xref: /linux/net/ipv4/ip_output.c (revision a7ddedc84c59a645ef970b992f7cda5bffc70cc0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The Internet Protocol (IP) output module.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Donald Becker, <becker@super.org>
12  *		Alan Cox, <Alan.Cox@linux.org>
13  *		Richard Underwood
14  *		Stefan Becker, <stefanb@yello.ping.de>
15  *		Jorge Cwik, <jorge@laser.satlink.net>
16  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17  *		Hirokazu Takahashi, <taka@valinux.co.jp>
18  *
19  *	See ip_input.c for original log
20  *
21  *	Fixes:
22  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
23  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
24  *		Bradford Johnson:	Fix faulty handling of some frames when
25  *					no route is found.
26  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
27  *					(in case if packet not accepted by
28  *					output firewall rules)
29  *		Mike McLagan	:	Routing by source
30  *		Alexey Kuznetsov:	use new route cache
31  *		Andi Kleen:		Fix broken PMTU recovery and remove
32  *					some redundant tests.
33  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
34  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
35  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
36  *					for decreased register pressure on x86
37  *					and more readability.
38  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
39  *					silently drop skb instead of failing with -EPERM.
40  *		Detlev Wengorz	:	Copy protocol for fragments.
41  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
42  *					datagrams.
43  *		Hirokazu Takahashi:	sendfile() on UDP works now.
44  */
45 
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55 
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65 
66 #include <net/flow.h>
67 #include <net/snmp.h>
68 #include <net/ip.h>
69 #include <net/protocol.h>
70 #include <net/route.h>
71 #include <net/xfrm.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <net/arp.h>
75 #include <net/icmp.h>
76 #include <net/checksum.h>
77 #include <net/gso.h>
78 #include <net/inetpeer.h>
79 #include <net/lwtunnel.h>
80 #include <net/inet_dscp.h>
81 #include <linux/bpf-cgroup.h>
82 #include <linux/igmp.h>
83 #include <linux/netfilter_ipv4.h>
84 #include <linux/netfilter_bridge.h>
85 #include <linux/netlink.h>
86 #include <linux/tcp.h>
87 
88 static int
89 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
90 	    unsigned int mtu,
91 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
92 
93 /* Generate a checksum for an outgoing IP datagram. */
94 void ip_send_check(struct iphdr *iph)
95 {
96 	iph->check = 0;
97 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
98 }
99 EXPORT_SYMBOL(ip_send_check);
100 
101 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
102 {
103 	struct iphdr *iph = ip_hdr(skb);
104 
105 	IP_INC_STATS(net, IPSTATS_MIB_OUTREQUESTS);
106 
107 	iph_set_totlen(iph, skb->len);
108 	ip_send_check(iph);
109 
110 	/* if egress device is enslaved to an L3 master device pass the
111 	 * skb to its handler for processing
112 	 */
113 	skb = l3mdev_ip_out(sk, skb);
114 	if (unlikely(!skb))
115 		return 0;
116 
117 	skb->protocol = htons(ETH_P_IP);
118 
119 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
120 		       net, sk, skb, NULL, skb_dst_dev(skb),
121 		       dst_output);
122 }
123 
124 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
125 {
126 	int err;
127 
128 	err = __ip_local_out(net, sk, skb);
129 	if (likely(err == 1))
130 		err = dst_output(net, sk, skb);
131 
132 	return err;
133 }
134 EXPORT_SYMBOL_GPL(ip_local_out);
135 
136 static inline int ip_select_ttl(const struct inet_sock *inet,
137 				const struct dst_entry *dst)
138 {
139 	int ttl = READ_ONCE(inet->uc_ttl);
140 
141 	if (ttl < 0)
142 		ttl = ip4_dst_hoplimit(dst);
143 	return ttl;
144 }
145 
146 /*
147  *		Add an ip header to a skbuff and send it out.
148  *
149  */
150 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
151 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt,
152 			  u8 tos)
153 {
154 	const struct inet_sock *inet = inet_sk(sk);
155 	struct rtable *rt = skb_rtable(skb);
156 	struct net *net = sock_net(sk);
157 	struct iphdr *iph;
158 
159 	/* Build the IP header. */
160 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
161 	skb_reset_network_header(skb);
162 	iph = ip_hdr(skb);
163 	iph->version  = 4;
164 	iph->ihl      = 5;
165 	iph->tos      = tos;
166 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
167 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
168 	iph->saddr    = saddr;
169 	iph->protocol = sk->sk_protocol;
170 	/* Do not bother generating IPID for small packets (eg SYNACK) */
171 	if (skb->len <= IPV4_MIN_MTU || ip_dont_fragment(sk, &rt->dst)) {
172 		iph->frag_off = htons(IP_DF);
173 		iph->id = 0;
174 	} else {
175 		iph->frag_off = 0;
176 		/* TCP packets here are SYNACK with fat IPv4/TCP options.
177 		 * Avoid using the hashed IP ident generator.
178 		 */
179 		if (sk->sk_protocol == IPPROTO_TCP)
180 			iph->id = (__force __be16)get_random_u16();
181 		else
182 			__ip_select_ident(net, iph, 1);
183 	}
184 
185 	if (opt && opt->opt.optlen) {
186 		iph->ihl += opt->opt.optlen>>2;
187 		ip_options_build(skb, &opt->opt, daddr, rt);
188 	}
189 
190 	skb->priority = READ_ONCE(sk->sk_priority);
191 	if (!skb->mark)
192 		skb->mark = READ_ONCE(sk->sk_mark);
193 
194 	/* Send it out. */
195 	return ip_local_out(net, skb->sk, skb);
196 }
197 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
198 
199 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
200 {
201 	struct dst_entry *dst = skb_dst(skb);
202 	struct rtable *rt = dst_rtable(dst);
203 	struct net_device *dev = dst_dev(dst);
204 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
205 	struct neighbour *neigh;
206 	bool is_v6gw = false;
207 
208 	if (rt->rt_type == RTN_MULTICAST) {
209 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
210 	} else if (rt->rt_type == RTN_BROADCAST)
211 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
212 
213 	/* OUTOCTETS should be counted after fragment */
214 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
215 
216 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
217 		skb = skb_expand_head(skb, hh_len);
218 		if (!skb)
219 			return -ENOMEM;
220 	}
221 
222 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
223 		int res = lwtunnel_xmit(skb);
224 
225 		if (res != LWTUNNEL_XMIT_CONTINUE)
226 			return res;
227 	}
228 
229 	rcu_read_lock();
230 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
231 	if (!IS_ERR(neigh)) {
232 		int res;
233 
234 		sock_confirm_neigh(skb, neigh);
235 		/* if crossing protocols, can not use the cached header */
236 		res = neigh_output(neigh, skb, is_v6gw);
237 		rcu_read_unlock();
238 		return res;
239 	}
240 	rcu_read_unlock();
241 
242 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
243 			    __func__);
244 	kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL);
245 	return PTR_ERR(neigh);
246 }
247 
248 static int ip_finish_output_gso(struct net *net, struct sock *sk,
249 				struct sk_buff *skb, unsigned int mtu)
250 {
251 	struct sk_buff *segs, *nskb;
252 	netdev_features_t features;
253 	int ret = 0;
254 
255 	/* common case: seglen is <= mtu
256 	 */
257 	if (skb_gso_validate_network_len(skb, mtu))
258 		return ip_finish_output2(net, sk, skb);
259 
260 	/* Slowpath -  GSO segment length exceeds the egress MTU.
