1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The Internet Protocol (IP) output module. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Donald Becker, <becker@super.org> 11 * Alan Cox, <Alan.Cox@linux.org> 12 * Richard Underwood 13 * Stefan Becker, <stefanb@yello.ping.de> 14 * Jorge Cwik, <jorge@laser.satlink.net> 15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 16 * Hirokazu Takahashi, <taka@valinux.co.jp> 17 * 18 * See ip_input.c for original log 19 * 20 * Fixes: 21 * Alan Cox : Missing nonblock feature in ip_build_xmit. 22 * Mike Kilburn : htons() missing in ip_build_xmit. 23 * Bradford Johnson: Fix faulty handling of some frames when 24 * no route is found. 25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 26 * (in case if packet not accepted by 27 * output firewall rules) 28 * Mike McLagan : Routing by source 29 * Alexey Kuznetsov: use new route cache 30 * Andi Kleen: Fix broken PMTU recovery and remove 31 * some redundant tests. 32 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 33 * Andi Kleen : Replace ip_reply with ip_send_reply. 34 * Andi Kleen : Split fast and slow ip_build_xmit path 35 * for decreased register pressure on x86 36 * and more readibility. 37 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 38 * silently drop skb instead of failing with -EPERM. 39 * Detlev Wengorz : Copy protocol for fragments. 40 * Hirokazu Takahashi: HW checksumming for outgoing UDP 41 * datagrams. 42 * Hirokazu Takahashi: sendfile() on UDP works now. 43 */ 44 45 #include <linux/uaccess.h> 46 #include <linux/module.h> 47 #include <linux/types.h> 48 #include <linux/kernel.h> 49 #include <linux/mm.h> 50 #include <linux/string.h> 51 #include <linux/errno.h> 52 #include <linux/highmem.h> 53 #include <linux/slab.h> 54 55 #include <linux/socket.h> 56 #include <linux/sockios.h> 57 #include <linux/in.h> 58 #include <linux/inet.h> 59 #include <linux/netdevice.h> 60 #include <linux/etherdevice.h> 61 #include <linux/proc_fs.h> 62 #include <linux/stat.h> 63 #include <linux/init.h> 64 65 #include <net/snmp.h> 66 #include <net/ip.h> 67 #include <net/protocol.h> 68 #include <net/route.h> 69 #include <net/xfrm.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <net/arp.h> 73 #include <net/icmp.h> 74 #include <net/checksum.h> 75 #include <net/inetpeer.h> 76 #include <net/lwtunnel.h> 77 #include <linux/bpf-cgroup.h> 78 #include <linux/igmp.h> 79 #include <linux/netfilter_ipv4.h> 80 #include <linux/netfilter_bridge.h> 81 #include <linux/netlink.h> 82 #include <linux/tcp.h> 83 84 static int 85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 86 unsigned int mtu, 87 int (*output)(struct net *, struct sock *, struct sk_buff *)); 88 89 /* Generate a checksum for an outgoing IP datagram. */ 90 void ip_send_check(struct iphdr *iph) 91 { 92 iph->check = 0; 93 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 94 } 95 EXPORT_SYMBOL(ip_send_check); 96 97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 98 { 99 struct iphdr *iph = ip_hdr(skb); 100 101 iph->tot_len = htons(skb->len); 102 ip_send_check(iph); 103 104 /* if egress device is enslaved to an L3 master device pass the 105 * skb to its handler for processing 106 */ 107 skb = l3mdev_ip_out(sk, skb); 108 if (unlikely(!skb)) 109 return 0; 110 111 skb->protocol = htons(ETH_P_IP); 112 113 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 114 net, sk, skb, NULL, skb_dst(skb)->dev, 115 dst_output); 116 } 117 118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 119 { 120 int err; 121 122 err = __ip_local_out(net, sk, skb); 123 if (likely(err == 1)) 124 err = dst_output(net, sk, skb); 125 126 return err; 127 } 128 EXPORT_SYMBOL_GPL(ip_local_out); 129 130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 131 { 132 int ttl = inet->uc_ttl; 133 134 if (ttl < 0) 135 ttl = ip4_dst_hoplimit(dst); 136 return ttl; 137 } 138 139 /* 140 * Add an ip header to a skbuff and send it out. 141 * 142 */ 143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 144 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 145 { 146 struct inet_sock *inet = inet_sk(sk); 147 struct rtable *rt = skb_rtable(skb); 148 struct net *net = sock_net(sk); 149 struct iphdr *iph; 150 151 /* Build the IP header. */ 152 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 153 skb_reset_network_header(skb); 154 iph = ip_hdr(skb); 155 iph->version = 4; 156 iph->ihl = 5; 157 iph->tos = inet->tos; 158 iph->ttl = ip_select_ttl(inet, &rt->dst); 159 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 160 iph->saddr = saddr; 161 iph->protocol = sk->sk_protocol; 162 if (ip_dont_fragment(sk, &rt->dst)) { 163 iph->frag_off = htons(IP_DF); 164 iph->id = 0; 165 } else { 166 iph->frag_off = 0; 167 __ip_select_ident(net, iph, 1); 168 } 169 170 if (opt && opt->opt.optlen) { 171 iph->ihl += opt->opt.optlen>>2; 172 ip_options_build(skb, &opt->opt, daddr, rt, 0); 173 } 174 175 skb->priority = sk->sk_priority; 176 if (!skb->mark) 177 skb->mark = sk->sk_mark; 178 179 /* Send it out. */ 180 return ip_local_out(net, skb->sk, skb); 181 } 182 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 183 184 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 185 { 186 struct dst_entry *dst = skb_dst(skb); 187 struct rtable *rt = (struct rtable *)dst; 188 struct net_device *dev = dst->dev; 189 unsigned int hh_len = LL_RESERVED_SPACE(dev); 190 struct neighbour *neigh; 191 u32 nexthop; 192 193 if (rt->rt_type == RTN_MULTICAST) { 194 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 195 } else if (rt->rt_type == RTN_BROADCAST) 196 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 197 198 /* Be paranoid, rather than