP datagram header.
450 	 */
451 
452 	iph = ip_hdr(skb);
453 
454 	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
455 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
456 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
457 			  htonl(ip_skb_dst_mtu(skb)));
458 		kfree_skb(skb);
459 		return -EMSGSIZE;
460 	}
461 
462 	/*
463 	 *	Setup starting values.
464 	 */
465 
466 	hlen = iph->ihl * 4;
467 	mtu = dst_mtu(&rt->u.dst) - hlen;	/* Size of data space */
468 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
469 
470 	/* When frag_list is given, use it. First, check its validity:
471 	 * some transformers could create wrong frag_list or break existing
472 	 * one, it is not prohibited. In this case fall back to copying.
473 	 *
474 	 * LATER: this step can be merged to real generation of fragments,
475 	 * we can switch to copy when see the first bad fragment.
476 	 */
477 	if (skb_has_frags(skb)) {
478 		struct sk_buff *frag;
479 		int first_len = skb_pagelen(skb);
480 		int truesizes = 0;
481 
482 		if (first_len - hlen > mtu ||
483 		    ((first_len - hlen) & 7) ||
484 		    (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
485 		    skb_cloned(skb))
486 			goto slow_path;
487 
488 		skb_walk_frags(skb, frag) {
489 			/* Correct geometry. */
490 			if (frag->len > mtu ||
491 			    ((frag->len & 7) && frag->next) ||
492 			    skb_headroom(frag) < hlen)
493 			    goto slow_path;
494 
495 			/* Partially cloned skb? */
496 			if (skb_shared(frag))
497 				goto slow_path;
498 
499 			BUG_ON(frag->sk);
500 			if (skb->sk) {
501 				frag->sk = skb->sk;
502 				frag->destructor = sock_wfree;
503 				truesizes += frag->truesize;
504 			}
505 		}
506 
507 		/* Everything is OK. Generate! */
508 
509 		err = 0;
510 		offset = 0;
511 		frag = skb_shinfo(skb)->frag_list;
512 		skb_frag_list_init(skb);
513 		skb->data_len = first_len - skb_headlen(skb);
514 		skb->truesize -= truesizes;
515 		skb->len = first_len;
516 		iph->tot_len = htons(first_len);
517 		iph->frag_off = htons(IP_MF);
518 		ip_send_check(iph);
519 
520 		for (;;) {
521 			/* Prepare header of the next frame,
522 			 * before previous one went down. */
523 			if (frag) {
524 				frag->ip_summed = CHECKSUM_NONE;
525 				skb_reset_transport_header(frag);
526 				__skb_push(frag, hlen);
527 				skb_reset_network_header(frag);
528 				memcpy(skb_network_header(frag), iph, hlen);
529 				iph = ip_hdr(frag);
530 				iph->tot_len = htons(frag->len);
531 				ip_copy_metadata(frag, skb);
532 				if (offset == 0)
533 					ip_options_fragment(frag);
534 				offset += skb->len - hlen;
535 				iph->frag_off = htons(offset>>3);
536 				if (frag->next != NULL)
537 					iph->frag_off |= htons(IP_MF);
538 				/* Ready, complete checksum */
539 				ip_send_check(iph);
540 			}
541 
542 			err = output(skb);
543 
544 			if (!err)
545 				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
546 			if (err || !frag)
547 				break;
548 
549 			skb = frag;
550 			frag = skb->next;
551 			skb->next = NULL;
552 		}
553 
554 		if (err == 0) {
555 			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
556 			return 0;
557 		}
558 
559 		while (frag) {
560 			skb = frag->next;
561 			kfree_skb(frag);
562 			frag = skb;
563 		}
564 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
565 		return err;
566 	}
567 
568 slow_path:
569 	left = skb->len - hlen;		/* Space per frame */
570 	ptr = raw + hlen;		/* Where to start from */
571 
572 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
573 	 * we need to make room for the encapsulating header
574 	 */
575 	pad = nf_bridge_pad(skb);
576 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
577 	mtu -= pad;
578 
579 	/*
580 	 *	Fragment the datagram.