261 	 *
262 	 * This can happen in several cases:
263 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
264 	 *  - Forwarding of an skb that arrived on a virtualization interface
265 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
266 	 *    stack.
267 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
268 	 *    interface with a smaller MTU.
269 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
270 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
271 	 *    insufficient MTU.
272 	 */
273 	features = netif_skb_features(skb);
274 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET);
275 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
276 	if (IS_ERR_OR_NULL(segs)) {
277 		kfree_skb(skb);
278 		return -ENOMEM;
279 	}
280 
281 	consume_skb(skb);
282 
283 	skb_list_walk_safe(segs, segs, nskb) {
284 		int err;
285 
286 		skb_mark_not_on_list(segs);
287 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
288 
289 		if (err && ret == 0)
290 			ret = err;
291 	}
292 
293 	return ret;
294 }
295 
296 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
297 {
298 	unsigned int mtu;
299 
300 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
301 	/* Policy lookup after SNAT yielded a new policy */
302 	if (skb_dst(skb)->xfrm) {
303 		IPCB(skb)->flags |= IPSKB_REROUTED;
304 		return dst_output(net, sk, skb);
305 	}
306 #endif
307 	mtu = ip_skb_dst_mtu(sk, skb);
308 	if (skb_is_gso(skb))
309 		return ip_finish_output_gso(net, sk, skb, mtu);
310 
311 	if (skb->len > mtu || IPCB(skb)->frag_max_size)
312 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
313 
314 	return ip_finish_output2(net, sk, skb);
315 }
316 
317 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
318 {
319 	int ret;
320 
321 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
322 	switch (ret) {
323 	case NET_XMIT_SUCCESS:
324 		return __ip_finish_output(net, sk, skb);
325 	case NET_XMIT_CN:
326 		return __ip_finish_output(net, sk, skb) ? : ret;
327 	default:
328 		kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
329 		return ret;
330 	}
331 }
332 
333 static int ip_mc_finish_output(struct net *net, struct sock *sk,
334 			       struct sk_buff *skb)
335 {
336 	struct rtable *new_rt;
337 	bool do_cn = false;
338 	int ret, err;
339 
340 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
341 	switch (ret) {
342 	case NET_XMIT_CN:
343 		do_cn = true;
344 		fallthrough;
345 	case NET_XMIT_SUCCESS:
346 		break;
347 	default:
348 		kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
349 		return ret;
350 	}
351 
352 	/* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
353 	 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
354 	 * see ipv4_pktinfo_prepare().
355 	 */
356 	new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
357 	if (new_rt) {
358 		new_rt->rt_iif = 0;
359 		skb_dst_drop(skb);
360 		skb_dst_set(skb, &new_rt->dst);
361 	}
362 
363 	err = dev_loopback_xmit(net, sk, skb);
364 	return (do_cn && err) ? ret : err;
365 }
366 
367 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
368 {
369 	struct rtable *rt = skb_rtable(skb);
370 	struct net_device *dev = rt->dst.dev;
371 
372 	/*
373 	 *	If the indicated interface is up and running, send the packet.
374 	 */
375 	skb->dev = dev;
376 	skb->protocol = htons(ETH_P_IP);
377 
378 	/*
379 	 *	Multicasts are looped back for other local users
380 	 */
381 
382 	if (rt->rt_flags&RTCF_MULTICAST) {
383 		if (sk_mc_loop(sk)
384 #ifdef CONFIG_IP_MROUTE
385 		/* Small optimization: do not loopback not local frames,
386 		   which returned after forwarding; they will be  dropped
387 		   by ip_mr_input in any case.
388 		   Note, that local frames are looped back to be delivered
389 		   to local recipients.
390 
391 		   This check is duplicated in ip_mr_input at the moment.
392 		 */
393 		    &&
394 		    ((rt->rt_flags & RTCF_LOCAL) ||
395 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
396 #endif
397 		   ) {
398 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
399 			if (newskb)
400 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
401 					net, sk, newskb, NULL, newskb->dev,
402 					ip_mc_finish_output);
403 		}
404 
405 		/* Multicasts with ttl 0 must not go beyond the host */
406 
407 		if (ip_hdr(skb)->ttl == 0) {
408 			kfree_skb(skb);
409 			return 0;
410 		}
411 	}
412 
413 	if (rt->rt_flags&RTCF_BROADCAST) {
414 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
415 		if (newskb)
416 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
417 				net, sk, newskb, NULL, newskb->dev,
418 				ip_mc_finish_output);
419 	}
420 
421 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
422 			    net, sk, skb, NULL, skb->dev,
423 			    ip_finish_output,
424 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
425 }
426 
427 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
428 {
429 	struct net_device *dev, *indev = skb->dev;
430 	int ret_val;
431 
432 	rcu_read_lock();
433 	dev = skb_dst_dev_rcu(skb);
434 	skb->dev = dev;
435 	skb->protocol = htons(ETH_P_IP);
436 
437 	ret_val = NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
438 				net, sk, skb, indev, dev,
439 				ip_finish_output,
440 				!(IPCB(skb)->flags & IPSKB_REROUTED));
441 	rcu_read_unlock();
442 	return ret_val;
443 }
444 EXPORT_SYMBOL(ip_output);
445 
446 /*
447  * copy saddr and daddr, possibly using 64bit load/stores
448  * Equivalent to :
449  *   iph->saddr = fl4->saddr;
450  *   iph->daddr = fl4->daddr;
451  */
452 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
453 {
454 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
455 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
456 
457 	iph->saddr = fl4->saddr;
458 	iph->daddr = fl4->daddr;
459 }
460 
461 /* Note: skb->sk can be different from sk, in case of tunnels */
462 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
463 		    __u8 tos)
464 {
465 	struct inet_sock *inet = inet_sk(sk);
466 	struct net *net = sock_net(sk);
467 	struct ip_options_rcu *inet_opt;
468 	struct flowi4 *fl4;
469 	struct rtable *rt;
470 	struct iphdr *iph;
471 	int res;
472 
473 	/* Skip all of this if the packet is already routed,
474 	 * f.e. by something like SCTP.
475 	 */
476 	rcu_read_lock();
477 	inet_opt = rcu_dereference(inet->inet_opt);
478 	fl4 = &fl->u.ip4;
479 	rt = skb_rtable(skb);
480 	if (rt)
481 		goto packet_routed;
482 
483 	/* Make sure we can route this packet. */
484 	rt = dst_rtable(__sk_dst_check(sk, 0));
485 	if (!rt) {
486 		inet_sk_init_flowi4(inet, fl4);
487 
488 		/* sctp_v4_xmit() uses its own DSCP value */
489 		fl4->flowi4_dscp = inet_dsfield_to_dscp(tos);
490 
491 		/* If this fails, retransmit mechanism of transport layer will
492 		 * keep trying until route appears or the connection times
493 		 * itself out.
