1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The Internet Protocol (IP) output module. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Donald Becker, <becker@super.org> 11 * Alan Cox, <Alan.Cox@linux.org> 12 * Richard Underwood 13 * Stefan Becker, <stefanb@yello.ping.de> 14 * Jorge Cwik, <jorge@laser.satlink.net> 15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 16 * Hirokazu Takahashi, <taka@valinux.co.jp> 17 * 18 * See ip_input.c for original log 19 * 20 * Fixes: 21 * Alan Cox : Missing nonblock feature in ip_build_xmit. 22 * Mike Kilburn : htons() missing in ip_build_xmit. 23 * Bradford Johnson: Fix faulty handling of some frames when 24 * no route is found. 25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 26 * (in case if packet not accepted by 27 * output firewall rules) 28 * Mike McLagan : Routing by source 29 * Alexey Kuznetsov: use new route cache 30 * Andi Kleen: Fix broken PMTU recovery and remove 31 * some redundant tests. 32 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 33 * Andi Kleen : Replace ip_reply with ip_send_reply. 34 * Andi Kleen : Split fast and slow ip_build_xmit path 35 * for decreased register pressure on x86 36 * and more readibility. 37 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 38 * silently drop skb instead of failing with -EPERM. 39 * Detlev Wengorz : Copy protocol for fragments. 40 * Hirokazu Takahashi: HW checksumming for outgoing UDP 41 * datagrams. 42 * Hirokazu Takahashi: sendfile() on UDP works now. 43 */ 44 45 #include <linux/uaccess.h> 46 #include <linux/module.h> 47 #include <linux/types.h> 48 #include <linux/kernel.h> 49 #include <linux/mm.h> 50 #include <linux/string.h> 51 #include <linux/errno.h> 52 #include <linux/highmem.h> 53 #include <linux/slab.h> 54 55 #include <linux/socket.h> 56 #include <linux/sockios.h> 57 #include <linux/in.h> 58 #include <linux/inet.h> 59 #include <linux/netdevice.h> 60 #include <linux/etherdevice.h> 61 #include <linux/proc_fs.h> 62 #include <linux/stat.h> 63 #include <linux/init.h> 64 65 #include <net/snmp.h> 66 #include <net/ip.h> 67 #include <net/protocol.h> 68 #include <net/route.h> 69 #include <net/xfrm.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <net/arp.h> 73 #include <net/icmp.h> 74 #include <net/checksum.h> 75 #include <net/inetpeer.h> 76 #include <net/lwtunnel.h> 77 #include <linux/bpf-cgroup.h> 78 #include <linux/igmp.h> 79 #include <linux/netfilter_ipv4.h> 80 #include <linux/netfilter_bridge.h> 81 #include <linux/netlink.h> 82 #include <linux/tcp.h> 83 84 static int 85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 86 unsigned int mtu, 87 int (*output)(struct net *, struct sock *, struct sk_buff *)); 88 89 /* Generate a checksum for an outgoing IP datagram. */ 90 void ip_send_check(struct iphdr *iph) 91 { 92 iph->check = 0; 93 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 94 } 95 EXPORT_SYMBOL(ip_send_check); 96 97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 98 { 99 struct iphdr *iph = ip_hdr(skb); 100 101 iph->tot_len = htons(skb->len); 102 ip_send_check(iph); 103 104 /* if egress device is enslaved to an L3 master device pass the 105 * skb to its handler for processing 106 */ 107 skb = l3mdev_ip_out(sk, skb); 108 if (unlikely(!skb)) 109 return 0; 110 111 skb->protocol = htons(ETH_P_IP); 112 113 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 114 net, sk, skb, NULL, skb_dst(skb)->dev, 115 dst_output); 116 } 117 118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 119 { 120 int err; 121 122 err = __ip_local_out(net, sk, skb); 123 if (likely(err == 1)) 124 err = dst_output(net, sk, skb); 125 126 return err; 127 } 128 EXPORT_SYMBOL_GPL(ip_local_out); 129 130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 131 { 132 int ttl = inet->uc_ttl; 133 134 if (ttl < 0) 135 ttl = ip4_dst_hoplimit(dst); 136 return ttl; 137 } 138 139 /* 140 * Add an ip header to a skbuff and send it out. 141 * 142 */ 143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 144 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 145 { 146 struct inet_sock *inet = inet_sk(sk); 147 struct rtable *rt = skb_rtable(skb); 148 struct net *net = sock_net(sk); 149 struct iphdr *iph; 150 151 /* Build the IP header. */ 152 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 153 skb_reset_network_header(skb); 154 iph = ip_hdr(skb); 155 iph->version = 4; 156 iph->ihl = 5; 157 iph->tos = inet->tos; 158 iph->ttl = ip_select_ttl(inet, &rt->dst); 159 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 160 iph->saddr = saddr; 161 iph->protocol = sk->sk_protocol; 162 if (ip_dont_fragment(sk, &rt->dst)) { 163 iph->frag_off = htons(IP_DF); 164 iph->id = 0; 165 } else { 166 iph->frag_off = 0; 167 __ip_select_ident(net, iph, 1); 168 } 169 170 if (opt && opt->opt.optlen) { 171 iph->ihl += opt->opt.optlen>>2; 172 ip_options_build(skb, &opt->opt, daddr, rt, 0); 173 } 174 175 skb->priority = sk->sk_priority; 176 if (!skb->mark) 177 skb->mark = sk->sk_mark; 178 179 /* Send it out. */ 180 return ip_local_out(net, skb->sk, skb); 181 } 182 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 183 184 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 185 { 186 struct dst_entry *dst = skb_dst(skb); 187 struct rtable *rt = (struct rtable *)dst; 188 struct net_device *dev = dst->dev; 189 unsigned int hh_len = LL_RESERVED_SPACE(dev); 190 struct neighbour *neigh; 191 u32 nexthop; 192 193 if (rt->rt_type == RTN_MULTICAST) { 194 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 195 } else if (rt->rt_type == RTN_BROADCAST) 196 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 197 198 /* Be paranoid, rather than too clever. */ 199 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 200 struct sk_buff *skb2; 201 202 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 203 if (!skb2) { 204 kfree_skb(skb); 205 return -ENOMEM; 206 } 207 if (skb->sk) 208 skb_set_owner_w(skb2, skb->sk); 209 consume_skb(skb); 210 skb = skb2; 211 } 212 213 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 214 int res = lwtunnel_xmit(skb); 215 216 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 217 return res; 218 } 219 220 rcu_read_lock_bh(); 221 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr); 222 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 223 if (unlikely(!neigh)) 224 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 225 if (!IS_ERR(neigh)) { 226 int res; 227 228 sock_confirm_neigh(skb, neigh); 229 res = neigh_output(neigh, skb); 230 231 rcu_read_unlock_bh(); 232 return res; 233 } 234 rcu_read_unlock_bh(); 235 236 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 237 __func__); 238 kfree_skb(skb); 239 return -EINVAL; 240 } 241 242 static int ip_finish_output_gso(struct net *net, struct sock *sk, 243 struct sk_buff *skb, unsigned int mtu) 244 { 245 netdev_features_t features; 246 struct sk_buff *segs; 247 int ret = 0; 248 249 /* common case: seglen is <= mtu 250 */ 251 if (skb_gso_validate_network_len(skb, mtu)) 252 return ip_finish_output2(net, sk, skb); 253 254 /* Slowpath - GSO segment length exceeds the egress MTU. 255 * 256 * This can happen in several cases: 257 * - Forwarding of a TCP GRO skb, when DF flag is not set. 258 * - Forwarding of an skb that arrived on a virtualization interface 259 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 260 * stack. 261 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 262 * interface with a smaller MTU. 263 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 264 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 265 * insufficent MTU. 266 */ 267 features = netif_skb_features(skb); 268 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET); 269 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 270 if (IS_ERR_OR_NULL(segs)) { 271 kfree_skb(skb); 272 return -ENOMEM; 273 } 274 275 consume_skb(skb); 276 277 do { 278 struct sk_buff *nskb = segs->next; 279 int err; 280 281 segs->next = NULL; 282 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 283 284 if (err && ret == 0) 285 ret = err; 286 segs = nskb; 287 } while (segs); 288 289 return ret; 290 } 291 292 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 293 { 294 unsigned int mtu; 295 int ret; 296 297 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 298 if (ret) { 299 kfree_skb(skb); 300 return ret; 301 } 302 303 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 304 /* Policy lookup after SNAT yielded a new policy */ 305 if (skb_dst(skb)->xfrm) { 306 IPCB(skb)->flags |= IPSKB_REROUTED; 307 return dst_output(net, sk, skb); 308 } 309 #endif 310 mtu = ip_skb_dst_mtu(sk, skb); 311 if (skb_is_gso(skb)) 312 return ip_finish_output_gso(net, sk, skb, mtu); 313 314 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 315 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 316 317 return ip_finish_output2(net, sk, skb); 318 } 319 320 static int ip_mc_finish_output(struct net *net, struct sock *sk, 321 struct sk_buff *skb) 322 { 323 int ret; 324 325 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 326 if (ret) { 327 kfree_skb(skb); 328 return ret; 329 } 330 331 return dev_loopback_xmit(net, sk, skb); 332 } 333 334 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 335 { 336 struct rtable *rt = skb_rtable(skb); 337 struct net_device *dev = rt->dst.dev; 338 339 /* 340 * If the indicated interface is up and running, send the packet. 341 */ 342 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 343 344 skb->dev = dev; 345 skb->protocol = htons(ETH_P_IP); 346 347 /* 348 * Multicasts are looped back for other local users 349 */ 350 351 if (rt->rt_flags&RTCF_MULTICAST) { 352 if (sk_mc_loop(sk) 353 #ifdef CONFIG_IP_MROUTE 354 /* Small optimization: do not loopback not local frames, 355 which returned after forwarding; they will be dropped 356 by ip_mr_input in any case. 357 Note, that local frames are looped back to be delivered 358 to local recipients. 359 360 This check is duplicated in ip_mr_input at the moment. 361 */ 362 && 363 ((rt->rt_flags & RTCF_LOCAL) || 364 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 365 #endif 366 ) { 367 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 368 if (newskb) 369 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 370 net, sk, newskb, NULL, newskb->dev, 371 ip_mc_finish_output); 372 } 373 374 /* Multicasts with ttl 0 must not go beyond the host */ 375 376 if (ip_hdr(skb)->ttl == 0) { 377 kfree_skb(skb); 378 return 0; 379 } 380 } 381 382 if (rt->rt_flags&RTCF_BROADCAST) { 383 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 384 if (newskb) 385 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 386 net, sk, newskb, NULL, newskb->dev, 387 ip_mc_finish_output); 388 } 389 390 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 391 net, sk, skb, NULL, skb->dev, 392 ip_finish_output, 393 !