too clever. */ 199 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 200 struct sk_buff *skb2; 201 202 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 203 if (!skb2) { 204 kfree_skb(skb); 205 return -ENOMEM; 206 } 207 if (skb->sk) 208 skb_set_owner_w(skb2, skb->sk); 209 consume_skb(skb); 210 skb = skb2; 211 } 212 213 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 214 int res = lwtunnel_xmit(skb); 215 216 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 217 return res; 218 } 219 220 rcu_read_lock_bh(); 221 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr); 222 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 223 if (unlikely(!neigh)) 224 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 225 if (!IS_ERR(neigh)) { 226 int res; 227 228 sock_confirm_neigh(skb, neigh); 229 res = neigh_output(neigh, skb); 230 231 rcu_read_unlock_bh(); 232 return res; 233 } 234 rcu_read_unlock_bh(); 235 236 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 237 __func__); 238 kfree_skb(skb); 239 return -EINVAL; 240 } 241 242 static int ip_finish_output_gso(struct net *net, struct sock *sk, 243 struct sk_buff *skb, unsigned int mtu) 244 { 245 netdev_features_t features; 246 struct sk_buff *segs; 247 int ret = 0; 248 249 /* common case: seglen is <= mtu 250 */ 251 if (skb_gso_validate_mtu(skb, mtu)) 252 return ip_finish_output2(net, sk, skb); 253 254 /* Slowpath - GSO segment length exceeds the egress MTU. 255 * 256 * This can happen in several cases: 257 * - Forwarding of a TCP GRO skb, when DF flag is not set. 258 * - Forwarding of an skb that arrived on a virtualization interface 259 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 260 * stack. 261 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 262 * interface with a smaller MTU. 263 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 264 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 265 * insufficent MTU. 266 */ 267 features = netif_skb_features(skb); 268 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET); 269 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 270 if (IS_ERR_OR_NULL(segs)) { 271 kfree_skb(skb); 272 return -ENOMEM; 273 } 274 275 consume_skb(skb); 276 277 do { 278 struct sk_buff *nskb = segs->next; 279 int err; 280 281 segs->next = NULL; 282 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 283 284 if (err && ret == 0) 285 ret = err; 286 segs = nskb; 287 } while (segs); 288 289 return ret; 290 } 291 292 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 293 { 294 unsigned int mtu; 295 int ret; 296 297 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 298 if (ret) { 299 kfree_skb(skb); 300 return ret; 301 } 302 303 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 304 /* Policy lookup after SNAT yielded a new policy */ 305 if (skb_dst(skb)->xfrm) { 306 IPCB(skb)->flags |= IPSKB_REROUTED; 307 return dst_output(net, sk, skb); 308 } 309 #endif 310 mtu = ip_skb_dst_mtu(sk, skb); 311 if (skb_is_gso(skb)) 312 return ip_finish_output_gso(net, sk, skb, mtu); 313 314 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 315 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 316 317 return ip_finish_output2(net, sk, skb); 318 } 319 320 static int ip_mc_finish_output(struct net *net, struct sock *sk, 321 struct sk_buff *skb) 322 { 323 int ret; 324 325 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 326 if (ret) { 327 kfree_skb(skb); 328 return ret; 329 } 330 331 return dev_loopback_xmit(net, sk, skb); 332 } 333 334 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 335 { 336 struct rtable *rt = skb_rtable(skb); 337 struct net_device *dev = rt->dst.dev; 338 339 /* 340 * If the indicated interface is up and running, send the packet. 341 */ 342 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 343 344 skb->dev = dev; 345 skb->protocol = htons(ETH_P_IP); 346 347 /* 348 * Multicasts are looped back for other local users 349 */ 350 351 if (rt->rt_flags&RTCF_MULTICAST) { 352 if (sk_mc_loop(sk) 353 #ifdef CONFIG_IP_MROUTE 354 /* Small optimization: do not loopback not local frames, 355 which returned after forwarding; they will be dropped 356 by ip_mr_input in any case. 357 Note, that local frames are looped back to be delivered 358 to local recipients. 359 360 This check is duplicated in ip_mr_input at the moment. 361 */ 362 && 363 ((rt->rt_flags & RTCF_LOCAL) || 364 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 365 #endif 366 ) { 367 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 368 if (newskb) 369 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 370 net, sk, newskb, NULL, newskb->dev, 371 ip_mc_finish_output); 372 } 373 374 /* Multicasts with ttl 0 must not go beyond the host */ 375 376 if (ip_hdr(skb)->ttl == 0) { 377 kfree_skb(skb); 378 return 0; 379 } 380 } 381 382 if (rt->rt_flags&RTCF_BROADCAST) { 383 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 384 if (newskb) 385 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 386 net, sk, newskb, NULL, newskb->dev, 387 ip_mc_finish_output); 388 } 389 390 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 391 net, sk, skb, NULL, skb->dev, 392 ip_finish_output, 393 !(IPCB(skb)->flags & IPSKB_REROUTED)); 394 } 395 396 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 397 { 398 struct net_device *dev = skb_dst(skb)->dev; 399 400 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 401 402 skb->dev = dev; 403 skb->protocol = htons(ETH_P_IP); 404 405 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 406 net, sk, skb, NULL, dev, 407 ip_finish_output, 408 !