xref: /linux/net/ipv4/ip_output.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <linux/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/bpf-cgroup.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
83 
84 static int
85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
86 	    unsigned int mtu,
87 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
88 
89 /* Generate a checksum for an outgoing IP datagram. */
90 void ip_send_check(struct iphdr *iph)
91 {
92 	iph->check = 0;
93 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
94 }
95 EXPORT_SYMBOL(ip_send_check);
96 
97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
98 {
99 	struct iphdr *iph = ip_hdr(skb);
100 
101 	iph->tot_len = htons(skb->len);
102 	ip_send_check(iph);
103 
104 	/* if egress device is enslaved to an L3 master device pass the
105 	 * skb to its handler for processing
106 	 */
107 	skb = l3mdev_ip_out(sk, skb);
108 	if (unlikely(!skb))
109 		return 0;
110 
111 	skb->protocol = htons(ETH_P_IP);
112 
113 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
114 		       net, sk, skb, NULL, skb_dst(skb)->dev,
115 		       dst_output);
116 }
117 
118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
119 {
120 	int err;
121 
122 	err = __ip_local_out(net, sk, skb);
123 	if (likely(err == 1))
124 		err = dst_output(net, sk, skb);
125 
126 	return err;
127 }
128 EXPORT_SYMBOL_GPL(ip_local_out);
129 
130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
131 {
132 	int ttl = inet->uc_ttl;
133 
134 	if (ttl < 0)
135 		ttl = ip4_dst_hoplimit(dst);
136 	return ttl;
137 }
138 
139 /*
140  *		Add an ip header to a skbuff and send it out.
141  *
142  */
143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
144 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
145 {
146 	struct inet_sock *inet = inet_sk(sk);
147 	struct rtable *rt = skb_rtable(skb);
148 	struct net *net = sock_net(sk);
149 	struct iphdr *iph;
150 
151 	/* Build the IP header. */
152 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
153 	skb_reset_network_header(skb);
154 	iph = ip_hdr(skb);
155 	iph->version  = 4;
156 	iph->ihl      = 5;
157 	iph->tos      = inet->tos;
158 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
159 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
160 	iph->saddr    = saddr;
161 	iph->protocol = sk->sk_protocol;
162 	if (ip_dont_fragment(sk, &rt->dst)) {
163 		iph->frag_off = htons(IP_DF);
164 		iph->id = 0;
165 	} else {
166 		iph->frag_off = 0;
167 		__ip_select_ident(net, iph, 1);
168 	}
169 
170 	if (opt && opt->opt.optlen) {
171 		iph->ihl += opt->opt.optlen>>2;
172 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
173 	}
174 
175 	skb->priority = sk->sk_priority;
176 	if (!skb->mark)
177 		skb->mark = sk->sk_mark;
178 
179 	/* Send it out. */
180 	return ip_local_out(net, skb->sk, skb);
181 }
182 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
183 
184 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
185 {
186 	struct dst_entry *dst = skb_dst(skb);
187 	struct rtable *rt = (struct rtable *)dst;
188 	struct net_device *dev = dst->dev;
189 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
190 	struct neighbour *neigh;
191 	u32 nexthop;
192 
193 	if (rt->rt_type == RTN_MULTICAST) {
194 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
195 	} else if (rt->rt_type == RTN_BROADCAST)
196 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
197 
198 	/* Be paranoid, rather than too clever. */
199 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
200 		struct sk_buff *skb2;
201 
202 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
203 		if (!skb2) {
204 			kfree_skb(skb);
205 			return -ENOMEM;
206 		}
207 		if (skb->sk)
208 			skb_set_owner_w(skb2, skb->sk);
209 		consume_skb(skb);
210 		skb = skb2;
211 	}
212 
213 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
214 		int res = lwtunnel_xmit(skb);
215 
216 		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
217 			return res;
218 	}
219 
220 	rcu_read_lock_bh();
221 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
222 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
223 	if (unlikely(!neigh))
224 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
225 	if (!IS_ERR(neigh)) {
226 		int res;
227 
228 		sock_confirm_neigh(skb, neigh);
229 		res = neigh_output(neigh, skb);
230 
231 		rcu_read_unlock_bh();
232 		return res;
233 	}
234 	rcu_read_unlock_bh();
235 
236 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
237 			    __func__);
238 	kfree_skb(skb);
239 	return -EINVAL;
240 }
241 
242 static int ip_finish_output_gso(struct net *net, struct sock *sk,
243 				struct sk_buff *skb, unsigned int mtu)
244 {
245 	netdev_features_t features;
246 	struct sk_buff *segs;
247 	int ret = 0;
248 
249 	/* common case: seglen is <= mtu
250 	 */
251 	if (skb_gso_validate_network_len(skb, mtu))
252 		return ip_finish_output2(net, sk, skb);
253 
254 	/* Slowpath -  GSO segment length exceeds the egress MTU.
255 	 *
256 	 * This can happen in several cases:
257 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
258 	 *  - Forwarding of an skb that arrived on a virtualization interface
259 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
260 	 *    stack.
261 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
262 	 *    interface with a smaller MTU.
263 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
264 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
265 	 *    insufficent MTU.