494 		 */
495 		rt = ip_route_output_flow(net, fl4, sk);
496 		if (IS_ERR(rt))
497 			goto no_route;
498 		sk_setup_caps(sk, &rt->dst);
499 	}
500 	skb_dst_set_noref(skb, &rt->dst);
501 
502 packet_routed:
503 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
504 		goto no_route;
505 
506 	/* OK, we know where to send it, allocate and build IP header. */
507 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
508 	skb_reset_network_header(skb);
509 	iph = ip_hdr(skb);
510 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
511 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
512 		iph->frag_off = htons(IP_DF);
513 	else
514 		iph->frag_off = 0;
515 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
516 	iph->protocol = sk->sk_protocol;
517 	ip_copy_addrs(iph, fl4);
518 
519 	/* Transport layer set skb->h.foo itself. */
520 
521 	if (inet_opt && inet_opt->opt.optlen) {
522 		iph->ihl += inet_opt->opt.optlen >> 2;
523 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt);
524 	}
525 
526 	ip_select_ident_segs(net, skb, sk,
527 			     skb_shinfo(skb)->gso_segs ?: 1);
528 
529 	/* TODO : should we use skb->sk here instead of sk ? */
530 	skb->priority = READ_ONCE(sk->sk_priority);
531 	skb->mark = READ_ONCE(sk->sk_mark);
532 
533 	res = ip_local_out(net, sk, skb);
534 	rcu_read_unlock();
535 	return res;
536 
537 no_route:
538 	rcu_read_unlock();
539 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
540 	kfree_skb_reason(skb, SKB_DROP_REASON_IP_OUTNOROUTES);
541 	return -EHOSTUNREACH;
542 }
543 EXPORT_SYMBOL(__ip_queue_xmit);
544 
545 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
546 {
547 	return __ip_queue_xmit(sk, skb, fl, READ_ONCE(inet_sk(sk)->tos));
548 }
549 EXPORT_SYMBOL(ip_queue_xmit);
550 
551 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
552 {
553 	to->pkt_type = from->pkt_type;
554 	to->priority = from->priority;
555 	to->protocol = from->protocol;
556 	to->skb_iif = from->skb_iif;
557 	skb_dst_drop(to);
558 	skb_dst_copy(to, from);
559 	to->dev = from->dev;
560 	to->mark = from->mark;
561 
562 	skb_copy_hash(to, from);
563 
564 #ifdef CONFIG_NET_SCHED
565 	to->tc_index = from->tc_index;
566 #endif
567 	nf_copy(to, from);
568 	skb_ext_copy(to, from);
569 #if IS_ENABLED(CONFIG_IP_VS)
570 	to->ipvs_property = from->ipvs_property;
571 #endif
572 	skb_copy_secmark(to, from);
573 }
574 
575 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
576 		       unsigned int mtu,
577 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
578 {
579 	struct iphdr *iph = ip_hdr(skb);
580 
581 	if ((iph->frag_off & htons(IP_DF)) == 0)
582 		return ip_do_fragment(net, sk, skb, output);
583 
584 	if (unlikely(!skb->ignore_df ||
585 		     (IPCB(skb)->frag_max_size &&
586 		      IPCB(skb)->frag_max_size > mtu))) {
587 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
588 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
589 			  htonl(mtu));
590 		kfree_skb(skb);
591 		return -EMSGSIZE;
592 	}
593 
594 	return ip_do_fragment(net, sk, skb, output);
595 }
596 
597 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
598 		      unsigned int hlen, struct ip_fraglist_iter *iter)
599 {
600 	unsigned int first_len = skb_pagelen(skb);
601 
602 	iter->frag = skb_shinfo(skb)->frag_list;
603 	skb_frag_list_init(skb);
604 
605 	iter->offset = 0;
606 	iter->iph = iph;
607 	iter->hlen = hlen;
608 
609 	skb->data_len = first_len - skb_headlen(skb);
610 	skb->len = first_len;
611 	iph->tot_len = htons(first_len);
612 	iph->frag_off = htons(IP_MF);
613 	ip_send_check(iph);
614 }
615 EXPORT_SYMBOL(ip_fraglist_init);
616 
617 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
618 {
619 	unsigned int hlen = iter->hlen;
620 	struct iphdr *iph = iter->iph;
621 	struct sk_buff *frag;
622 
623 	frag = iter->frag;
624 	frag->ip_summed = CHECKSUM_NONE;
625 	skb_reset_transport_header(frag);
626 	__skb_push(frag, hlen);
627 	skb_reset_network_header(frag);
628 	memcpy(skb_network_header(frag), iph, hlen);
629 	iter->iph = ip_hdr(frag);
630 	iph = iter->iph;
631 	iph->tot_len = htons(frag->len);
632 	ip_copy_metadata(frag, skb);
633 	iter->offset += skb->len - hlen;
634 	iph->frag_off = htons(iter->offset >> 3);
635 	if (frag->next)
636 		iph->frag_off |= htons(IP_MF);
637 	/* Ready, complete checksum */
638 	ip_send_check(iph);
639 }
640 EXPORT_SYMBOL(ip_fraglist_prepare);
641 
642 void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
643 		  unsigned int ll_rs, unsigned int mtu, bool DF,
644 		  struct ip_frag_state *state)
645 {
646 	struct iphdr *iph = ip_hdr(skb);
647 
648 	state->DF = DF;
649 	state->hlen = hlen;
650 	state->ll_rs = ll_rs;
651 	state->mtu = mtu;
652 
653 	state->left = skb->len - hlen;	/* Space per frame */
654 	state->ptr = hlen;		/* Where to start from */
655 
656 	state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
657 	state->not_last_frag = iph->frag_off & htons(IP_MF);
658 }
659 EXPORT_SYMBOL(ip_frag_init);
660 
661 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
662 			 bool first_frag)
663 {
664 	/* Copy the flags to each fragment. */
665 	IPCB(to)->flags = IPCB(from)->flags;
666 
667 	/* ANK: dirty, but effective trick. Upgrade options only if
668 	 * the segment to be fragmented was THE FIRST (otherwise,
669 	 * options are already fixed) and make it ONCE
670 	 * on the initial skb, so that all the following fragments
671 	 * will inherit fixed options.