(IPCB(skb)->flags & IPSKB_REROUTED)); 409 } 410 411 /* 412 * copy saddr and daddr, possibly using 64bit load/stores 413 * Equivalent to : 414 * iph->saddr = fl4->saddr; 415 * iph->daddr = fl4->daddr; 416 */ 417 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 418 { 419 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 420 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 421 memcpy(&iph->saddr, &fl4->saddr, 422 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 423 } 424 425 /* Note: skb->sk can be different from sk, in case of tunnels */ 426 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 427 { 428 struct inet_sock *inet = inet_sk(sk); 429 struct net *net = sock_net(sk); 430 struct ip_options_rcu *inet_opt; 431 struct flowi4 *fl4; 432 struct rtable *rt; 433 struct iphdr *iph; 434 int res; 435 436 /* Skip all of this if the packet is already routed, 437 * f.e. by something like SCTP. 438 */ 439 rcu_read_lock(); 440 inet_opt = rcu_dereference(inet->inet_opt); 441 fl4 = &fl->u.ip4; 442 rt = skb_rtable(skb); 443 if (rt) 444 goto packet_routed; 445 446 /* Make sure we can route this packet. */ 447 rt = (struct rtable *)__sk_dst_check(sk, 0); 448 if (!rt) { 449 __be32 daddr; 450 451 /* Use correct destination address if we have options. */ 452 daddr = inet->inet_daddr; 453 if (inet_opt && inet_opt->opt.srr) 454 daddr = inet_opt->opt.faddr; 455 456 /* If this fails, retransmit mechanism of transport layer will 457 * keep trying until route appears or the connection times 458 * itself out. 459 */ 460 rt = ip_route_output_ports(net, fl4, sk, 461 daddr, inet->inet_saddr, 462 inet->inet_dport, 463 inet->inet_sport, 464 sk->sk_protocol, 465 RT_CONN_FLAGS(sk), 466 sk->sk_bound_dev_if); 467 if (IS_ERR(rt)) 468 goto no_route; 469 sk_setup_caps(sk, &rt->dst); 470 } 471 skb_dst_set_noref(skb, &rt->dst); 472 473 packet_routed: 474 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 475 goto no_route; 476 477 /* OK, we know where to send it, allocate and build IP header. */ 478 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 479 skb_reset_network_header(skb); 480 iph = ip_hdr(skb); 481 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff)); 482 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 483 iph->frag_off = htons(IP_DF); 484 else 485 iph->frag_off = 0; 486 iph->ttl = ip_select_ttl(inet, &rt->dst); 487 iph->protocol = sk->sk_protocol; 488 ip_copy_addrs(iph, fl4); 489 490 /* Transport layer set skb->h.foo itself. */ 491 492 if (inet_opt && inet_opt->opt.optlen) { 493 iph->ihl += inet_opt->opt.optlen >> 2; 494 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 495 } 496 497 ip_select_ident_segs(net, skb, sk, 498 skb_shinfo(skb)->gso_segs ?: 1); 499 500 /* TODO : should we use skb->sk here instead of sk ? */ 501 skb->priority = sk->sk_priority; 502 skb->mark = sk->sk_mark; 503 504 res = ip_local_out(net, sk, skb); 505 rcu_read_unlock(); 506 return res; 507 508 no_route: 509 rcu_read_unlock(); 510 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 511 kfree_skb(skb); 512 return -EHOSTUNREACH; 513 } 514 EXPORT_SYMBOL(ip_queue_xmit); 515 516 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 517 { 518 to->pkt_type = from->pkt_type; 519 to->priority = from->priority; 520 to->protocol = from->protocol; 521 skb_dst_drop(to); 522 skb_dst_copy(to, from); 523 to->dev = from->dev; 524 to->mark = from->mark; 525 526 /* Copy the flags to each fragment. */ 527 IPCB(to)->flags = IPCB(from)->flags; 528 529 #ifdef CONFIG_NET_SCHED 530 to->tc_index = from->tc_index; 531 #endif 532 nf_copy(to, from); 533 #if IS_ENABLED(CONFIG_IP_VS) 534 to->ipvs_property = from->ipvs_property; 535 #endif 536 skb_copy_secmark(to, from); 537 } 538 539 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 540 unsigned int mtu, 541 int (*output)(struct net *, struct sock *, struct sk_buff *)) 542 { 543 struct iphdr *iph = ip_hdr(skb); 544 545 if ((iph->frag_off & htons(IP_DF)) == 0) 546 return ip_do_fragment(net, sk, skb, output); 547 548 if (unlikely(!skb->ignore_df || 549 (IPCB(skb)->frag_max_size && 550 IPCB(skb)->frag_max_size > mtu))) { 551 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 552 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 553 htonl(mtu)); 554 kfree_skb(skb); 555 return -EMSGSIZE; 556 } 557 558 return ip_do_fragment(net, sk, skb, output); 559 } 560 561 /* 562 * This IP datagram is too large to be sent in one piece. Break it up into 563 * smaller pieces (each of size equal to IP header plus 564 * a block of the data of the original IP data part) that will yet fit in a 565 * single device frame, and queue such a frame for sending. 566 */ 567 568 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 569 int (*output)(struct net *, struct sock *, struct sk_buff *)) 570 { 571 struct iphdr *iph; 572 int ptr; 573 struct sk_buff *skb2; 574 unsigned int mtu, hlen, left, len, ll_rs; 575 int offset; 576 __be16 not_last_frag; 577 struct rtable *rt = skb_rtable(skb); 578 int err = 0; 579 580 /* for offloaded checksums cleanup checksum before fragmentation */ 581 if (skb->ip_summed == CHECKSUM_PARTIAL && 582 (err = skb_checksum_help(skb))) 583 goto fail; 584 585 /* 586 * Point into the IP datagram header. 587 */ 588 589 iph = ip_hdr(skb); 590 591 mtu = ip_skb_dst_mtu(sk, skb); 592 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 593 mtu = IPCB(skb)->frag_max_size; 594 595 /* 596 * Setup starting values. 597 */ 598 599 hlen = iph->ihl * 4; 600 mtu = mtu - hlen; /* Size of data space */ 601 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 602 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 603 604 /* When frag_list is given, use it. First, check its validity: 605 * some transformers could create wrong frag_list or break existing 606 * one, it is not prohibited. In this case fall back to copying. 