266 	 */
267 	features = netif_skb_features(skb);
268 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
269 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
270 	if (IS_ERR_OR_NULL(segs)) {
271 		kfree_skb(skb);
272 		return -ENOMEM;
273 	}
274 
275 	consume_skb(skb);
276 
277 	do {
278 		struct sk_buff *nskb = segs->next;
279 		int err;
280 
281 		segs->next = NULL;
282 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
283 
284 		if (err && ret == 0)
285 			ret = err;
286 		segs = nskb;
287 	} while (segs);
288 
289 	return ret;
290 }
291 
292 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
293 {
294 	unsigned int mtu;
295 	int ret;
296 
297 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
298 	if (ret) {
299 		kfree_skb(skb);
300 		return ret;
301 	}
302 
303 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
304 	/* Policy lookup after SNAT yielded a new policy */
305 	if (skb_dst(skb)->xfrm) {
306 		IPCB(skb)->flags |= IPSKB_REROUTED;
307 		return dst_output(net, sk, skb);
308 	}
309 #endif
310 	mtu = ip_skb_dst_mtu(sk, skb);
311 	if (skb_is_gso(skb))
312 		return ip_finish_output_gso(net, sk, skb, mtu);
313 
314 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
315 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
316 
317 	return ip_finish_output2(net, sk, skb);
318 }
319 
320 static int ip_mc_finish_output(struct net *net, struct sock *sk,
321 			       struct sk_buff *skb)
322 {
323 	int ret;
324 
325 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
326 	if (ret) {
327 		kfree_skb(skb);
328 		return ret;
329 	}
330 
331 	return dev_loopback_xmit(net, sk, skb);
332 }
333 
334 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
335 {
336 	struct rtable *rt = skb_rtable(skb);
337 	struct net_device *dev = rt->dst.dev;
338 
339 	/*
340 	 *	If the indicated interface is up and running, send the packet.
341 	 */
342 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
343 
344 	skb->dev = dev;
345 	skb->protocol = htons(ETH_P_IP);
346 
347 	/*
348 	 *	Multicasts are looped back for other local users
349 	 */
350 
351 	if (rt->rt_flags&RTCF_MULTICAST) {
352 		if (sk_mc_loop(sk)
353 #ifdef CONFIG_IP_MROUTE
354 		/* Small optimization: do not loopback not local frames,
355 		   which returned after forwarding; they will be  dropped
356 		   by ip_mr_input in any case.
357 		   Note, that local frames are looped back to be delivered
358 		   to local recipients.
359 
360 		   This check is duplicated in ip_mr_input at the moment.
361 		 */
362 		    &&
363 		    ((rt->rt_flags & RTCF_LOCAL) ||
364 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
365 #endif
366 		   ) {
367 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
368 			if (newskb)
369 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
370 					net, sk, newskb, NULL, newskb->dev,
371 					ip_mc_finish_output);
372 		}
373 
374 		/* Multicasts with ttl 0 must not go beyond the host */
375 
376 		if (ip_hdr(skb)->ttl == 0) {
377 			kfree_skb(skb);
378 			return 0;
379 		}
380 	}
381 
382 	if (rt->rt_flags&RTCF_BROADCAST) {
383 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
384 		if (newskb)
385 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
386 				net, sk, newskb, NULL, newskb->dev,
387 				ip_mc_finish_output);
388 	}
389 
390 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
391 			    net, sk, skb, NULL, skb->dev,
392 			    ip_finish_output,
393 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
394 }
395 
396 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
397 {
398 	struct net_device *dev = skb_dst(skb)->dev;
399 
400 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
401 
402 	skb->dev = dev;
403 	skb->protocol = htons(ETH_P_IP);
404 
405 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
406 			    net, sk, skb, NULL, dev,
407 			    ip_finish_output,
408 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
409 }
410 
411 /*
412  * copy saddr and daddr, possibly using 64bit load/stores
413  * Equivalent to :
414  *   iph->saddr = fl4->saddr;
415  *   iph->daddr = fl4->daddr;
416  */
417 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
418 {
419 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
420 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
421 	memcpy(&iph->saddr, &fl4->saddr,
422 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
423 }
424 
425 /* Note: skb->sk can be different from sk, in case of tunnels */
426 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
427 {
428 	struct inet_sock *inet = inet_sk(sk);
429 	struct net *net = sock_net(sk);
430 	struct ip_options_rcu *inet_opt;
431 	struct flowi4 *fl4;
432 	struct rtable *rt;
433 	struct iphdr *iph;
434 	int res;
435 
436 	/* Skip all of this if the packet is already routed,
437 	 * f.e. by something like SCTP.
438 	 */
439 	rcu_read_lock();
440 	inet_opt = rcu_dereference(inet->inet_opt);
441 	fl4 = &fl->u.ip4;
442 	rt = skb_rtable(skb);
443 	if (rt)
444 		goto packet_routed;
445 
446 	/* Make sure we can route this packet. */
447 	rt = (struct rtable *)__sk_dst_check(sk, 0);
448 	if (!rt) {
449 		__be32 daddr;
450 
451 		/* Use correct destination address if we have options. */
452 		daddr = inet->inet_daddr;
453 		if (inet_opt && inet_opt->opt.srr)
454 			daddr = inet_opt->opt.faddr;
455 
456 		/* If this fails, retransmit mechanism of transport layer will
457 		 * keep trying until route appears or the connection times
458 		 * itself out.