672 	 */
673 	if (first_frag)
674 		ip_options_fragment(from);
675 }
676 
677 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
678 {
679 	unsigned int len = state->left;
680 	struct sk_buff *skb2;
681 	struct iphdr *iph;
682 
683 	/* IF: it doesn't fit, use 'mtu' - the data space left */
684 	if (len > state->mtu)
685 		len = state->mtu;
686 	/* IF: we are not sending up to and including the packet end
687 	   then align the next start on an eight byte boundary */
688 	if (len < state->left)	{
689 		len &= ~7;
690 	}
691 
692 	/* Allocate buffer */
693 	skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
694 	if (!skb2)
695 		return ERR_PTR(-ENOMEM);
696 
697 	/*
698 	 *	Set up data on packet
699 	 */
700 
701 	ip_copy_metadata(skb2, skb);
702 	skb_reserve(skb2, state->ll_rs);
703 	skb_put(skb2, len + state->hlen);
704 	skb_reset_network_header(skb2);
705 	skb2->transport_header = skb2->network_header + state->hlen;
706 
707 	/*
708 	 *	Charge the memory for the fragment to any owner
709 	 *	it might possess
710 	 */
711 
712 	if (skb->sk)
713 		skb_set_owner_w(skb2, skb->sk);
714 
715 	/*
716 	 *	Copy the packet header into the new buffer.
717 	 */
718 
719 	skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
720 
721 	/*
722 	 *	Copy a block of the IP datagram.
723 	 */
724 	if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
725 		BUG();
726 	state->left -= len;
727 
728 	/*
729 	 *	Fill in the new header fields.
730 	 */
731 	iph = ip_hdr(skb2);
732 	iph->frag_off = htons((state->offset >> 3));
733 	if (state->DF)
734 		iph->frag_off |= htons(IP_DF);
735 
736 	/*
737 	 *	Added AC : If we are fragmenting a fragment that's not the
738 	 *		   last fragment then keep MF on each bit
739 	 */
740 	if (state->left > 0 || state->not_last_frag)
741 		iph->frag_off |= htons(IP_MF);
742 	state->ptr += len;
743 	state->offset += len;
744 
745 	iph->tot_len = htons(len + state->hlen);
746 
747 	ip_send_check(iph);
748 
749 	return skb2;
750 }
751 EXPORT_SYMBOL(ip_frag_next);
752 
753 /*
754  *	This IP datagram is too large to be sent in one piece.  Break it up into
755  *	smaller pieces (each of size equal to IP header plus
756  *	a block of the data of the original IP data part) that will yet fit in a
757  *	single device frame, and queue such a frame for sending.
758  */
759 
760 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
761 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
762 {
763 	struct iphdr *iph;
764 	struct sk_buff *skb2;
765 	u8 tstamp_type = skb->tstamp_type;
766 	struct rtable *rt = skb_rtable(skb);
767 	unsigned int mtu, hlen, ll_rs;
768 	struct ip_fraglist_iter iter;
769 	ktime_t tstamp = skb->tstamp;
770 	struct ip_frag_state state;
771 	int err = 0;
772 
773 	/* for offloaded checksums cleanup checksum before fragmentation */
774 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
775 	    (err = skb_checksum_help(skb)))
776 		goto fail;
777 
778 	/*
779 	 *	Point into the IP datagram header.
780 	 */
781 
782 	iph = ip_hdr(skb);
783 
784 	mtu = ip_skb_dst_mtu(sk, skb);
785 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
786 		mtu = IPCB(skb)->frag_max_size;
787 
788 	/*
789 	 *	Setup starting values.
790 	 */
791 
792 	hlen = iph->ihl * 4;
793 	mtu = mtu - hlen;	/* Size of data space */
794 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
795 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
796 
797 	/* When frag_list is given, use it. First, check its validity:
798 	 * some transformers could create wrong frag_list or break existing
799 	 * one, it is not prohibited. In this case fall back to copying.
800 	 *
801 	 * LATER: this step can be merged to real generation of fragments,
802 	 * we can switch to copy when see the first bad fragment.
803 	 */
804 	if (skb_has_frag_list(skb)) {
805 		struct sk_buff *frag, *frag2;
806 		unsigned int first_len = skb_pagelen(skb);
807 
808 		if (first_len - hlen > mtu ||
809 		    ((first_len - hlen) & 7) ||
810 		    ip_is_fragment(iph) ||
811 		    skb_cloned(skb) ||
812 		    skb_headroom(skb) < ll_rs)
813 			goto slow_path;
814 
815 		skb_walk_frags(skb, frag) {
816 			/* Correct geometry. */
817 			if (frag->len > mtu ||
818 			    ((frag->len & 7) && frag->next) ||
819 			    skb_headroom(frag) < hlen + ll_rs)
820 				goto slow_path_clean;
821 
822 			/* Partially cloned skb? */
823 			if (skb_shared(frag))
824 				goto slow_path_clean;
825 
826 			BUG_ON(frag->sk);
827 			if (skb->sk) {
828 				frag->sk = skb->sk;
829 				frag->destructor = sock_wfree;
830 			}
831 			skb->truesize -= frag->truesize;
832 		}
833 
834 		/* Everything is OK. Generate! */
835 		ip_fraglist_init(skb, iph, hlen, &iter);
836 
837 		for (;;) {
838 			/* Prepare header of the next frame,
839 			 * before previous one went down. */
840 			if (iter.frag) {
841 				bool first_frag = (iter.offset == 0);
842 
843 				IPCB(iter.frag)->flags = IPCB(skb)->flags;
844 				ip_fraglist_prepare(skb, &iter);
845 				if (first_frag && IPCB(skb)->opt.optlen) {
846 					/* ipcb->opt is not populated for frags
847 					 * coming from __ip_make_skb(),
848 					 * ip_options_fragment() needs optlen
849 					 */
850 					IPCB(iter.frag)->opt.optlen =
851 						IPCB(skb)->opt.optlen;
852 					ip_options_fragment(iter.frag);
853 					ip_send_check(iter.iph);
854 				}
855 			}
856 
857 			skb_set_delivery_time(skb, tstamp, tstamp_type);
858 			err = output(net, sk, skb);
859 
860 			if (!err)
861 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
862 			if (err || !iter.frag)
863 				break;
864 
865 			skb = ip_fraglist_next(&iter);
866 		}
867 
868 		if (err == 0) {
869 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
870 			return 0;
871 		}
872 
873 		kfree_skb_list(iter.frag);
874 
875 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
876 		return err;
877 
878 slow_path_clean:
879 		skb_walk_frags(skb, frag2) {
880 			if (frag2 == frag)
881 				break;
882 			frag2->sk = NULL;
883 			frag2->destructor = NULL;
884 			skb->truesize += frag2->truesize;
885 		}
886 	}
887 
888 slow_path:
889 	/*
890 	 *	Fragment the datagram.
891 	 */
892 
893 	ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
894 		     &state);
895 
896 	/*
897 	 *	Keep copying data until we run out.
898 	 */
899 
900 	while (state.left > 0) {
901 		bool first_frag = (state.offset == 0);
902 
903 		skb2 = ip_frag_next(skb, &state);
904 		if (IS_ERR(skb2)) {
905 			err = PTR_ERR(skb2);
906 			goto fail;
907 		}
908 		ip_frag_ipcb(skb, skb2, first_frag);
909 
910 		/*
911 		 *	Put this fragment into the sending queue.
