xref: /linux/net/ipv4/ip_output.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Version:	$Id: ip_output.c,v 1.100 2002/02/01 22:01:03 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Donald Becker, <becker@super.org>
13  *		Alan Cox, <Alan.Cox@linux.org>
14  *		Richard Underwood
15  *		Stefan Becker, <stefanb@yello.ping.de>
16  *		Jorge Cwik, <jorge@laser.satlink.net>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Hirokazu Takahashi, <taka@valinux.co.jp>
19  *
20  *	See ip_input.c for original log
21  *
22  *	Fixes:
23  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
24  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
25  *		Bradford Johnson:	Fix faulty handling of some frames when
26  *					no route is found.
27  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
28  *					(in case if packet not accepted by
29  *					output firewall rules)
30  *		Mike McLagan	:	Routing by source
31  *		Alexey Kuznetsov:	use new route cache
32  *		Andi Kleen:		Fix broken PMTU recovery and remove
33  *					some redundant tests.
34  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
35  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
36  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
37  *					for decreased register pressure on x86
38  *					and more readibility.
39  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
40  *					silently drop skb instead of failing with -EPERM.
41  *		Detlev Wengorz	:	Copy protocol for fragments.
42  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
43  *					datagrams.
44  *		Hirokazu Takahashi:	sendfile() on UDP works now.
45  */
46 
47 #include <asm/uaccess.h>
48 #include <asm/system.h>
49 #include <linux/module.h>
50 #include <linux/types.h>
51 #include <linux/kernel.h>
52 #include <linux/sched.h>
53 #include <linux/mm.h>
54 #include <linux/string.h>
55 #include <linux/errno.h>
56 #include <linux/config.h>
57 
58 #include <linux/socket.h>
59 #include <linux/sockios.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/stat.h>
66 #include <linux/init.h>
67 
68 #include <net/snmp.h>
69 #include <net/ip.h>
70 #include <net/protocol.h>
71 #include <net/route.h>
72 #include <net/xfrm.h>
73 #include <linux/skbuff.h>
74 #include <net/sock.h>
75 #include <net/arp.h>
76 #include <net/icmp.h>
77 #include <net/checksum.h>
78 #include <net/inetpeer.h>
79 #include <net/checksum.h>
80 #include <linux/igmp.h>
81 #include <linux/netfilter_ipv4.h>
82 #include <linux/netfilter_bridge.h>
83 #include <linux/mroute.h>
84 #include <linux/netlink.h>
85 #include <linux/tcp.h>
86 
87 int sysctl_ip_default_ttl = IPDEFTTL;
88 
89 static int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*));
90 
91 /* Generate a checksum for an outgoing IP datagram. */
92 __inline__ void ip_send_check(struct iphdr *iph)
93 {
94 	iph->check = 0;
95 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
96 }
97 
98 /* dev_loopback_xmit for use with netfilter. */
99 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
100 {
101 	newskb->mac.raw = newskb->data;
102 	__skb_pull(newskb, newskb->nh.raw - newskb->data);
103 	newskb->pkt_type = PACKET_LOOPBACK;
104 	newskb->ip_summed = CHECKSUM_UNNECESSARY;
105 	BUG_TRAP(newskb->dst);
106 	netif_rx(newskb);
107 	return 0;
108 }
109 
110 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
111 {
112 	int ttl = inet->uc_ttl;
113 
114 	if (ttl < 0)
115 		ttl = dst_metric(dst, RTAX_HOPLIMIT);
116 	return ttl;
117 }
118 
119 /*
120  *		Add an ip header to a skbuff and send it out.
121  *
122  */
123 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
124 			  u32 saddr, u32 daddr, struct ip_options *opt)
125 {
126 	struct inet_sock *inet = inet_sk(sk);
127 	struct rtable *rt = (struct rtable *)skb->dst;
128 	struct iphdr *iph;
129 
130 	/* Build the IP header. */
131 	if (opt)
132 		iph=(struct iphdr *)skb_push(skb,sizeof(struct iphdr) + opt->optlen);
133 	else
134 		iph=(struct iphdr *)skb_push(skb,sizeof(struct iphdr));
135 
136 	iph->version  = 4;
137 	iph->ihl      = 5;
138 	iph->tos      = inet->tos;
139 	if (ip_dont_fragment(sk, &rt->u.dst))
140 		iph->frag_off = htons(IP_DF);
141 	else
142 		iph->frag_off = 0;
143 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
144 	iph->daddr    = rt->rt_dst;
145 	iph->saddr    = rt->rt_src;
146 	iph->protocol = sk->sk_protocol;
147 	iph->tot_len  = htons(skb->len);
148 	ip_select_ident(iph, &rt->u.dst, sk);
149 	skb->nh.iph   = iph;
150 
151 	if (opt && opt->optlen) {
152 		iph->ihl += opt->optlen>>2;
153 		ip_options_build(skb, opt, daddr, rt, 0);
154 	}
155 	ip_send_check(iph);
156 
157 	skb->priority = sk->sk_priority;
158 
159 	/* Send it out. */
160 	return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
161 		       dst_output);
162 }
163 
164 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
165 
166 static inline int ip_finish_output2(struct sk_buff *skb)
167 {
168 	struct dst_entry *dst = skb->dst;
169 	struct hh_cache *hh = dst->hh;
170 	struct net_device *dev = dst->dev;
171 	int hh_len = LL_RESERVED_SPACE(dev);
172 
173 	/* Be paranoid, rather than too clever. */
174 	if (unlikely(skb_headroom(skb) < hh_len && dev->hard_header)) {
175 		struct sk_buff *skb2;
176 
177 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
178 		if (skb2 == NULL) {
179 			kfree_skb(skb);
180 			return -ENOMEM;
181 		}
182 		if (skb->sk)
183 			skb_set_owner_w(skb2, skb->sk);
184 		kfree_skb(skb);
185 		skb = skb2;
186 	}
187 
188 	if (hh) {
189 		int hh_alen;
190 
191 		read_lock_bh(&hh->hh_lock);
192 		hh_alen = HH_DATA_ALIGN(hh->hh_len);
193   		memcpy(skb->data - hh_alen, hh->hh_data, hh_alen);
194 		read_unlock_bh(&hh->hh_lock);
195 	        skb_push(skb, hh->hh_len);
196 		return hh->hh_output(skb);
197 	} else if (dst->neighbour)
198 		return dst->neighbour->output(skb);
199 
200 	if (net_ratelimit())
201 		printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
202 	kfree_skb(skb);
203 	return -EINVAL;
204 }
205 
206 static inline int ip_finish_output(struct sk_buff *skb)
207 {
208 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
209 	/* Policy lookup after SNAT yielded a new policy */
210 	if (skb->dst->xfrm != NULL) {
211 		IPCB(skb)->flags |= IPSKB_REROUTED;
212 		return dst_output(skb);
213 	}
214 #endif
215 	if (skb->len > dst_mtu(skb->dst) &&
216 	    !(skb_shinfo(skb)->ufo_size || skb_shinfo(skb)->tso_size))
217 		return ip_fragment(skb, ip_finish_output2);
218 	else
219 		return ip_finish_output2(skb);
220 }
221 
222 int ip_mc_output(struct sk_buff *skb)
223 {
224 	struct sock *sk = skb->sk;
225 	struct rtable *rt = (struct rtable*)skb->dst;
226 	struct net_device *dev = rt->u.dst.dev;
227 
228 	/*
229 	 *	If the indicated interface is up and running, send the packet.
