xref: /linux/net/ipv4/ip_output.c (revision 9a736fcb096b43b68af8329eb12abc8256dceaba)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82 
83 static int
84 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
85 	    unsigned int mtu,
86 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
87 
88 /* Generate a checksum for an outgoing IP datagram. */
89 void ip_send_check(struct iphdr *iph)
90 {
91 	iph->check = 0;
92 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
93 }
94 EXPORT_SYMBOL(ip_send_check);
95 
96 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
97 {
98 	struct iphdr *iph = ip_hdr(skb);
99 
100 	iph->tot_len = htons(skb->len);
101 	ip_send_check(iph);
102 
103 	/* if egress device is enslaved to an L3 master device pass the
104 	 * skb to its handler for processing
105 	 */
106 	skb = l3mdev_ip_out(sk, skb);
107 	if (unlikely(!skb))
108 		return 0;
109 
110 	skb->protocol = htons(ETH_P_IP);
111 
112 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
113 		       net, sk, skb, NULL, skb_dst(skb)->dev,
114 		       dst_output);
115 }
116 
117 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
118 {
119 	int err;
120 
121 	err = __ip_local_out(net, sk, skb);
122 	if (likely(err == 1))
123 		err = dst_output(net, sk, skb);
124 
125 	return err;
126 }
127 EXPORT_SYMBOL_GPL(ip_local_out);
128 
129 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
130 {
131 	int ttl = inet->uc_ttl;
132 
133 	if (ttl < 0)
134 		ttl = ip4_dst_hoplimit(dst);
135 	return ttl;
136 }
137 
138 /*
139  *		Add an ip header to a skbuff and send it out.
140  *
141  */
142 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
143 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
144 {
145 	struct inet_sock *inet = inet_sk(sk);
146 	struct rtable *rt = skb_rtable(skb);
147 	struct net *net = sock_net(sk);
148 	struct iphdr *iph;
149 
150 	/* Build the IP header. */
151 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
152 	skb_reset_network_header(skb);
153 	iph = ip_hdr(skb);
154 	iph->version  = 4;
155 	iph->ihl      = 5;
156 	iph->tos      = inet->tos;
157 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
158 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
159 	iph->saddr    = saddr;
160 	iph->protocol = sk->sk_protocol;
161 	if (ip_dont_fragment(sk, &rt->dst)) {
162 		iph->frag_off = htons(IP_DF);
163 		iph->id = 0;
164 	} else {
165 		iph->frag_off = 0;
166 		__ip_select_ident(net, iph, 1);
167 	}
168 
169 	if (opt && opt->opt.optlen) {
170 		iph->ihl += opt->opt.optlen>>2;
171 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
172 	}
173 
174 	skb->priority = sk->sk_priority;
175 	skb->mark = sk->sk_mark;
176 
177 	/* Send it out. */
178 	return ip_local_out(net, skb->sk, skb);
179 }
180 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
181 
182 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
183 {
184 	struct dst_entry *dst = skb_dst(skb);
185 	struct rtable *rt = (struct rtable *)dst;
186 	struct net_device *dev = dst->dev;
187 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
188 	struct neighbour *neigh;
189 	u32 nexthop;
190 
191 	if (rt->rt_type == RTN_MULTICAST) {
192 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
193 	} else if (rt->rt_type == RTN_BROADCAST)
194 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
195 
196 	/* Be paranoid, rather than too clever. */
197 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
198 		struct sk_buff *skb2;
199 
200 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
201 		if (!skb2) {
202 			kfree_skb(skb);
203 			return -ENOMEM;
204 		}
205 		if (skb->sk)
206 			skb_set_owner_w(skb2, skb->sk);
207 		consume_skb(skb);
208 		skb = skb2;
209 	}
210 
211 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
212 		int res = lwtunnel_xmit(skb);
213 
214 		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
215 			return res;
216 	}
217 
218 	rcu_read_lock_bh();
219 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
220 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
221 	if (unlikely(!neigh))
222 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
223 	if (!IS_ERR(neigh)) {
224 		int res = dst_neigh_output(dst, neigh, skb);
225 
226 		rcu_read_unlock_bh();
227 		return res;
228 	}
229 	rcu_read_unlock_bh();
230 
231 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
232 			    __func__);
233 	kfree_skb(skb);
234 	return -EINVAL;
235 }
236 
237 static int ip_finish_output_gso(struct net *net, struct sock *sk,
238 				struct sk_buff *skb, unsigned int mtu)
239 {
240 	netdev_features_t features;
241 	struct sk_buff *segs;
242 	int ret = 0;
243 
244 	/* common case: seglen is <= mtu
245 	 */
246 	if (skb_gso_validate_mtu(skb, mtu))
247 		return ip_finish_output2(net, sk, skb);
248 
249 	/* Slowpath -  GSO segment length exceeds the egress MTU.