912 		 */
913 		skb_set_delivery_time(skb2, tstamp, tstamp_type);
914 		err = output(net, sk, skb2);
915 		if (err)
916 			goto fail;
917 
918 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
919 	}
920 	consume_skb(skb);
921 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
922 	return err;
923 
924 fail:
925 	kfree_skb(skb);
926 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
927 	return err;
928 }
929 EXPORT_SYMBOL(ip_do_fragment);
930 
931 int
932 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
933 {
934 	struct msghdr *msg = from;
935 
936 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
937 		if (!copy_from_iter_full(to, len, &msg->msg_iter))
938 			return -EFAULT;
939 	} else {
940 		__wsum csum = 0;
941 		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
942 			return -EFAULT;
943 		skb->csum = csum_block_add(skb->csum, csum, odd);
944 	}
945 	return 0;
946 }
947 EXPORT_SYMBOL(ip_generic_getfrag);
948 
949 static int __ip_append_data(struct sock *sk,
950 			    struct flowi4 *fl4,
951 			    struct sk_buff_head *queue,
952 			    struct inet_cork *cork,
953 			    struct page_frag *pfrag,
954 			    int getfrag(void *from, char *to, int offset,
955 					int len, int odd, struct sk_buff *skb),
956 			    void *from, int length, int transhdrlen,
957 			    unsigned int flags)
958 {
959 	struct inet_sock *inet = inet_sk(sk);
960 	struct ubuf_info *uarg = NULL;
961 	struct sk_buff *skb;
962 	struct ip_options *opt = cork->opt;
963 	int hh_len;
964 	int exthdrlen;
965 	int mtu;
966 	int copy;
967 	int err;
968 	int offset = 0;
969 	bool zc = false;
970 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
971 	int csummode = CHECKSUM_NONE;
972 	struct rtable *rt = dst_rtable(cork->dst);
973 	bool paged, hold_tskey = false, extra_uref = false;
974 	unsigned int wmem_alloc_delta = 0;
975 	u32 tskey = 0;
976 
977 	skb = skb_peek_tail(queue);
978 
979 	exthdrlen = !skb ? rt->dst.header_len : 0;
980 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
981 	paged = !!cork->gso_size;
982 
983 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
984 
985 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
986 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
987 	maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu;
988 
989 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
990 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
991 			       mtu - (opt ? opt->optlen : 0));
992 		return -EMSGSIZE;
993 	}
994 
995 	/*
996 	 * transhdrlen > 0 means that this is the first fragment and we wish
997 	 * it won't be fragmented in the future.
998 	 */
999 	if (transhdrlen &&
1000 	    length + fragheaderlen <= mtu &&
1001 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1002 	    (!(flags & MSG_MORE) || cork->gso_size) &&
1003 	    (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1004 		csummode = CHECKSUM_PARTIAL;
1005 
1006 	if ((flags & MSG_ZEROCOPY) && length) {
1007 		struct msghdr *msg = from;
1008 
1009 		if (getfrag == ip_generic_getfrag && msg->msg_ubuf) {
1010 			if (skb_zcopy(skb) && msg->msg_ubuf != skb_zcopy(skb))
1011 				return -EINVAL;
1012 
1013 			/* Leave uarg NULL if can't zerocopy, callers should
1014 			 * be able to handle it.
1015 			 */
1016 			if ((rt->dst.dev->features & NETIF_F_SG) &&
1017 			    csummode == CHECKSUM_PARTIAL) {
1018 				paged = true;
1019 				zc = true;
1020 				uarg = msg->msg_ubuf;
1021 			}
1022 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1023 			uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb),
1024 						    false);
1025 			if (!uarg)
1026 				return -ENOBUFS;
1027 			extra_uref = !skb_zcopy(skb);	/* only ref on new uarg */
1028 			if (rt->dst.dev->features & NETIF_F_SG &&
1029 			    csummode == CHECKSUM_PARTIAL) {
1030 				paged = true;
1031 				zc = true;
1032 			} else {
1033 				uarg_to_msgzc(uarg)->zerocopy = 0;
1034 				skb_zcopy_set(skb, uarg, &extra_uref);
1035 			}
1036 		}
1037 	} else if ((flags & MSG_SPLICE_PAGES) && length) {
1038 		if (inet_test_bit(HDRINCL, sk))
1039 			return -EPERM;
1040 		if (rt->dst.dev->features & NETIF_F_SG &&
1041 		    getfrag == ip_generic_getfrag)
1042 			/* We need an empty buffer to attach stuff to */
1043 			paged = true;
1044 		else
1045 			flags &= ~MSG_SPLICE_PAGES;
1046 	}
1047 
1048 	cork->length += length;
1049 
1050 	if (cork->tx_flags & SKBTX_ANY_TSTAMP &&
1051 	    READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
1052 		if (cork->flags & IPCORK_TS_OPT_ID) {
1053 			tskey = cork->ts_opt_id;
1054 		} else {
1055 			tskey = atomic_inc_return(&sk->sk_tskey) - 1;
1056 			hold_tskey = true;
1057 		}
1058 	}
1059 
1060 	/* So, what's going on in the loop below?
1061 	 *
1062 	 * We use calculated fragment length to generate chained skb,
1063 	 * each of segments is IP fragment ready for sending to network after
1064 	 * adding appropriate IP header.
1065 	 */
1066 
1067 	if (!skb)
1068 		goto alloc_new_skb;
1069 
1070 	while (length > 0) {
1071 		/* Check if the remaining data fits into current packet. */
1072 		copy = mtu - skb->len;
1073 		if (copy < length)
1074 			copy = maxfraglen - skb->len;
1075 		if (copy <= 0) {
1076 			char *data;
1077 			unsigned int datalen;
1078 			unsigned int fraglen;
1079 			unsigned int fraggap;
1080 			unsigned int alloclen, alloc_extra;
1081 			unsigned int pagedlen;
1082 			struct sk_buff *skb_prev;
1083 alloc_new_skb:
1084 			skb_prev = skb;
1085 			if (skb_prev)
1086 				fraggap = skb_prev->len - maxfraglen;
1087 			else
1088 				fraggap = 0;
1089 
1090 			/*
1091 			 * If remaining data exceeds the mtu,
1092 			 * we know we need more fragment(s).
1093 			 */
1094 			datalen = length + fraggap;
1095 			if (datalen > mtu - fragheaderlen)
1096 				datalen = maxfraglen - fragheaderlen;
1097 			fraglen = datalen + fragheaderlen;
1098 			pagedlen = 0;
1099 
1100 			alloc_extra = hh_len + 15;
1101 			alloc_extra += exthdrlen;
1102 
1103 			/* The last fragment gets additional space at tail.
1104 			 * Note, with MSG_MORE we overallocate on fragments,
1105 			 * because we have no idea what fragment will be
1106 			 * the last.