459 		 */
460 		rt = ip_route_output_ports(net, fl4, sk,
461 					   daddr, inet->inet_saddr,
462 					   inet->inet_dport,
463 					   inet->inet_sport,
464 					   sk->sk_protocol,
465 					   RT_CONN_FLAGS(sk),
466 					   sk->sk_bound_dev_if);
467 		if (IS_ERR(rt))
468 			goto no_route;
469 		sk_setup_caps(sk, &rt->dst);
470 	}
471 	skb_dst_set_noref(skb, &rt->dst);
472 
473 packet_routed:
474 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
475 		goto no_route;
476 
477 	/* OK, we know where to send it, allocate and build IP header. */
478 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
479 	skb_reset_network_header(skb);
480 	iph = ip_hdr(skb);
481 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
482 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
483 		iph->frag_off = htons(IP_DF);
484 	else
485 		iph->frag_off = 0;
486 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
487 	iph->protocol = sk->sk_protocol;
488 	ip_copy_addrs(iph, fl4);
489 
490 	/* Transport layer set skb->h.foo itself. */
491 
492 	if (inet_opt && inet_opt->opt.optlen) {
493 		iph->ihl += inet_opt->opt.optlen >> 2;
494 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
495 	}
496 
497 	ip_select_ident_segs(net, skb, sk,
498 			     skb_shinfo(skb)->gso_segs ?: 1);
499 
500 	/* TODO : should we use skb->sk here instead of sk ? */
501 	skb->priority = sk->sk_priority;
502 	skb->mark = sk->sk_mark;
503 
504 	res = ip_local_out(net, sk, skb);
505 	rcu_read_unlock();
506 	return res;
507 
508 no_route:
509 	rcu_read_unlock();
510 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
511 	kfree_skb(skb);
512 	return -EHOSTUNREACH;
513 }
514 EXPORT_SYMBOL(ip_queue_xmit);
515 
516 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
517 {
518 	to->pkt_type = from->pkt_type;
519 	to->priority = from->priority;
520 	to->protocol = from->protocol;
521 	skb_dst_drop(to);
522 	skb_dst_copy(to, from);
523 	to->dev = from->dev;
524 	to->mark = from->mark;
525 
526 	skb_copy_hash(to, from);
527 
528 	/* Copy the flags to each fragment. */
529 	IPCB(to)->flags = IPCB(from)->flags;
530 
531 #ifdef CONFIG_NET_SCHED
532 	to->tc_index = from->tc_index;
533 #endif
534 	nf_copy(to, from);
535 #if IS_ENABLED(CONFIG_IP_VS)
536 	to->ipvs_property = from->ipvs_property;
537 #endif
538 	skb_copy_secmark(to, from);
539 }
540 
541 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
542 		       unsigned int mtu,
543 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
544 {
545 	struct iphdr *iph = ip_hdr(skb);
546 
547 	if ((iph->frag_off & htons(IP_DF)) == 0)
548 		return ip_do_fragment(net, sk, skb, output);
549 
550 	if (unlikely(!skb->ignore_df ||
551 		     (IPCB(skb)->frag_max_size &&
552 		      IPCB(skb)->frag_max_size > mtu))) {
553 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
554 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
555 			  htonl(mtu));
556 		kfree_skb(skb);
557 		return -EMSGSIZE;
558 	}
559 
560 	return ip_do_fragment(net, sk, skb, output);
561 }
562 
563 /*
564  *	This IP datagram is too large to be sent in one piece.  Break it up into
565  *	smaller pieces (each of size equal to IP header plus
566  *	a block of the data of the original IP data part) that will yet fit in a
567  *	single device frame, and queue such a frame for sending.
568  */
569 
570 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
571 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
572 {
573 	struct iphdr *iph;
574 	int ptr;
575 	struct sk_buff *skb2;
576 	unsigned int mtu, hlen, left, len, ll_rs;
577 	int offset;
578 	__be16 not_last_frag;
579 	struct rtable *rt = skb_rtable(skb);
580 	int err = 0;
581 
582 	/* for offloaded checksums cleanup checksum before fragmentation */
583 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
584 	    (err = skb_checksum_help(skb)))
585 		goto fail;
586 
587 	/*
588 	 *	Point into the IP datagram header.
589 	 */
590 
591 	iph = ip_hdr(skb);
592 
593 	mtu = ip_skb_dst_mtu(sk, skb);
594 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
595 		mtu = IPCB(skb)->frag_max_size;
596 
597 	/*
598 	 *	Setup starting values.
599 	 */
600 
601 	hlen = iph->ihl * 4;
602 	mtu = mtu - hlen;	/* Size of data space */
603 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
604 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
605 
606 	/* When frag_list is given, use it. First, check its validity:
607 	 * some transformers could create wrong frag_list or break existing
608 	 * one, it is not prohibited. In this case fall back to copying.
609 	 *
610 	 * LATER: this step can be merged to real generation of fragments,
611 	 * we can switch to copy when see the first bad fragment.
612 	 */
613 	if (skb_has_frag_list(skb)) {
614 		struct sk_buff *frag, *frag2;
615 		unsigned int first_len = skb_pagelen(skb);
616 
617 		if (first_len - hlen > mtu ||
618 		    ((first_len - hlen) & 7) ||
619 		    ip_is_fragment(iph) ||
620 		    skb_cloned(skb) ||
621 		    skb_headroom(skb) < ll_rs)
622 			goto slow_path;
623 
624 		skb_walk_frags(skb, frag) {
625 			/* Correct geometry. */
626 			if (frag->len > mtu ||
627 			    ((frag->len & 7) && frag->next) ||
628 			    skb_headroom(frag) < hlen + ll_rs)
629 				goto slow_path_clean;
630 
631 			/* Partially cloned skb? */
632 			if (skb_shared(frag))
633 				goto slow_path_clean;
634 
635 			BUG_ON(frag->sk);
636 			if (skb->sk) {
637 				frag->sk = skb->sk;
638 				frag->destructor = sock_wfree;
639 			}
640 			skb->truesize -= frag->truesize;
641 		}
642 
643 		/* Everything is OK. Generate! */
644 
645 		err = 0;
646 		offset = 0;
647 		frag = skb_shinfo(skb)->frag_list;
648 		skb_frag_list_init(skb);
649 		skb->data_len = first_len - skb_headlen(skb);
650 		skb->len = first_len;
651 		iph->tot_len = htons(first_len);
652 		iph->frag_off = htons(IP_MF);
653 		ip_send_check(iph);
654 
655 		for (;;) {
656 			/* Prepare header of the next frame,
657 			 * before previous one went down. */
658 			if (frag) {
659 				frag->ip_summed = CHECKSUM_NONE;
660 				skb_reset_transport_header(frag);
661 				__skb_push(frag, hlen);
662 				skb_reset_network_header(frag);
663 				memcpy(skb_network_header(frag), iph, hlen);
664 				iph = ip_hdr(frag);
665 				iph->tot_len = htons(frag->len);
666 				ip_copy_metadata(frag, skb);
667 				if (offset == 0)
668 					ip_options_fragment(frag);
669 				offset += skb->len - hlen;
670 				iph->frag_off = htons(offset>>3);
671 				if (frag->next)
672 					iph->frag_off |= htons(IP_MF);
673 				/* Ready, complete checksum */
674 				ip_send_check(iph);
675 			}
676 
677 			err = output(net, sk, skb);
678 
679 			if (!err)
680 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
681 			if (err || !frag)
682 				break;
683 
684 			skb = frag;
685 			frag = skb->next;
686 			skb->next = NULL;
687 		}
688 
689 		if (err == 0) {
690 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
691 			return 0;
692 		}
693 
694 		while (frag) {
695 			skb = frag->next;
696 			kfree_skb(frag);
697 			frag = skb;
698 		}
699 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
700 		return err;
701 
702 slow_path_clean:
703 		skb_walk_frags(skb, frag2) {
704 			if (frag2 == frag)
705 				break;
706 			frag2->sk = NULL;
707 			frag2->destructor = NULL;
708 			skb->truesize += frag2->truesize;
709 		}
710 	}
711 
712 slow_path:
713 	iph = ip_hdr(skb);
714 
715 	left = skb->len - hlen;		/* Space per frame */
716 	ptr = hlen;		/* Where to start from */
717 
718 	/*
719 	 *	Fragment the datagram.