230 	 */
231 	IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
232 
233 	skb->dev = dev;
234 	skb->protocol = htons(ETH_P_IP);
235 
236 	/*
237 	 *	Multicasts are looped back for other local users
238 	 */
239 
240 	if (rt->rt_flags&RTCF_MULTICAST) {
241 		if ((!sk || inet_sk(sk)->mc_loop)
242 #ifdef CONFIG_IP_MROUTE
243 		/* Small optimization: do not loopback not local frames,
244 		   which returned after forwarding; they will be  dropped
245 		   by ip_mr_input in any case.
246 		   Note, that local frames are looped back to be delivered
247 		   to local recipients.
248 
249 		   This check is duplicated in ip_mr_input at the moment.
250 		 */
251 		    && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
252 #endif
253 		) {
254 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
255 			if (newskb)
256 				NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
257 					newskb->dev,
258 					ip_dev_loopback_xmit);
259 		}
260 
261 		/* Multicasts with ttl 0 must not go beyond the host */
262 
263 		if (skb->nh.iph->ttl == 0) {
264 			kfree_skb(skb);
265 			return 0;
266 		}
267 	}
268 
269 	if (rt->rt_flags&RTCF_BROADCAST) {
270 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
271 		if (newskb)
272 			NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
273 				newskb->dev, ip_dev_loopback_xmit);
274 	}
275 
276 	return NF_HOOK_COND(PF_INET, NF_IP_POST_ROUTING, skb, NULL, skb->dev,
277 			    ip_finish_output,
278 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
279 }
280 
281 int ip_output(struct sk_buff *skb)
282 {
283 	struct net_device *dev = skb->dst->dev;
284 
285 	IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
286 
287 	skb->dev = dev;
288 	skb->protocol = htons(ETH_P_IP);
289 
290 	return NF_HOOK_COND(PF_INET, NF_IP_POST_ROUTING, skb, NULL, dev,
291 		            ip_finish_output,
292 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
293 }
294 
295 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
296 {
297 	struct sock *sk = skb->sk;
298 	struct inet_sock *inet = inet_sk(sk);
299 	struct ip_options *opt = inet->opt;
300 	struct rtable *rt;
301 	struct iphdr *iph;
302 
303 	/* Skip all of this if the packet is already routed,
304 	 * f.e. by something like SCTP.
305 	 */
306 	rt = (struct rtable *) skb->dst;
307 	if (rt != NULL)
308 		goto packet_routed;
309 
310 	/* Make sure we can route this packet. */
311 	rt = (struct rtable *)__sk_dst_check(sk, 0);
312 	if (rt == NULL) {
313 		u32 daddr;
314 
315 		/* Use correct destination address if we have options. */
316 		daddr = inet->daddr;
317 		if(opt && opt->srr)
318 			daddr = opt->faddr;
319 
320 		{
321 			struct flowi fl = { .oif = sk->sk_bound_dev_if,
322 					    .nl_u = { .ip4_u =
323 						      { .daddr = daddr,
324 							.saddr = inet->saddr,
325 							.tos = RT_CONN_FLAGS(sk) } },
326 					    .proto = sk->sk_protocol,
327 					    .uli_u = { .ports =
328 						       { .sport = inet->sport,
329 							 .dport = inet->dport } } };
330 
331 			/* If this fails, retransmit mechanism of transport layer will
332 			 * keep trying until route appears or the connection times
333 			 * itself out.