607 * 608 * LATER: this step can be merged to real generation of fragments, 609 * we can switch to copy when see the first bad fragment. 610 */ 611 if (skb_has_frag_list(skb)) { 612 struct sk_buff *frag, *frag2; 613 unsigned int first_len = skb_pagelen(skb); 614 615 if (first_len - hlen > mtu || 616 ((first_len - hlen) & 7) || 617 ip_is_fragment(iph) || 618 skb_cloned(skb) || 619 skb_headroom(skb) < ll_rs) 620 goto slow_path; 621 622 skb_walk_frags(skb, frag) { 623 /* Correct geometry. */ 624 if (frag->len > mtu || 625 ((frag->len & 7) && frag->next) || 626 skb_headroom(frag) < hlen + ll_rs) 627 goto slow_path_clean; 628 629 /* Partially cloned skb? */ 630 if (skb_shared(frag)) 631 goto slow_path_clean; 632 633 BUG_ON(frag->sk); 634 if (skb->sk) { 635 frag->sk = skb->sk; 636 frag->destructor = sock_wfree; 637 } 638 skb->truesize -= frag->truesize; 639 } 640 641 /* Everything is OK. Generate! */ 642 643 err = 0; 644 offset = 0; 645 frag = skb_shinfo(skb)->frag_list; 646 skb_frag_list_init(skb); 647 skb->data_len = first_len - skb_headlen(skb); 648 skb->len = first_len; 649 iph->tot_len = htons(first_len); 650 iph->frag_off = htons(IP_MF); 651 ip_send_check(iph); 652 653 for (;;) { 654 /* Prepare header of the next frame, 655 * before previous one went down. */ 656 if (frag) { 657 frag->ip_summed = CHECKSUM_NONE; 658 skb_reset_transport_header(frag); 659 __skb_push(frag, hlen); 660 skb_reset_network_header(frag); 661 memcpy(skb_network_header(frag), iph, hlen); 662 iph = ip_hdr(frag); 663 iph->tot_len = htons(frag->len); 664 ip_copy_metadata(frag, skb); 665 if (offset == 0) 666 ip_options_fragment(frag); 667 offset += skb->len - hlen; 668 iph->frag_off = htons(offset>>3); 669 if (frag->next) 670 iph->frag_off |= htons(IP_MF); 671 /* Ready, complete checksum */ 672 ip_send_check(iph); 673 } 674 675 err = output(net, sk, skb); 676 677 if (!err) 678 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 679 if (err || !frag) 680 break; 681 682 skb = frag; 683 frag = skb->next; 684 skb->next = NULL; 685 } 686 687 if (err == 0) { 688 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 689 return 0; 690 } 691 692 while (frag) { 693 skb = frag->next; 694 kfree_skb(frag); 695 frag = skb; 696 } 697 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 698 return err; 699 700 slow_path_clean: 701 skb_walk_frags(skb, frag2) { 702 if (frag2 == frag) 703 break; 704 frag2->sk = NULL; 705 frag2->destructor = NULL; 706 skb->truesize += frag2->truesize; 707 } 708 } 709 710 slow_path: 711 iph = ip_hdr(skb); 712 713 left = skb->len - hlen; /* Space per frame */ 714 ptr = hlen; /* Where to start from */ 715 716 /* 717 * Fragment the datagram. 718 */ 719 720 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 721 not_last_frag = iph->frag_off & htons(IP_MF); 722 723 /* 724 * Keep copying data until we run out. 725 */ 726 727 while (left > 0) { 728 len = left; 729 /* IF: it doesn't fit, use 'mtu' - the data space left */ 730 if (len > mtu) 731 len = mtu; 732 /* IF: we are not sending up to and including the packet end 733 then align the next start on an eight byte boundary */ 734 if (len < left) { 735 len &= ~7; 736 } 737 738 /* Allocate buffer */ 739 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); 740 if (!skb2) { 741 err = -ENOMEM; 742 goto fail; 743 } 744 745 /* 746 * Set up data on packet 747 */ 748 749 ip_copy_metadata(skb2, skb); 750 skb_reserve(skb2, ll_rs); 751 skb_put(skb2, len + hlen); 752 skb_reset_network_header(skb2); 753 skb2->transport_header = skb2->network_header + hlen; 754 755 /* 756 * Charge the memory for the fragment to any owner 757 * it might possess 758 */ 759 760 if (skb->sk) 761 skb_set_owner_w(skb2, skb->sk); 762 763 /* 764 * Copy the packet header into the new buffer. 765 */ 766 767 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); 768 769 /* 770 * Copy a block of the IP datagram. 771 */ 772 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) 773 BUG(); 774 left -= len; 775 776 /* 777 * Fill in the new header fields. 778 */ 779 iph = ip_hdr(skb2); 780 iph->frag_off = htons((offset >> 3)); 781 782 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) 783 iph->frag_off |= htons(IP_DF); 784 785 /* ANK: dirty, but effective trick. Upgrade options only if 786 * the segment to be fragmented was THE FIRST (otherwise, 787 * options are already fixed) and make it ONCE 788 * on the initial skb, so that all the following fragments 789 * will inherit fixed options. 790 */ 791 if (offset == 0) 792 ip_options_fragment(skb); 793 794 /* 795 * Added AC : If we are fragmenting a fragment that's not the 796 * last fragment then keep MF on each bit 797 */ 798 if (left > 0 || not_last_frag) 799 iph->frag_off |= htons(IP_MF); 800 ptr += len; 801 offset += len; 802 803 /* 804 * Put this fragment into the sending queue. 