720 	 */
721 
722 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
723 	not_last_frag = iph->frag_off & htons(IP_MF);
724 
725 	/*
726 	 *	Keep copying data until we run out.
727 	 */
728 
729 	while (left > 0) {
730 		len = left;
731 		/* IF: it doesn't fit, use 'mtu' - the data space left */
732 		if (len > mtu)
733 			len = mtu;
734 		/* IF: we are not sending up to and including the packet end
735 		   then align the next start on an eight byte boundary */
736 		if (len < left)	{
737 			len &= ~7;
738 		}
739 
740 		/* Allocate buffer */
741 		skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
742 		if (!skb2) {
743 			err = -ENOMEM;
744 			goto fail;
745 		}
746 
747 		/*
748 		 *	Set up data on packet
749 		 */
750 
751 		ip_copy_metadata(skb2, skb);
752 		skb_reserve(skb2, ll_rs);
753 		skb_put(skb2, len + hlen);
754 		skb_reset_network_header(skb2);
755 		skb2->transport_header = skb2->network_header + hlen;
756 
757 		/*
758 		 *	Charge the memory for the fragment to any owner
759 		 *	it might possess
760 		 */
761 
762 		if (skb->sk)
763 			skb_set_owner_w(skb2, skb->sk);
764 
765 		/*
766 		 *	Copy the packet header into the new buffer.
767 		 */
768 
769 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
770 
771 		/*
772 		 *	Copy a block of the IP datagram.
773 		 */
774 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
775 			BUG();
776 		left -= len;
777 
778 		/*
779 		 *	Fill in the new header fields.
780 		 */
781 		iph = ip_hdr(skb2);
782 		iph->frag_off = htons((offset >> 3));
783 
784 		if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
785 			iph->frag_off |= htons(IP_DF);
786 
787 		/* ANK: dirty, but effective trick. Upgrade options only if
788 		 * the segment to be fragmented was THE FIRST (otherwise,
789 		 * options are already fixed) and make it ONCE
790 		 * on the initial skb, so that all the following fragments
791 		 * will inherit fixed options.
792 		 */
793 		if (offset == 0)
794 			ip_options_fragment(skb);
795 
796 		/*
797 		 *	Added AC : If we are fragmenting a fragment that's not the
798 		 *		   last fragment then keep MF on each bit
799 		 */
800 		if (left > 0 || not_last_frag)
801 			iph->frag_off |= htons(IP_MF);
802 		ptr += len;
803 		offset += len;
804 
805 		/*
806 		 *	Put this fragment into the sending queue.
807 		 */
808 		iph->tot_len = htons(len + hlen);
809 
810 		ip_send_check(iph);
811 
812 		err = output(net, sk, skb2);
813 		if (err)
814 			goto fail;
815 
816 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
817 	}
818 	consume_skb(skb);
819 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
820 	return err;
821 
822 fail:
823 	kfree_skb(skb);
824 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
825 	return err;
826 }
827 EXPORT_SYMBOL(ip_do_fragment);
828 
829 int
830 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
831 {
832 	struct msghdr *msg = from;
833 
834 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
835 		if (!copy_from_iter_full(to, len, &msg->msg_iter))
836 			return -EFAULT;
837 	} else {
838 		__wsum csum = 0;
839 		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
840 			return -EFAULT;
841 		skb->csum = csum_block_add(skb->csum, csum, odd);
842 	}
843 	return 0;
844 }
845 EXPORT_SYMBOL(ip_generic_getfrag);
846 
847 static inline __wsum
848 csum_page(struct page *page, int offset, int copy)
849 {
850 	char *kaddr;
851 	__wsum csum;
852 	kaddr = kmap(page);
853 	csum = csum_partial(kaddr + offset, copy, 0);
854 	kunmap(page);
855 	return csum;
856 }
857 
858 static int __ip_append_data(struct sock *sk,
859 			    struct flowi4 *fl4,
860 			    struct sk_buff_head *queue,
861 			    struct inet_cork *cork,
862 			    struct page_frag *pfrag,
863 			    int getfrag(void *from, char *to, int offset,
864 					int len, int odd, struct sk_buff *skb),
865 			    void *from, int length, int transhdrlen,
866 			    unsigned int flags)
867 {
868 	struct inet_sock *inet = inet_sk(sk);
869 	struct sk_buff *skb;
870 
871 	struct ip_options *opt = cork->opt;
872 	int hh_len;
873 	int exthdrlen;
874 	int mtu;
875 	int copy;
876 	int err;
877 	int offset = 0;
878 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
879 	int csummode = CHECKSUM_NONE;
880 	struct rtable *rt = (struct rtable *)cork->dst;
881 	unsigned int wmem_alloc_delta = 0;
882 	u32 tskey = 0;
883 	bool paged;
884 
885 	skb = skb_peek_tail(queue);
886 
887 	exthdrlen = !skb ? rt->dst.header_len : 0;
888 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
889 	paged = !!cork->gso_size;
890 
891 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
892 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
893 		tskey = sk->sk_tskey++;
894 
895 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
896 
897 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
898 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
899 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
900 
901 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
902 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
903 			       mtu - (opt ? opt->optlen : 0));
904 		return -EMSGSIZE;
905 	}
906 
907 	/*
908 	 * transhdrlen > 0 means that this is the first fragment and we wish
909 	 * it won't be fragmented in the future.
