xref: /linux/net/ipv4/ip_output.c (revision a208a39ed01fbad14c2ea466513e2e0c3c649434)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The Internet Protocol (IP) output module.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Donald Becker, <becker@super.org>
12  *		Alan Cox, <Alan.Cox@linux.org>
13  *		Richard Underwood
14  *		Stefan Becker, <stefanb@yello.ping.de>
15  *		Jorge Cwik, <jorge@laser.satlink.net>
16  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17  *		Hirokazu Takahashi, <taka@valinux.co.jp>
18  *
19  *	See ip_input.c for original log
20  *
21  *	Fixes:
22  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
23  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
24  *		Bradford Johnson:	Fix faulty handling of some frames when
25  *					no route is found.
26  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
27  *					(in case if packet not accepted by
28  *					output firewall rules)
29  *		Mike McLagan	:	Routing by source
30  *		Alexey Kuznetsov:	use new route cache
31  *		Andi Kleen:		Fix broken PMTU recovery and remove
32  *					some redundant tests.
33  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
34  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
35  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
36  *					for decreased register pressure on x86
37  *					and more readability.
38  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
39  *					silently drop skb instead of failing with -EPERM.
40  *		Detlev Wengorz	:	Copy protocol for fragments.
41  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
42  *					datagrams.
43  *		Hirokazu Takahashi:	sendfile() on UDP works now.
44  */
45 
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55 
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65 
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/gso.h>
77 #include <net/inetpeer.h>
78 #include <net/inet_ecn.h>
79 #include <net/lwtunnel.h>
80 #include <net/inet_dscp.h>
81 #include <linux/bpf-cgroup.h>
82 #include <linux/igmp.h>
83 #include <linux/netfilter_ipv4.h>
84 #include <linux/netfilter_bridge.h>
85 #include <linux/netlink.h>
86 #include <linux/tcp.h>
87 
88 static int
89 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
90 	    unsigned int mtu,
91 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
92 
93 /* Generate a checksum for an outgoing IP datagram. */
94 void ip_send_check(struct iphdr *iph)
95 {
96 	iph->check = 0;
97 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
98 }
99 EXPORT_SYMBOL(ip_send_check);
100 
101 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
102 {
103 	struct iphdr *iph = ip_hdr(skb);
104 
105 	IP_INC_STATS(net, IPSTATS_MIB_OUTREQUESTS);
106 
107 	iph_set_totlen(iph, skb->len);
108 	ip_send_check(iph);
109 
110 	/* if egress device is enslaved to an L3 master device pass the
111 	 * skb to its handler for processing
112 	 */
113 	skb = l3mdev_ip_out(sk, skb);
114 	if (unlikely(!skb))
115 		return 0;
116 
117 	skb->protocol = htons(ETH_P_IP);
118 
119 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
120 		       net, sk, skb, NULL, skb_dst(skb)->dev,
121 		       dst_output);
122 }
123 
124 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
125 {
126 	int err;
127 
128 	err = __ip_local_out(net, sk, skb);
129 	if (likely(err == 1))
130 		err = dst_output(net, sk, skb);
131 
132 	return err;
133 }
134 EXPORT_SYMBOL_GPL(ip_local_out);
135 
136 static inline int ip_select_ttl(const struct inet_sock *inet,
137 				const struct dst_entry *dst)
138 {
139 	int ttl = READ_ONCE(inet->uc_ttl);
140 
141 	if (ttl < 0)
142 		ttl = ip4_dst_hoplimit(dst);
143 	return ttl;
144 }
145 
146 /*
147  *		Add an ip header to a skbuff and send it out.
148  *
149  */
150 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
151 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt,
152 			  u8 tos)
153 {
154 	const struct inet_sock *inet = inet_sk(sk);
155 	struct rtable *rt = skb_rtable(skb);
156 	struct net *net = sock_net(sk);
157 	struct iphdr *iph;
158 
159 	/* Build the IP header. */
160 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
161 	skb_reset_network_header(skb);
162 	iph = ip_hdr(skb);
163 	iph->version  = 4;
164 	iph->ihl      = 5;
165 	iph->tos      = tos;
166 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
167 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
168 	iph->saddr    = saddr;
169 	iph->protocol = sk->sk_protocol;
170 	/* Do not bother generating IPID for small packets (eg SYNACK) */
171 	if (skb->len <= IPV4_MIN_MTU || ip_dont_fragment(sk, &rt->dst)) {
172 		iph->frag_off = htons(IP_DF);
173 		iph->id = 0;
174 	} else {
175 		iph->frag_off = 0;
176 		/* TCP packets here are SYNACK with fat IPv4/TCP options.
177 		 * Avoid using the hashed IP ident generator.
178 		 */
179 		if (sk->sk_protocol == IPPROTO_TCP)
180 			iph->id = (__force __be16)get_random_u16();
181 		else
182 			__ip_select_ident(net, iph, 1);
183 	}
184 
185 	if (opt && opt->opt.optlen) {
186 		iph->ihl += opt->opt.optlen>>2;
187 		ip_options_build(skb, &opt->opt, daddr, rt);
188 	}
189 
190 	skb->priority = READ_ONCE(sk->sk_priority);
191 	if (!skb->mark)
192 		skb->mark = READ_ONCE(sk->sk_mark);
193 
194 	/* Send it out. */
195 	return ip_local_out(net, skb->sk, skb);
196 }
197 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
198 
199 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
200 {
201 	struct dst_entry *dst = skb_dst(skb);
202 	struct rtable *rt = dst_rtable(dst);
203 	struct net_device *dev = dst->dev;
204 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
205 	struct neighbour *neigh;
206 	bool is_v6gw = false;
207 
208 	if (rt->rt_type == RTN_MULTICAST) {
209 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
210 	} else if (rt->rt_type == RTN_BROADCAST)
211 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
212 
213 	/* OUTOCTETS should be counted after fragment */
214 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
215 
216 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
217 		skb = skb_expand_head(skb, hh_len);
218 		if (!skb)
219 			return -ENOMEM;
220 	}
221 
222 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
223 		int res = lwtunnel_xmit(skb);
224 
225 		if (res != LWTUNNEL_XMIT_CONTINUE)
226 			return res;
227 	}
228 
229 	rcu_read_lock();
230 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
231 	if (!IS_ERR(neigh)) {
232 		int res;
233 
234 		sock_confirm_neigh(skb, neigh);
235 		/* if crossing protocols, can not use the cached header */
236 		res = neigh_output(neigh, skb, is_v6gw);
237 		rcu_read_unlock();
238 		return res;
239 	}
240 	rcu_read_unlock();
241 
242 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
243 			    __func__);
244 	kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL);
245 	return PTR_ERR(neigh);
246 }
247 
248 static int ip_finish_output_gso(struct net *net, struct sock *sk,
249 				struct sk_buff *skb, unsigned int mtu)
250 {
251 	struct sk_buff *segs, *nskb;
252 	netdev_features_t features;
253 	int ret = 0;
254 
255 	/* common case: seglen is <= mtu
256 	 */
257 	if (skb_gso_validate_network_len(skb, mtu))
258 		return ip_finish_output2(net, sk, skb);
259 
260 	/* Slowpath -  GSO segment length exceeds the egress MTU.