805 */ 806 iph->tot_len = htons(len + hlen); 807 808 ip_send_check(iph); 809 810 err = output(net, sk, skb2); 811 if (err) 812 goto fail; 813 814 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 815 } 816 consume_skb(skb); 817 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 818 return err; 819 820 fail: 821 kfree_skb(skb); 822 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 823 return err; 824 } 825 EXPORT_SYMBOL(ip_do_fragment); 826 827 int 828 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 829 { 830 struct msghdr *msg = from; 831 832 if (skb->ip_summed == CHECKSUM_PARTIAL) { 833 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 834 return -EFAULT; 835 } else { 836 __wsum csum = 0; 837 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 838 return -EFAULT; 839 skb->csum = csum_block_add(skb->csum, csum, odd); 840 } 841 return 0; 842 } 843 EXPORT_SYMBOL(ip_generic_getfrag); 844 845 static inline __wsum 846 csum_page(struct page *page, int offset, int copy) 847 { 848 char *kaddr; 849 __wsum csum; 850 kaddr = kmap(page); 851 csum = csum_partial(kaddr + offset, copy, 0); 852 kunmap(page); 853 return csum; 854 } 855 856 static inline int ip_ufo_append_data(struct sock *sk, 857 struct sk_buff_head *queue, 858 int getfrag(void *from, char *to, int offset, int len, 859 int odd, struct sk_buff *skb), 860 void *from, int length, int hh_len, int fragheaderlen, 861 int transhdrlen, int maxfraglen, unsigned int flags) 862 { 863 struct sk_buff *skb; 864 int err; 865 866 /* There is support for UDP fragmentation offload by network 867 * device, so create one single skb packet containing complete 868 * udp datagram 869 */ 870 skb = skb_peek_tail(queue); 871 if (!skb) { 872 skb = sock_alloc_send_skb(sk, 873 hh_len + fragheaderlen + transhdrlen + 20, 874 (flags & MSG_DONTWAIT), &err); 875 876 if (!skb) 877 return err; 878 879 /* reserve space for Hardware header */ 880 skb_reserve(skb, hh_len); 881 882 /* create space for UDP/IP header */ 883 skb_put(skb, fragheaderlen + transhdrlen); 884 885 /* initialize network header pointer */ 886 skb_reset_network_header(skb); 887 888 /* initialize protocol header pointer */ 889 skb->transport_header = skb->network_header + fragheaderlen; 890 891 skb->csum = 0; 892 893 if (flags & MSG_CONFIRM) 894 skb_set_dst_pending_confirm(skb, 1); 895 896 __skb_queue_tail(queue, skb); 897 } else if (skb_is_gso(skb)) { 898 goto append; 899 } 900 901 skb->ip_summed = CHECKSUM_PARTIAL; 902 /* specify the length of each IP datagram fragment */ 903 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen; 904 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 905 906 append: 907 return skb_append_datato_frags(sk, skb, getfrag, from, 908 (length - transhdrlen)); 909 } 910 911 static int __ip_append_data(struct sock *sk, 912 struct flowi4 *fl4, 913 struct sk_buff_head *queue, 914 struct inet_cork *cork, 915 struct page_frag *pfrag, 916 int getfrag(void *from, char *to, int offset, 917 int len, int odd, struct sk_buff *skb), 918 void *from, int length, int transhdrlen, 919 unsigned int flags) 920 { 921 struct inet_sock *inet = inet_sk(sk); 922 struct sk_buff *skb; 923 924 struct ip_options *opt = cork->opt; 925 int hh_len; 926 int exthdrlen; 927 int mtu; 928 int copy; 929 int err; 930 int offset = 0; 931 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 932 int csummode = CHECKSUM_NONE; 933 struct rtable *rt = (struct rtable *)cork->dst; 934 u32 tskey = 0; 935 936 skb = skb_peek_tail(queue); 937 938 exthdrlen = !skb ? rt->dst.header_len : 0; 939 mtu = cork->fragsize; 940 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 941 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 942 tskey = sk->sk_tskey++; 943 944 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 945 946 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 947 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 948 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 949 950 if (cork->length + length > maxnonfragsize - fragheaderlen) { 951 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 952 mtu - (opt ? opt->optlen : 0)); 953 return -EMSGSIZE; 954 } 955 956 /* 957 * transhdrlen > 0 means that this is the first fragment and we wish 958 * it won't be fragmented in the future. 959 */ 960 if (transhdrlen && 961 length + fragheaderlen <= mtu && 962 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 963 !(flags & MSG_MORE) && 964 !exthdrlen) 965 csummode = CHECKSUM_PARTIAL; 966 967 cork->length += length; 968 if ((skb && skb_is_gso(skb)) || 969 (((length + (skb ? skb->len : fragheaderlen)) > mtu) && 970 (skb_queue_len(queue) <= 1) && 971 (sk->sk_protocol == IPPROTO_UDP) && 972 (rt->dst.dev->features & NETIF_F_UFO) && !dst_xfrm(&rt->dst) && 973 (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx)) { 974 err = ip_ufo_append_data(sk, queue, getfrag, from, length, 975 hh_len, fragheaderlen, transhdrlen, 976 maxfraglen, flags); 977 if (err) 978 goto error; 979 return 0; 980 } 981 982 /* So, what's going on in the loop below? 983 * 984 * We use calculated fragment length to generate chained skb, 985 * each of segments is IP fragment ready for sending to network after 986 * adding appropriate IP header. 987 */ 988 989 if (!skb) 990 goto alloc_new_skb; 991 992 while (length > 0) { 993 /* Check if the remaining data fits into current packet. */ 994 copy = mtu - skb->len; 995 if (copy < length) 996 copy = maxfraglen - skb->len; 997 if (copy <= 0) { 998 char *data; 999 unsigned int datalen; 1000 unsigned int fraglen; 1001 unsigned int fraggap; 1002 unsigned int alloclen; 1003 struct sk_buff *skb_prev; 1004 alloc_new_skb: 1005 skb_prev = skb; 1006 if (skb_prev) 1007 fraggap = skb_prev->len - maxfraglen; 1008 else 1009 fraggap = 0; 1010 1011 /* 1012 * If remaining data exceeds the mtu, 1013 * we know we need more fragment(s). 1014 */ 1015 datalen = length + fraggap; 1016 if (datalen > mtu - fragheaderlen) 1017 datalen = maxfraglen - fragheaderlen; 1018 fraglen = datalen + fragheaderlen; 1019 1020 if ((flags & MSG_MORE) && 1021 !