581 	 */
582 
583 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
584 	not_last_frag = iph->frag_off & htons(IP_MF);
585 
586 	/*
587 	 *	Keep copying data until we run out.
588 	 */
589 
590 	while (left > 0) {
591 		len = left;
592 		/* IF: it doesn't fit, use 'mtu' - the data space left */
593 		if (len > mtu)
594 			len = mtu;
595 		/* IF: we are not sending upto and including the packet end
596 		   then align the next start on an eight byte boundary */
597 		if (len < left)	{
598 			len &= ~7;
599 		}
600 		/*
601 		 *	Allocate buffer.
602 		 */
603 
604 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
605 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
606 			err = -ENOMEM;
607 			goto fail;
608 		}
609 
610 		/*
611 		 *	Set up data on packet
612 		 */
613 
614 		ip_copy_metadata(skb2, skb);
615 		skb_reserve(skb2, ll_rs);
616 		skb_put(skb2, len + hlen);
617 		skb_reset_network_header(skb2);
618 		skb2->transport_header = skb2->network_header + hlen;
619 
620 		/*
621 		 *	Charge the memory for the fragment to any owner
622 		 *	it might possess
623 		 */
624 
625 		if (skb->sk)
626 			skb_set_owner_w(skb2, skb->sk);
627 
628 		/*
629 		 *	Copy the packet header into the new buffer.
630 		 */
631 
632 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
633 
634 		/*
635 		 *	Copy a block of the IP datagram.
636 		 */
637 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
638 			BUG();
639 		left -= len;
640 
641 		/*
642 		 *	Fill in the new header fields.
643 		 */
644 		iph = ip_hdr(skb2);
645 		iph->frag_off = htons((offset >> 3));
646 
647 		/* ANK: dirty, but effective trick. Upgrade options only if
648 		 * the segment to be fragmented was THE FIRST (otherwise,
649 		 * options are already fixed) and make it ONCE
650 		 * on the initial skb, so that all the following fragments
651 		 * will inherit fixed options.
652 		 */
653 		if (offset == 0)
654 			ip_options_fragment(skb);
655 
656 		/*
657 		 *	Added AC : If we are fragmenting a fragment that's not the
658 		 *		   last fragment then keep MF on each bit
659 		 */
660 		if (left > 0 || not_last_frag)
661 			iph->frag_off |= htons(IP_MF);
662 		ptr += len;
663 		offset += len;
664 
665 		/*
666 		 *	Put this fragment into the sending queue.
667 		 */
668 		iph->tot_len = htons(len + hlen);
669 
670 		ip_send_check(iph);
671 
672 		err = output(skb2);
673 		if (err)
674 			goto fail;
675 
676 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
677 	}
678 	kfree_skb(skb);
679 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
680 	return err;
681 
682 fail:
683 	kfree_skb(skb);
684 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
685 	return err;
686 }
687 
688 EXPORT_SYMBOL(ip_fragment);
689 
690 int
691 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
692 {
693 	struct iovec *iov = from;
694 
695 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
696 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
697 			return -EFAULT;
698 	} else {
699 		__wsum csum = 0;
700 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
701 			return -EFAULT;
702 		skb->csum = csum_block_add(skb->csum, csum, odd);
703 	}
704 	return 0;
705 }
706 
707 static inline __wsum
708 csum_page(struct page *page, int offset, int copy)
709 {
710 	char *kaddr;
711 	__wsum csum;
712 	kaddr = kmap(page);
713 	csum = csum_partial(kaddr + offset, copy, 0);
714 	kunmap(page);
715 	return csum;
716 }
717 
718 static inline int ip_ufo_append_data(struct sock *sk,
719 			int getfrag(void *from, char *to, int offset, int len,
720 			       int odd, struct sk_buff *skb),
721 			void *from, int length, int hh_len, int fragheaderlen,
722 			int transhdrlen, int mtu, unsigned int flags)
723 {
724 	struct sk_buff *skb;
725 	int err;
726 
727 	/* There is support for UDP fragmentation offload by network
728 	 * device, so create one single skb packet containing complete