(IPCB(skb)->flags & IPSKB_REROUTED)); 394 } 395 396 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 397 { 398 struct net_device *dev = skb_dst(skb)->dev; 399 400 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 401 402 skb->dev = dev; 403 skb->protocol = htons(ETH_P_IP); 404 405 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 406 net, sk, skb, NULL, dev, 407 ip_finish_output, 408 !(IPCB(skb)->flags & IPSKB_REROUTED)); 409 } 410 411 /* 412 * copy saddr and daddr, possibly using 64bit load/stores 413 * Equivalent to : 414 * iph->saddr = fl4->saddr; 415 * iph->daddr = fl4->daddr; 416 */ 417 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 418 { 419 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 420 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 421 memcpy(&iph->saddr, &fl4->saddr, 422 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 423 } 424 425 /* Note: skb->sk can be different from sk, in case of tunnels */ 426 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 427 { 428 struct inet_sock *inet = inet_sk(sk); 429 struct net *net = sock_net(sk); 430 struct ip_options_rcu *inet_opt; 431 struct flowi4 *fl4; 432 struct rtable *rt; 433 struct iphdr *iph; 434 int res; 435 436 /* Skip all of this if the packet is already routed, 437 * f.e. by something like SCTP. 438 */ 439 rcu_read_lock(); 440 inet_opt = rcu_dereference(inet->inet_opt); 441 fl4 = &fl->u.ip4; 442 rt = skb_rtable(skb); 443 if (rt) 444 goto packet_routed; 445 446 /* Make sure we can route this packet. */ 447 rt = (struct rtable *)__sk_dst_check(sk, 0); 448 if (!rt) { 449 __be32 daddr; 450 451 /* Use correct destination address if we have options. */ 452 daddr = inet->inet_daddr; 453 if (inet_opt && inet_opt->opt.srr) 454 daddr = inet_opt->opt.faddr; 455 456 /* If this fails, retransmit mechanism of transport layer will 457 * keep trying until route appears or the connection times 458 * itself out. 459 */ 460 rt = ip_route_output_ports(net, fl4, sk, 461 daddr, inet->inet_saddr, 462 inet->inet_dport, 463 inet->inet_sport, 464 sk->sk_protocol, 465 RT_CONN_FLAGS(sk), 466 sk->sk_bound_dev_if); 467 if (IS_ERR(rt)) 468 goto no_route; 469 sk_setup_caps(sk, &rt->dst); 470 } 471 skb_dst_set_noref(skb, &rt->dst); 472 473 packet_routed: 474 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 475 goto no_route; 476 477 /* OK, we know where to send it, allocate and build IP header. */ 478 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 479 skb_reset_network_header(skb); 480 iph = ip_hdr(skb); 481 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff)); 482 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 483 iph->frag_off = htons(IP_DF); 484 else 485 iph->frag_off = 0; 486 iph->ttl = ip_select_ttl(inet, &rt->dst); 487 iph->protocol = sk->sk_protocol; 488 ip_copy_addrs(iph, fl4); 489 490 /* Transport layer set skb->h.foo itself. */ 491 492 if (inet_opt && inet_opt->opt.optlen) { 493 iph->ihl += inet_opt->opt.optlen >> 2; 494 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 495 } 496 497 ip_select_ident_segs(net, skb, sk, 498 skb_shinfo(skb)->gso_segs ?: 1); 499 500 /* TODO : should we use skb->sk here instead of sk ? */ 501 skb->priority = sk->sk_priority; 502 skb->mark = sk->sk_mark; 503 504 res = ip_local_out(net, sk, skb); 505 rcu_read_unlock(); 506 return res; 507 508 no_route: 509 rcu_read_unlock(); 510 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 511 kfree_skb(skb); 512 return -EHOSTUNREACH; 513 } 514 EXPORT_SYMBOL(ip_queue_xmit); 515 516 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 517 { 518 to->pkt_type = from->pkt_type; 519 to->priority = from->priority; 520 to->protocol = from->protocol; 521 skb_dst_drop(to); 522 skb_dst_copy(to, from); 523 to->dev = from->dev; 524 to->mark = from->mark; 525 526 skb_copy_hash(to, from); 527 528 /* Copy the flags to each fragment. */ 529 IPCB(to)->flags = IPCB(from)->flags; 530 531 #ifdef CONFIG_NET_SCHED 532 to->tc_index = from->tc_index; 533 #endif 534 nf_copy(to, from); 535 #if IS_ENABLED(CONFIG_IP_VS) 536 to->ipvs_property = from->ipvs_property; 537 #endif 538 skb_copy_secmark(to, from); 539 } 540 541 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 542 unsigned int mtu, 543 int (*output)(struct net *, struct sock *, struct sk_buff *)) 544 { 545 struct iphdr *iph = ip_hdr(skb); 546 547 if ((iph->frag_off & htons(IP_DF)) == 0) 548 return ip_do_fragment(net, sk, skb, output); 549 550 if (unlikely(!skb->ignore_df || 551 (IPCB(skb)->frag_max_size && 552 IPCB(skb)->frag_max_size > mtu))) { 553 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 554 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 555 htonl(mtu)); 556 kfree_skb(skb); 557 return -EMSGSIZE; 558 } 559 560 return ip_do_fragment(net, sk, skb, output); 561 } 562 563 /* 564 * This IP datagram is too large to be sent in one piece. Break it up into 565 * smaller pieces (each of size equal to IP header plus 566 * a block of the data of the original IP data part) that will yet fit in a 567 * single device frame, and queue such a frame for sending. 568 */ 569 570 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 571 int (*output)(struct net *, struct sock *, struct sk_buff *)) 572 { 573 struct iphdr *iph; 574 int ptr; 575 struct sk_buff *skb2; 576 unsigned int mtu, hlen, left, len, ll_rs; 577 int offset; 578 __be16 not_last_frag; 579 struct rtable *rt = skb_rtable(skb); 580 int err = 0; 581 582 /* for offloaded checksums cleanup checksum before fragmentation */ 583 if (skb->ip_summed == CHECKSUM_PARTIAL && 584 (err = skb_checksum_help(skb))) 585 goto fail; 586 587 /* 588 * Point into the IP datagram header. 