(rt->dst.dev->features&NETIF_F_SG)) 1022 alloclen = mtu; 1023 else 1024 alloclen = fraglen; 1025 1026 alloclen += exthdrlen; 1027 1028 /* The last fragment gets additional space at tail. 1029 * Note, with MSG_MORE we overallocate on fragments, 1030 * because we have no idea what fragment will be 1031 * the last. 1032 */ 1033 if (datalen == length + fraggap) 1034 alloclen += rt->dst.trailer_len; 1035 1036 if (transhdrlen) { 1037 skb = sock_alloc_send_skb(sk, 1038 alloclen + hh_len + 15, 1039 (flags & MSG_DONTWAIT), &err); 1040 } else { 1041 skb = NULL; 1042 if (refcount_read(&sk->sk_wmem_alloc) <= 1043 2 * sk->sk_sndbuf) 1044 skb = sock_wmalloc(sk, 1045 alloclen + hh_len + 15, 1, 1046 sk->sk_allocation); 1047 if (unlikely(!skb)) 1048 err = -ENOBUFS; 1049 } 1050 if (!skb) 1051 goto error; 1052 1053 /* 1054 * Fill in the control structures 1055 */ 1056 skb->ip_summed = csummode; 1057 skb->csum = 0; 1058 skb_reserve(skb, hh_len); 1059 1060 /* only the initial fragment is time stamped */ 1061 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1062 cork->tx_flags = 0; 1063 skb_shinfo(skb)->tskey = tskey; 1064 tskey = 0; 1065 1066 /* 1067 * Find where to start putting bytes. 1068 */ 1069 data = skb_put(skb, fraglen + exthdrlen); 1070 skb_set_network_header(skb, exthdrlen); 1071 skb->transport_header = (skb->network_header + 1072 fragheaderlen); 1073 data += fragheaderlen + exthdrlen; 1074 1075 if (fraggap) { 1076 skb->csum = skb_copy_and_csum_bits( 1077 skb_prev, maxfraglen, 1078 data + transhdrlen, fraggap, 0); 1079 skb_prev->csum = csum_sub(skb_prev->csum, 1080 skb->csum); 1081 data += fraggap; 1082 pskb_trim_unique(skb_prev, maxfraglen); 1083 } 1084 1085 copy = datalen - transhdrlen - fraggap; 1086 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1087 err = -EFAULT; 1088 kfree_skb(skb); 1089 goto error; 1090 } 1091 1092 offset += copy; 1093 length -= datalen - fraggap; 1094 transhdrlen = 0; 1095 exthdrlen = 0; 1096 csummode = CHECKSUM_NONE; 1097 1098 if ((flags & MSG_CONFIRM) && !skb_prev) 1099 skb_set_dst_pending_confirm(skb, 1); 1100 1101 /* 1102 * Put the packet on the pending queue. 1103 */ 1104 __skb_queue_tail(queue, skb); 1105 continue; 1106 } 1107 1108 if (copy > length) 1109 copy = length; 1110 1111 if (!(rt->dst.dev->features&NETIF_F_SG)) { 1112 unsigned int off; 1113 1114 off = skb->len; 1115 if (getfrag(from, skb_put(skb, copy), 1116 offset, copy, off, skb) < 0) { 1117 __skb_trim(skb, off); 1118 err = -EFAULT; 1119 goto error; 1120 } 1121 } else { 1122 int i = skb_shinfo(skb)->nr_frags; 1123 1124 err = -ENOMEM; 1125 if (!sk_page_frag_refill(sk, pfrag)) 1126 goto error; 1127 1128 if (!skb_can_coalesce(skb, i, pfrag->page, 1129 pfrag->offset)) { 1130 err = -EMSGSIZE; 1131 if (i == MAX_SKB_FRAGS) 1132 goto error; 1133 1134 __skb_fill_page_desc(skb, i, pfrag->page, 1135 pfrag->offset, 0); 1136 skb_shinfo(skb)->nr_frags = ++i; 1137 get_page(pfrag->page); 1138 } 1139 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1140 if (getfrag(from, 1141 page_address(pfrag->page) + pfrag->offset, 1142 offset, copy, skb->len, skb) < 0) 1143 goto error_efault; 1144 1145 pfrag->offset += copy; 1146 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1147 skb->len += copy; 1148 skb->data_len += copy; 1149 skb->truesize += copy; 1150 refcount_add(copy, &sk->sk_wmem_alloc); 1151 } 1152 offset += copy; 1153 length -= copy; 1154 } 1155 1156 return 0; 1157 1158 error_efault: 1159 err = -EFAULT; 1160 error: 1161 cork->length -= length; 1162 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1163 return err; 1164 } 1165 1166 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1167 struct ipcm_cookie *ipc, struct rtable **rtp) 1168 { 1169 struct ip_options_rcu *opt; 1170 struct rtable *rt; 1171 1172 /* 1173 * setup for corking. 1174 */ 1175 opt = ipc->opt; 1176 if (opt) { 1177 if (!cork->opt) { 1178 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1179 sk->sk_allocation); 1180 if (unlikely(!cork->opt)) 1181 return -ENOBUFS; 1182 } 1183 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1184 cork->flags |= IPCORK_OPT; 1185 cork->addr = ipc->addr; 1186 } 1187 rt = *rtp; 1188 if (unlikely(!rt)) 1189 return -EFAULT; 1190 /* 1191 * We steal reference to this route, caller should not release it 1192 */ 1193 *rtp = NULL; 1194 cork->fragsize = ip_sk_use_pmtu(sk) ? 1195 dst_mtu(&rt->dst) : rt->dst.dev->mtu; 1196 cork->dst = &rt->dst; 1197 cork->length = 0; 1198 cork->ttl = ipc->ttl; 1199 cork->tos = ipc->tos; 1200 cork->priority = ipc->priority; 1201 cork->tx_flags = ipc->tx_flags; 1202 1203 return 0; 1204 } 1205 1206 /* 1207 * ip_append_data() and ip_append_page() can make one large IP datagram 1208 * from many pieces of data. Each pieces will be holded on the socket 1209 * until ip_push_pending_frames() is called. Each piece can be a page 1210 * or non-page data. 1211 * 1212 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1213 * this interface potentially. 1214 * 1215 * LATER: length must be adjusted by pad at tail, when it is required. 1216 */ 1217 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1218 int getfrag(void *from, char *to, int offset, int len, 1219 int odd, struct sk_buff *skb), 1220 void *from, int length, int transhdrlen, 1221 struct ipcm_cookie *ipc, struct rtable **rtp, 1222 unsigned int flags) 1223 { 1224 struct inet_sock *inet = inet_sk(sk); 1225 int err; 1226 1227 if (flags&MSG_PROBE) 1228 return 0; 1229 1230 if (skb_queue_empty(&sk->sk_write_queue)) { 1231 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1232 if (err) 1233 return err; 1234 } else { 1235 transhdrlen = 0; 1236 } 1237 1238 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1239 sk_page_frag(sk), getfrag, 1240 from, length, transhdrlen, flags); 1241 } 1242 1243 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1244 int offset, size_t size, int flags) 1245 { 1246 struct inet_sock *inet = inet_sk(sk); 1247 struct sk_buff *skb; 1248 struct rtable *rt; 1249 struct ip_options *opt = NULL; 1250 struct inet_cork *cork; 1251 int hh_len; 1252 int mtu; 1253 int len; 1254 int err; 1255 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1256 1257 if (inet->hdrincl) 1258 return -EPERM; 1259 1260 if (flags&MSG_PROBE) 1261 return 0; 1262 1263 if (skb_queue_empty(&sk->sk_write_queue)) 1264 return -EINVAL; 1265 1266 cork = &inet->cork.base; 1267 rt = (struct rtable *)cork->dst; 1268 if (cork->flags & IPCORK_OPT) 1269 opt = cork->opt; 1270 1271 if (!