910 	 */
911 	if (transhdrlen &&
912 	    length + fragheaderlen <= mtu &&
913 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
914 	    (!(flags & MSG_MORE) || cork->gso_size) &&
915 	    (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
916 		csummode = CHECKSUM_PARTIAL;
917 
918 	cork->length += length;
919 
920 	/* So, what's going on in the loop below?
921 	 *
922 	 * We use calculated fragment length to generate chained skb,
923 	 * each of segments is IP fragment ready for sending to network after
924 	 * adding appropriate IP header.
925 	 */
926 
927 	if (!skb)
928 		goto alloc_new_skb;
929 
930 	while (length > 0) {
931 		/* Check if the remaining data fits into current packet. */
932 		copy = mtu - skb->len;
933 		if (copy < length)
934 			copy = maxfraglen - skb->len;
935 		if (copy <= 0) {
936 			char *data;
937 			unsigned int datalen;
938 			unsigned int fraglen;
939 			unsigned int fraggap;
940 			unsigned int alloclen;
941 			unsigned int pagedlen = 0;
942 			struct sk_buff *skb_prev;
943 alloc_new_skb:
944 			skb_prev = skb;
945 			if (skb_prev)
946 				fraggap = skb_prev->len - maxfraglen;
947 			else
948 				fraggap = 0;
949 
950 			/*
951 			 * If remaining data exceeds the mtu,
952 			 * we know we need more fragment(s).
953 			 */
954 			datalen = length + fraggap;
955 			if (datalen > mtu - fragheaderlen)
956 				datalen = maxfraglen - fragheaderlen;
957 			fraglen = datalen + fragheaderlen;
958 
959 			if ((flags & MSG_MORE) &&
960 			    !(rt->dst.dev->features&NETIF_F_SG))
961 				alloclen = mtu;
962 			else if (!paged)
963 				alloclen = fraglen;
964 			else {
965 				alloclen = min_t(int, fraglen, MAX_HEADER);
966 				pagedlen = fraglen - alloclen;
967 			}
968 
969 			alloclen += exthdrlen;
970 
971 			/* The last fragment gets additional space at tail.
972 			 * Note, with MSG_MORE we overallocate on fragments,
973 			 * because we have no idea what fragment will be
974 			 * the last.
975 			 */
976 			if (datalen == length + fraggap)
977 				alloclen += rt->dst.trailer_len;
978 
979 			if (transhdrlen) {
980 				skb = sock_alloc_send_skb(sk,
981 						alloclen + hh_len + 15,
982 						(flags & MSG_DONTWAIT), &err);
983 			} else {
984 				skb = NULL;
985 				if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
986 				    2 * sk->sk_sndbuf)
987 					skb = alloc_skb(alloclen + hh_len + 15,
988 							sk->sk_allocation);
989 				if (unlikely(!skb))
990 					err = -ENOBUFS;
991 			}
992 			if (!skb)
993 				goto error;
994 
995 			/*
996 			 *	Fill in the control structures
997 			 */
998 			skb->ip_summed = csummode;
999 			skb->csum = 0;
1000 			skb_reserve(skb, hh_len);
1001 
1002 			/* only the initial fragment is time stamped */
1003 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1004 			cork->tx_flags = 0;
1005 			skb_shinfo(skb)->tskey = tskey;
1006 			tskey = 0;
1007 
1008 			/*
1009 			 *	Find where to start putting bytes.
1010 			 */
1011 			data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1012 			skb_set_network_header(skb, exthdrlen);
1013 			skb->transport_header = (skb->network_header +
1014 						 fragheaderlen);
1015 			data += fragheaderlen + exthdrlen;
1016 
1017 			if (fraggap) {
1018 				skb->csum = skb_copy_and_csum_bits(
1019 					skb_prev, maxfraglen,
1020 					data + transhdrlen, fraggap, 0);
1021 				skb_prev->csum = csum_sub(skb_prev->csum,
1022 							  skb->csum);
1023 				data += fraggap;
1024 				pskb_trim_unique(skb_prev, maxfraglen);
1025 			}
1026 
1027 			copy = datalen - transhdrlen - fraggap - pagedlen;
1028 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1029 				err = -EFAULT;
1030 				kfree_skb(skb);
1031 				goto error;
1032 			}
1033 
1034 			offset += copy;
1035 			length -= copy + transhdrlen;
1036 			transhdrlen = 0;
1037 			exthdrlen = 0;
1038 			csummode = CHECKSUM_NONE;
1039 
1040 			if ((flags & MSG_CONFIRM) && !skb_prev)
1041 				skb_set_dst_pending_confirm(skb, 1);
1042 
1043 			/*
1044 			 * Put the packet on the pending queue.