589 */ 590 591 iph = ip_hdr(skb); 592 593 mtu = ip_skb_dst_mtu(sk, skb); 594 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 595 mtu = IPCB(skb)->frag_max_size; 596 597 /* 598 * Setup starting values. 599 */ 600 601 hlen = iph->ihl * 4; 602 mtu = mtu - hlen; /* Size of data space */ 603 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 604 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 605 606 /* When frag_list is given, use it. First, check its validity: 607 * some transformers could create wrong frag_list or break existing 608 * one, it is not prohibited. In this case fall back to copying. 609 * 610 * LATER: this step can be merged to real generation of fragments, 611 * we can switch to copy when see the first bad fragment. 612 */ 613 if (skb_has_frag_list(skb)) { 614 struct sk_buff *frag, *frag2; 615 unsigned int first_len = skb_pagelen(skb); 616 617 if (first_len - hlen > mtu || 618 ((first_len - hlen) & 7) || 619 ip_is_fragment(iph) || 620 skb_cloned(skb) || 621 skb_headroom(skb) < ll_rs) 622 goto slow_path; 623 624 skb_walk_frags(skb, frag) { 625 /* Correct geometry. */ 626 if (frag->len > mtu || 627 ((frag->len & 7) && frag->next) || 628 skb_headroom(frag) < hlen + ll_rs) 629 goto slow_path_clean; 630 631 /* Partially cloned skb? */ 632 if (skb_shared(frag)) 633 goto slow_path_clean; 634 635 BUG_ON(frag->sk); 636 if (skb->sk) { 637 frag->sk = skb->sk; 638 frag->destructor = sock_wfree; 639 } 640 skb->truesize -= frag->truesize; 641 } 642 643 /* Everything is OK. Generate! */ 644 645 err = 0; 646 offset = 0; 647 frag = skb_shinfo(skb)->frag_list; 648 skb_frag_list_init(skb); 649 skb->data_len = first_len - skb_headlen(skb); 650 skb->len = first_len; 651 iph->tot_len = htons(first_len); 652 iph->frag_off = htons(IP_MF); 653 ip_send_check(iph); 654 655 for (;;) { 656 /* Prepare header of the next frame, 657 * before previous one went down. */ 658 if (frag) { 659 frag->ip_summed = CHECKSUM_NONE; 660 skb_reset_transport_header(frag); 661 __skb_push(frag, hlen); 662 skb_reset_network_header(frag); 663 memcpy(skb_network_header(frag), iph, hlen); 664 iph = ip_hdr(frag); 665 iph->tot_len = htons(frag->len); 666 ip_copy_metadata(frag, skb); 667 if (offset == 0) 668 ip_options_fragment(frag); 669 offset += skb->len - hlen; 670 iph->frag_off = htons(offset>>3); 671 if (frag->next) 672 iph->frag_off |= htons(IP_MF); 673 /* Ready, complete checksum */ 674 ip_send_check(iph); 675 } 676 677 err = output(net, sk, skb); 678 679 if (!err) 680 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 681 if (err || !frag) 682 break; 683 684 skb = frag; 685 frag = skb->next; 686 skb->next = NULL; 687 } 688 689 if (err == 0) { 690 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 691 return 0; 692 } 693 694 while (frag) { 695 skb = frag->next; 696 kfree_skb(frag); 697 frag = skb; 698 } 699 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 700 return err; 701 702 slow_path_clean: 703 skb_walk_frags(skb, frag2) { 704 if (frag2 == frag) 705 break; 706 frag2->sk = NULL; 707 frag2->destructor = NULL; 708 skb->truesize += frag2->truesize; 709 } 710 } 711 712 slow_path: 713 iph = ip_hdr(skb); 714 715 left = skb->len - hlen; /* Space per frame */ 716 ptr = hlen; /* Where to start from */ 717 718 /* 719 * Fragment the datagram. 720 */ 721 722 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 723 not_last_frag = iph->frag_off & htons(IP_MF); 724 725 /* 726 * Keep copying data until we run out. 727 */ 728 729 while (left > 0) { 730 len = left; 731 /* IF: it doesn't fit, use 'mtu' - the data space left */ 732 if (len > mtu) 733 len = mtu; 734 /* IF: we are not sending up to and including the packet end 735 then align the next start on an eight byte boundary */ 736 if (len < left) { 737 len &= ~7; 738 } 739 740 /* Allocate buffer */ 741 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); 742 if (!skb2) { 743 err = -ENOMEM; 744 goto fail; 745 } 746 747 /* 748 * Set up data on packet 749 */ 750 751 ip_copy_metadata(skb2, skb); 752 skb_reserve(skb2, ll_rs); 753 skb_put(skb2, len + hlen); 754 skb_reset_network_header(skb2); 755 skb2->transport_header = skb2->network_header + hlen; 756 757 /* 758 * Charge the memory for the fragment to any owner 759 * it might possess 760 */ 761 762 if (skb->sk) 763 skb_set_owner_w(skb2, skb->sk); 764 765 /* 766 * Copy the packet header into the new buffer. 767 */ 768 769 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); 770 771 /* 772 * Copy a block of the IP datagram. 773 */ 774 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) 775 BUG(); 776 left -= len; 777 778 /* 779 * Fill in the new header fields. 780 */ 781 iph = ip_hdr(skb2); 782 iph->frag_off = htons((offset >> 3)); 783 784 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) 785 iph->frag_off |= htons(IP_DF); 786 787 /* ANK: dirty, but effective trick. Upgrade options only if 788 * the segment to be fragmented was THE FIRST (otherwise, 789 * options are already fixed) and make it ONCE 790 * on the initial skb, so that all the following fragments 791 * will inherit fixed options. 