250 	 *
251 	 * This can happen in several cases:
252 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
253 	 *  - Forwarding of an skb that arrived on a virtualization interface
254 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
255 	 *    stack.
256 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
257 	 *    interface with a smaller MTU.
258 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
259 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
260 	 *    insufficent MTU.
261 	 */
262 	features = netif_skb_features(skb);
263 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
264 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
265 	if (IS_ERR_OR_NULL(segs)) {
266 		kfree_skb(skb);
267 		return -ENOMEM;
268 	}
269 
270 	consume_skb(skb);
271 
272 	do {
273 		struct sk_buff *nskb = segs->next;
274 		int err;
275 
276 		segs->next = NULL;
277 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
278 
279 		if (err && ret == 0)
280 			ret = err;
281 		segs = nskb;
282 	} while (segs);
283 
284 	return ret;
285 }
286 
287 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
288 {
289 	unsigned int mtu;
290 
291 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
292 	/* Policy lookup after SNAT yielded a new policy */
293 	if (skb_dst(skb)->xfrm) {
294 		IPCB(skb)->flags |= IPSKB_REROUTED;
295 		return dst_output(net, sk, skb);
296 	}
297 #endif
298 	mtu = ip_skb_dst_mtu(sk, skb);
299 	if (skb_is_gso(skb))
300 		return ip_finish_output_gso(net, sk, skb, mtu);
301 
302 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
303 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
304 
305 	return ip_finish_output2(net, sk, skb);
306 }
307 
308 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
309 {
310 	struct rtable *rt = skb_rtable(skb);
311 	struct net_device *dev = rt->dst.dev;
312 
313 	/*
314 	 *	If the indicated interface is up and running, send the packet.
315 	 */
316 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
317 
318 	skb->dev = dev;
319 	skb->protocol = htons(ETH_P_IP);
320 
321 	/*
322 	 *	Multicasts are looped back for other local users
323 	 */
324 
325 	if (rt->rt_flags&RTCF_MULTICAST) {
326 		if (sk_mc_loop(sk)
327 #ifdef CONFIG_IP_MROUTE
328 		/* Small optimization: do not loopback not local frames,
329 		   which returned after forwarding; they will be  dropped
330 		   by ip_mr_input in any case.
331 		   Note, that local frames are looped back to be delivered
332 		   to local recipients.