261 	 *
262 	 * This can happen in several cases:
263 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
264 	 *  - Forwarding of an skb that arrived on a virtualization interface
265 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
266 	 *    stack.
267 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
268 	 *    interface with a smaller MTU.
269 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
270 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
271 	 *    insufficient MTU.
272 	 */
273 	features = netif_skb_features(skb);
274 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET);
275 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
276 	if (IS_ERR_OR_NULL(segs)) {
277 		kfree_skb(skb);
278 		return -ENOMEM;
279 	}
280 
281 	consume_skb(skb);
282 
283 	skb_list_walk_safe(segs, segs, nskb) {
284 		int err;
285 
286 		skb_mark_not_on_list(segs);
287 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
288 
289 		if (err && ret == 0)
290 			ret = err;
291 	}
292 
293 	return ret;
294 }
295 
296 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
297 {
298 	unsigned int mtu;
299 
300 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
301 	/* Policy lookup after SNAT yielded a new policy */
302 	if (skb_dst(skb)->xfrm) {
303 		IPCB(skb)->flags |= IPSKB_REROUTED;
304 		return dst_output(net, sk, skb);
305 	}
306 #endif
307 	mtu = ip_skb_dst_mtu(sk, skb);
308 	if (skb_is_gso(skb))
309 		return ip_finish_output_gso(net, sk, skb, mtu);
310 
311 	if (skb->len > mtu || IPCB(skb)->frag_max_size)
312 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
313 
314 	return ip_finish_output2(net, sk, skb);
315 }
316 
317 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
318 {
319 	int ret;
320 
321 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
322 	switch (ret) {
323 	case NET_XMIT_SUCCESS:
324 		return __ip_finish_output(net, sk, skb);
325 	case NET_XMIT_CN:
326 		return __ip_finish_output(net, sk, skb) ? : ret;
327 	default:
328 		kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
329 		return ret;
330 	}
331 }
332 
333 static int ip_mc_finish_output(struct net *net, struct sock *sk,
334 			       struct sk_buff *skb)
335 {
336 	struct rtable *new_rt;
337 	bool do_cn = false;
338 	int ret, err;
339 
340 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
341 	switch (ret) {
342 	case NET_XMIT_CN:
343 		do_cn = true;
344 		fallthrough;
345 	case NET_XMIT_SUCCESS:
346 		break;
347 	default:
348 		kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
349 		return ret;
350 	}
351 
352 	/* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
353 	 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
354 	 * see ipv4_pktinfo_prepare().
355 	 */
356 	new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
357 	if (new_rt) {
358 		new_rt->rt_iif = 0;
359 		skb_dst_drop(skb);
360 		skb_dst_set(skb, &new_rt->dst);
361 	}
362 
363 	err = dev_loopback_xmit(net, sk, skb);
364 	return (do_cn && err) ? ret : err;
365 }
366 
367 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
368 {
369 	struct rtable *rt = skb_rtable(skb);
370 	struct net_device *dev = rt->dst.dev;
371 
372 	/*
373 	 *	If the indicated interface is up and running, send the packet.
374 	 */
375 	skb->dev = dev;
376 	skb->protocol = htons(ETH_P_IP);
377 
378 	/*
379 	 *	Multicasts are looped back for other local users
380 	 */
381 
382 	if (rt->rt_flags&RTCF_MULTICAST) {
383 		if (sk_mc_loop(sk)
384 #ifdef CONFIG_IP_MROUTE
385 		/* Small optimization: do not loopback not local frames,
386 		   which returned after forwarding; they will be  dropped
387 		   by ip_mr_input in any case.
388 		   Note, that local frames are looped back to be delivered
389 		   to local recipients.
390 
391 		   This check is duplicated in ip_mr_input at the moment.
392 		 */
393 		    &&
394 		    ((rt->rt_flags & RTCF_LOCAL) ||
395 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
396 #endif
397 		   ) {
398 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
399 			if (newskb)
400 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
401 					net, sk, newskb, NULL, newskb->dev,
402 					ip_mc_finish_output);
403 		}
404 
405 		/* Multicasts with ttl 0 must not go beyond the host */
406 
407 		if (ip_hdr(skb)->ttl == 0) {
408 			kfree_skb(skb);
409 			return 0;
410 		}
411 	}
412 
413 	if (rt->rt_flags&RTCF_BROADCAST) {
414 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
415 		if (newskb)
416 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
417 				net, sk, newskb, NULL, newskb->dev,
418 				ip_mc_finish_output);
419 	}
420 
421 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
422 			    net, sk, skb, NULL, skb->dev,
423 			    ip_finish_output,
424 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
425 }
426 
427 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
428 {
429 	struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev;
430 
431 	skb->dev = dev;
432 	skb->protocol = htons(ETH_P_IP);
433 
434 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
435 			    net, sk, skb, indev, dev,
436 			    ip_finish_output,
437 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
438 }
439 EXPORT_SYMBOL(ip_output);
440 
441 /*
442  * copy saddr and daddr, possibly using 64bit load/stores
443  * Equivalent to :
444  *   iph->saddr = fl4->saddr;
445  *   iph->daddr = fl4->daddr;
446  */
447 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
448 {
449 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
450 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
451 
452 	iph->saddr = fl4->saddr;
453 	iph->daddr = fl4->daddr;
454 }
455 
456 /* Note: skb->sk can be different from sk, in case of tunnels */
457 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
458 		    __u8 tos)
459 {
460 	struct inet_sock *inet = inet_sk(sk);
461 	struct net *net = sock_net(sk);
462 	struct ip_options_rcu *inet_opt;
463 	struct flowi4 *fl4;
464 	struct rtable *rt;
465 	struct iphdr *iph;
466 	int res;
467 
468 	/* Skip all of this if the packet is already routed,
469 	 * f.e. by something like SCTP.
470 	 */
471 	rcu_read_lock();
472 	inet_opt = rcu_dereference(inet->inet_opt);
473 	fl4 = &fl->u.ip4;
474 	rt = skb_rtable(skb);
475 	if (rt)
476 		goto packet_routed;
477 
478 	/* Make sure we can route this packet. */
479 	rt = dst_rtable(__sk_dst_check(sk, 0));
480 	if (!rt) {
481 		__be32 daddr;
482 
483 		/* Use correct destination address if we have options. */
484 		daddr = inet->inet_daddr;
485 		if (inet_opt && inet_opt->opt.srr)
486 			daddr = inet_opt->opt.faddr;
487 
488 		/* If this fails, retransmit mechanism of transport layer will
489 		 * keep trying until route appears or the connection times
490 		 * itself out.