334 			 */
335 			if (ip_route_output_flow(&rt, &fl, sk, 0))
336 				goto no_route;
337 		}
338 		sk_setup_caps(sk, &rt->u.dst);
339 	}
340 	skb->dst = dst_clone(&rt->u.dst);
341 
342 packet_routed:
343 	if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
344 		goto no_route;
345 
346 	/* OK, we know where to send it, allocate and build IP header. */
347 	iph = (struct iphdr *) skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
348 	*((__u16 *)iph)	= htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
349 	iph->tot_len = htons(skb->len);
350 	if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
351 		iph->frag_off = htons(IP_DF);
352 	else
353 		iph->frag_off = 0;
354 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
355 	iph->protocol = sk->sk_protocol;
356 	iph->saddr    = rt->rt_src;
357 	iph->daddr    = rt->rt_dst;
358 	skb->nh.iph   = iph;
359 	/* Transport layer set skb->h.foo itself. */
360 
361 	if (opt && opt->optlen) {
362 		iph->ihl += opt->optlen >> 2;
363 		ip_options_build(skb, opt, inet->daddr, rt, 0);
364 	}
365 
366 	ip_select_ident_more(iph, &rt->u.dst, sk,
367 			     (skb_shinfo(skb)->tso_segs ?: 1) - 1);
368 
369 	/* Add an IP checksum. */
370 	ip_send_check(iph);
371 
372 	skb->priority = sk->sk_priority;
373 
374 	return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
375 		       dst_output);
376 
377 no_route:
378 	IP_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
379 	kfree_skb(skb);
380 	return -EHOSTUNREACH;
381 }
382 
383 
384 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
385 {
386 	to->pkt_type = from->pkt_type;
387 	to->priority = from->priority;
388 	to->protocol = from->protocol;
389 	dst_release(to->dst);
390 	to->dst = dst_clone(from->dst);
391 	to->dev = from->dev;
392 
393 	/* Copy the flags to each fragment. */
394 	IPCB(to)->flags = IPCB(from)->flags;
395 
396 #ifdef CONFIG_NET_SCHED
397 	to->tc_index = from->tc_index;
398 #endif
399 #ifdef CONFIG_NETFILTER
400 	to->nfmark = from->nfmark;
401 	/* Connection association is same as pre-frag packet */
402 	nf_conntrack_put(to->nfct);
403 	to->nfct = from->nfct;
404 	nf_conntrack_get(to->nfct);
405 	to->nfctinfo = from->nfctinfo;
406 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
407 	to->ipvs_property = from->ipvs_property;
408 #endif
409 #ifdef CONFIG_BRIDGE_NETFILTER
410 	nf_bridge_put(to->nf_bridge);
411 	to->nf_bridge = from->nf_bridge;
412 	nf_bridge_get(to->nf_bridge);
413 #endif
414 #endif
415 }
416 
417 /*
418  *	This IP datagram is too large to be sent in one piece.  Break it up into
419  *	smaller pieces (each of size equal to IP header plus
420  *	a block of the data of the original IP data part) that will yet fit in a
421  *	single device frame, and queue such a frame for sending.
422  */
423 
424 static int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))
425 {
426 	struct iphdr *iph;
427 	int raw = 0;
428 	int ptr;
429 	struct net_device *dev;
430 	struct sk_buff *skb2;
431 	unsigned int mtu, hlen, left, len, ll_rs;
432 	int offset;
433 	__be16 not_last_frag;
434 	struct rtable *rt = (struct rtable*)skb->dst;
435 	int err = 0;
436 
437 	dev = rt->u.dst.dev;
438 
439 	/*
440 	 *	Point into the IP datagram header.
441 	 */
442 
443 	iph = skb->nh.iph;
444 
445 	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
446 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
447 			  htonl(dst_mtu(&rt->u.dst)));
448 		kfree_skb(skb);
449 		return -EMSGSIZE;
450 	}
451 
452 	/*
453 	 *	Setup starting values.
454 	 */
455 
456 	hlen = iph->ihl * 4;
457 	mtu = dst_mtu(&rt->u.dst) - hlen;	/* Size of data space */
458 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
459 
460 	/* When frag_list is given, use it. First, check its validity:
461 	 * some transformers could create wrong frag_list or break existing
462 	 * one, it is not prohibited. In this case fall back to copying.
463 	 *
464 	 * LATER: this step can be merged to real generation of fragments,
465 	 * we can switch to copy when see the first bad fragment.
466 	 */
467 	if (skb_shinfo(skb)->frag_list) {
468 		struct sk_buff *frag;
469 		int first_len = skb_pagelen(skb);
470 
471 		if (first_len - hlen > mtu ||
472 		    ((first_len - hlen) & 7) ||
473 		    (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
474 		    skb_cloned(skb))
475 			goto slow_path;
476 
477 		for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
478 			/* Correct geometry. */
479 			if (frag->len > mtu ||
480 			    ((frag->len & 7) && frag->next) ||
481 			    skb_headroom(frag) < hlen)
482 			    goto slow_path;
483 
484 			/* Partially cloned skb? */
485 			if (skb_shared(frag))
486 				goto slow_path;
487 
488 			BUG_ON(frag->sk);
489 			if (skb->sk) {
490 				sock_hold(skb->sk);
491 				frag->sk = skb->sk;
492 				frag->destructor = sock_wfree;
493 				skb->truesize -= frag->truesize;
494 			}
495 		}
496 
497 		/* Everything is OK. Generate! */
498 
499 		err = 0;
500 		offset = 0;
501 		frag = skb_shinfo(skb)->frag_list;
502 		skb_shinfo(skb)->frag_list = NULL;
503 		skb->data_len = first_len - skb_headlen(skb);
504 		skb->len = first_len;
505 		iph->tot_len = htons(first_len);
506 		iph->frag_off = htons(IP_MF);
507 		ip_send_check(iph);
508 
509 		for (;;) {
510 			/* Prepare header of the next frame,
511 			 * before previous one went down. */
512 			if (frag) {
513 				frag->ip_summed = CHECKSUM_NONE;
514 				frag->h.raw = frag->data;
515 				frag->nh.raw = __skb_push(frag, hlen);
516 				memcpy(frag->nh.raw, iph, hlen);
517 				iph = frag->nh.iph;
518 				iph->tot_len = htons(frag->len);
519 				ip_copy_metadata(frag, skb);
520 				if (offset == 0)
521 					ip_options_fragment(frag);
522 				offset += skb->len - hlen;
523 				iph->frag_off = htons(offset>>3);
524 				if (frag->next != NULL)
525 					iph->frag_off |= htons(IP_MF);
526 				/* Ready, complete checksum */
527 				ip_send_check(iph);
528 			}
529 
530 			err = output(skb);
531 
532 			if (err || !frag)
533 				break;
534 
535 			skb = frag;
536 			frag = skb->next;
537 			skb->next = NULL;
538 		}
539 
540 		if (err == 0) {
541 			IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
542 			return 0;
543 		}
544 
545 		while (frag) {
546 			skb = frag->next;
547 			kfree_skb(frag);
548 			frag = skb;
549 		}
550 		IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
551 		return err;
552 	}
553 
554 slow_path:
555 	left = skb->len - hlen;		/* Space per frame */
556 	ptr = raw + hlen;		/* Where to start from */
557 
558 #ifdef CONFIG_BRIDGE_NETFILTER
559 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
560 	 * we need to make room for the encapsulating header */
561 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, nf_bridge_pad(skb));
562 	mtu -= nf_bridge_pad(skb);
563 #else
564 	ll_rs = LL_RESERVED_SPACE(rt->u.dst.dev);
565 #endif
566 	/*
567 	 *	Fragment the datagram.