1107 			 */
1108 			if (datalen == length + fraggap)
1109 				alloc_extra += rt->dst.trailer_len;
1110 
1111 			if ((flags & MSG_MORE) &&
1112 			    !(rt->dst.dev->features&NETIF_F_SG))
1113 				alloclen = mtu;
1114 			else if (!paged &&
1115 				 (fraglen + alloc_extra < SKB_MAX_ALLOC ||
1116 				  !(rt->dst.dev->features & NETIF_F_SG)))
1117 				alloclen = fraglen;
1118 			else {
1119 				alloclen = fragheaderlen + transhdrlen;
1120 				pagedlen = datalen - transhdrlen;
1121 			}
1122 
1123 			alloclen += alloc_extra;
1124 
1125 			if (transhdrlen) {
1126 				skb = sock_alloc_send_skb(sk, alloclen,
1127 						(flags & MSG_DONTWAIT), &err);
1128 			} else {
1129 				skb = NULL;
1130 				if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1131 				    2 * sk->sk_sndbuf)
1132 					skb = alloc_skb(alloclen,
1133 							sk->sk_allocation);
1134 				if (unlikely(!skb))
1135 					err = -ENOBUFS;
1136 			}
1137 			if (!skb)
1138 				goto error;
1139 
1140 			/*
1141 			 *	Fill in the control structures
1142 			 */
1143 			skb->ip_summed = csummode;
1144 			skb->csum = 0;
1145 			skb_reserve(skb, hh_len);
1146 
1147 			/*
1148 			 *	Find where to start putting bytes.
1149 			 */
1150 			data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1151 			skb_set_network_header(skb, exthdrlen);
1152 			skb->transport_header = (skb->network_header +
1153 						 fragheaderlen);
1154 			data += fragheaderlen + exthdrlen;
1155 
1156 			if (fraggap) {
1157 				skb->csum = skb_copy_and_csum_bits(
1158 					skb_prev, maxfraglen,
1159 					data + transhdrlen, fraggap);
1160 				skb_prev->csum = csum_sub(skb_prev->csum,
1161 							  skb->csum);
1162 				data += fraggap;
1163 				pskb_trim_unique(skb_prev, maxfraglen);
1164 			}
1165 
1166 			copy = datalen - transhdrlen - fraggap - pagedlen;
1167 			/* [!] NOTE: copy will be negative if pagedlen>0
1168 			 * because then the equation reduces to -fraggap.
1169 			 */
1170 			if (copy > 0 &&
1171 			    INDIRECT_CALL_1(getfrag, ip_generic_getfrag,
1172 					    from, data + transhdrlen, offset,
1173 					    copy, fraggap, skb) < 0) {
1174 				err = -EFAULT;
1175 				kfree_skb(skb);
1176 				goto error;
1177 			} else if (flags & MSG_SPLICE_PAGES) {
1178 				copy = 0;
1179 			}
1180 
1181 			offset += copy;
1182 			length -= copy + transhdrlen;
1183 			transhdrlen = 0;
1184 			exthdrlen = 0;
1185 			csummode = CHECKSUM_NONE;
1186 
1187 			/* only the initial fragment is time stamped */
1188 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1189 			cork->tx_flags = 0;
1190 			skb_shinfo(skb)->tskey = tskey;
1191 			tskey = 0;
1192 			skb_zcopy_set(skb, uarg, &extra_uref);
1193 
1194 			if ((flags & MSG_CONFIRM) && !skb_prev)
1195 				skb_set_dst_pending_confirm(skb, 1);
1196 
1197 			/*
1198 			 * Put the packet on the pending queue.
1199 			 */
1200 			if (!skb->destructor) {
1201 				skb->destructor = sock_wfree;
1202 				skb->sk = sk;
1203 				wmem_alloc_delta += skb->truesize;
1204 			}
1205 			__skb_queue_tail(queue, skb);
1206 			continue;
1207 		}
1208 
1209 		if (copy > length)
1210 			copy = length;
1211 
1212 		if (!(rt->dst.dev->features&NETIF_F_SG) &&
1213 		    skb_tailroom(skb) >= copy) {
1214 			unsigned int off;
1215 
1216 			off = skb->len;
1217 			if (INDIRECT_CALL_1(getfrag, ip_generic_getfrag,
1218 					    from, skb_put(skb, copy),
1219 					    offset, copy, off, skb) < 0) {
1220 				__skb_trim(skb, off);
1221 				err = -EFAULT;
1222 				goto error;
1223 			}
1224 		} else if (flags & MSG_SPLICE_PAGES) {
1225 			struct msghdr *msg = from;
1226 
1227 			err = -EIO;
1228 			if (WARN_ON_ONCE(copy > msg->msg_iter.count))
1229 				goto error;
1230 
1231 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy);
1232 			if (err < 0)
1233 				goto error;
1234 			copy = err;
1235 			wmem_alloc_delta += copy;
1236 		} else if (!zc) {
1237 			int i = skb_shinfo(skb)->nr_frags;
1238 
1239 			err = -ENOMEM;
1240 			if (!sk_page_frag_refill(sk, pfrag))
1241 				goto error;
1242 
1243 			skb_zcopy_downgrade_managed(skb);
1244 			if (!skb_can_coalesce(skb, i, pfrag->page,
1245 					      pfrag->offset)) {
1246 				err = -EMSGSIZE;
1247 				if (i == MAX_SKB_FRAGS)
1248 					goto error;
1249 
1250 				__skb_fill_page_desc(skb, i, pfrag->page,
1251 						     pfrag->offset, 0);
1252 				skb_shinfo(skb)->nr_frags = ++i;
1253 				get_page(pfrag->page);
1254 			}
1255 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1256 			if (INDIRECT_CALL_1(getfrag, ip_generic_getfrag,
1257 				    from,
1258 				    page_address(pfrag->page) + pfrag->offset,
1259 				    offset, copy, skb->len, skb) < 0)
1260 				goto error_efault;
1261 
1262 			pfrag->offset += copy;
1263 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1264 			skb_len_add(skb, copy);
1265 			wmem_alloc_delta += copy;
1266 		} else {
1267 			err = skb_zerocopy_iter_dgram(skb, from, copy);
1268 			if (err < 0)
1269 				goto error;
1270 		}
1271 		offset += copy;
1272 		length -= copy;
1273 	}
1274 
1275 	if (wmem_alloc_delta)
1276 		refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1277 	return 0;
1278 
1279 error_efault:
1280 	err = -EFAULT;
1281 error:
1282 	net_zcopy_put_abort(uarg, extra_uref);
1283 	cork->length -= length;
1284 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1285 	refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1286 	if (hold_tskey)
1287 		atomic_dec(&sk->sk_tskey);
1288 	return err;
1289 }
1290 
1291 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1292 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1293 {
1294 	struct ip_options_rcu *opt;
1295 	struct rtable *rt;
1296 
1297 	rt = *rtp;
1298 	if (unlikely(!rt))
1299 		return -EFAULT;
1300 
1301 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1302 			 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu);
1303 
1304 	if (!inetdev_valid_mtu(cork->fragsize))
1305 		return -ENETUNREACH;
1306 
1307 	/*
1308 	 * setup for corking.