491 		 */
492 		rt = ip_route_output_ports(net, fl4, sk,
493 					   daddr, inet->inet_saddr,
494 					   inet->inet_dport,
495 					   inet->inet_sport,
496 					   sk->sk_protocol,
497 					   tos & INET_DSCP_MASK,
498 					   sk->sk_bound_dev_if);
499 		if (IS_ERR(rt))
500 			goto no_route;
501 		sk_setup_caps(sk, &rt->dst);
502 	}
503 	skb_dst_set_noref(skb, &rt->dst);
504 
505 packet_routed:
506 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
507 		goto no_route;
508 
509 	/* OK, we know where to send it, allocate and build IP header. */
510 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
511 	skb_reset_network_header(skb);
512 	iph = ip_hdr(skb);
513 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
514 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
515 		iph->frag_off = htons(IP_DF);
516 	else
517 		iph->frag_off = 0;
518 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
519 	iph->protocol = sk->sk_protocol;
520 	ip_copy_addrs(iph, fl4);
521 
522 	/* Transport layer set skb->h.foo itself. */
523 
524 	if (inet_opt && inet_opt->opt.optlen) {
525 		iph->ihl += inet_opt->opt.optlen >> 2;
526 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt);
527 	}
528 
529 	ip_select_ident_segs(net, skb, sk,
530 			     skb_shinfo(skb)->gso_segs ?: 1);
531 
532 	/* TODO : should we use skb->sk here instead of sk ? */
533 	skb->priority = READ_ONCE(sk->sk_priority);
534 	skb->mark = READ_ONCE(sk->sk_mark);
535 
536 	res = ip_local_out(net, sk, skb);
537 	rcu_read_unlock();
538 	return res;
539 
540 no_route:
541 	rcu_read_unlock();
542 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
543 	kfree_skb_reason(skb, SKB_DROP_REASON_IP_OUTNOROUTES);
544 	return -EHOSTUNREACH;
545 }
546 EXPORT_SYMBOL(__ip_queue_xmit);
547 
548 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
549 {
550 	return __ip_queue_xmit(sk, skb, fl, READ_ONCE(inet_sk(sk)->tos));
551 }
552 EXPORT_SYMBOL(ip_queue_xmit);
553 
554 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
555 {
556 	to->pkt_type = from->pkt_type;
557 	to->priority = from->priority;
558 	to->protocol = from->protocol;
559 	to->skb_iif = from->skb_iif;
560 	skb_dst_drop(to);
561 	skb_dst_copy(to, from);
562 	to->dev = from->dev;
563 	to->mark = from->mark;
564 
565 	skb_copy_hash(to, from);
566 
567 #ifdef CONFIG_NET_SCHED
568 	to->tc_index = from->tc_index;
569 #endif
570 	nf_copy(to, from);
571 	skb_ext_copy(to, from);
572 #if IS_ENABLED(CONFIG_IP_VS)
573 	to->ipvs_property = from->ipvs_property;
574 #endif
575 	skb_copy_secmark(to, from);
576 }
577 
578 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
579 		       unsigned int mtu,
580 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
581 {
582 	struct iphdr *iph = ip_hdr(skb);
583 
584 	if ((iph->frag_off & htons(IP_DF)) == 0)
585 		return ip_do_fragment(net, sk, skb, output);
586 
587 	if (unlikely(!skb->ignore_df ||
588 		     (IPCB(skb)->frag_max_size &&
589 		      IPCB(skb)->frag_max_size > mtu))) {
590 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
591 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
592 			  htonl(mtu));
593 		kfree_skb(skb);
594 		return -EMSGSIZE;
595 	}
596 
597 	return ip_do_fragment(net, sk, skb, output);
598 }
599 
600 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
601 		      unsigned int hlen, struct ip_fraglist_iter *iter)
602 {
603 	unsigned int first_len = skb_pagelen(skb);
604 
605 	iter->frag = skb_shinfo(skb)->frag_list;
606 	skb_frag_list_init(skb);
607 
608 	iter->offset = 0;
609 	iter->iph = iph;
610 	iter->hlen = hlen;
611 
612 	skb->data_len = first_len - skb_headlen(skb);
613 	skb->len = first_len;
614 	iph->tot_len = htons(first_len);
615 	iph->frag_off = htons(IP_MF);
616 	ip_send_check(iph);
617 }
618 EXPORT_SYMBOL(ip_fraglist_init);
619 
620 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
621 {
622 	unsigned int hlen = iter->hlen;
623 	struct iphdr *iph = iter->iph;
624 	struct sk_buff *frag;
625 
626 	frag = iter->frag;
627 	frag->ip_summed = CHECKSUM_NONE;
628 	skb_reset_transport_header(frag);
629 	__skb_push(frag, hlen);
630 	skb_reset_network_header(frag);
631 	memcpy(skb_network_header(frag), iph, hlen);
632 	iter->iph = ip_hdr(frag);
633 	iph = iter->iph;
634 	iph->tot_len = htons(frag->len);
635 	ip_copy_metadata(frag, skb);
636 	iter->offset += skb->len - hlen;
637 	iph->frag_off = htons(iter->offset >> 3);
638 	if (frag->next)
639 		iph->frag_off |= htons(IP_MF);
640 	/* Ready, complete checksum */
641 	ip_send_check(iph);
642 }
643 EXPORT_SYMBOL(ip_fraglist_prepare);
644 
645 void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
646 		  unsigned int ll_rs, unsigned int mtu, bool DF,
647 		  struct ip_frag_state *state)
648 {
649 	struct iphdr *iph = ip_hdr(skb);
650 
651 	state->DF = DF;
652 	state->hlen = hlen;
653 	state->ll_rs = ll_rs;
654 	state->mtu = mtu;
655 
656 	state->left = skb->len - hlen;	/* Space per frame */
657 	state->ptr = hlen;		/* Where to start from */
658 
659 	state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
660 	state->not_last_frag = iph->frag_off & htons(IP_MF);
661 }
662 EXPORT_SYMBOL(ip_frag_init);
663 
664 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
665 			 bool first_frag)
666 {
667 	/* Copy the flags to each fragment. */
668 	IPCB(to)->flags = IPCB(from)->flags;
669 
670 	/* ANK: dirty, but effective trick. Upgrade options only if
671 	 * the segment to be fragmented was THE FIRST (otherwise,
672 	 * options are already fixed) and make it ONCE
673 	 * on the initial skb, so that all the following fragments
674 	 * will inherit fixed options.