792 */ 793 if (offset == 0) 794 ip_options_fragment(skb); 795 796 /* 797 * Added AC : If we are fragmenting a fragment that's not the 798 * last fragment then keep MF on each bit 799 */ 800 if (left > 0 || not_last_frag) 801 iph->frag_off |= htons(IP_MF); 802 ptr += len; 803 offset += len; 804 805 /* 806 * Put this fragment into the sending queue. 807 */ 808 iph->tot_len = htons(len + hlen); 809 810 ip_send_check(iph); 811 812 err = output(net, sk, skb2); 813 if (err) 814 goto fail; 815 816 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 817 } 818 consume_skb(skb); 819 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 820 return err; 821 822 fail: 823 kfree_skb(skb); 824 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 825 return err; 826 } 827 EXPORT_SYMBOL(ip_do_fragment); 828 829 int 830 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 831 { 832 struct msghdr *msg = from; 833 834 if (skb->ip_summed == CHECKSUM_PARTIAL) { 835 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 836 return -EFAULT; 837 } else { 838 __wsum csum = 0; 839 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 840 return -EFAULT; 841 skb->csum = csum_block_add(skb->csum, csum, odd); 842 } 843 return 0; 844 } 845 EXPORT_SYMBOL(ip_generic_getfrag); 846 847 static inline __wsum 848 csum_page(struct page *page, int offset, int copy) 849 { 850 char *kaddr; 851 __wsum csum; 852 kaddr = kmap(page); 853 csum = csum_partial(kaddr + offset, copy, 0); 854 kunmap(page); 855 return csum; 856 } 857 858 static int __ip_append_data(struct sock *sk, 859 struct flowi4 *fl4, 860 struct sk_buff_head *queue, 861 struct inet_cork *cork, 862 struct page_frag *pfrag, 863 int getfrag(void *from, char *to, int offset, 864 int len, int odd, struct sk_buff *skb), 865 void *from, int length, int transhdrlen, 866 unsigned int flags) 867 { 868 struct inet_sock *inet = inet_sk(sk); 869 struct sk_buff *skb; 870 871 struct ip_options *opt = cork->opt; 872 int hh_len; 873 int exthdrlen; 874 int mtu; 875 int copy; 876 int err; 877 int offset = 0; 878 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 879 int csummode = CHECKSUM_NONE; 880 struct rtable *rt = (struct rtable *)cork->dst; 881 unsigned int wmem_alloc_delta = 0; 882 u32 tskey = 0; 883 bool paged; 884 885 skb = skb_peek_tail(queue); 886 887 exthdrlen = !skb ? rt->dst.header_len : 0; 888 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 889 paged = !!cork->gso_size; 890 891 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 892 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 893 tskey = sk->sk_tskey++; 894 895 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 896 897 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 898 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 899 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 900 901 if (cork->length + length > maxnonfragsize - fragheaderlen) { 902 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 903 mtu - (opt ? opt->optlen : 0)); 904 return -EMSGSIZE; 905 } 906 907 /* 908 * transhdrlen > 0 means that this is the first fragment and we wish 909 * it won't be fragmented in the future. 910 */ 911 if (transhdrlen && 912 length + fragheaderlen <= mtu && 913 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 914 (!(flags & MSG_MORE) || cork->gso_size) && 915 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) 916 csummode = CHECKSUM_PARTIAL; 917 918 cork->length += length; 919 920 /* So, what's going on in the loop below? 921 * 922 * We use calculated fragment length to generate chained skb, 923 * each of segments is IP fragment ready for sending to network after 924 * adding appropriate IP header. 925 */ 926 927 if (!skb) 928 goto alloc_new_skb; 929 930 while (length > 0) { 931 /* Check if the remaining data fits into current packet. */ 932 copy = mtu - skb->len; 933 if (copy < length) 934 copy = maxfraglen - skb->len; 935 if (copy <= 0) { 936 char *data; 937 unsigned int datalen; 938 unsigned int fraglen; 939 unsigned int fraggap; 940 unsigned int alloclen; 941 unsigned int pagedlen = 0; 942 struct sk_buff *skb_prev; 943 alloc_new_skb: 944 skb_prev = skb; 945 if (skb_prev) 946 fraggap = skb_prev->len - maxfraglen; 947 else 948 fraggap = 0; 949 950 /* 951 * If remaining data exceeds the mtu, 952 * we know we need more fragment(s). 953 */ 954 datalen = length + fraggap; 955 if (datalen > mtu - fragheaderlen) 956 datalen = maxfraglen - fragheaderlen; 957 fraglen = datalen + fragheaderlen; 958 959 if ((flags & MSG_MORE) && 960 !(rt->dst.dev->features&NETIF_F_SG)) 961 alloclen = mtu; 962 else if (!paged) 963 alloclen = fraglen; 964 else { 965 alloclen = min_t(int, fraglen, MAX_HEADER); 966 pagedlen = fraglen - alloclen; 967 } 968 969 alloclen += exthdrlen; 970 971 /* The last fragment gets additional space at tail. 972 * Note, with MSG_MORE we overallocate on fragments, 973 * because we have no idea what fragment will be 974 * the last. 975 */ 976 if (datalen == length + fraggap) 977 alloclen += rt->dst.trailer_len; 978 979 if (transhdrlen) { 980 skb = sock_alloc_send_skb(sk, 981 alloclen + hh_len + 15, 982 (flags & MSG_DONTWAIT), &err); 983 } else { 984 skb = NULL; 985 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 986 2 * sk->sk_sndbuf) 987 skb = alloc_skb(alloclen + hh_len + 15, 988 sk->sk_allocation); 989 if (unlikely(!skb)) 990 err = -ENOBUFS; 991 } 992 if (!skb) 993 goto error; 994 995 /* 996 * Fill in the control structures 997 */ 998 skb->ip_summed = csummode; 999 skb->csum = 0; 1000 skb_reserve(skb, hh_len); 1001 1002 /* only the initial fragment is time stamped */ 1003 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1004 cork->tx_flags = 0; 1005 skb_shinfo(skb)->tskey = tskey; 1006 tskey = 0; 1007 1008 /* 1009 * Find where to start putting bytes. 