1309 	 */
1310 	opt = ipc->opt;
1311 	if (opt) {
1312 		if (!cork->opt) {
1313 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1314 					    sk->sk_allocation);
1315 			if (unlikely(!cork->opt))
1316 				return -ENOBUFS;
1317 		}
1318 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1319 		cork->flags |= IPCORK_OPT;
1320 		cork->addr = ipc->addr;
1321 	}
1322 
1323 	cork->gso_size = ipc->gso_size;
1324 
1325 	cork->dst = &rt->dst;
1326 	/* We stole this route, caller should not release it. */
1327 	*rtp = NULL;
1328 
1329 	cork->length = 0;
1330 	cork->ttl = ipc->ttl;
1331 	cork->tos = ipc->tos;
1332 	cork->mark = ipc->sockc.mark;
1333 	cork->priority = ipc->sockc.priority;
1334 	cork->transmit_time = ipc->sockc.transmit_time;
1335 	cork->tx_flags = 0;
1336 	sock_tx_timestamp(sk, &ipc->sockc, &cork->tx_flags);
1337 	if (ipc->sockc.tsflags & SOCKCM_FLAG_TS_OPT_ID) {
1338 		cork->flags |= IPCORK_TS_OPT_ID;
1339 		cork->ts_opt_id = ipc->sockc.ts_opt_id;
1340 	}
1341 
1342 	return 0;
1343 }
1344 
1345 /*
1346  *	ip_append_data() can make one large IP datagram from many pieces of
1347  *	data.  Each piece will be held on the socket until
1348  *	ip_push_pending_frames() is called. Each piece can be a page or
1349  *	non-page data.
1350  *
1351  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1352  *	this interface potentially.
1353  *
1354  *	LATER: length must be adjusted by pad at tail, when it is required.
1355  */
1356 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1357 		   int getfrag(void *from, char *to, int offset, int len,
1358 			       int odd, struct sk_buff *skb),
1359 		   void *from, int length, int transhdrlen,
1360 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1361 		   unsigned int flags)
1362 {
1363 	struct inet_sock *inet = inet_sk(sk);
1364 	int err;
1365 
1366 	if (flags&MSG_PROBE)
1367 		return 0;
1368 
1369 	if (skb_queue_empty(&sk->sk_write_queue)) {
1370 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1371 		if (err)
1372 			return err;
1373 	} else {
1374 		transhdrlen = 0;
1375 	}
1376 
1377 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1378 				sk_page_frag(sk), getfrag,
1379 				from, length, transhdrlen, flags);
1380 }
1381 
1382 static void ip_cork_release(struct inet_cork *cork)
1383 {
1384 	cork->flags &= ~IPCORK_OPT;
1385 	kfree(cork->opt);
1386 	cork->opt = NULL;
1387 	dst_release(cork->dst);
1388 	cork->dst = NULL;
1389 }
1390 
1391 /*
1392  *	Combined all pending IP fragments on the socket as one IP datagram
1393  *	and push them out.
1394  */
1395 struct sk_buff *__ip_make_skb(struct sock *sk,
1396 			      struct flowi4 *fl4,
1397 			      struct sk_buff_head *queue,
1398 			      struct inet_cork *cork)
1399 {
1400 	struct sk_buff *skb, *tmp_skb;
1401 	struct sk_buff **tail_skb;
1402 	struct inet_sock *inet = inet_sk(sk);
1403 	struct net *net = sock_net(sk);
1404 	struct ip_options *opt = NULL;
1405 	struct rtable *rt = dst_rtable(cork->dst);
1406 	struct iphdr *iph;
1407 	u8 pmtudisc, ttl;
1408 	__be16 df = 0;
1409 
1410 	skb = __skb_dequeue(queue);
1411 	if (!skb)
1412 		goto out;
1413 	tail_skb = &(skb_shinfo(skb)->frag_list);
1414 
1415 	/* move skb->data to ip header from ext header */
1416 	if (skb->data < skb_network_header(skb))
1417 		__skb_pull(skb, skb_network_offset(skb));
1418 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1419 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1420 		*tail_skb = tmp_skb;
1421 		tail_skb = &(tmp_skb->next);
1422 		skb->len += tmp_skb->len;
1423 		skb->data_len += tmp_skb->len;
1424 		skb->truesize += tmp_skb->truesize;
1425 		tmp_skb->destructor = NULL;
1426 		tmp_skb->sk = NULL;
1427 	}
1428 
1429 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1430 	 * to fragment the frame generated here. No matter, what transforms
1431 	 * how transforms change size of the packet, it will come out.
1432 	 */
1433 	skb->ignore_df = ip_sk_ignore_df(sk);
1434 
1435 	/* DF bit is set when we want to see DF on outgoing frames.
1436 	 * If ignore_df is set too, we still allow to fragment this frame
1437 	 * locally. */
1438 	pmtudisc = READ_ONCE(inet->pmtudisc);
1439 	if (pmtudisc == IP_PMTUDISC_DO ||
1440 	    pmtudisc == IP_PMTUDISC_PROBE ||
1441 	    (skb->len <= dst_mtu(&rt->dst) &&
1442 	     ip_dont_fragment(sk, &rt->dst)))
1443 		df = htons(IP_DF);
1444 
1445 	if (cork->flags & IPCORK_OPT)
1446 		opt = cork->opt;
1447 
1448 	if (cork->ttl != 0)
1449 		ttl = cork->ttl;
1450 	else if (rt->rt_type == RTN_MULTICAST)
1451 		ttl = READ_ONCE(inet->mc_ttl);
1452 	else
1453 		ttl = ip_select_ttl(inet, &rt->dst);
1454 
1455 	iph = ip_hdr(skb);
1456 	iph->version = 4;
1457 	iph->ihl = 5;
1458 	iph->tos = (cork->tos != -1) ? cork->tos : READ_ONCE(inet->tos);
1459 	iph->frag_off = df;
1460 	iph->ttl = ttl;
1461 	iph->protocol = sk->sk_protocol;
1462 	ip_copy_addrs(iph, fl4);
1463 	ip_select_ident(net, skb, sk);
1464 
1465 	if (opt) {
1466 		iph->ihl += opt->optlen >> 2;
1467 		ip_options_build(skb, opt, cork->addr, rt);
1468 	}
1469 
1470 	skb->priority = cork->priority;
1471 	skb->mark = cork->mark;
1472 	if (sk_is_tcp(sk))
1473 		skb_set_delivery_time(skb, cork->transmit_time, SKB_CLOCK_MONOTONIC);
1474 	else
1475 		skb_set_delivery_type_by_clockid(skb, cork->transmit_time, sk->sk_clockid);
1476 	/*
1477 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1478 	 * on dst refcount
1479 	 */
1480 	cork->dst = NULL;
1481 	skb_dst_set(skb, &rt->dst);
1482 
1483 	if (iph->protocol == IPPROTO_ICMP) {
1484 		u8 icmp_type;
1485 
1486 		/* For such sockets, transhdrlen is zero when do ip_append_data(),
1487 		 * so icmphdr does not in skb linear region and can not get icmp_type
1488 		 * by icmp_hdr(skb)->type.