729 	 * udp datagram
730 	 */
731 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
732 		skb = sock_alloc_send_skb(sk,
733 			hh_len + fragheaderlen + transhdrlen + 20,
734 			(flags & MSG_DONTWAIT), &err);
735 
736 		if (skb == NULL)
737 			return err;
738 
739 		/* reserve space for Hardware header */
740 		skb_reserve(skb, hh_len);
741 
742 		/* create space for UDP/IP header */
743 		skb_put(skb, fragheaderlen + transhdrlen);
744 
745 		/* initialize network header pointer */
746 		skb_reset_network_header(skb);
747 
748 		/* initialize protocol header pointer */
749 		skb->transport_header = skb->network_header + fragheaderlen;
750 
751 		skb->ip_summed = CHECKSUM_PARTIAL;
752 		skb->csum = 0;
753 		sk->sk_sndmsg_off = 0;
754 
755 		/* specify the length of each IP datagram fragment */
756 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
757 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
758 		__skb_queue_tail(&sk->sk_write_queue, skb);
759 	}
760 
761 	return skb_append_datato_frags(sk, skb, getfrag, from,
762 				       (length - transhdrlen));
763 }
764 
765 /*
766  *	ip_append_data() and ip_append_page() can make one large IP datagram
767  *	from many pieces of data. Each pieces will be holded on the socket
768  *	until ip_push_pending_frames() is called. Each piece can be a page
769  *	or non-page data.
770  *
771  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
772  *	this interface potentially.
773  *
774  *	LATER: length must be adjusted by pad at tail, when it is required.
775  */
776 int ip_append_data(struct sock *sk,
777 		   int getfrag(void *from, char *to, int offset, int len,
778 			       int odd, struct sk_buff *skb),
779 		   void *from, int length, int transhdrlen,
780 		   struct ipcm_cookie *ipc, struct rtable **rtp,
781 		   unsigned int flags)
782 {
783 	struct inet_sock *inet = inet_sk(sk);
784 	struct sk_buff *skb;
785 
786 	struct ip_options *opt = NULL;
787 	int hh_len;
788 	int exthdrlen;
789 	int mtu;
790 	int copy;
791 	int err;
792 	int offset = 0;
793 	unsigned int maxfraglen, fragheaderlen;
794 	int csummode = CHECKSUM_NONE;
795 	struct rtable *rt;
796 
797 	if (flags&MSG_PROBE)
798 		return 0;
799 
800 	if (skb_queue_empty(&sk->sk_write_queue)) {
801 		/*
802 		 * setup for corking.
803 		 */
804 		opt = ipc->opt;
805 		if (opt) {
806 			if (inet->cork.opt == NULL) {
807 				inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
808 				if (unlikely(inet->cork.opt == NULL))
809 					return -ENOBUFS;
810 			}
811 			memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
812 			inet->cork.flags |= IPCORK_OPT;
813 			inet->cork.addr = ipc->addr;
814 		}
815 		rt = *rtp;
816 		/*
817 		 * We steal reference to this route, caller should not release it
818 		 */
819 		*rtp = NULL;
820 		inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
821 					    rt->u.dst.dev->mtu :
822 					    dst_mtu(rt->u.dst.path);
823 		inet->cork.dst = &rt->u.dst;
824 		inet->cork.length = 0;
825 		sk->sk_sndmsg_page = NULL;
826 		sk->sk_sndmsg_off = 0;
827 		if ((exthdrlen = rt->u.dst.header_len) != 0) {
828 			length += exthdrlen;
829 			transhdrlen += exthdrlen;
830 		}
831 	} else {
832 		rt = (struct rtable *)inet->cork.dst;
833 		if (inet->cork.flags & IPCORK_OPT)
834 			opt = inet->cork.opt;
835 
836 		transhdrlen = 0;
837 		exthdrlen = 0;
838 		mtu = inet->cork.fragsize;
839 	}
840 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
841 
842 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
843 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
844 
845 	if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
846 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
847 		return -EMSGSIZE;
848 	}
849 
850 	/*
851 	 * transhdrlen > 0 means that this is the first fragment and we wish
852 	 * it won't be fragmented in the future.