(rt->dst.dev->features&NETIF_F_SG)) 1272 return -EOPNOTSUPP; 1273 1274 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1275 mtu = cork->fragsize; 1276 1277 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1278 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1279 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1280 1281 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1282 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1283 mtu - (opt ? opt->optlen : 0)); 1284 return -EMSGSIZE; 1285 } 1286 1287 skb = skb_peek_tail(&sk->sk_write_queue); 1288 if (!skb) 1289 return -EINVAL; 1290 1291 if ((size + skb->len > mtu) && 1292 (skb_queue_len(&sk->sk_write_queue) == 1) && 1293 (sk->sk_protocol == IPPROTO_UDP) && 1294 (rt->dst.dev->features & NETIF_F_UFO)) { 1295 if (skb->ip_summed != CHECKSUM_PARTIAL) 1296 return -EOPNOTSUPP; 1297 1298 skb_shinfo(skb)->gso_size = mtu - fragheaderlen; 1299 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 1300 } 1301 cork->length += size; 1302 1303 while (size > 0) { 1304 if (skb_is_gso(skb)) { 1305 len = size; 1306 } else { 1307 1308 /* Check if the remaining data fits into current packet. */ 1309 len = mtu - skb->len; 1310 if (len < size) 1311 len = maxfraglen - skb->len; 1312 } 1313 if (len <= 0) { 1314 struct sk_buff *skb_prev; 1315 int alloclen; 1316 1317 skb_prev = skb; 1318 fraggap = skb_prev->len - maxfraglen; 1319 1320 alloclen = fragheaderlen + hh_len + fraggap + 15; 1321 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1322 if (unlikely(!skb)) { 1323 err = -ENOBUFS; 1324 goto error; 1325 } 1326 1327 /* 1328 * Fill in the control structures 1329 */ 1330 skb->ip_summed = CHECKSUM_NONE; 1331 skb->csum = 0; 1332 skb_reserve(skb, hh_len); 1333 1334 /* 1335 * Find where to start putting bytes. 1336 */ 1337 skb_put(skb, fragheaderlen + fraggap); 1338 skb_reset_network_header(skb); 1339 skb->transport_header = (skb->network_header + 1340 fragheaderlen); 1341 if (fraggap) { 1342 skb->csum = skb_copy_and_csum_bits(skb_prev, 1343 maxfraglen, 1344 skb_transport_header(skb), 1345 fraggap, 0); 1346 skb_prev->csum = csum_sub(skb_prev->csum, 1347 skb->csum); 1348 pskb_trim_unique(skb_prev, maxfraglen); 1349 } 1350 1351 /* 1352 * Put the packet on the pending queue. 1353 */ 1354 __skb_queue_tail(&sk->sk_write_queue, skb); 1355 continue; 1356 } 1357 1358 if (len > size) 1359 len = size; 1360 1361 if (skb_append_pagefrags(skb, page, offset, len)) { 1362 err = -EMSGSIZE; 1363 goto error; 1364 } 1365 1366 if (skb->ip_summed == CHECKSUM_NONE) { 1367 __wsum csum; 1368 csum = csum_page(page, offset, len); 1369 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1370 } 1371 1372 skb->len += len; 1373 skb->data_len += len; 1374 skb->truesize += len; 1375 refcount_add(len, &sk->sk_wmem_alloc); 1376 offset += len; 1377 size -= len; 1378 } 1379 return 0; 1380 1381 error: 1382 cork->length -= size; 1383 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1384 return err; 1385 } 1386 1387 static void ip_cork_release(struct inet_cork *cork) 1388 { 1389 cork->flags &= ~IPCORK_OPT; 1390 kfree(cork->opt); 1391 cork->opt = NULL; 1392 dst_release(cork->dst); 1393 cork->dst = NULL; 1394 } 1395 1396 /* 1397 * Combined all pending IP fragments on the socket as one IP datagram 1398 * and push them out. 1399 */ 1400 struct sk_buff *__ip_make_skb(struct sock *sk, 1401 struct flowi4 *fl4, 1402 struct sk_buff_head *queue, 1403 struct inet_cork *cork) 1404 { 1405 struct sk_buff *skb, *tmp_skb; 1406 struct sk_buff **tail_skb; 1407 struct inet_sock *inet = inet_sk(sk); 1408 struct net *net = sock_net(sk); 1409 struct ip_options *opt = NULL; 1410 struct rtable *rt = (struct rtable *)cork->dst; 1411 struct iphdr *iph; 1412 __be16 df = 0; 1413 __u8 ttl; 1414 1415 skb = __skb_dequeue(queue); 1416 if (!skb) 1417 goto out; 1418 tail_skb = &(skb_shinfo(skb)->frag_list); 1419 1420 /* move skb->data to ip header from ext header */ 1421 if (skb->data < skb_network_header(skb)) 1422 __skb_pull(skb, skb_network_offset(skb)); 1423 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1424 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1425 *tail_skb = tmp_skb; 1426 tail_skb = &(tmp_skb->next); 1427 skb->len += tmp_skb->len; 1428 skb->data_len += tmp_skb->len; 1429 skb->truesize += tmp_skb->truesize; 1430 tmp_skb->destructor = NULL; 1431 tmp_skb->sk = NULL; 1432 } 1433 1434 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1435 * to fragment the frame generated here. No matter, what transforms 1436 * how transforms change size of the packet, it will come out. 1437 */ 1438 skb->ignore_df = ip_sk_ignore_df(sk); 1439 1440 /* DF bit is set when we want to see DF on outgoing frames. 