1010 */ 1011 data = skb_put(skb, fraglen + exthdrlen - pagedlen); 1012 skb_set_network_header(skb, exthdrlen); 1013 skb->transport_header = (skb->network_header + 1014 fragheaderlen); 1015 data += fragheaderlen + exthdrlen; 1016 1017 if (fraggap) { 1018 skb->csum = skb_copy_and_csum_bits( 1019 skb_prev, maxfraglen, 1020 data + transhdrlen, fraggap, 0); 1021 skb_prev->csum = csum_sub(skb_prev->csum, 1022 skb->csum); 1023 data += fraggap; 1024 pskb_trim_unique(skb_prev, maxfraglen); 1025 } 1026 1027 copy = datalen - transhdrlen - fraggap - pagedlen; 1028 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1029 err = -EFAULT; 1030 kfree_skb(skb); 1031 goto error; 1032 } 1033 1034 offset += copy; 1035 length -= copy + transhdrlen; 1036 transhdrlen = 0; 1037 exthdrlen = 0; 1038 csummode = CHECKSUM_NONE; 1039 1040 if ((flags & MSG_CONFIRM) && !skb_prev) 1041 skb_set_dst_pending_confirm(skb, 1); 1042 1043 /* 1044 * Put the packet on the pending queue. 1045 */ 1046 if (!skb->destructor) { 1047 skb->destructor = sock_wfree; 1048 skb->sk = sk; 1049 wmem_alloc_delta += skb->truesize; 1050 } 1051 __skb_queue_tail(queue, skb); 1052 continue; 1053 } 1054 1055 if (copy > length) 1056 copy = length; 1057 1058 if (!(rt->dst.dev->features&NETIF_F_SG) && 1059 skb_tailroom(skb) >= copy) { 1060 unsigned int off; 1061 1062 off = skb->len; 1063 if (getfrag(from, skb_put(skb, copy), 1064 offset, copy, off, skb) < 0) { 1065 __skb_trim(skb, off); 1066 err = -EFAULT; 1067 goto error; 1068 } 1069 } else { 1070 int i = skb_shinfo(skb)->nr_frags; 1071 1072 err = -ENOMEM; 1073 if (!sk_page_frag_refill(sk, pfrag)) 1074 goto error; 1075 1076 if (!skb_can_coalesce(skb, i, pfrag->page, 1077 pfrag->offset)) { 1078 err = -EMSGSIZE; 1079 if (i == MAX_SKB_FRAGS) 1080 goto error; 1081 1082 __skb_fill_page_desc(skb, i, pfrag->page, 1083 pfrag->offset, 0); 1084 skb_shinfo(skb)->nr_frags = ++i; 1085 get_page(pfrag->page); 1086 } 1087 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1088 if (getfrag(from, 1089 page_address(pfrag->page) + pfrag->offset, 1090 offset, copy, skb->len, skb) < 0) 1091 goto error_efault; 1092 1093 pfrag->offset += copy; 1094 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1095 skb->len += copy; 1096 skb->data_len += copy; 1097 skb->truesize += copy; 1098 wmem_alloc_delta += copy; 1099 } 1100 offset += copy; 1101 length -= copy; 1102 } 1103 1104 if (wmem_alloc_delta) 1105 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1106 return 0; 1107 1108 error_efault: 1109 err = -EFAULT; 1110 error: 1111 cork->length -= length; 1112 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1113 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1114 return err; 1115 } 1116 1117 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1118 struct ipcm_cookie *ipc, struct rtable **rtp) 1119 { 1120 struct ip_options_rcu *opt; 1121 struct rtable *rt; 1122 1123 rt = *rtp; 1124 if (unlikely(!rt)) 1125 return -EFAULT; 1126 1127 /* 1128 * setup for corking. 1129 */ 1130 opt = ipc->opt; 1131 if (opt) { 1132 if (!cork->opt) { 1133 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1134 sk->sk_allocation); 1135 if (unlikely(!cork->opt)) 1136 return -ENOBUFS; 1137 } 1138 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1139 cork->flags |= IPCORK_OPT; 1140 cork->addr = ipc->addr; 1141 } 1142 1143 /* 1144 * We steal reference to this route, caller should not release it 1145 */ 1146 *rtp = NULL; 1147 cork->fragsize = ip_sk_use_pmtu(sk) ? 1148 dst_mtu(&rt->dst) : rt->dst.dev->mtu; 1149 1150 cork->gso_size = sk->sk_type == SOCK_DGRAM && 1151 sk->sk_protocol == IPPROTO_UDP ? ipc->gso_size : 0; 1152 cork->dst = &rt->dst; 1153 cork->length = 0; 1154 cork->ttl = ipc->ttl; 1155 cork->tos = ipc->tos; 1156 cork->priority = ipc->priority; 1157 cork->tx_flags = ipc->tx_flags; 1158 1159 return 0; 1160 } 1161 1162 /* 1163 * ip_append_data() and ip_append_page() can make one large IP datagram 1164 * from many pieces of data. Each pieces will be holded on the socket 1165 * until ip_push_pending_frames() is called. Each piece can be a page 1166 * or non-page data. 1167 * 1168 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1169 * this interface potentially. 1170 * 1171 * LATER: length must be adjusted by pad at tail, when it is required. 1172 */ 1173 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1174 int getfrag(void *from, char *to, int offset, int len, 1175 int odd, struct sk_buff *skb), 1176 void *from, int length, int transhdrlen, 1177 struct ipcm_cookie *ipc, struct rtable **rtp, 1178 unsigned int flags) 1179 { 1180 struct inet_sock *inet = inet_sk(sk); 1181 int err; 1182 1183 if (flags&MSG_PROBE) 1184 return 0; 1185 1186 if (skb_queue_empty(&sk->sk_write_queue)) { 1187 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1188 if (err) 1189 return err; 1190 } else { 1191 transhdrlen = 0; 1192 } 1193 1194 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1195 sk_page_frag(sk), getfrag, 1196 from, length, transhdrlen, flags); 1197 } 1198 1199 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1200 int offset, size_t size, int flags) 1201 { 1202 struct inet_sock *inet = inet_sk(sk); 1203 struct sk_buff *skb; 1204 struct rtable *rt; 1205 struct ip_options *opt = NULL; 1206 struct inet_cork *cork; 1207 int hh_len; 1208 int mtu; 1209 int len; 1210 int err; 1211 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1212 1213 if (inet->hdrincl) 1214 return -EPERM; 1215 1216 if (flags&MSG_PROBE) 1217 return 0; 1218 1219 if (skb_queue_empty(&sk->sk_write_queue)) 1220 return -EINVAL; 1221 1222 cork = &inet->cork.base; 1223 rt = (struct rtable *)cork->dst; 1224 if (cork->flags & IPCORK_OPT) 1225 opt = cork->opt; 1226 1227 if (!