853 	 */
854 	if (transhdrlen &&
855 	    length + fragheaderlen <= mtu &&
856 	    rt->u.dst.dev->features & NETIF_F_V4_CSUM &&
857 	    !exthdrlen)
858 		csummode = CHECKSUM_PARTIAL;
859 
860 	inet->cork.length += length;
861 	if (((length> mtu) || !skb_queue_empty(&sk->sk_write_queue)) &&
862 	    (sk->sk_protocol == IPPROTO_UDP) &&
863 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
864 		err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
865 					 fragheaderlen, transhdrlen, mtu,
866 					 flags);
867 		if (err)
868 			goto error;
869 		return 0;
870 	}
871 
872 	/* So, what's going on in the loop below?
873 	 *
874 	 * We use calculated fragment length to generate chained skb,
875 	 * each of segments is IP fragment ready for sending to network after
876 	 * adding appropriate IP header.
877 	 */
878 
879 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
880 		goto alloc_new_skb;
881 
882 	while (length > 0) {
883 		/* Check if the remaining data fits into current packet. */
884 		copy = mtu - skb->len;
885 		if (copy < length)
886 			copy = maxfraglen - skb->len;
887 		if (copy <= 0) {
888 			char *data;
889 			unsigned int datalen;
890 			unsigned int fraglen;
891 			unsigned int fraggap;
892 			unsigned int alloclen;
893 			struct sk_buff *skb_prev;
894 alloc_new_skb:
895 			skb_prev = skb;
896 			if (skb_prev)
897 				fraggap = skb_prev->len - maxfraglen;
898 			else
899 				fraggap = 0;
900 
901 			/*
902 			 * If remaining data exceeds the mtu,
903 			 * we know we need more fragment(s).
904 			 */
905 			datalen = length + fraggap;
906 			if (datalen > mtu - fragheaderlen)
907 				datalen = maxfraglen - fragheaderlen;
908 			fraglen = datalen + fragheaderlen;
909 
910 			if ((flags & MSG_MORE) &&
911 			    !(rt->u.dst.dev->features&NETIF_F_SG))
912 				alloclen = mtu;
913 			else
914 				alloclen = datalen + fragheaderlen;
915 
916 			/* The last fragment gets additional space at tail.
917 			 * Note, with MSG_MORE we overallocate on fragments,
918 			 * because we have no idea what fragment will be
919 			 * the last.
920 			 */
921 			if (datalen == length + fraggap)
922 				alloclen += rt->u.dst.trailer_len;
923 
924 			if (transhdrlen) {
925 				skb = sock_alloc_send_skb(sk,
926 						alloclen + hh_len + 15,
927 						(flags & MSG_DONTWAIT), &err);
928 			} else {
929 				skb = NULL;
930 				if (atomic_read(&sk->sk_wmem_alloc) <=
931 				    2 * sk->sk_sndbuf)
932 					skb = sock_wmalloc(sk,
933 							   alloclen + hh_len + 15, 1,
934 							   sk->sk_allocation);
935 				if (unlikely(skb == NULL))
936 					err = -ENOBUFS;
937 				else
938 					/* only the initial fragment is
939 					   time stamped */
940 					ipc->shtx.flags = 0;
941 			}
942 			if (skb == NULL)
943 				goto error;
944 
945 			/*
946 			 *	Fill in the control structures
947 			 */
948 			skb->ip_summed = csummode;
949 			skb->csum = 0;
950 			skb_reserve(skb, hh_len);
951 			*skb_tx(skb) = ipc->shtx;
952 
953 			/*
954 			 *	Find where to start putting bytes.