675 	 */
676 	if (first_frag)
677 		ip_options_fragment(from);
678 }
679 
680 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
681 {
682 	unsigned int len = state->left;
683 	struct sk_buff *skb2;
684 	struct iphdr *iph;
685 
686 	/* IF: it doesn't fit, use 'mtu' - the data space left */
687 	if (len > state->mtu)
688 		len = state->mtu;
689 	/* IF: we are not sending up to and including the packet end
690 	   then align the next start on an eight byte boundary */
691 	if (len < state->left)	{
692 		len &= ~7;
693 	}
694 
695 	/* Allocate buffer */
696 	skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
697 	if (!skb2)
698 		return ERR_PTR(-ENOMEM);
699 
700 	/*
701 	 *	Set up data on packet
702 	 */
703 
704 	ip_copy_metadata(skb2, skb);
705 	skb_reserve(skb2, state->ll_rs);
706 	skb_put(skb2, len + state->hlen);
707 	skb_reset_network_header(skb2);
708 	skb2->transport_header = skb2->network_header + state->hlen;
709 
710 	/*
711 	 *	Charge the memory for the fragment to any owner
712 	 *	it might possess
713 	 */
714 
715 	if (skb->sk)
716 		skb_set_owner_w(skb2, skb->sk);
717 
718 	/*
719 	 *	Copy the packet header into the new buffer.
720 	 */
721 
722 	skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
723 
724 	/*
725 	 *	Copy a block of the IP datagram.
726 	 */
727 	if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
728 		BUG();
729 	state->left -= len;
730 
731 	/*
732 	 *	Fill in the new header fields.
733 	 */
734 	iph = ip_hdr(skb2);
735 	iph->frag_off = htons((state->offset >> 3));
736 	if (state->DF)
737 		iph->frag_off |= htons(IP_DF);
738 
739 	/*
740 	 *	Added AC : If we are fragmenting a fragment that's not the
741 	 *		   last fragment then keep MF on each bit
742 	 */
743 	if (state->left > 0 || state->not_last_frag)
744 		iph->frag_off |= htons(IP_MF);
745 	state->ptr += len;
746 	state->offset += len;
747 
748 	iph->tot_len = htons(len + state->hlen);
749 
750 	ip_send_check(iph);
751 
752 	return skb2;
753 }
754 EXPORT_SYMBOL(ip_frag_next);
755 
756 /*
757  *	This IP datagram is too large to be sent in one piece.  Break it up into
758  *	smaller pieces (each of size equal to IP header plus
759  *	a block of the data of the original IP data part) that will yet fit in a
760  *	single device frame, and queue such a frame for sending.
761  */
762 
763 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
764 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
765 {
766 	struct iphdr *iph;
767 	struct sk_buff *skb2;
768 	u8 tstamp_type = skb->tstamp_type;
769 	struct rtable *rt = skb_rtable(skb);
770 	unsigned int mtu, hlen, ll_rs;
771 	struct ip_fraglist_iter iter;
772 	ktime_t tstamp = skb->tstamp;
773 	struct ip_frag_state state;
774 	int err = 0;
775 
776 	/* for offloaded checksums cleanup checksum before fragmentation */
777 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
778 	    (err = skb_checksum_help(skb)))
779 		goto fail;
780 
781 	/*
782 	 *	Point into the IP datagram header.
783 	 */
784 
785 	iph = ip_hdr(skb);
786 
787 	mtu = ip_skb_dst_mtu(sk, skb);
788 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
789 		mtu = IPCB(skb)->frag_max_size;
790 
791 	/*
792 	 *	Setup starting values.
793 	 */
794 
795 	hlen = iph->ihl * 4;
796 	mtu = mtu - hlen;	/* Size of data space */
797 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
798 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
799 
800 	/* When frag_list is given, use it. First, check its validity:
801 	 * some transformers could create wrong frag_list or break existing
802 	 * one, it is not prohibited. In this case fall back to copying.
803 	 *
804 	 * LATER: this step can be merged to real generation of fragments,
805 	 * we can switch to copy when see the first bad fragment.
806 	 */
807 	if (skb_has_frag_list(skb)) {
808 		struct sk_buff *frag, *frag2;
809 		unsigned int first_len = skb_pagelen(skb);
810 
811 		if (first_len - hlen > mtu ||
812 		    ((first_len - hlen) & 7) ||
813 		    ip_is_fragment(iph) ||
814 		    skb_cloned(skb) ||
815 		    skb_headroom(skb) < ll_rs)
816 			goto slow_path;
817 
818 		skb_walk_frags(skb, frag) {
819 			/* Correct geometry. */
820 			if (frag->len > mtu ||
821 			    ((frag->len & 7) && frag->next) ||
822 			    skb_headroom(frag) < hlen + ll_rs)
823 				goto slow_path_clean;
824 
825 			/* Partially cloned skb? */
826 			if (skb_shared(frag))
827 				goto slow_path_clean;
828 
829 			BUG_ON(frag->sk);
830 			if (skb->sk) {
831 				frag->sk = skb->sk;
832 				frag->destructor = sock_wfree;
833 			}
834 			skb->truesize -= frag->truesize;
835 		}
836 
837 		/* Everything is OK. Generate! */
838 		ip_fraglist_init(skb, iph, hlen, &iter);
839 
840 		for (;;) {
841 			/* Prepare header of the next frame,
842 			 * before previous one went down. */
843 			if (iter.frag) {
844 				bool first_frag = (iter.offset == 0);
845 
846 				IPCB(iter.frag)->flags = IPCB(skb)->flags;
847 				ip_fraglist_prepare(skb, &iter);
848 				if (first_frag && IPCB(skb)->opt.optlen) {
849 					/* ipcb->opt is not populated for frags
850 					 * coming from __ip_make_skb(),
851 					 * ip_options_fragment() needs optlen
852 					 */
853 					IPCB(iter.frag)->opt.optlen =
854 						IPCB(skb)->opt.optlen;
855 					ip_options_fragment(iter.frag);
856 					ip_send_check(iter.iph);
857 				}
858 			}
859 
860 			skb_set_delivery_time(skb, tstamp, tstamp_type);
861 			err = output(net, sk, skb);
862 
863 			if (!err)
864 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
865 			if (err || !iter.frag)
866 				break;
867 
868 			skb = ip_fraglist_next(&iter);
869 		}
870 
871 		if (err == 0) {
872 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
873 			return 0;
874 		}
875 
876 		kfree_skb_list(iter.frag);
877 
878 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
879 		return err;
880 
881 slow_path_clean:
882 		skb_walk_frags(skb, frag2) {
883 			if (frag2 == frag)
884 				break;
885 			frag2->sk = NULL;
886 			frag2->destructor = NULL;
887 			skb->truesize += frag2->truesize;
888 		}
889 	}
890 
891 slow_path:
892 	/*
893 	 *	Fragment the datagram.
894 	 */
895 
896 	ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
897 		     &state);
898 
899 	/*
900 	 *	Keep copying data until we run out.
901 	 */
902 
903 	while (state.left > 0) {
904 		bool first_frag = (state.offset == 0);
905 
906 		skb2 = ip_frag_next(skb, &state);
907 		if (IS_ERR(skb2)) {
908 			err = PTR_ERR(skb2);
909 			goto fail;
910 		}
911 		ip_frag_ipcb(skb, skb2, first_frag);
912 
913 		/*
914 		 *	Put this fragment into the sending queue.