(rt->dst.dev->features&NETIF_F_SG)) 1228 return -EOPNOTSUPP; 1229 1230 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1231 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 1232 1233 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1234 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1235 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1236 1237 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1238 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1239 mtu - (opt ? opt->optlen : 0)); 1240 return -EMSGSIZE; 1241 } 1242 1243 skb = skb_peek_tail(&sk->sk_write_queue); 1244 if (!skb) 1245 return -EINVAL; 1246 1247 cork->length += size; 1248 1249 while (size > 0) { 1250 /* Check if the remaining data fits into current packet. */ 1251 len = mtu - skb->len; 1252 if (len < size) 1253 len = maxfraglen - skb->len; 1254 1255 if (len <= 0) { 1256 struct sk_buff *skb_prev; 1257 int alloclen; 1258 1259 skb_prev = skb; 1260 fraggap = skb_prev->len - maxfraglen; 1261 1262 alloclen = fragheaderlen + hh_len + fraggap + 15; 1263 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1264 if (unlikely(!skb)) { 1265 err = -ENOBUFS; 1266 goto error; 1267 } 1268 1269 /* 1270 * Fill in the control structures 1271 */ 1272 skb->ip_summed = CHECKSUM_NONE; 1273 skb->csum = 0; 1274 skb_reserve(skb, hh_len); 1275 1276 /* 1277 * Find where to start putting bytes. 1278 */ 1279 skb_put(skb, fragheaderlen + fraggap); 1280 skb_reset_network_header(skb); 1281 skb->transport_header = (skb->network_header + 1282 fragheaderlen); 1283 if (fraggap) { 1284 skb->csum = skb_copy_and_csum_bits(skb_prev, 1285 maxfraglen, 1286 skb_transport_header(skb), 1287 fraggap, 0); 1288 skb_prev->csum = csum_sub(skb_prev->csum, 1289 skb->csum); 1290 pskb_trim_unique(skb_prev, maxfraglen); 1291 } 1292 1293 /* 1294 * Put the packet on the pending queue. 1295 */ 1296 __skb_queue_tail(&sk->sk_write_queue, skb); 1297 continue; 1298 } 1299 1300 if (len > size) 1301 len = size; 1302 1303 if (skb_append_pagefrags(skb, page, offset, len)) { 1304 err = -EMSGSIZE; 1305 goto error; 1306 } 1307 1308 if (skb->ip_summed == CHECKSUM_NONE) { 1309 __wsum csum; 1310 csum = csum_page(page, offset, len); 1311 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1312 } 1313 1314 skb->len += len; 1315 skb->data_len += len; 1316 skb->truesize += len; 1317 refcount_add(len, &sk->sk_wmem_alloc); 1318 offset += len; 1319 size -= len; 1320 } 1321 return 0; 1322 1323 error: 1324 cork->length -= size; 1325 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1326 return err; 1327 } 1328 1329 static void ip_cork_release(struct inet_cork *cork) 1330 { 1331 cork->flags &= ~IPCORK_OPT; 1332 kfree(cork->opt); 1333 cork->opt = NULL; 1334 dst_release(cork->dst); 1335 cork->dst = NULL; 1336 } 1337 1338 /* 1339 * Combined all pending IP fragments on the socket as one IP datagram 1340 * and push them out. 1341 */ 1342 struct sk_buff *__ip_make_skb(struct sock *sk, 1343 struct flowi4 *fl4, 1344 struct sk_buff_head *queue, 1345 struct inet_cork *cork) 1346 { 1347 struct sk_buff *skb, *tmp_skb; 1348 struct sk_buff **tail_skb; 1349 struct inet_sock *inet = inet_sk(sk); 1350 struct net *net = sock_net(sk); 1351 struct ip_options *opt = NULL; 1352 struct rtable *rt = (struct rtable *)cork->dst; 1353 struct iphdr *iph; 1354 __be16 df = 0; 1355 __u8 ttl; 1356 1357 skb = __skb_dequeue(queue); 1358 if (!skb) 1359 goto out; 1360 tail_skb = &(skb_shinfo(skb)->frag_list); 1361 1362 /* move skb->data to ip header from ext header */ 1363 if (skb->data < skb_network_header(skb)) 1364 __skb_pull(skb, skb_network_offset(skb)); 1365 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1366 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1367 *tail_skb = tmp_skb; 1368 tail_skb = &(tmp_skb->next); 1369 skb->len += tmp_skb->len; 1370 skb->data_len += tmp_skb->len; 1371 skb->truesize += tmp_skb->truesize; 1372 tmp_skb->destructor = NULL; 1373 tmp_skb->sk = NULL; 1374 } 1375 1376 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1377 * to fragment the frame generated here. No matter, what transforms 1378 * how transforms change size of the packet, it will come out. 1379 */ 1380 skb->ignore_df = ip_sk_ignore_df(sk); 1381 1382 /* DF bit is set when we want to see DF on outgoing frames. 