955 			 */
956 			data = skb_put(skb, fraglen);
957 			skb_set_network_header(skb, exthdrlen);
958 			skb->transport_header = (skb->network_header +
959 						 fragheaderlen);
960 			data += fragheaderlen;
961 
962 			if (fraggap) {
963 				skb->csum = skb_copy_and_csum_bits(
964 					skb_prev, maxfraglen,
965 					data + transhdrlen, fraggap, 0);
966 				skb_prev->csum = csum_sub(skb_prev->csum,
967 							  skb->csum);
968 				data += fraggap;
969 				pskb_trim_unique(skb_prev, maxfraglen);
970 			}
971 
972 			copy = datalen - transhdrlen - fraggap;
973 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
974 				err = -EFAULT;
975 				kfree_skb(skb);
976 				goto error;
977 			}
978 
979 			offset += copy;
980 			length -= datalen - fraggap;
981 			transhdrlen = 0;
982 			exthdrlen = 0;
983 			csummode = CHECKSUM_NONE;
984 
985 			/*
986 			 * Put the packet on the pending queue.
987 			 */
988 			__skb_queue_tail(&sk->sk_write_queue, skb);
989 			continue;
990 		}
991 
992 		if (copy > length)
993 			copy = length;
994 
995 		if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
996 			unsigned int off;
997 
998 			off = skb->len;
999 			if (getfrag(from, skb_put(skb, copy),
1000 					offset, copy, off, skb) < 0) {
1001 				__skb_trim(skb, off);
1002 				err = -EFAULT;
1003 				goto error;
1004 			}
1005 		} else {
1006 			int i = skb_shinfo(skb)->nr_frags;
1007 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1008 			struct page *page = sk->sk_sndmsg_page;
1009 			int off = sk->sk_sndmsg_off;
1010 			unsigned int left;
1011 
1012 			if (page && (left = PAGE_SIZE - off) > 0) {
1013 				if (copy >= left)
1014 					copy = left;
1015 				if (page != frag->page) {
1016 					if (i == MAX_SKB_FRAGS) {
1017 						err = -EMSGSIZE;
1018 						goto error;
1019 					}
1020 					get_page(page);
1021 					skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1022 					frag = &skb_shinfo(skb)->frags[i];
1023 				}
1024 			} else if (i < MAX_SKB_FRAGS) {
1025 				if (copy > PAGE_SIZE)
1026 					copy = PAGE_SIZE;
1027 				page = alloc_pages(sk->sk_allocation, 0);
1028 				if (page == NULL)  {
1029 					err = -ENOMEM;
1030 					goto error;
1031 				}
1032 				sk->sk_sndmsg_page = page;
1033 				sk->sk_sndmsg_off = 0;
1034 
1035 				skb_fill_page_desc(skb, i, page, 0, 0);
1036 				frag = &skb_shinfo(skb)->frags[i];
1037 			} else {
1038 				err = -EMSGSIZE;
1039 				goto error;
1040 			}
1041 			if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1042 				err = -EFAULT;
1043 				goto error;
1044 			}
1045 			sk->sk_sndmsg_off += copy;
1046 			frag->size += copy;
1047 			skb->len += copy;
1048 			skb->data_len += copy;
1049 			skb->truesize += copy;
1050 			atomic_add(copy, &sk->sk_wmem_alloc);
1051 		}
1052 		offset += copy;
1053 		length -= copy;
1054 	}
1055 
1056 	return 0;
1057 
1058 error:
1059 	inet->cork.length -= length;
1060 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1061 	return err;
1062 }
1063 
1064 ssize_t	ip_append_page(struct sock *sk, struct page *page,
1065 		       int offset, size_t size, int flags)
1066 {
1067 	struct inet_sock *inet = inet_sk(sk);
1068 	struct sk_buff *skb;
1069 	struct rtable *rt;
1070 	struct ip_options *opt = NULL;
1071 	int hh_len;
1072 	int mtu;
1073 	int len;
1074 	int err;
1075 	unsigned int maxfraglen, fragheaderlen, fraggap;
1076 
1077 	if (inet->hdrincl)
1078 		return -EPERM;
1079 
1080 	if (flags&MSG_PROBE)
1081 		return 0;
1082 
1083 	if (skb_queue_empty(&sk->sk_write_queue))
1084 		return -EINVAL;
1085 
1086 	rt = (struct rtable *)inet->cork.dst;
1087 	if (inet->cork.flags & IPCORK_OPT)