333 
334 		   This check is duplicated in ip_mr_input at the moment.
335 		 */
336 		    &&
337 		    ((rt->rt_flags & RTCF_LOCAL) ||
338 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
339 #endif
340 		   ) {
341 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
342 			if (newskb)
343 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
344 					net, sk, newskb, NULL, newskb->dev,
345 					dev_loopback_xmit);
346 		}
347 
348 		/* Multicasts with ttl 0 must not go beyond the host */
349 
350 		if (ip_hdr(skb)->ttl == 0) {
351 			kfree_skb(skb);
352 			return 0;
353 		}
354 	}
355 
356 	if (rt->rt_flags&RTCF_BROADCAST) {
357 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
358 		if (newskb)
359 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
360 				net, sk, newskb, NULL, newskb->dev,
361 				dev_loopback_xmit);
362 	}
363 
364 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
365 			    net, sk, skb, NULL, skb->dev,
366 			    ip_finish_output,
367 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
368 }
369 
370 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
371 {
372 	struct net_device *dev = skb_dst(skb)->dev;
373 
374 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
375 
376 	skb->dev = dev;
377 	skb->protocol = htons(ETH_P_IP);
378 
379 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
380 			    net, sk, skb, NULL, dev,
381 			    ip_finish_output,
382 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
383 }
384 
385 /*
386  * copy saddr and daddr, possibly using 64bit load/stores
387  * Equivalent to :
388  *   iph->saddr = fl4->saddr;
389  *   iph->daddr = fl4->daddr;
390  */
391 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
392 {
393 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
394 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
395 	memcpy(&iph->saddr, &fl4->saddr,
396 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
397 }
398 
399 /* Note: skb->sk can be different from sk, in case of tunnels */
400 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
401 {
402 	struct inet_sock *inet = inet_sk(sk);
403 	struct net *net = sock_net(sk);
404 	struct ip_options_rcu *inet_opt;
405 	struct flowi4 *fl4;
406 	struct rtable *rt;
407 	struct iphdr *iph;
408 	int res;
409 
410 	/* Skip all of this if the packet is already routed,
411 	 * f.e. by something like SCTP.
412 	 */
413 	rcu_read_lock();
414 	inet_opt = rcu_dereference(inet->inet_opt);
415 	fl4 = &fl->u.ip4;
416 	rt = skb_rtable(skb);
417 	if (rt)
418 		goto packet_routed;
419 
420 	/* Make sure we can route this packet. */
421 	rt = (struct rtable *)__sk_dst_check(sk, 0);
422 	if (!rt) {
423 		__be32 daddr;
424 
425 		/* Use correct destination address if we have options. */
426 		daddr = inet->inet_daddr;
427 		if (inet_opt && inet_opt->opt.srr)
428 			daddr = inet_opt->opt.faddr;
429 
430 		/* If this fails, retransmit mechanism of transport layer will
431 		 * keep trying until route appears or the connection times
432 		 * itself out.
433 		 */
434 		rt = ip_route_output_ports(net, fl4, sk,
435 					   daddr, inet->inet_saddr,
436 					   inet->inet_dport,
437 					   inet->inet_sport,
438 					   sk->sk_protocol,
439 					   RT_CONN_FLAGS(sk),
440 					   sk->sk_bound_dev_if);
441 		if (IS_ERR(rt))
442 			goto no_route;
443 		sk_setup_caps(sk, &rt->dst);
444 	}
445 	skb_dst_set_noref(skb, &rt->dst);
446 
447 packet_routed:
448 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
449 		goto no_route;
450 
451 	/* OK, we know where to send it, allocate and build IP header. */
452 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
453 	skb_reset_network_header(skb);
454 	iph = ip_hdr(skb);
455 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
456 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
457 		iph->frag_off = htons(IP_DF);
458 	else
459 		iph->frag_off = 0;
460 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
461 	iph->protocol = sk->sk_protocol;
462 	ip_copy_addrs(iph, fl4);
463 
464 	/* Transport layer set skb->h.foo itself. */
465 
466 	if (inet_opt && inet_opt->opt.optlen) {
467 		iph->ihl += inet_opt->opt.optlen >> 2;
468 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
469 	}
470 
471 	ip_select_ident_segs(net, skb, sk,