1489 		 */
1490 		if (sk->sk_type == SOCK_RAW &&
1491 		    !(fl4->flowi4_flags & FLOWI_FLAG_KNOWN_NH))
1492 			icmp_type = fl4->fl4_icmp_type;
1493 		else
1494 			icmp_type = icmp_hdr(skb)->type;
1495 		icmp_out_count(net, icmp_type);
1496 	}
1497 
1498 	ip_cork_release(cork);
1499 out:
1500 	return skb;
1501 }
1502 
1503 int ip_send_skb(struct net *net, struct sk_buff *skb)
1504 {
1505 	int err;
1506 
1507 	err = ip_local_out(net, skb->sk, skb);
1508 	if (err) {
1509 		if (err > 0)
1510 			err = net_xmit_errno(err);
1511 		if (err)
1512 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1513 	}
1514 
1515 	return err;
1516 }
1517 
1518 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1519 {
1520 	struct sk_buff *skb;
1521 
1522 	skb = ip_finish_skb(sk, fl4);
1523 	if (!skb)
1524 		return 0;
1525 
1526 	/* Netfilter gets whole the not fragmented skb. */
1527 	return ip_send_skb(sock_net(sk), skb);
1528 }
1529 
1530 /*
1531  *	Throw away all pending data on the socket.
1532  */
1533 static void __ip_flush_pending_frames(struct sock *sk,
1534 				      struct sk_buff_head *queue,
1535 				      struct inet_cork *cork)
1536 {
1537 	struct sk_buff *skb;
1538 
1539 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1540 		kfree_skb(skb);
1541 
1542 	ip_cork_release(cork);
1543 }
1544 
1545 void ip_flush_pending_frames(struct sock *sk)
1546 {
1547 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1548 }
1549 
1550 struct sk_buff *ip_make_skb(struct sock *sk,
1551 			    struct flowi4 *fl4,
1552 			    int getfrag(void *from, char *to, int offset,
1553 					int len, int odd, struct sk_buff *skb),
1554 			    void *from, int length, int transhdrlen,
1555 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1556 			    struct inet_cork *cork, unsigned int flags)
1557 {
1558 	struct sk_buff_head queue;
1559 	int err;
1560 
1561 	if (flags & MSG_PROBE)
1562 		return NULL;
1563 
1564 	__skb_queue_head_init(&queue);
1565 
1566 	cork->flags = 0;
1567 	cork->addr = 0;
1568 	cork->opt = NULL;
1569 	err = ip_setup_cork(sk, cork, ipc, rtp);
1570 	if (err)
1571 		return ERR_PTR(err);
1572 
1573 	err = __ip_append_data(sk, fl4, &queue, cork,
1574 			       &current->task_frag, getfrag,
1575 			       from, length, transhdrlen, flags);
1576 	if (err) {
1577 		__ip_flush_pending_frames(sk, &queue, cork);
1578 		return ERR_PTR(err);
1579 	}
1580 
1581 	return __ip_make_skb(sk, fl4, &queue, cork);
1582 }
1583 
1584 /*
1585  *	Fetch data from kernel space and fill in checksum if needed.
1586  */
1587 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1588 			      int len, int odd, struct sk_buff *skb)
1589 {
1590 	__wsum csum;
1591 
1592 	csum = csum_partial_copy_nocheck(dptr+offset, to, len);
1593 	skb->csum = csum_block_add(skb->csum, csum, odd);
1594 	return 0;
1595 }
1596 
1597 /*
1598  *	Generic function to send a packet as reply to another packet.
1599  *	Used to send some TCP resets/acks so far.
1600  */
1601 void ip_send_unicast_reply(struct sock *sk, const struct sock *orig_sk,
1602 			   struct sk_buff *skb,
1603 			   const struct ip_options *sopt,
1604 			   __be32 daddr, __be32 saddr,
1605 			   const struct ip_reply_arg *arg,
1606 			   unsigned int len, u64 transmit_time, u32 txhash)
1607 {
1608 	struct ip_options_data replyopts;
1609 	struct ipcm_cookie ipc;
1610 	struct flowi4 fl4;
1611 	struct rtable *rt = skb_rtable(skb);
1612 	struct net *net = sock_net(sk);
1613 	struct sk_buff *nskb;
1614 	int err;
1615 	int oif;
1616 
1617 	if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1618 		return;
1619 
1620 	ipcm_init(&ipc);
1621 	ipc.addr = daddr;
1622 	ipc.sockc.transmit_time = transmit_time;
1623 
1624 	if (replyopts.opt.opt.optlen) {
1625 		ipc.opt = &replyopts.opt;
1626 
1627 		if (replyopts.opt.opt.srr)
1628 			daddr = replyopts.opt.opt.faddr;
1629 	}
1630 
1631 	oif = arg->bound_dev_if;
1632 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1633 		oif = skb->skb_iif;
1634 
1635 	flowi4_init_output(&fl4, oif,
1636 			   IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1637 			   arg->tos & INET_DSCP_MASK,
1638 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1639 			   ip_reply_arg_flowi_flags(arg),
1640 			   daddr, saddr,
1641 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1642 			   arg->uid);
1643 	security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4));
1644 	rt = ip_route_output_flow(net, &fl4, sk);
1645 	if (IS_ERR(rt))
1646 		return;
1647 
1648 	inet_sk(sk)->tos = arg->tos;
1649 
1650 	sk->sk_protocol = ip_hdr(skb)->protocol;
1651 	sk->sk_bound_dev_if = arg->bound_dev_if;
1652 	sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
1653 	ipc.sockc.mark = fl4.flowi4_mark;
1654 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1655 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1656 	if (unlikely(err)) {
1657 		ip_flush_pending_frames(sk);
1658 		goto out;
1659 	}
1660 
1661 	nskb = skb_peek(&sk->sk_write_queue);
1662 	if (nskb) {
1663 		if (arg->csumoffset >= 0)
1664 			*((__sum16 *)skb_transport_header(nskb) +
1665 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1666 								arg->csum));
1667 		nskb->ip_summed = CHECKSUM_NONE;
1668 		if (orig_sk)
1669 			skb_set_owner_edemux(nskb, (struct sock *)orig_sk);
1670 		if (transmit_time)
1671 			nskb->tstamp_type = SKB_CLOCK_MONOTONIC;
1672 		if (txhash)
1673 			skb_set_hash(nskb, txhash, PKT_HASH_TYPE_L4);
1674 		ip_push_pending_frames(sk, &fl4);
1675 	}
1676 out:
1677 	ip_rt_put(rt);
1678 }
1679 
1680 void __init ip_init(void)
1681 {
1682 	ip_rt_init();
1683 	inet_initpeers();
1684 
1685 #if defined(CONFIG_IP_MULTICAST)
1686 	igmp_mc_init();
1687 #endif
1688 }
1689