1088 		opt = inet->cork.opt;
1089 
1090 	if (!(rt->u.dst.dev->features&NETIF_F_SG))
1091 		return -EOPNOTSUPP;
1092 
1093 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1094 	mtu = inet->cork.fragsize;
1095 
1096 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1097 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1098 
1099 	if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1100 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1101 		return -EMSGSIZE;
1102 	}
1103 
1104 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1105 		return -EINVAL;
1106 
1107 	inet->cork.length += size;
1108 	if ((sk->sk_protocol == IPPROTO_UDP) &&
1109 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
1110 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1111 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1112 	}
1113 
1114 
1115 	while (size > 0) {
1116 		int i;
1117 
1118 		if (skb_is_gso(skb))
1119 			len = size;
1120 		else {
1121 
1122 			/* Check if the remaining data fits into current packet. */
1123 			len = mtu - skb->len;
1124 			if (len < size)
1125 				len = maxfraglen - skb->len;
1126 		}
1127 		if (len <= 0) {
1128 			struct sk_buff *skb_prev;
1129 			int alloclen;
1130 
1131 			skb_prev = skb;
1132 			fraggap = skb_prev->len - maxfraglen;
1133 
1134 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1135 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1136 			if (unlikely(!skb)) {
1137 				err = -ENOBUFS;
1138 				goto error;
1139 			}
1140 
1141 			/*
1142 			 *	Fill in the control structures
1143 			 */
1144 			skb->ip_summed = CHECKSUM_NONE;
1145 			skb->csum = 0;
1146 			skb_reserve(skb, hh_len);
1147 
1148 			/*
1149 			 *	Find where to start putting bytes.
1150 			 */
1151 			skb_put(skb, fragheaderlen + fraggap);
1152 			skb_reset_network_header(skb);
1153 			skb->transport_header = (skb->network_header +
1154 						 fragheaderlen);
1155 			if (fraggap) {
1156 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1157 								   maxfraglen,
1158 						    skb_transport_header(skb),
1159 								   fraggap, 0);
1160 				skb_prev->csum = csum_sub(skb_prev->csum,
1161 							  skb->csum);
1162 				pskb_trim_unique(skb_prev, maxfraglen);
1163 			}
1164 
1165 			/*
1166 			 * Put the packet on the pending queue.
1167 			 */
1168 			__skb_queue_tail(&sk->sk_write_queue, skb);
1169 			continue;
1170 		}
1171 
1172 		i = skb_shinfo(skb)->nr_frags;
1173 		if (len > size)
1174 			len = size;
1175 		if (skb_can_coalesce(skb, i, page, offset)) {
1176 			skb_shinfo(skb)->frags[i-1].size += len;
1177 		} else if (i < MAX_SKB_FRAGS) {
1178 			get_page(page);
1179 			skb_fill_page_desc(skb, i, page, offset, len);
1180 		} else {
1181 			err = -EMSGSIZE;
1182 			goto error;
1183 		}
1184 
1185 		if (skb->ip_summed == CHECKSUM_NONE) {
1186 			__wsum csum;
1187 			csum = csum_page(page, offset, len);
1188 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1189 		}
1190 
1191 		skb->len += len;
1192 		skb->data_len += len;
1193 		skb->truesize += len;
1194 		atomic_add(len, &sk->sk_wmem_alloc);
1195 		offset += len;
1196 		size -= len;
1197 	}
1198 	return 0;
1199 
1200 error:
1201 	inet->cork.length -= size;
1202 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1203 	return err;
1204 }
1205 
1206 static void ip_cork_release(struct inet_sock *inet)
1207 {
1208 	inet->cork.flags &= ~IPCORK_OPT;
1209 	kfree(inet->cork.opt);
1210 	inet->cork.opt = NULL;
1211 	dst_release(inet->cork.dst);
1212 	inet->cork.dst = NULL;
1213 }
1214 
1215 /*
1216  *	Combined all pending IP fragments on the socket as one IP datagram
1217  *	and push them out.