568 	 */
569 
570 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
571 	not_last_frag = iph->frag_off & htons(IP_MF);
572 
573 	/*
574 	 *	Keep copying data until we run out.
575 	 */
576 
577 	while(left > 0)	{
578 		len = left;
579 		/* IF: it doesn't fit, use 'mtu' - the data space left */
580 		if (len > mtu)
581 			len = mtu;
582 		/* IF: we are not sending upto and including the packet end
583 		   then align the next start on an eight byte boundary */
584 		if (len < left)	{
585 			len &= ~7;
586 		}
587 		/*
588 		 *	Allocate buffer.
589 		 */
590 
591 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
592 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
593 			err = -ENOMEM;
594 			goto fail;
595 		}
596 
597 		/*
598 		 *	Set up data on packet
599 		 */
600 
601 		ip_copy_metadata(skb2, skb);
602 		skb_reserve(skb2, ll_rs);
603 		skb_put(skb2, len + hlen);
604 		skb2->nh.raw = skb2->data;
605 		skb2->h.raw = skb2->data + hlen;
606 
607 		/*
608 		 *	Charge the memory for the fragment to any owner
609 		 *	it might possess
610 		 */
611 
612 		if (skb->sk)
613 			skb_set_owner_w(skb2, skb->sk);
614 
615 		/*
616 		 *	Copy the packet header into the new buffer.
617 		 */
618 
619 		memcpy(skb2->nh.raw, skb->data, hlen);
620 
621 		/*
622 		 *	Copy a block of the IP datagram.
623 		 */
624 		if (skb_copy_bits(skb, ptr, skb2->h.raw, len))
625 			BUG();
626 		left -= len;
627 
628 		/*
629 		 *	Fill in the new header fields.
630 		 */
631 		iph = skb2->nh.iph;
632 		iph->frag_off = htons((offset >> 3));
633 
634 		/* ANK: dirty, but effective trick. Upgrade options only if
635 		 * the segment to be fragmented was THE FIRST (otherwise,
636 		 * options are already fixed) and make it ONCE
637 		 * on the initial skb, so that all the following fragments
638 		 * will inherit fixed options.
639 		 */
640 		if (offset == 0)
641 			ip_options_fragment(skb);
642 
643 		/*
644 		 *	Added AC : If we are fragmenting a fragment that's not the
645 		 *		   last fragment then keep MF on each bit
646 		 */
647 		if (left > 0 || not_last_frag)
648 			iph->frag_off |= htons(IP_MF);
649 		ptr += len;
650 		offset += len;
651 
652 		/*
653 		 *	Put this fragment into the sending queue.
654 		 */
655 
656 		IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
657 
658 		iph->tot_len = htons(len + hlen);
659 
660 		ip_send_check(iph);
661 
662 		err = output(skb2);
663 		if (err)
664 			goto fail;
665 	}
666 	kfree_skb(skb);
667 	IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
668 	return err;
669 
670 fail:
671 	kfree_skb(skb);
672 	IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
673 	return err;
674 }
675 
676 int
677 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
678 {
679 	struct iovec *iov = from;
680 
681 	if (skb->ip_summed == CHECKSUM_HW) {
682 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
683 			return -EFAULT;
684 	} else {
685 		unsigned int csum = 0;
686 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
687 			return -EFAULT;
688 		skb->csum = csum_block_add(skb->csum, csum, odd);
689 	}
690 	return 0;
691 }
692 
693 static inline unsigned int
694 csum_page(struct page *page, int offset, int copy)
695 {
696 	char *kaddr;
697 	unsigned int csum;
698 	kaddr = kmap(page);
699 	csum = csum_partial(kaddr + offset, copy, 0);
700 	kunmap(page);
701 	return csum;
702 }
703 
704 static inline int ip_ufo_append_data(struct sock *sk,
705 			int getfrag(void *from, char *to, int offset, int len,
706 			       int odd, struct sk_buff *skb),
707 			void *from, int length, int hh_len, int fragheaderlen,
708 			int transhdrlen, int mtu,unsigned int flags)
709 {
710 	struct sk_buff *skb;
711 	int err;
712 
713 	/* There is support for UDP fragmentation offload by network
714 	 * device, so create one single skb packet containing complete
715 	 * udp datagram
716 	 */
717 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
718 		skb = sock_alloc_send_skb(sk,
719 			hh_len + fragheaderlen + transhdrlen + 20,
720 			(flags & MSG_DONTWAIT), &err);
721 
722 		if (skb == NULL)
723 			return err;
724 
725 		/* reserve space for Hardware header */
726 		skb_reserve(skb, hh_len);
727 
728 		/* create space for UDP/IP header */
729 		skb_put(skb,fragheaderlen + transhdrlen);
730 
731 		/* initialize network header pointer */
732 		skb->nh.raw = skb->data;
733 
734 		/* initialize protocol header pointer */
735 		skb->h.raw = skb->data + fragheaderlen;
736 
737 		skb->ip_summed = CHECKSUM_HW;
738 		skb->csum = 0;
739 		sk->sk_sndmsg_off = 0;
740 	}
741 
742 	err = skb_append_datato_frags(sk,skb, getfrag, from,
743 			       (length - transhdrlen));
744 	if (!err) {
745 		/* specify the length of each IP datagram fragment*/
746 		skb_shinfo(skb)->ufo_size = (mtu - fragheaderlen);
747 		__skb_queue_tail(&sk->sk_write_queue, skb);
748 
749 		return 0;
750 	}
751 	/* There is not enough support do UFO ,
752 	 * so follow normal path
753 	 */
754 	kfree_skb(skb);
755 	return err;
756 }
757 
758 /*
759  *	ip_append_data() and ip_append_page() can make one large IP datagram
760  *	from many pieces of data. Each pieces will be holded on the socket
761  *	until ip_push_pending_frames() is called. Each piece can be a page
762  *	or non-page data.