915 		 */
916 		skb_set_delivery_time(skb2, tstamp, tstamp_type);
917 		err = output(net, sk, skb2);
918 		if (err)
919 			goto fail;
920 
921 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
922 	}
923 	consume_skb(skb);
924 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
925 	return err;
926 
927 fail:
928 	kfree_skb(skb);
929 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
930 	return err;
931 }
932 EXPORT_SYMBOL(ip_do_fragment);
933 
934 int
935 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
936 {
937 	struct msghdr *msg = from;
938 
939 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
940 		if (!copy_from_iter_full(to, len, &msg->msg_iter))
941 			return -EFAULT;
942 	} else {
943 		__wsum csum = 0;
944 		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
945 			return -EFAULT;
946 		skb->csum = csum_block_add(skb->csum, csum, odd);
947 	}
948 	return 0;
949 }
950 EXPORT_SYMBOL(ip_generic_getfrag);
951 
952 static int __ip_append_data(struct sock *sk,
953 			    struct flowi4 *fl4,
954 			    struct sk_buff_head *queue,
955 			    struct inet_cork *cork,
956 			    struct page_frag *pfrag,
957 			    int getfrag(void *from, char *to, int offset,
958 					int len, int odd, struct sk_buff *skb),
959 			    void *from, int length, int transhdrlen,
960 			    unsigned int flags)
961 {
962 	struct inet_sock *inet = inet_sk(sk);
963 	struct ubuf_info *uarg = NULL;
964 	struct sk_buff *skb;
965 	struct ip_options *opt = cork->opt;
966 	int hh_len;
967 	int exthdrlen;
968 	int mtu;
969 	int copy;
970 	int err;
971 	int offset = 0;
972 	bool zc = false;
973 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
974 	int csummode = CHECKSUM_NONE;
975 	struct rtable *rt = dst_rtable(cork->dst);
976 	bool paged, hold_tskey = false, extra_uref = false;
977 	unsigned int wmem_alloc_delta = 0;
978 	u32 tskey = 0;
979 
980 	skb = skb_peek_tail(queue);
981 
982 	exthdrlen = !skb ? rt->dst.header_len : 0;
983 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
984 	paged = !!cork->gso_size;
985 
986 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
987 
988 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
989 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
990 	maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu;
991 
992 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
993 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
994 			       mtu - (opt ? opt->optlen : 0));
995 		return -EMSGSIZE;
996 	}
997 
998 	/*
999 	 * transhdrlen > 0 means that this is the first fragment and we wish
1000 	 * it won't be fragmented in the future.
1001 	 */
1002 	if (transhdrlen &&
1003 	    length + fragheaderlen <= mtu &&
1004 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1005 	    (!(flags & MSG_MORE) || cork->gso_size) &&
1006 	    (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1007 		csummode = CHECKSUM_PARTIAL;
1008 
1009 	if ((flags & MSG_ZEROCOPY) && length) {
1010 		struct msghdr *msg = from;
1011 
1012 		if (getfrag == ip_generic_getfrag && msg->msg_ubuf) {
1013 			if (skb_zcopy(skb) && msg->msg_ubuf != skb_zcopy(skb))
1014 				return -EINVAL;
1015 
1016 			/* Leave uarg NULL if can't zerocopy, callers should
1017 			 * be able to handle it.
1018 			 */
1019 			if ((rt->dst.dev->features & NETIF_F_SG) &&
1020 			    csummode == CHECKSUM_PARTIAL) {
1021 				paged = true;
1022 				zc = true;
1023 				uarg = msg->msg_ubuf;
1024 			}
1025 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1026 			uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb));
1027 			if (!uarg)
1028 				return -ENOBUFS;
1029 			extra_uref = !skb_zcopy(skb);	/* only ref on new uarg */
1030 			if (rt->dst.dev->features & NETIF_F_SG &&
1031 			    csummode == CHECKSUM_PARTIAL) {
1032 				paged = true;
1033 				zc = true;
1034 			} else {
1035 				uarg_to_msgzc(uarg)->zerocopy = 0;
1036 				skb_zcopy_set(skb, uarg, &extra_uref);
1037 			}
1038 		}
1039 	} else if ((flags & MSG_SPLICE_PAGES) && length) {
1040 		if (inet_test_bit(HDRINCL, sk))
1041 			return -EPERM;
1042 		if (rt->dst.dev->features & NETIF_F_SG &&
1043 		    getfrag == ip_generic_getfrag)
1044 			/* We need an empty buffer to attach stuff to */
1045 			paged = true;
1046 		else
1047 			flags &= ~MSG_SPLICE_PAGES;
1048 	}
1049 
1050 	cork->length += length;
1051 
1052 	if (cork->tx_flags & SKBTX_ANY_TSTAMP &&
1053 	    READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
1054 		if (cork->flags & IPCORK_TS_OPT_ID) {
1055 			tskey = cork->ts_opt_id;
1056 		} else {
1057 			tskey = atomic_inc_return(&sk->sk_tskey) - 1;
1058 			hold_tskey = true;
1059 		}
1060 	}
1061 
1062 	/* So, what's going on in the loop below?
1063 	 *
1064 	 * We use calculated fragment length to generate chained skb,
1065 	 * each of segments is IP fragment ready for sending to network after
1066 	 * adding appropriate IP header.
1067 	 */
1068 
1069 	if (!skb)
1070 		goto alloc_new_skb;
1071 
1072 	while (length > 0) {
1073 		/* Check if the remaining data fits into current packet. */
1074 		copy = mtu - skb->len;
1075 		if (copy < length)
1076 			copy = maxfraglen - skb->len;
1077 		if (copy <= 0) {
1078 			char *data;
1079 			unsigned int datalen;
1080 			unsigned int fraglen;
1081 			unsigned int fraggap;
1082 			unsigned int alloclen, alloc_extra;
1083 			unsigned int pagedlen;
1084 			struct sk_buff *skb_prev;
1085 alloc_new_skb:
1086 			skb_prev = skb;
1087 			if (skb_prev)
1088 				fraggap = skb_prev->len - maxfraglen;
1089 			else
1090 				fraggap = 0;
1091 
1092 			/*
1093 			 * If remaining data exceeds the mtu,
1094 			 * we know we need more fragment(s).
1095 			 */
1096 			datalen = length + fraggap;
1097 			if (datalen > mtu - fragheaderlen)
1098 				datalen = maxfraglen - fragheaderlen;
1099 			fraglen = datalen + fragheaderlen;
1100 			pagedlen = 0;
1101 
1102 			alloc_extra = hh_len + 15;
1103 			alloc_extra += exthdrlen;
1104 
1105 			/* The last fragment gets additional space at tail.
1106 			 * Note, with MSG_MORE we overallocate on fragments,
1107 			 * because we have no idea what fragment will be
1108 			 * the last.