1218  */
1219 int ip_push_pending_frames(struct sock *sk)
1220 {
1221 	struct sk_buff *skb, *tmp_skb;
1222 	struct sk_buff **tail_skb;
1223 	struct inet_sock *inet = inet_sk(sk);
1224 	struct net *net = sock_net(sk);
1225 	struct ip_options *opt = NULL;
1226 	struct rtable *rt = (struct rtable *)inet->cork.dst;
1227 	struct iphdr *iph;
1228 	__be16 df = 0;
1229 	__u8 ttl;
1230 	int err = 0;
1231 
1232 	if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1233 		goto out;
1234 	tail_skb = &(skb_shinfo(skb)->frag_list);
1235 
1236 	/* move skb->data to ip header from ext header */
1237 	if (skb->data < skb_network_header(skb))
1238 		__skb_pull(skb, skb_network_offset(skb));
1239 	while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1240 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1241 		*tail_skb = tmp_skb;
1242 		tail_skb = &(tmp_skb->next);
1243 		skb->len += tmp_skb->len;
1244 		skb->data_len += tmp_skb->len;
1245 		skb->truesize += tmp_skb->truesize;
1246 		tmp_skb->destructor = NULL;
1247 		tmp_skb->sk = NULL;
1248 	}
1249 
1250 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1251 	 * to fragment the frame generated here. No matter, what transforms
1252 	 * how transforms change size of the packet, it will come out.
1253 	 */
1254 	if (inet->pmtudisc < IP_PMTUDISC_DO)
1255 		skb->local_df = 1;
1256 
1257 	/* DF bit is set when we want to see DF on outgoing frames.
1258 	 * If local_df is set too, we still allow to fragment this frame
1259 	 * locally. */
1260 	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1261 	    (skb->len <= dst_mtu(&rt->u.dst) &&
1262 	     ip_dont_fragment(sk, &rt->u.dst)))
1263 		df = htons(IP_DF);
1264 
1265 	if (inet->cork.flags & IPCORK_OPT)
1266 		opt = inet->cork.opt;
1267 
1268 	if (rt->rt_type == RTN_MULTICAST)
1269 		ttl = inet->mc_ttl;
1270 	else
1271 		ttl = ip_select_ttl(inet, &rt->u.dst);
1272 
1273 	iph = (struct iphdr *)skb->data;
1274 	iph->version = 4;
1275 	iph->ihl = 5;
1276 	if (opt) {
1277 		iph->ihl += opt->optlen>>2;
1278 		ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1279 	}
1280 	iph->tos = inet->tos;
1281 	iph->frag_off = df;
1282 	ip_select_ident(iph, &rt->u.dst, sk);
1283 	iph->ttl = ttl;
1284 	iph->protocol = sk->sk_protocol;
1285 	iph->saddr = rt->rt_src;
1286 	iph->daddr = rt->rt_dst;
1287 
1288 	skb->priority = sk->sk_priority;
1289 	skb->mark = sk->sk_mark;
1290 	/*
1291 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1292 	 * on dst refcount
1293 	 */
1294 	inet->cork.dst = NULL;
1295 	skb_dst_set(skb, &rt->u.dst);
1296 
1297 	if (iph->protocol == IPPROTO_ICMP)
1298 		icmp_out_count(net, ((struct icmphdr *)
1299 			skb_transport_header(skb))->type);
1300 
1301 	/* Netfilter gets whole the not fragmented skb. */
1302 	err = ip_local_out(skb);
1303 	if (err) {
1304 		if (err > 0)
1305 			err = inet->recverr ? net_xmit_errno(err) : 0;
1306 		if (err)
1307 			goto error;
1308 	}
1309 
1310 out:
1311 	ip_cork_release(inet);
1312 	return err;
1313 
1314 error:
1315 	IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1316 	goto out;
1317 }
1318 
1319 /*
1320  *	Throw away all pending data on the socket.