763  *
764  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
765  *	this interface potentially.
766  *
767  *	LATER: length must be adjusted by pad at tail, when it is required.
768  */
769 int ip_append_data(struct sock *sk,
770 		   int getfrag(void *from, char *to, int offset, int len,
771 			       int odd, struct sk_buff *skb),
772 		   void *from, int length, int transhdrlen,
773 		   struct ipcm_cookie *ipc, struct rtable *rt,
774 		   unsigned int flags)
775 {
776 	struct inet_sock *inet = inet_sk(sk);
777 	struct sk_buff *skb;
778 
779 	struct ip_options *opt = NULL;
780 	int hh_len;
781 	int exthdrlen;
782 	int mtu;
783 	int copy;
784 	int err;
785 	int offset = 0;
786 	unsigned int maxfraglen, fragheaderlen;
787 	int csummode = CHECKSUM_NONE;
788 
789 	if (flags&MSG_PROBE)
790 		return 0;
791 
792 	if (skb_queue_empty(&sk->sk_write_queue)) {
793 		/*
794 		 * setup for corking.
795 		 */
796 		opt = ipc->opt;
797 		if (opt) {
798 			if (inet->cork.opt == NULL) {
799 				inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
800 				if (unlikely(inet->cork.opt == NULL))
801 					return -ENOBUFS;
802 			}
803 			memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
804 			inet->cork.flags |= IPCORK_OPT;
805 			inet->cork.addr = ipc->addr;
806 		}
807 		dst_hold(&rt->u.dst);
808 		inet->cork.fragsize = mtu = dst_mtu(rt->u.dst.path);
809 		inet->cork.rt = rt;
810 		inet->cork.length = 0;
811 		sk->sk_sndmsg_page = NULL;
812 		sk->sk_sndmsg_off = 0;
813 		if ((exthdrlen = rt->u.dst.header_len) != 0) {
814 			length += exthdrlen;
815 			transhdrlen += exthdrlen;
816 		}
817 	} else {
818 		rt = inet->cork.rt;
819 		if (inet->cork.flags & IPCORK_OPT)
820 			opt = inet->cork.opt;
821 
822 		transhdrlen = 0;
823 		exthdrlen = 0;
824 		mtu = inet->cork.fragsize;
825 	}
826 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
827 
828 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
829 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
830 
831 	if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
832 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
833 		return -EMSGSIZE;
834 	}
835 
836 	/*
837 	 * transhdrlen > 0 means that this is the first fragment and we wish
838 	 * it won't be fragmented in the future.
839 	 */
840 	if (transhdrlen &&
841 	    length + fragheaderlen <= mtu &&
842 	    rt->u.dst.dev->features&(NETIF_F_IP_CSUM|NETIF_F_NO_CSUM|NETIF_F_HW_CSUM) &&
843 	    !exthdrlen)
844 		csummode = CHECKSUM_HW;
845 
846 	inet->cork.length += length;
847 	if (((length > mtu) && (sk->sk_protocol == IPPROTO_UDP)) &&
848 			(rt->u.dst.dev->features & NETIF_F_UFO)) {
849 
850 		err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
851 					 fragheaderlen, transhdrlen, mtu,
852 					 flags);
853 		if (err)
854 			goto error;
855 		return 0;
856 	}
857 
858 	/* So, what's going on in the loop below?
859 	 *
860 	 * We use calculated fragment length to generate chained skb,
861 	 * each of segments is IP fragment ready for sending to network after
862 	 * adding appropriate IP header.
863 	 */
864 
865 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
866 		goto alloc_new_skb;
867 
868 	while (length > 0) {
869 		/* Check if the remaining data fits into current packet. */
870 		copy = mtu - skb->len;
871 		if (copy < length)
872 			copy = maxfraglen - skb->len;
873 		if (copy <= 0) {
874 			char *data;
875 			unsigned int datalen;
876 			unsigned int fraglen;
877 			unsigned int fraggap;
878 			unsigned int alloclen;
879 			struct sk_buff *skb_prev;
880 alloc_new_skb:
881 			skb_prev = skb;
882 			if (skb_prev)
883 				fraggap = skb_prev->len - maxfraglen;
884 			else
885 				fraggap = 0;
886 
887 			/*
888 			 * If remaining data exceeds the mtu,
889 			 * we know we need more fragment(s).
890 			 */
891 			datalen = length + fraggap;
892 			if (datalen > mtu - fragheaderlen)
893 				datalen = maxfraglen - fragheaderlen;
894 			fraglen = datalen + fragheaderlen;
895 
896 			if ((flags & MSG_MORE) &&
897 			    !(rt->u.dst.dev->features&NETIF_F_SG))
898 				alloclen = mtu;
899 			else
900 				alloclen = datalen + fragheaderlen;
901 
902 			/* The last fragment gets additional space at tail.