1109 			 */
1110 			if (datalen == length + fraggap)
1111 				alloc_extra += rt->dst.trailer_len;
1112 
1113 			if ((flags & MSG_MORE) &&
1114 			    !(rt->dst.dev->features&NETIF_F_SG))
1115 				alloclen = mtu;
1116 			else if (!paged &&
1117 				 (fraglen + alloc_extra < SKB_MAX_ALLOC ||
1118 				  !(rt->dst.dev->features & NETIF_F_SG)))
1119 				alloclen = fraglen;
1120 			else {
1121 				alloclen = fragheaderlen + transhdrlen;
1122 				pagedlen = datalen - transhdrlen;
1123 			}
1124 
1125 			alloclen += alloc_extra;
1126 
1127 			if (transhdrlen) {
1128 				skb = sock_alloc_send_skb(sk, alloclen,
1129 						(flags & MSG_DONTWAIT), &err);
1130 			} else {
1131 				skb = NULL;
1132 				if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1133 				    2 * sk->sk_sndbuf)
1134 					skb = alloc_skb(alloclen,
1135 							sk->sk_allocation);
1136 				if (unlikely(!skb))
1137 					err = -ENOBUFS;
1138 			}
1139 			if (!skb)
1140 				goto error;
1141 
1142 			/*
1143 			 *	Fill in the control structures
1144 			 */
1145 			skb->ip_summed = csummode;
1146 			skb->csum = 0;
1147 			skb_reserve(skb, hh_len);
1148 
1149 			/*
1150 			 *	Find where to start putting bytes.
1151 			 */
1152 			data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1153 			skb_set_network_header(skb, exthdrlen);
1154 			skb->transport_header = (skb->network_header +
1155 						 fragheaderlen);
1156 			data += fragheaderlen + exthdrlen;
1157 
1158 			if (fraggap) {
1159 				skb->csum = skb_copy_and_csum_bits(
1160 					skb_prev, maxfraglen,
1161 					data + transhdrlen, fraggap);
1162 				skb_prev->csum = csum_sub(skb_prev->csum,
1163 							  skb->csum);
1164 				data += fraggap;
1165 				pskb_trim_unique(skb_prev, maxfraglen);
1166 			}
1167 
1168 			copy = datalen - transhdrlen - fraggap - pagedlen;
1169 			/* [!] NOTE: copy will be negative if pagedlen>0
1170 			 * because then the equation reduces to -fraggap.
1171 			 */
1172 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1173 				err = -EFAULT;
1174 				kfree_skb(skb);
1175 				goto error;
1176 			} else if (flags & MSG_SPLICE_PAGES) {
1177 				copy = 0;
1178 			}
1179 
1180 			offset += copy;
1181 			length -= copy + transhdrlen;
1182 			transhdrlen = 0;
1183 			exthdrlen = 0;
1184 			csummode = CHECKSUM_NONE;
1185 
1186 			/* only the initial fragment is time stamped */
1187 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1188 			cork->tx_flags = 0;
1189 			skb_shinfo(skb)->tskey = tskey;
1190 			tskey = 0;
1191 			skb_zcopy_set(skb, uarg, &extra_uref);
1192 
1193 			if ((flags & MSG_CONFIRM) && !skb_prev)
1194 				skb_set_dst_pending_confirm(skb, 1);
1195 
1196 			/*
1197 			 * Put the packet on the pending queue.
1198 			 */
1199 			if (!skb->destructor) {
1200 				skb->destructor = sock_wfree;
1201 				skb->sk = sk;
1202 				wmem_alloc_delta += skb->truesize;
1203 			}
1204 			__skb_queue_tail(queue, skb);
1205 			continue;
1206 		}
1207 
1208 		if (copy > length)
1209 			copy = length;
1210 
1211 		if (!(rt->dst.dev->features&NETIF_F_SG) &&
1212 		    skb_tailroom(skb) >= copy) {
1213 			unsigned int off;
1214 
1215 			off = skb->len;
1216 			if (getfrag(from, skb_put(skb, copy),
1217 					offset, copy, off, skb) < 0) {
1218 				__skb_trim(skb, off);
1219 				err = -EFAULT;
1220 				goto error;
1221 			}
1222 		} else if (flags & MSG_SPLICE_PAGES) {
1223 			struct msghdr *msg = from;
1224 
1225 			err = -EIO;
1226 			if (WARN_ON_ONCE(copy > msg->msg_iter.count))
1227 				goto error;
1228 
1229 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1230 						   sk->sk_allocation);
1231 			if (err < 0)
1232 				goto error;
1233 			copy = err;
1234 			wmem_alloc_delta += copy;
1235 		} else if (!zc) {
1236 			int i = skb_shinfo(skb)->nr_frags;
1237 
1238 			err = -ENOMEM;
1239 			if (!sk_page_frag_refill(sk, pfrag))
1240 				goto error;
1241 
1242 			skb_zcopy_downgrade_managed(skb);
1243 			if (!skb_can_coalesce(skb, i, pfrag->page,
1244 					      pfrag->offset)) {
1245 				err = -EMSGSIZE;
1246 				if (i == MAX_SKB_FRAGS)
1247 					goto error;
1248 
1249 				__skb_fill_page_desc(skb, i, pfrag->page,
1250 						     pfrag->offset, 0);
1251 				skb_shinfo(skb)->nr_frags = ++i;
1252 				get_page(pfrag->page);
1253 			}
1254 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1255 			if (getfrag(from,
1256 				    page_address(pfrag->page) + pfrag->offset,
1257 				    offset, copy, skb->len, skb) < 0)
1258 				goto error_efault;
1259 
1260 			pfrag->offset += copy;
1261 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1262 			skb_len_add(skb, copy);
1263 			wmem_alloc_delta += copy;
1264 		} else {
1265 			err = skb_zerocopy_iter_dgram(skb, from, copy);
1266 			if (err < 0)
1267 				goto error;
1268 		}
1269 		offset += copy;
1270 		length -= copy;
1271 	}
1272 
1273 	if (wmem_alloc_delta)
1274 		refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1275 	return 0;
1276 
1277 error_efault:
1278 	err = -EFAULT;
1279 error:
1280 	net_zcopy_put_abort(uarg, extra_uref);
1281 	cork->length -= length;
1282 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1283 	refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1284 	if (hold_tskey)
1285 		atomic_dec(&sk->sk_tskey);
1286 	return err;
1287 }
1288 
1289 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1290 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1291 {
1292 	struct ip_options_rcu *opt;
1293 	struct rtable *rt;
1294 
1295 	rt = *rtp;
1296 	if (unlikely(!rt))
1297 		return -EFAULT;
1298 
1299 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1300 			 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu);
1301 
1302 	if (!inetdev_valid_mtu(cork->fragsize))
1303 		return -ENETUNREACH;
1304 
1305 	/*
1306 	 * setup for corking.