1383 * If ignore_df is set too, we still allow to fragment this frame 1384 * locally. */ 1385 if (inet->pmtudisc == IP_PMTUDISC_DO || 1386 inet->pmtudisc == IP_PMTUDISC_PROBE || 1387 (skb->len <= dst_mtu(&rt->dst) && 1388 ip_dont_fragment(sk, &rt->dst))) 1389 df = htons(IP_DF); 1390 1391 if (cork->flags & IPCORK_OPT) 1392 opt = cork->opt; 1393 1394 if (cork->ttl != 0) 1395 ttl = cork->ttl; 1396 else if (rt->rt_type == RTN_MULTICAST) 1397 ttl = inet->mc_ttl; 1398 else 1399 ttl = ip_select_ttl(inet, &rt->dst); 1400 1401 iph = ip_hdr(skb); 1402 iph->version = 4; 1403 iph->ihl = 5; 1404 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1405 iph->frag_off = df; 1406 iph->ttl = ttl; 1407 iph->protocol = sk->sk_protocol; 1408 ip_copy_addrs(iph, fl4); 1409 ip_select_ident(net, skb, sk); 1410 1411 if (opt) { 1412 iph->ihl += opt->optlen>>2; 1413 ip_options_build(skb, opt, cork->addr, rt, 0); 1414 } 1415 1416 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1417 skb->mark = sk->sk_mark; 1418 /* 1419 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1420 * on dst refcount 1421 */ 1422 cork->dst = NULL; 1423 skb_dst_set(skb, &rt->dst); 1424 1425 if (iph->protocol == IPPROTO_ICMP) 1426 icmp_out_count(net, ((struct icmphdr *) 1427 skb_transport_header(skb))->type); 1428 1429 ip_cork_release(cork); 1430 out: 1431 return skb; 1432 } 1433 1434 int ip_send_skb(struct net *net, struct sk_buff *skb) 1435 { 1436 int err; 1437 1438 err = ip_local_out(net, skb->sk, skb); 1439 if (err) { 1440 if (err > 0) 1441 err = net_xmit_errno(err); 1442 if (err) 1443 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1444 } 1445 1446 return err; 1447 } 1448 1449 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1450 { 1451 struct sk_buff *skb; 1452 1453 skb = ip_finish_skb(sk, fl4); 1454 if (!skb) 1455 return 0; 1456 1457 /* Netfilter gets whole the not fragmented skb. */ 1458 return ip_send_skb(sock_net(sk), skb); 1459 } 1460 1461 /* 1462 * Throw away all pending data on the socket. 1463 */ 1464 static void __ip_flush_pending_frames(struct sock *sk, 1465 struct sk_buff_head *queue, 1466 struct inet_cork *cork) 1467 { 1468 struct sk_buff *skb; 1469 1470 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1471 kfree_skb(skb); 1472 1473 ip_cork_release(cork); 1474 } 1475 1476 void ip_flush_pending_frames(struct sock *sk) 1477 { 1478 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1479 } 1480 1481 struct sk_buff *ip_make_skb(struct sock *sk, 1482 struct flowi4 *fl4, 1483 int getfrag(void *from, char *to, int offset, 1484 int len, int odd, struct sk_buff *skb), 1485 void *from, int length, int transhdrlen, 1486 struct ipcm_cookie *ipc, struct rtable **rtp, 1487 struct inet_cork *cork, unsigned int flags) 1488 { 1489 struct sk_buff_head queue; 1490 int err; 1491 1492 if (flags & MSG_PROBE) 1493 return NULL; 1494 1495 __skb_queue_head_init(&queue); 1496 1497 cork->flags = 0; 1498 cork->addr = 0; 1499 cork->opt = NULL; 1500 err = ip_setup_cork(sk, cork, ipc, rtp); 1501 if (err) 1502 return ERR_PTR(err); 1503 1504 err = __ip_append_data(sk, fl4, &queue, cork, 1505 ¤t->task_frag, getfrag, 1506 from, length, transhdrlen, flags); 1507 if (err) { 1508 __ip_flush_pending_frames(sk, &queue, cork); 1509 return ERR_PTR(err); 1510 } 1511 1512 return __ip_make_skb(sk, fl4, &queue, cork); 1513 } 1514 1515 /* 1516 * Fetch data from kernel space and fill in checksum if needed. 1517 */ 1518 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1519 int len, int odd, struct sk_buff *skb) 1520 { 1521 __wsum csum; 1522 1523 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); 1524 skb->csum = csum_block_add(skb->csum, csum, odd); 1525 return 0; 1526 } 1527 1528 /* 1529 * Generic function to send a packet as reply to another packet. 1530 * Used to send some TCP resets/acks so far. 1531 */ 1532 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1533 const struct ip_options *sopt, 1534 __be32 daddr, __be32 saddr, 1535 const struct ip_reply_arg *arg, 1536 unsigned int len) 1537 { 1538 struct ip_options_data replyopts; 1539 struct ipcm_cookie ipc; 1540 struct flowi4 fl4; 1541 struct rtable *rt = skb_rtable(skb); 1542 struct net *net = sock_net(sk); 1543 struct sk_buff *nskb; 1544 int err; 1545 int oif; 1546 1547 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) 1548 return; 1549 1550 ipc.addr = daddr; 1551 ipc.opt = NULL; 1552 ipc.tx_flags = 0; 1553 ipc.ttl = 0; 1554 ipc.tos = -1; 1555 1556 if (replyopts.opt.opt.optlen) { 1557 ipc.opt = &replyopts.opt; 1558 1559 if (replyopts.opt.opt.srr) 1560 daddr = replyopts.opt.opt.faddr; 1561 } 1562 1563 oif = arg->bound_dev_if; 1564 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1565 oif = skb->skb_iif; 1566 1567 flowi4_init_output(&fl4, oif, 1568 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, 1569 RT_TOS(arg->tos), 1570 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1571 ip_reply_arg_flowi_flags(arg), 1572 daddr, saddr, 1573 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1574 arg->uid); 1575 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1576 rt = ip_route_output_key(net, &fl4); 1577 if (IS_ERR(rt)) 1578 return; 1579 1580 inet_sk(sk)->tos = arg->tos; 1581 1582 sk->sk_priority = skb->priority; 1583 sk->sk_protocol = ip_hdr(skb)->protocol; 1584 sk->sk_bound_dev_if = arg->bound_dev_if; 1585 sk->sk_sndbuf = sysctl_wmem_default; 1586 sk->sk_mark = fl4.flowi4_mark; 1587 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1588 len, 0, &ipc, &rt, MSG_DONTWAIT); 1589 if (unlikely(err)) { 1590 ip_flush_pending_frames(sk); 1591 goto out; 1592 } 1593 1594 nskb = skb_peek(&sk->sk_write_queue); 1595 if (nskb) { 1596 if (arg->csumoffset >= 0) 1597 *((__sum16 *)skb_transport_header(nskb) + 1598 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1599 arg->csum)); 1600 nskb->ip_summed = CHECKSUM_NONE; 1601 ip_push_pending_frames(sk, &fl4); 1602 } 1603 out: 1604 ip_rt_put(rt); 1605 } 1606 1607 void __init ip_init(void) 1608 { 1609 ip_rt_init(); 1610 inet_initpeers(); 1611 1612 #if defined(CONFIG_IP_MULTICAST) 1613 igmp_mc_init(); 1614 #endif 1615 } 1616