903 			 * Note, with MSG_MORE we overallocate on fragments,
904 			 * because we have no idea what fragment will be
905 			 * the last.
906 			 */
907 			if (datalen == length)
908 				alloclen += rt->u.dst.trailer_len;
909 
910 			if (transhdrlen) {
911 				skb = sock_alloc_send_skb(sk,
912 						alloclen + hh_len + 15,
913 						(flags & MSG_DONTWAIT), &err);
914 			} else {
915 				skb = NULL;
916 				if (atomic_read(&sk->sk_wmem_alloc) <=
917 				    2 * sk->sk_sndbuf)
918 					skb = sock_wmalloc(sk,
919 							   alloclen + hh_len + 15, 1,
920 							   sk->sk_allocation);
921 				if (unlikely(skb == NULL))
922 					err = -ENOBUFS;
923 			}
924 			if (skb == NULL)
925 				goto error;
926 
927 			/*
928 			 *	Fill in the control structures
929 			 */
930 			skb->ip_summed = csummode;
931 			skb->csum = 0;
932 			skb_reserve(skb, hh_len);
933 
934 			/*
935 			 *	Find where to start putting bytes.
936 			 */
937 			data = skb_put(skb, fraglen);
938 			skb->nh.raw = data + exthdrlen;
939 			data += fragheaderlen;
940 			skb->h.raw = data + exthdrlen;
941 
942 			if (fraggap) {
943 				skb->csum = skb_copy_and_csum_bits(
944 					skb_prev, maxfraglen,
945 					data + transhdrlen, fraggap, 0);
946 				skb_prev->csum = csum_sub(skb_prev->csum,
947 							  skb->csum);
948 				data += fraggap;
949 				skb_trim(skb_prev, maxfraglen);
950 			}
951 
952 			copy = datalen - transhdrlen - fraggap;
953 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
954 				err = -EFAULT;
955 				kfree_skb(skb);
956 				goto error;
957 			}
958 
959 			offset += copy;
960 			length -= datalen - fraggap;
961 			transhdrlen = 0;
962 			exthdrlen = 0;
963 			csummode = CHECKSUM_NONE;
964 
965 			/*
966 			 * Put the packet on the pending queue.
967 			 */
968 			__skb_queue_tail(&sk->sk_write_queue, skb);
969 			continue;
970 		}
971 
972 		if (copy > length)
973 			copy = length;
974 
975 		if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
976 			unsigned int off;
977 
978 			off = skb->len;
979 			if (getfrag(from, skb_put(skb, copy),
980 					offset, copy, off, skb) < 0) {
981 				__skb_trim(skb, off);
982 				err = -EFAULT;
983 				goto error;
984 			}
985 		} else {
986 			int i = skb_shinfo(skb)->nr_frags;
987 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
988 			struct page *page = sk->sk_sndmsg_page;
989 			int off = sk->sk_sndmsg_off;
990 			unsigned int left;
991 
992 			if (page && (left = PAGE_SIZE - off) > 0) {
993 				if (copy >= left)
994 					copy = left;
995 				if (page != frag->page) {
996 					if (i == MAX_SKB_FRAGS) {
997 						err = -EMSGSIZE;
998 						goto error;
999 					}
1000 					get_page(page);
1001 	 				skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1002 					frag = &skb_shinfo(skb)->frags[i];
1003 				}
1004 			} else if (i < MAX_SKB_FRAGS) {
1005 				if (copy > PAGE_SIZE)
1006 					copy = PAGE_SIZE;
1007 				page = alloc_pages(sk->sk_allocation, 0);
1008 				if (page == NULL)  {
1009 					err = -ENOMEM;
1010 					goto error;
1011 				}
1012 				sk->sk_sndmsg_page = page;
1013 				sk->sk_sndmsg_off = 0;
1014 
1015 				skb_fill_page_desc(skb, i, page, 0, 0);
1016 				frag = &skb_shinfo(skb)->frags[i];
1017 				skb->truesize += PAGE_SIZE;
1018 				atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1019 			} else {
1020 				err = -EMSGSIZE;
1021 				goto error;
1022 			}
1023 			if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1024 				err = -EFAULT;
1025 				goto error;
1026 			}
1027 			sk->sk_sndmsg_off += copy;
1028 			frag->size += copy;
1029 			skb->len += copy;
1030 			skb->data_len += copy;
1031 		}
1032 		offset += copy;
1033 		length -= copy;
1034 	}
1035 
1036 	return 0;
1037 
1038 error:
1039 	inet->cork.length -= length;
1040 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1041 	return err;
1042 }
1043 
1044 ssize_t	ip_append_page(struct sock *sk, struct page *page,
1045 		       int offset, size_t size, int flags)
1046 {
1047 	struct inet_sock *inet = inet_sk(sk);
1048 	struct sk_buff *skb;
1049 	struct rtable *rt;
1050 	struct ip_options *opt = NULL;
1051 	int hh_len;
1052 	int mtu;
1053 	int len;
1054 	int err;
1055 	unsigned int maxfraglen, fragheaderlen, fraggap;
1056 
1057 	if (inet->hdrincl)
1058 		return -EPERM;
1059 
1060 	if (flags&MSG_PROBE)
1061 		return 0;
1062 
1063 	if (skb_queue_empty(&sk->sk_write_queue))
1064 		return -EINVAL;
1065 
1066 	rt = inet->cork.rt;
1067 	if (inet->cork.flags & IPCORK_OPT)
1068 		opt = inet->cork.opt;
1069 
1070 	if (!(rt->u.dst.dev->features&NETIF_F_SG))
1071 		return -EOPNOTSUPP;
1072 
1073 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1074 	mtu = inet->cork.fragsize;
1075 
1076 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1077 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1078 
1079 	if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1080 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1081 		return -EMSGSIZE;
1082 	}
1083 
1084 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1085 		return -EINVAL;
1086 
1087 	inet->cork.length += size;
1088 	if ((sk->sk_protocol == IPPROTO_UDP) &&
1089 	    (rt->u.dst.dev->features & NETIF_F_UFO))
1090 		skb_shinfo(skb)->ufo_size = (mtu - fragheaderlen);
1091 
1092 
1093 	while (size > 0) {
1094 		int i;
1095 
1096 		if (skb_shinfo(skb)->ufo_size)
1097 			len = size;
1098 		else {
1099 
1100 			/* Check if the remaining data fits into current packet. */
1101 			len = mtu - skb->len;
1102 			if (len < size)
1103 				len = maxfraglen - skb->len;
1104 		}
1105 		if (len <= 0) {
1106 			struct sk_buff *skb_prev;
1107 			char *data;
1108 			struct iphdr *iph;
1109 			int alloclen;
1110 
1111 			skb_prev = skb;
1112 			fraggap = skb_prev->len - maxfraglen;
1113 
1114 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1115 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1116 			if (unlikely(!skb)) {
1117 				err = -ENOBUFS;
1118 				goto error;
1119 			}
1120 
1121 			/*
1122 			 *	Fill in the control structures
1123 			 */
1124 			skb->ip_summed = CHECKSUM_NONE;
1125 			skb->csum = 0;
1126 			skb_reserve(skb, hh_len);
1127 
1128 			/*
1129 			 *	Find where to start putting bytes.