1321  */
1322 void ip_flush_pending_frames(struct sock *sk)
1323 {
1324 	struct sk_buff *skb;
1325 
1326 	while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1327 		kfree_skb(skb);
1328 
1329 	ip_cork_release(inet_sk(sk));
1330 }
1331 
1332 
1333 /*
1334  *	Fetch data from kernel space and fill in checksum if needed.
1335  */
1336 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1337 			      int len, int odd, struct sk_buff *skb)
1338 {
1339 	__wsum csum;
1340 
1341 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1342 	skb->csum = csum_block_add(skb->csum, csum, odd);
1343 	return 0;
1344 }
1345 
1346 /*
1347  *	Generic function to send a packet as reply to another packet.
1348  *	Used to send TCP resets so far. ICMP should use this function too.
1349  *
1350  *	Should run single threaded per socket because it uses the sock
1351  *     	structure to pass arguments.
1352  */
1353 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1354 		   unsigned int len)
1355 {
1356 	struct inet_sock *inet = inet_sk(sk);
1357 	struct {
1358 		struct ip_options	opt;
1359 		char			data[40];
1360 	} replyopts;
1361 	struct ipcm_cookie ipc;
1362 	__be32 daddr;
1363 	struct rtable *rt = skb_rtable(skb);
1364 
1365 	if (ip_options_echo(&replyopts.opt, skb))
1366 		return;
1367 
1368 	daddr = ipc.addr = rt->rt_src;
1369 	ipc.opt = NULL;
1370 	ipc.shtx.flags = 0;
1371 
1372 	if (replyopts.opt.optlen) {
1373 		ipc.opt = &replyopts.opt;
1374 
1375 		if (ipc.opt->srr)
1376 			daddr = replyopts.opt.faddr;
1377 	}
1378 
1379 	{
1380 		struct flowi fl = { .oif = arg->bound_dev_if,
1381 				    .nl_u = { .ip4_u =
1382 					      { .daddr = daddr,
1383 						.saddr = rt->rt_spec_dst,
1384 						.tos = RT_TOS(ip_hdr(skb)->tos) } },
1385 				    /* Not quite clean, but right. */
1386 				    .uli_u = { .ports =
1387 					       { .sport = tcp_hdr(skb)->dest,
1388 						 .dport = tcp_hdr(skb)->source } },
1389 				    .proto = sk->sk_protocol,
1390 				    .flags = ip_reply_arg_flowi_flags(arg) };
1391 		security_skb_classify_flow(skb, &fl);
1392 		if (ip_route_output_key(sock_net(sk), &rt, &fl))
1393 			return;
1394 	}
1395 
1396 	/* And let IP do all the hard work.
1397 
1398 	   This chunk is not reenterable, hence spinlock.
1399 	   Note that it uses the fact, that this function is called
1400 	   with locally disabled BH and that sk cannot be already spinlocked.
1401 	 */
1402 	bh_lock_sock(sk);
1403 	inet->tos = ip_hdr(skb)->tos;
1404 	sk->sk_priority = skb->priority;
1405 	sk->sk_protocol = ip_hdr(skb)->protocol;
1406 	sk->sk_bound_dev_if = arg->bound_dev_if;
1407 	ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1408 		       &ipc, &rt, MSG_DONTWAIT);
1409 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1410 		if (arg->csumoffset >= 0)
1411 			*((__sum16 *)skb_transport_header(skb) +
1412 			  arg->csumoffset) = csum_fold(csum_add(skb->csum,
1413 								arg->csum));
1414 		skb->ip_summed = CHECKSUM_NONE;
1415 		ip_push_pending_frames(sk);
1416 	}
1417 
1418 	bh_unlock_sock(sk);
1419 
1420 	ip_rt_put(rt);
1421 }
1422 
1423 void __init ip_init(void)
1424 {
1425 	ip_rt_init();
1426 	inet_initpeers();
1427 
1428 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1429 	igmp_mc_proc_init();
1430 #endif
1431 }
1432 
1433 EXPORT_SYMBOL(ip_generic_getfrag);
1434 EXPORT_SYMBOL(ip_queue_xmit);
1435 EXPORT_SYMBOL(ip_send_check);
1436