1045 			 */
1046 			if (!skb->destructor) {
1047 				skb->destructor = sock_wfree;
1048 				skb->sk = sk;
1049 				wmem_alloc_delta += skb->truesize;
1050 			}
1051 			__skb_queue_tail(queue, skb);
1052 			continue;
1053 		}
1054 
1055 		if (copy > length)
1056 			copy = length;
1057 
1058 		if (!(rt->dst.dev->features&NETIF_F_SG) &&
1059 		    skb_tailroom(skb) >= copy) {
1060 			unsigned int off;
1061 
1062 			off = skb->len;
1063 			if (getfrag(from, skb_put(skb, copy),
1064 					offset, copy, off, skb) < 0) {
1065 				__skb_trim(skb, off);
1066 				err = -EFAULT;
1067 				goto error;
1068 			}
1069 		} else {
1070 			int i = skb_shinfo(skb)->nr_frags;
1071 
1072 			err = -ENOMEM;
1073 			if (!sk_page_frag_refill(sk, pfrag))
1074 				goto error;
1075 
1076 			if (!skb_can_coalesce(skb, i, pfrag->page,
1077 					      pfrag->offset)) {
1078 				err = -EMSGSIZE;
1079 				if (i == MAX_SKB_FRAGS)
1080 					goto error;
1081 
1082 				__skb_fill_page_desc(skb, i, pfrag->page,
1083 						     pfrag->offset, 0);
1084 				skb_shinfo(skb)->nr_frags = ++i;
1085 				get_page(pfrag->page);
1086 			}
1087 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1088 			if (getfrag(from,
1089 				    page_address(pfrag->page) + pfrag->offset,
1090 				    offset, copy, skb->len, skb) < 0)
1091 				goto error_efault;
1092 
1093 			pfrag->offset += copy;
1094 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1095 			skb->len += copy;
1096 			skb->data_len += copy;
1097 			skb->truesize += copy;
1098 			wmem_alloc_delta += copy;
1099 		}
1100 		offset += copy;
1101 		length -= copy;
1102 	}
1103 
1104 	if (wmem_alloc_delta)
1105 		refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1106 	return 0;
1107 
1108 error_efault:
1109 	err = -EFAULT;
1110 error:
1111 	cork->length -= length;
1112 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1113 	refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1114 	return err;
1115 }
1116 
1117 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1118 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1119 {
1120 	struct ip_options_rcu *opt;
1121 	struct rtable *rt;
1122 
1123 	rt = *rtp;
1124 	if (unlikely(!rt))
1125 		return -EFAULT;
1126 
1127 	/*
1128 	 * setup for corking.
1129 	 */
1130 	opt = ipc->opt;
1131 	if (opt) {
1132 		if (!cork->opt) {
1133 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1134 					    sk->sk_allocation);
1135 			if (unlikely(!cork->opt))
1136 				return -ENOBUFS;
1137 		}
1138 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1139 		cork->flags |= IPCORK_OPT;
1140 		cork->addr = ipc->addr;
1141 	}
1142 
1143 	/*
1144 	 * We steal reference to this route, caller should not release it
1145 	 */
1146 	*rtp = NULL;
1147 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1148 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1149 
1150 	cork->gso_size = sk->sk_type == SOCK_DGRAM &&
1151 			 sk->sk_protocol == IPPROTO_UDP ? ipc->gso_size : 0;
1152 	cork->dst = &rt->dst;
1153 	cork->length = 0;
1154 	cork->ttl = ipc->ttl;
1155 	cork->tos = ipc->tos;
1156 	cork->priority = ipc->priority;
1157 	cork->tx_flags = ipc->tx_flags;
1158 
1159 	return 0;
1160 }
1161 
1162 /*
1163  *	ip_append_data() and ip_append_page() can make one large IP datagram
1164  *	from many pieces of data. Each pieces will be holded on the socket
1165  *	until ip_push_pending_frames() is called. Each piece can be a page
1166  *	or non-page data.
1167  *
1168  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1169  *	this interface potentially.
1170  *
1171  *	LATER: length must be adjusted by pad at tail, when it is required.
1172  */
1173 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1174 		   int getfrag(void *from, char *to, int offset, int len,
1175 			       int odd, struct sk_buff *skb),
1176 		   void *from, int length, int transhdrlen,
1177 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1178 		   unsigned int flags)
1179 {
1180 	struct inet_sock *inet = inet_sk(sk);
1181 	int err;
1182 
1183 	if (flags&MSG_PROBE)
1184 		return 0;
1185 
1186 	if (skb_queue_empty(&sk->sk_write_queue)) {
1187 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1188 		if (err)
1189 			return err;
1190 	} else {
1191 		transhdrlen = 0;
1192 	}
1193 
1194 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1195 				sk_page_frag(sk), getfrag,
1196 				from, length, transhdrlen, flags);
1197 }
1198 
1199 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1200 		       int offset, size_t size, int flags)
1201 {
1202 	struct inet_sock *inet = inet_sk(sk);
1203 	struct sk_buff *skb;
1204 	struct rtable *rt;
1205 	struct ip_options *opt = NULL;
1206 	struct inet_cork *cork;
1207 	int hh_len;
1208 	int mtu;
1209 	int len;
1210 	int err;
1211 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1212 
1213 	if (inet->hdrincl)
1214 		return -EPERM;
1215 
1216 	if (flags&MSG_PROBE)
1217 		return 0;
1218 
1219 	if (skb_queue_empty(&sk->sk_write_queue))
1220 		return -EINVAL;
1221 
1222 	cork = &inet->cork.base;
1223 	rt = (struct rtable *)cork->dst;
1224 	if (cork->flags & IPCORK_OPT)
1225 		opt = cork->opt;
1226 
1227 	if (!(rt->dst.dev->features&NETIF_F_SG))
1228 		return -EOPNOTSUPP;
1229 
1230 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1231 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1232 
1233 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1234 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1235 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1236 
1237 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1238 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1239 			       mtu - (opt ? opt->optlen : 0));
1240 		return -EMSGSIZE;
1241 	}
1242 
1243 	skb = skb_peek_tail(&sk->sk_write_queue);
1244 	if (!skb)
1245 		return -EINVAL;
1246 
1247 	cork->length += size;
1248 
1249 	while (size > 0) {
1250 		/* Check if the remaining data fits into current packet. */
1251 		len = mtu - skb->len;
1252 		if (len < size)
1253 			len = maxfraglen - skb->len;
1254 
1255 		if (len <= 0) {
1256 			struct sk_buff *skb_prev;
1257 			int alloclen;
1258 
1259 			skb_prev = skb;
1260 			fraggap = skb_prev->len - maxfraglen;
1261 
1262 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1263 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1264 			if (unlikely(!skb)) {
1265 				err = -ENOBUFS;
1266 				goto error;
1267 			}
1268 
1269 			/*
1270 			 *	Fill in the control structures
1271 			 */
1272 			skb->ip_summed = CHECKSUM_NONE;
1273 			skb->csum = 0;
1274 			skb_reserve(skb, hh_len);
1275 
1276 			/*
1277 			 *	Find where to start putting bytes.