1130 			 */
1131 			data = skb_put(skb, fragheaderlen + fraggap);
1132 			skb->nh.iph = iph = (struct iphdr *)data;
1133 			data += fragheaderlen;
1134 			skb->h.raw = data;
1135 
1136 			if (fraggap) {
1137 				skb->csum = skb_copy_and_csum_bits(
1138 					skb_prev, maxfraglen,
1139 					data, fraggap, 0);
1140 				skb_prev->csum = csum_sub(skb_prev->csum,
1141 							  skb->csum);
1142 				skb_trim(skb_prev, maxfraglen);
1143 			}
1144 
1145 			/*
1146 			 * Put the packet on the pending queue.
1147 			 */
1148 			__skb_queue_tail(&sk->sk_write_queue, skb);
1149 			continue;
1150 		}
1151 
1152 		i = skb_shinfo(skb)->nr_frags;
1153 		if (len > size)
1154 			len = size;
1155 		if (skb_can_coalesce(skb, i, page, offset)) {
1156 			skb_shinfo(skb)->frags[i-1].size += len;
1157 		} else if (i < MAX_SKB_FRAGS) {
1158 			get_page(page);
1159 			skb_fill_page_desc(skb, i, page, offset, len);
1160 		} else {
1161 			err = -EMSGSIZE;
1162 			goto error;
1163 		}
1164 
1165 		if (skb->ip_summed == CHECKSUM_NONE) {
1166 			unsigned int csum;
1167 			csum = csum_page(page, offset, len);
1168 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1169 		}
1170 
1171 		skb->len += len;
1172 		skb->data_len += len;
1173 		offset += len;
1174 		size -= len;
1175 	}
1176 	return 0;
1177 
1178 error:
1179 	inet->cork.length -= size;
1180 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1181 	return err;
1182 }
1183 
1184 /*
1185  *	Combined all pending IP fragments on the socket as one IP datagram
1186  *	and push them out.
1187  */
1188 int ip_push_pending_frames(struct sock *sk)
1189 {
1190 	struct sk_buff *skb, *tmp_skb;
1191 	struct sk_buff **tail_skb;
1192 	struct inet_sock *inet = inet_sk(sk);
1193 	struct ip_options *opt = NULL;
1194 	struct rtable *rt = inet->cork.rt;
1195 	struct iphdr *iph;
1196 	__be16 df = 0;
1197 	__u8 ttl;
1198 	int err = 0;
1199 
1200 	if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1201 		goto out;
1202 	tail_skb = &(skb_shinfo(skb)->frag_list);
1203 
1204 	/* move skb->data to ip header from ext header */
1205 	if (skb->data < skb->nh.raw)
1206 		__skb_pull(skb, skb->nh.raw - skb->data);
1207 	while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1208 		__skb_pull(tmp_skb, skb->h.raw - skb->nh.raw);
1209 		*tail_skb = tmp_skb;
1210 		tail_skb = &(tmp_skb->next);
1211 		skb->len += tmp_skb->len;
1212 		skb->data_len += tmp_skb->len;
1213 		skb->truesize += tmp_skb->truesize;
1214 		__sock_put(tmp_skb->sk);
1215 		tmp_skb->destructor = NULL;
1216 		tmp_skb->sk = NULL;
1217 	}
1218 
1219 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1220 	 * to fragment the frame generated here. No matter, what transforms
1221 	 * how transforms change size of the packet, it will come out.
1222 	 */
1223 	if (inet->pmtudisc != IP_PMTUDISC_DO)
1224 		skb->local_df = 1;
1225 
1226 	/* DF bit is set when we want to see DF on outgoing frames.