1441 * If ignore_df is set too, we still allow to fragment this frame 1442 * locally. */ 1443 if (inet->pmtudisc == IP_PMTUDISC_DO || 1444 inet->pmtudisc == IP_PMTUDISC_PROBE || 1445 (skb->len <= dst_mtu(&rt->dst) && 1446 ip_dont_fragment(sk, &rt->dst))) 1447 df = htons(IP_DF); 1448 1449 if (cork->flags & IPCORK_OPT) 1450 opt = cork->opt; 1451 1452 if (cork->ttl != 0) 1453 ttl = cork->ttl; 1454 else if (rt->rt_type == RTN_MULTICAST) 1455 ttl = inet->mc_ttl; 1456 else 1457 ttl = ip_select_ttl(inet, &rt->dst); 1458 1459 iph = ip_hdr(skb); 1460 iph->version = 4; 1461 iph->ihl = 5; 1462 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1463 iph->frag_off = df; 1464 iph->ttl = ttl; 1465 iph->protocol = sk->sk_protocol; 1466 ip_copy_addrs(iph, fl4); 1467 ip_select_ident(net, skb, sk); 1468 1469 if (opt) { 1470 iph->ihl += opt->optlen>>2; 1471 ip_options_build(skb, opt, cork->addr, rt, 0); 1472 } 1473 1474 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1475 skb->mark = sk->sk_mark; 1476 /* 1477 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1478 * on dst refcount 1479 */ 1480 cork->dst = NULL; 1481 skb_dst_set(skb, &rt->dst); 1482 1483 if (iph->protocol == IPPROTO_ICMP) 1484 icmp_out_count(net, ((struct icmphdr *) 1485 skb_transport_header(skb))->type); 1486 1487 ip_cork_release(cork); 1488 out: 1489 return skb; 1490 } 1491 1492 int ip_send_skb(struct net *net, struct sk_buff *skb) 1493 { 1494 int err; 1495 1496 err = ip_local_out(net, skb->sk, skb); 1497 if (err) { 1498 if (err > 0) 1499 err = net_xmit_errno(err); 1500 if (err) 1501 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1502 } 1503 1504 return err; 1505 } 1506 1507 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1508 { 1509 struct sk_buff *skb; 1510 1511 skb = ip_finish_skb(sk, fl4); 1512 if (!skb) 1513 return 0; 1514 1515 /* Netfilter gets whole the not fragmented skb. */ 1516 return ip_send_skb(sock_net(sk), skb); 1517 } 1518 1519 /* 1520 * Throw away all pending data on the socket. 1521 */ 1522 static void __ip_flush_pending_frames(struct sock *sk, 1523 struct sk_buff_head *queue, 1524 struct inet_cork *cork) 1525 { 1526 struct sk_buff *skb; 1527 1528 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1529 kfree_skb(skb); 1530 1531 ip_cork_release(cork); 1532 } 1533 1534 void ip_flush_pending_frames(struct sock *sk) 1535 { 1536 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1537 } 1538 1539 struct sk_buff *ip_make_skb(struct sock *sk, 1540 struct flowi4 *fl4, 1541 int getfrag(void *from, char *to, int offset, 1542 int len, int odd, struct sk_buff *skb), 1543 void *from, int length, int transhdrlen, 1544 struct ipcm_cookie *ipc, struct rtable **rtp, 1545 unsigned int flags) 1546 { 1547 struct inet_cork cork; 1548 struct sk_buff_head queue; 1549 int err; 1550 1551 if (flags & MSG_PROBE) 1552 return NULL; 1553 1554 __skb_queue_head_init(&queue); 1555 1556 cork.flags = 0; 1557 cork.addr = 0; 1558 cork.opt = NULL; 1559 err = ip_setup_cork(sk, &cork, ipc, rtp); 1560 if (err) 1561 return ERR_PTR(err); 1562 1563 err = __ip_append_data(sk, fl4, &queue, &cork, 1564 ¤t->task_frag, getfrag, 1565 from, length, transhdrlen, flags); 1566 if (err) { 1567 __ip_flush_pending_frames(sk, &queue, &cork); 1568 return ERR_PTR(err); 1569 } 1570 1571 return __ip_make_skb(sk, fl4, &queue, &cork); 1572 } 1573 1574 /* 1575 * Fetch data from kernel space and fill in checksum if needed. 1576 */ 1577 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1578 int len, int odd, struct sk_buff *skb) 1579 { 1580 __wsum csum; 1581 1582 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); 1583 skb->csum = csum_block_add(skb->csum, csum, odd); 1584 return 0; 1585 } 1586 1587 /* 1588 * Generic function to send a packet as reply to another packet. 1589 * Used to send some TCP resets/acks so far. 1590 */ 1591 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1592 const struct ip_options *sopt, 1593 __be32 daddr, __be32 saddr, 1594 const struct ip_reply_arg *arg, 1595 unsigned int len) 1596 { 1597 struct ip_options_data replyopts; 1598 struct ipcm_cookie ipc; 1599 struct flowi4 fl4; 1600 struct rtable *rt = skb_rtable(skb); 1601 struct net *net = sock_net(sk); 1602 struct sk_buff *nskb; 1603 int err; 1604 int oif; 1605 1606 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt)) 1607 return; 1608 1609 ipc.addr = daddr; 1610 ipc.opt = NULL; 1611 ipc.tx_flags = 0; 1612 ipc.ttl = 0; 1613 ipc.tos = -1; 1614 1615 if (replyopts.opt.opt.optlen) { 1616 ipc.opt = &replyopts.opt; 1617 1618 if (replyopts.opt.opt.srr) 1619 daddr = replyopts.opt.opt.faddr; 1620 } 1621 1622 oif = arg->bound_dev_if; 1623 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1624 oif = skb->skb_iif; 1625 1626 flowi4_init_output(&fl4, oif, 1627 IP4_REPLY_MARK(net, skb->mark), 1628 RT_TOS(arg->tos), 1629 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1630 ip_reply_arg_flowi_flags(arg), 1631 daddr, saddr, 1632 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1633 arg->uid); 1634 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1635 rt = ip_route_output_key(net, &fl4); 1636 if (IS_ERR(rt)) 1637 return; 1638 1639 inet_sk(sk)->tos = arg->tos; 1640 1641 sk->sk_priority = skb->priority; 1642 sk->sk_protocol = ip_hdr(skb)->protocol; 1643 sk->sk_bound_dev_if = arg->bound_dev_if; 1644 sk->sk_sndbuf = sysctl_wmem_default; 1645 sk->sk_mark = fl4.flowi4_mark; 1646 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1647 len, 0, &ipc, &rt, MSG_DONTWAIT); 1648 if (unlikely(err)) { 1649 ip_flush_pending_frames(sk); 1650 goto out; 1651 } 1652 1653 nskb = skb_peek(&sk->sk_write_queue); 1654 if (nskb) { 1655 if (arg->csumoffset >= 0) 1656 *((__sum16 *)skb_transport_header(nskb) + 1657 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1658 arg->csum)); 1659 nskb->ip_summed = CHECKSUM_NONE; 1660 ip_push_pending_frames(sk, &fl4); 1661 } 1662 out: 1663 ip_rt_put(rt); 1664 } 1665 1666 void __init ip_init(void) 1667 { 1668 ip_rt_init(); 1669 inet_initpeers(); 1670 1671 #if defined(CONFIG_IP_MULTICAST) 1672 igmp_mc_init(); 1673 #endif 1674 } 1675