1278 			 */
1279 			skb_put(skb, fragheaderlen + fraggap);
1280 			skb_reset_network_header(skb);
1281 			skb->transport_header = (skb->network_header +
1282 						 fragheaderlen);
1283 			if (fraggap) {
1284 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1285 								   maxfraglen,
1286 						    skb_transport_header(skb),
1287 								   fraggap, 0);
1288 				skb_prev->csum = csum_sub(skb_prev->csum,
1289 							  skb->csum);
1290 				pskb_trim_unique(skb_prev, maxfraglen);
1291 			}
1292 
1293 			/*
1294 			 * Put the packet on the pending queue.
1295 			 */
1296 			__skb_queue_tail(&sk->sk_write_queue, skb);
1297 			continue;
1298 		}
1299 
1300 		if (len > size)
1301 			len = size;
1302 
1303 		if (skb_append_pagefrags(skb, page, offset, len)) {
1304 			err = -EMSGSIZE;
1305 			goto error;
1306 		}
1307 
1308 		if (skb->ip_summed == CHECKSUM_NONE) {
1309 			__wsum csum;
1310 			csum = csum_page(page, offset, len);
1311 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1312 		}
1313 
1314 		skb->len += len;
1315 		skb->data_len += len;
1316 		skb->truesize += len;
1317 		refcount_add(len, &sk->sk_wmem_alloc);
1318 		offset += len;
1319 		size -= len;
1320 	}
1321 	return 0;
1322 
1323 error:
1324 	cork->length -= size;
1325 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1326 	return err;
1327 }
1328 
1329 static void ip_cork_release(struct inet_cork *cork)
1330 {
1331 	cork->flags &= ~IPCORK_OPT;
1332 	kfree(cork->opt);
1333 	cork->opt = NULL;
1334 	dst_release(cork->dst);
1335 	cork->dst = NULL;
1336 }
1337 
1338 /*
1339  *	Combined all pending IP fragments on the socket as one IP datagram
1340  *	and push them out.
1341  */
1342 struct sk_buff *__ip_make_skb(struct sock *sk,
1343 			      struct flowi4 *fl4,
1344 			      struct sk_buff_head *queue,
1345 			      struct inet_cork *cork)
1346 {
1347 	struct sk_buff *skb, *tmp_skb;
1348 	struct sk_buff **tail_skb;
1349 	struct inet_sock *inet = inet_sk(sk);
1350 	struct net *net = sock_net(sk);
1351 	struct ip_options *opt = NULL;
1352 	struct rtable *rt = (struct rtable *)cork->dst;
1353 	struct iphdr *iph;
1354 	__be16 df = 0;
1355 	__u8 ttl;
1356 
1357 	skb = __skb_dequeue(queue);
1358 	if (!skb)
1359 		goto out;
1360 	tail_skb = &(skb_shinfo(skb)->frag_list);
1361 
1362 	/* move skb->data to ip header from ext header */
1363 	if (skb->data < skb_network_header(skb))
1364 		__skb_pull(skb, skb_network_offset(skb));
1365 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1366 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1367 		*tail_skb = tmp_skb;
1368 		tail_skb = &(tmp_skb->next);
1369 		skb->len += tmp_skb->len;
1370 		skb->data_len += tmp_skb->len;
1371 		skb->truesize += tmp_skb->truesize;
1372 		tmp_skb->destructor = NULL;
1373 		tmp_skb->sk = NULL;
1374 	}
1375 
1376 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1377 	 * to fragment the frame generated here. No matter, what transforms
1378 	 * how transforms change size of the packet, it will come out.
1379 	 */
1380 	skb->ignore_df = ip_sk_ignore_df(sk);
1381 
1382 	/* DF bit is set when we want to see DF on outgoing frames.
1383 	 * If ignore_df is set too, we still allow to fragment this frame
1384 	 * locally. */
1385 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1386 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1387 	    (skb->len <= dst_mtu(&rt->dst) &&
1388 	     ip_dont_fragment(sk, &rt->dst)))
1389 		df = htons(IP_DF);
1390 
1391 	if (cork->flags & IPCORK_OPT)
1392 		opt = cork->opt;
1393 
1394 	if (cork->ttl != 0)
1395 		ttl = cork->ttl;
1396 	else if (rt->rt_type == RTN_MULTICAST)
1397 		ttl = inet->mc_ttl;
1398 	else
1399 		ttl = ip_select_ttl(inet, &rt->dst);
1400 
1401 	iph = ip_hdr(skb);
1402 	iph->version = 4;
1403 	iph->ihl = 5;
1404 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1405 	iph->frag_off = df;
1406 	iph->ttl = ttl;
1407 	iph->protocol = sk->sk_protocol;
1408 	ip_copy_addrs(iph, fl4);
1409 	ip_select_ident(net, skb, sk);
1410 
1411 	if (opt) {
1412 		iph->ihl += opt->optlen>>2;
1413 		ip_options_build(skb, opt, cork->addr, rt, 0);
1414 	}
1415 
1416 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1417 	skb->mark = sk->sk_mark;
1418 	/*
1419 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1420 	 * on dst refcount
1421 	 */
1422 	cork->dst = NULL;
1423 	skb_dst_set(skb, &rt->dst);
1424 
1425 	if (iph->protocol == IPPROTO_ICMP)
1426 		icmp_out_count(net, ((struct icmphdr *)
1427 			skb_transport_header(skb))->type);
1428 
1429 	ip_cork_release(cork);
1430 out:
1431 	return skb;
1432 }
1433 
1434 int ip_send_skb(struct net *net, struct sk_buff *skb)
1435 {
1436 	int err;
1437 
1438 	err = ip_local_out(net, skb->sk, skb);
1439 	if (err) {
1440 		if (err > 0)
1441 			err = net_xmit_errno(err);
1442 		if (err)
1443 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1444 	}
1445 
1446 	return err;
1447 }
1448 
1449 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1450 {
1451 	struct sk_buff *skb;
1452 
1453 	skb = ip_finish_skb(sk, fl4);
1454 	if (!skb)
1455 		return 0;
1456 
1457 	/* Netfilter gets whole the not fragmented skb. */
1458 	return ip_send_skb(sock_net(sk), skb);
1459 }
1460 
1461 /*
1462  *	Throw away all pending data on the socket.