1227 	 * If local_df is set too, we still allow to fragment this frame
1228 	 * locally. */
1229 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1230 	    (skb->len <= dst_mtu(&rt->u.dst) &&
1231 	     ip_dont_fragment(sk, &rt->u.dst)))
1232 		df = htons(IP_DF);
1233 
1234 	if (inet->cork.flags & IPCORK_OPT)
1235 		opt = inet->cork.opt;
1236 
1237 	if (rt->rt_type == RTN_MULTICAST)
1238 		ttl = inet->mc_ttl;
1239 	else
1240 		ttl = ip_select_ttl(inet, &rt->u.dst);
1241 
1242 	iph = (struct iphdr *)skb->data;
1243 	iph->version = 4;
1244 	iph->ihl = 5;
1245 	if (opt) {
1246 		iph->ihl += opt->optlen>>2;
1247 		ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1248 	}
1249 	iph->tos = inet->tos;
1250 	iph->tot_len = htons(skb->len);
1251 	iph->frag_off = df;
1252 	ip_select_ident(iph, &rt->u.dst, sk);
1253 	iph->ttl = ttl;
1254 	iph->protocol = sk->sk_protocol;
1255 	iph->saddr = rt->rt_src;
1256 	iph->daddr = rt->rt_dst;
1257 	ip_send_check(iph);
1258 
1259 	skb->priority = sk->sk_priority;
1260 	skb->dst = dst_clone(&rt->u.dst);
1261 
1262 	/* Netfilter gets whole the not fragmented skb. */
1263 	err = NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL,
1264 		      skb->dst->dev, dst_output);
1265 	if (err) {
1266 		if (err > 0)
1267 			err = inet->recverr ? net_xmit_errno(err) : 0;
1268 		if (err)
1269 			goto error;
1270 	}
1271 
1272 out:
1273 	inet->cork.flags &= ~IPCORK_OPT;
1274 	kfree(inet->cork.opt);
1275 	inet->cork.opt = NULL;
1276 	if (inet->cork.rt) {
1277 		ip_rt_put(inet->cork.rt);
1278 		inet->cork.rt = NULL;
1279 	}
1280 	return err;
1281 
1282 error:
1283 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1284 	goto out;
1285 }
1286 
1287 /*
1288  *	Throw away all pending data on the socket.
1289  */
1290 void ip_flush_pending_frames(struct sock *sk)
1291 {
1292 	struct inet_sock *inet = inet_sk(sk);
1293 	struct sk_buff *skb;
1294 
1295 	while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1296 		kfree_skb(skb);
1297 
1298 	inet->cork.flags &= ~IPCORK_OPT;
1299 	kfree(inet->cork.opt);
1300 	inet->cork.opt = NULL;
1301 	if (inet->cork.rt) {
1302 		ip_rt_put(inet->cork.rt);
1303 		inet->cork.rt = NULL;
1304 	}
1305 }
1306 
1307 
1308 /*
1309  *	Fetch data from kernel space and fill in checksum if needed.
1310  */
1311 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1312 			      int len, int odd, struct sk_buff *skb)
1313 {
1314 	unsigned int csum;
1315 
1316 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1317 	skb->csum = csum_block_add(skb->csum, csum, odd);
1318 	return 0;
1319 }
1320 
1321 /*
1322  *	Generic function to send a packet as reply to another packet.
1323  *	Used to send TCP resets so far. ICMP should use this function too.
1324  *
1325  *	Should run single threaded per socket because it uses the sock
1326  *     	structure to pass arguments.
1327  *
1328  *	LATER: switch from ip_build_xmit to ip_append_*
1329  */
1330 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1331 		   unsigned int len)
1332 {
1333 	struct inet_sock *inet = inet_sk(sk);
1334 	struct {
1335 		struct ip_options	opt;
1336 		char			data[40];
1337 	} replyopts;
1338 	struct ipcm_cookie ipc;
1339 	u32 daddr;
1340 	struct rtable *rt = (struct rtable*)skb->dst;
1341 
1342 	if (ip_options_echo(&replyopts.opt, skb))
1343 		return;
1344 
1345 	daddr = ipc.addr = rt->rt_src;
1346 	ipc.opt = NULL;
1347 
1348 	if (replyopts.opt.optlen) {
1349 		ipc.opt = &replyopts.opt;
1350 
1351 		if (ipc.opt->srr)
1352 			daddr = replyopts.opt.faddr;
1353 	}
1354 
1355 	{
1356 		struct flowi fl = { .nl_u = { .ip4_u =
1357 					      { .daddr = daddr,
1358 						.saddr = rt->rt_spec_dst,
1359 						.tos = RT_TOS(skb->nh.iph->tos) } },
1360 				    /* Not quite clean, but right. */
1361 				    .uli_u = { .ports =
1362 					       { .sport = skb->h.th->dest,
1363 					         .dport = skb->h.th->source } },
1364 				    .proto = sk->sk_protocol };
1365 		if (ip_route_output_key(&rt, &fl))
1366 			return;
1367 	}
1368 
1369 	/* And let IP do all the hard work.
1370 
1371 	   This chunk is not reenterable, hence spinlock.
1372 	   Note that it uses the fact, that this function is called
1373 	   with locally disabled BH and that sk cannot be already spinlocked.
1374 	 */
1375 	bh_lock_sock(sk);
1376 	inet->tos = skb->nh.iph->tos;
1377 	sk->sk_priority = skb->priority;
1378 	sk->sk_protocol = skb->nh.iph->protocol;
1379 	ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1380 		       &ipc, rt, MSG_DONTWAIT);
1381 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1382 		if (arg->csumoffset >= 0)
1383 			*((u16 *)skb->h.raw + arg->csumoffset) = csum_fold(csum_add(skb->csum, arg->csum));
1384 		skb->ip_summed = CHECKSUM_NONE;
1385 		ip_push_pending_frames(sk);
1386 	}
1387 
1388 	bh_unlock_sock(sk);
1389 
1390 	ip_rt_put(rt);
1391 }
1392 
1393 void __init ip_init(void)
1394 {
1395 	ip_rt_init();
1396 	inet_initpeers();
1397 
1398 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1399 	igmp_mc_proc_init();
1400 #endif
1401 }
1402 
1403 EXPORT_SYMBOL(ip_generic_getfrag);
1404 EXPORT_SYMBOL(ip_queue_xmit);
1405 EXPORT_SYMBOL(ip_send_check);
1406