1307 	 */
1308 	opt = ipc->opt;
1309 	if (opt) {
1310 		if (!cork->opt) {
1311 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1312 					    sk->sk_allocation);
1313 			if (unlikely(!cork->opt))
1314 				return -ENOBUFS;
1315 		}
1316 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1317 		cork->flags |= IPCORK_OPT;
1318 		cork->addr = ipc->addr;
1319 	}
1320 
1321 	cork->gso_size = ipc->gso_size;
1322 
1323 	cork->dst = &rt->dst;
1324 	/* We stole this route, caller should not release it. */
1325 	*rtp = NULL;
1326 
1327 	cork->length = 0;
1328 	cork->ttl = ipc->ttl;
1329 	cork->tos = ipc->tos;
1330 	cork->mark = ipc->sockc.mark;
1331 	cork->priority = ipc->priority;
1332 	cork->transmit_time = ipc->sockc.transmit_time;
1333 	cork->tx_flags = 0;
1334 	sock_tx_timestamp(sk, &ipc->sockc, &cork->tx_flags);
1335 	if (ipc->sockc.tsflags & SOCKCM_FLAG_TS_OPT_ID) {
1336 		cork->flags |= IPCORK_TS_OPT_ID;
1337 		cork->ts_opt_id = ipc->sockc.ts_opt_id;
1338 	}
1339 
1340 	return 0;
1341 }
1342 
1343 /*
1344  *	ip_append_data() can make one large IP datagram from many pieces of
1345  *	data.  Each piece will be held on the socket until
1346  *	ip_push_pending_frames() is called. Each piece can be a page or
1347  *	non-page data.
1348  *
1349  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1350  *	this interface potentially.
1351  *
1352  *	LATER: length must be adjusted by pad at tail, when it is required.
1353  */
1354 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1355 		   int getfrag(void *from, char *to, int offset, int len,
1356 			       int odd, struct sk_buff *skb),
1357 		   void *from, int length, int transhdrlen,
1358 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1359 		   unsigned int flags)
1360 {
1361 	struct inet_sock *inet = inet_sk(sk);
1362 	int err;
1363 
1364 	if (flags&MSG_PROBE)
1365 		return 0;
1366 
1367 	if (skb_queue_empty(&sk->sk_write_queue)) {
1368 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1369 		if (err)
1370 			return err;
1371 	} else {
1372 		transhdrlen = 0;
1373 	}
1374 
1375 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1376 				sk_page_frag(sk), getfrag,
1377 				from, length, transhdrlen, flags);
1378 }
1379 
1380 static void ip_cork_release(struct inet_cork *cork)
1381 {
1382 	cork->flags &= ~IPCORK_OPT;
1383 	kfree(cork->opt);
1384 	cork->opt = NULL;
1385 	dst_release(cork->dst);
1386 	cork->dst = NULL;
1387 }
1388 
1389 /*
1390  *	Combined all pending IP fragments on the socket as one IP datagram
1391  *	and push them out.
1392  */
1393 struct sk_buff *__ip_make_skb(struct sock *sk,
1394 			      struct flowi4 *fl4,
1395 			      struct sk_buff_head *queue,
1396 			      struct inet_cork *cork)
1397 {
1398 	struct sk_buff *skb, *tmp_skb;
1399 	struct sk_buff **tail_skb;
1400 	struct inet_sock *inet = inet_sk(sk);
1401 	struct net *net = sock_net(sk);
1402 	struct ip_options *opt = NULL;
1403 	struct rtable *rt = dst_rtable(cork->dst);
1404 	struct iphdr *iph;
1405 	u8 pmtudisc, ttl;
1406 	__be16 df = 0;
1407 
1408 	skb = __skb_dequeue(queue);
1409 	if (!skb)
1410 		goto out;
1411 	tail_skb = &(skb_shinfo(skb)->frag_list);
1412 
1413 	/* move skb->data to ip header from ext header */
1414 	if (skb->data < skb_network_header(skb))
1415 		__skb_pull(skb, skb_network_offset(skb));
1416 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1417 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1418 		*tail_skb = tmp_skb;
1419 		tail_skb = &(tmp_skb->next);
1420 		skb->len += tmp_skb->len;
1421 		skb->data_len += tmp_skb->len;
1422 		skb->truesize += tmp_skb->truesize;
1423 		tmp_skb->destructor = NULL;
1424 		tmp_skb->sk = NULL;
1425 	}
1426 
1427 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1428 	 * to fragment the frame generated here. No matter, what transforms
1429 	 * how transforms change size of the packet, it will come out.
1430 	 */
1431 	skb->ignore_df = ip_sk_ignore_df(sk);
1432 
1433 	/* DF bit is set when we want to see DF on outgoing frames.
1434 	 * If ignore_df is set too, we still allow to fragment this frame
1435 	 * locally. */
1436 	pmtudisc = READ_ONCE(inet->pmtudisc);
1437 	if (pmtudisc == IP_PMTUDISC_DO ||
1438 	    pmtudisc == IP_PMTUDISC_PROBE ||
1439 	    (skb->len <= dst_mtu(&rt->dst) &&
1440 	     ip_dont_fragment(sk, &rt->dst)))
1441 		df = htons(IP_DF);
1442 
1443 	if (cork->flags & IPCORK_OPT)
1444 		opt = cork->opt;
1445 
1446 	if (cork->ttl != 0)
1447 		ttl = cork->ttl;
1448 	else if (rt->rt_type == RTN_MULTICAST)
1449 		ttl = READ_ONCE(inet->mc_ttl);
1450 	else
1451 		ttl = ip_select_ttl(inet, &rt->dst);
1452 
1453 	iph = ip_hdr(skb);
1454 	iph->version = 4;
1455 	iph->ihl = 5;
1456 	iph->tos = (cork->tos != -1) ? cork->tos : READ_ONCE(inet->tos);
1457 	iph->frag_off = df;
1458 	iph->ttl = ttl;
1459 	iph->protocol = sk->sk_protocol;
1460 	ip_copy_addrs(iph, fl4);
1461 	ip_select_ident(net, skb, sk);
1462 
1463 	if (opt) {
1464 		iph->ihl += opt->optlen >> 2;
1465 		ip_options_build(skb, opt, cork->addr, rt);
1466 	}
1467 
1468 	skb->priority = (cork->tos != -1) ? cork->priority: READ_ONCE(sk->sk_priority);
1469 	skb->mark = cork->mark;
1470 	if (sk_is_tcp(sk))
1471 		skb_set_delivery_time(skb, cork->transmit_time, SKB_CLOCK_MONOTONIC);
1472 	else
1473 		skb_set_delivery_type_by_clockid(skb, cork->transmit_time, sk->sk_clockid);
1474 	/*
1475 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1476 	 * on dst refcount
1477 	 */
1478 	cork->dst = NULL;
1479 	skb_dst_set(skb, &rt->dst);
1480 
1481 	if (iph->protocol == IPPROTO_ICMP) {
1482 		u8 icmp_type;
1483 
1484 		/* For such sockets, transhdrlen is zero when do ip_append_data(),
1485 		 * so icmphdr does not in skb linear region and can not get icmp_type
1486 		 * by icmp_hdr(skb)->type.