1463  */
1464 static void __ip_flush_pending_frames(struct sock *sk,
1465 				      struct sk_buff_head *queue,
1466 				      struct inet_cork *cork)
1467 {
1468 	struct sk_buff *skb;
1469 
1470 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1471 		kfree_skb(skb);
1472 
1473 	ip_cork_release(cork);
1474 }
1475 
1476 void ip_flush_pending_frames(struct sock *sk)
1477 {
1478 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1479 }
1480 
1481 struct sk_buff *ip_make_skb(struct sock *sk,
1482 			    struct flowi4 *fl4,
1483 			    int getfrag(void *from, char *to, int offset,
1484 					int len, int odd, struct sk_buff *skb),
1485 			    void *from, int length, int transhdrlen,
1486 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1487 			    struct inet_cork *cork, unsigned int flags)
1488 {
1489 	struct sk_buff_head queue;
1490 	int err;
1491 
1492 	if (flags & MSG_PROBE)
1493 		return NULL;
1494 
1495 	__skb_queue_head_init(&queue);
1496 
1497 	cork->flags = 0;
1498 	cork->addr = 0;
1499 	cork->opt = NULL;
1500 	err = ip_setup_cork(sk, cork, ipc, rtp);
1501 	if (err)
1502 		return ERR_PTR(err);
1503 
1504 	err = __ip_append_data(sk, fl4, &queue, cork,
1505 			       &current->task_frag, getfrag,
1506 			       from, length, transhdrlen, flags);
1507 	if (err) {
1508 		__ip_flush_pending_frames(sk, &queue, cork);
1509 		return ERR_PTR(err);
1510 	}
1511 
1512 	return __ip_make_skb(sk, fl4, &queue, cork);
1513 }
1514 
1515 /*
1516  *	Fetch data from kernel space and fill in checksum if needed.
1517  */
1518 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1519 			      int len, int odd, struct sk_buff *skb)
1520 {
1521 	__wsum csum;
1522 
1523 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1524 	skb->csum = csum_block_add(skb->csum, csum, odd);
1525 	return 0;
1526 }
1527 
1528 /*
1529  *	Generic function to send a packet as reply to another packet.
1530  *	Used to send some TCP resets/acks so far.
1531  */
1532 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1533 			   const struct ip_options *sopt,
1534 			   __be32 daddr, __be32 saddr,
1535 			   const struct ip_reply_arg *arg,
1536 			   unsigned int len)
1537 {
1538 	struct ip_options_data replyopts;
1539 	struct ipcm_cookie ipc;
1540 	struct flowi4 fl4;
1541 	struct rtable *rt = skb_rtable(skb);
1542 	struct net *net = sock_net(sk);
1543 	struct sk_buff *nskb;
1544 	int err;
1545 	int oif;
1546 
1547 	if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1548 		return;
1549 
1550 	ipc.addr = daddr;
1551 	ipc.opt = NULL;
1552 	ipc.tx_flags = 0;
1553 	ipc.ttl = 0;
1554 	ipc.tos = -1;
1555 
1556 	if (replyopts.opt.opt.optlen) {
1557 		ipc.opt = &replyopts.opt;
1558 
1559 		if (replyopts.opt.opt.srr)
1560 			daddr = replyopts.opt.opt.faddr;
1561 	}
1562 
1563 	oif = arg->bound_dev_if;
1564 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1565 		oif = skb->skb_iif;
1566 
1567 	flowi4_init_output(&fl4, oif,
1568 			   IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1569 			   RT_TOS(arg->tos),
1570 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1571 			   ip_reply_arg_flowi_flags(arg),
1572 			   daddr, saddr,
1573 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1574 			   arg->uid);
1575 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1576 	rt = ip_route_output_key(net, &fl4);
1577 	if (IS_ERR(rt))
1578 		return;
1579 
1580 	inet_sk(sk)->tos = arg->tos;
1581 
1582 	sk->sk_priority = skb->priority;
1583 	sk->sk_protocol = ip_hdr(skb)->protocol;
1584 	sk->sk_bound_dev_if = arg->bound_dev_if;
1585 	sk->sk_sndbuf = sysctl_wmem_default;
1586 	sk->sk_mark = fl4.flowi4_mark;
1587 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1588 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1589 	if (unlikely(err)) {
1590 		ip_flush_pending_frames(sk);
1591 		goto out;
1592 	}
1593 
1594 	nskb = skb_peek(&sk->sk_write_queue);
1595 	if (nskb) {
1596 		if (arg->csumoffset >= 0)
1597 			*((__sum16 *)skb_transport_header(nskb) +
1598 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1599 								arg->csum));
1600 		nskb->ip_summed = CHECKSUM_NONE;
1601 		ip_push_pending_frames(sk, &fl4);
1602 	}
1603 out:
1604 	ip_rt_put(rt);
1605 }
1606 
1607 void __init ip_init(void)
1608 {
1609 	ip_rt_init();
1610 	inet_initpeers();
1611 
1612 #if defined(CONFIG_IP_MULTICAST)
1613 	igmp_mc_init();
1614 #endif
1615 }
1616