1487 		 */
1488 		if (sk->sk_type == SOCK_RAW &&
1489 		    !(fl4->flowi4_flags & FLOWI_FLAG_KNOWN_NH))
1490 			icmp_type = fl4->fl4_icmp_type;
1491 		else
1492 			icmp_type = icmp_hdr(skb)->type;
1493 		icmp_out_count(net, icmp_type);
1494 	}
1495 
1496 	ip_cork_release(cork);
1497 out:
1498 	return skb;
1499 }
1500 
1501 int ip_send_skb(struct net *net, struct sk_buff *skb)
1502 {
1503 	int err;
1504 
1505 	err = ip_local_out(net, skb->sk, skb);
1506 	if (err) {
1507 		if (err > 0)
1508 			err = net_xmit_errno(err);
1509 		if (err)
1510 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1511 	}
1512 
1513 	return err;
1514 }
1515 
1516 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1517 {
1518 	struct sk_buff *skb;
1519 
1520 	skb = ip_finish_skb(sk, fl4);
1521 	if (!skb)
1522 		return 0;
1523 
1524 	/* Netfilter gets whole the not fragmented skb. */
1525 	return ip_send_skb(sock_net(sk), skb);
1526 }
1527 
1528 /*
1529  *	Throw away all pending data on the socket.
1530  */
1531 static void __ip_flush_pending_frames(struct sock *sk,
1532 				      struct sk_buff_head *queue,
1533 				      struct inet_cork *cork)
1534 {
1535 	struct sk_buff *skb;
1536 
1537 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1538 		kfree_skb(skb);
1539 
1540 	ip_cork_release(cork);
1541 }
1542 
1543 void ip_flush_pending_frames(struct sock *sk)
1544 {
1545 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1546 }
1547 
1548 struct sk_buff *ip_make_skb(struct sock *sk,
1549 			    struct flowi4 *fl4,
1550 			    int getfrag(void *from, char *to, int offset,
1551 					int len, int odd, struct sk_buff *skb),
1552 			    void *from, int length, int transhdrlen,
1553 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1554 			    struct inet_cork *cork, unsigned int flags)
1555 {
1556 	struct sk_buff_head queue;
1557 	int err;
1558 
1559 	if (flags & MSG_PROBE)
1560 		return NULL;
1561 
1562 	__skb_queue_head_init(&queue);
1563 
1564 	cork->flags = 0;
1565 	cork->addr = 0;
1566 	cork->opt = NULL;
1567 	err = ip_setup_cork(sk, cork, ipc, rtp);
1568 	if (err)
1569 		return ERR_PTR(err);
1570 
1571 	err = __ip_append_data(sk, fl4, &queue, cork,
1572 			       &current->task_frag, getfrag,
1573 			       from, length, transhdrlen, flags);
1574 	if (err) {
1575 		__ip_flush_pending_frames(sk, &queue, cork);
1576 		return ERR_PTR(err);
1577 	}
1578 
1579 	return __ip_make_skb(sk, fl4, &queue, cork);
1580 }
1581 
1582 /*
1583  *	Fetch data from kernel space and fill in checksum if needed.
1584  */
1585 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1586 			      int len, int odd, struct sk_buff *skb)
1587 {
1588 	__wsum csum;
1589 
1590 	csum = csum_partial_copy_nocheck(dptr+offset, to, len);
1591 	skb->csum = csum_block_add(skb->csum, csum, odd);
1592 	return 0;
1593 }
1594 
1595 /*
1596  *	Generic function to send a packet as reply to another packet.
1597  *	Used to send some TCP resets/acks so far.
1598  */
1599 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1600 			   const struct ip_options *sopt,
1601 			   __be32 daddr, __be32 saddr,
1602 			   const struct ip_reply_arg *arg,
1603 			   unsigned int len, u64 transmit_time, u32 txhash)
1604 {
1605 	struct ip_options_data replyopts;
1606 	struct ipcm_cookie ipc;
1607 	struct flowi4 fl4;
1608 	struct rtable *rt = skb_rtable(skb);
1609 	struct net *net = sock_net(sk);
1610 	struct sk_buff *nskb;
1611 	int err;
1612 	int oif;
1613 
1614 	if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1615 		return;
1616 
1617 	ipcm_init(&ipc);
1618 	ipc.addr = daddr;
1619 	ipc.sockc.transmit_time = transmit_time;
1620 
1621 	if (replyopts.opt.opt.optlen) {
1622 		ipc.opt = &replyopts.opt;
1623 
1624 		if (replyopts.opt.opt.srr)
1625 			daddr = replyopts.opt.opt.faddr;
1626 	}
1627 
1628 	oif = arg->bound_dev_if;
1629 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1630 		oif = skb->skb_iif;
1631 
1632 	flowi4_init_output(&fl4, oif,
1633 			   IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1634 			   arg->tos & INET_DSCP_MASK,
1635 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1636 			   ip_reply_arg_flowi_flags(arg),
1637 			   daddr, saddr,
1638 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1639 			   arg->uid);
1640 	security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4));
1641 	rt = ip_route_output_flow(net, &fl4, sk);
1642 	if (IS_ERR(rt))
1643 		return;
1644 
1645 	inet_sk(sk)->tos = arg->tos & ~INET_ECN_MASK;
1646 
1647 	sk->sk_protocol = ip_hdr(skb)->protocol;
1648 	sk->sk_bound_dev_if = arg->bound_dev_if;
1649 	sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
1650 	ipc.sockc.mark = fl4.flowi4_mark;
1651 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1652 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1653 	if (unlikely(err)) {
1654 		ip_flush_pending_frames(sk);
1655 		goto out;
1656 	}
1657 
1658 	nskb = skb_peek(&sk->sk_write_queue);
1659 	if (nskb) {
1660 		if (arg->csumoffset >= 0)
1661 			*((__sum16 *)skb_transport_header(nskb) +
1662 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1663 								arg->csum));
1664 		nskb->ip_summed = CHECKSUM_NONE;
1665 		if (transmit_time)
1666 			nskb->tstamp_type = SKB_CLOCK_MONOTONIC;
1667 		if (txhash)
1668 			skb_set_hash(nskb, txhash, PKT_HASH_TYPE_L4);
1669 		ip_push_pending_frames(sk, &fl4);
1670 	}
1671 out:
1672 	ip_rt_put(rt);
1673 }
1674 
1675 void __init ip_init(void)
1676 {
1677 	ip_rt_init();
1678 	inet_initpeers();
1679 
1680 #if defined(CONFIG_IP_MULTICAST)
1681 	igmp_mc_init();
1682 #endif
1683 }
1684