472 			     skb_shinfo(skb)->gso_segs ?: 1);
473 
474 	/* TODO : should we use skb->sk here instead of sk ? */
475 	skb->priority = sk->sk_priority;
476 	skb->mark = sk->sk_mark;
477 
478 	res = ip_local_out(net, sk, skb);
479 	rcu_read_unlock();
480 	return res;
481 
482 no_route:
483 	rcu_read_unlock();
484 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
485 	kfree_skb(skb);
486 	return -EHOSTUNREACH;
487 }
488 EXPORT_SYMBOL(ip_queue_xmit);
489 
490 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
491 {
492 	to->pkt_type = from->pkt_type;
493 	to->priority = from->priority;
494 	to->protocol = from->protocol;
495 	skb_dst_drop(to);
496 	skb_dst_copy(to, from);
497 	to->dev = from->dev;
498 	to->mark = from->mark;
499 
500 	/* Copy the flags to each fragment. */
501 	IPCB(to)->flags = IPCB(from)->flags;
502 
503 #ifdef CONFIG_NET_SCHED
504 	to->tc_index = from->tc_index;
505 #endif
506 	nf_copy(to, from);
507 #if IS_ENABLED(CONFIG_IP_VS)
508 	to->ipvs_property = from->ipvs_property;
509 #endif
510 	skb_copy_secmark(to, from);
511 }
512 
513 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
514 		       unsigned int mtu,
515 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
516 {
517 	struct iphdr *iph = ip_hdr(skb);
518 
519 	if ((iph->frag_off & htons(IP_DF)) == 0)
520 		return ip_do_fragment(net, sk, skb, output);
521 
522 	if (unlikely(!skb->ignore_df ||
523 		     (IPCB(skb)->frag_max_size &&
524 		      IPCB(skb)->frag_max_size > mtu))) {
525 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
526 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
527 			  htonl(mtu));
528 		kfree_skb(skb);
529 		return -EMSGSIZE;
530 	}
531 
532 	return ip_do_fragment(net, sk, skb, output);
533 }
534 
535 /*
536  *	This IP datagram is too large to be sent in one piece.  Break it up into
537  *	smaller pieces (each of size equal to IP header plus
538  *	a block of the data of the original IP data part) that will yet fit in a
539  *	single device frame, and queue such a frame for sending.
540  */
541 
542 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
543 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
544 {
545 	struct iphdr *iph;
546 	int ptr;
547 	struct sk_buff *skb2;
548 	unsigned int mtu, hlen, left, len, ll_rs;
549 	int offset;
550 	__be16 not_last_frag;
551 	struct rtable *rt = skb_rtable(skb);
552 	int err = 0;
553 
554 	/* for offloaded checksums cleanup checksum before fragmentation */
555 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
556 	    (err = skb_checksum_help(skb)))
557 		goto fail;
558 
559 	/*
560 	 *	Point into the IP datagram header.
561 	 */
562 
563 	iph = ip_hdr(skb);
564 
565 	mtu = ip_skb_dst_mtu(sk, skb);
566 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
567 		mtu = IPCB(skb)->frag_max_size;
568 
569 	/*
570 	 *	Setup starting values.
571 	 */
572 
573 	hlen = iph->ihl * 4;
574 	mtu = mtu - hlen;	/* Size of data space */
575 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
576 
577 	/* When frag_list is given, use it. First, check its validity:
578 	 * some transformers could create wrong frag_list or break existing
579 	 * one, it is not prohibited. In this case fall back to copying.
580 	 *
581 	 * LATER: this step can be merged to real generation of fragments,
582 	 * we can switch to copy when see the first bad fragment.
583 	 */
584 	if (skb_has_frag_list(skb)) {
585 		struct sk_buff *frag, *frag2;
586 		int first_len = skb_pagelen(skb);
587 
588 		if (first_len - hlen > mtu ||
589 		    ((first_len - hlen) & 7) ||
590 		    ip_is_fragment(iph) ||
591 		    skb_cloned(skb))
592 			goto slow_path;
593 
594 		skb_walk_frags(skb, frag) {
595 			/* Correct geometry. */
596 			if (frag->len > mtu ||
597 			    ((frag->len & 7) && frag->next) ||
598 			    skb_headroom(frag) < hlen)
599 				goto slow_path_clean;
600 
601 			/* Partially cloned skb? */
602 			if (skb_shared(frag))
603 				goto slow_path_clean;
604 
605 			BUG_ON(frag->sk);
606 			if (skb->sk) {
607 				frag->sk = skb->sk;
608 				frag->destructor = sock_wfree;
609 			}
610 			skb->truesize -= frag->truesize;
611 		}
612 
613 		/* Everything is OK. Generate! */
614 
615 		err = 0;
616 		offset = 0;
617 		frag = skb_shinfo(skb)->frag_list;
618 		skb_frag_list_init(skb);
619 		skb->data_len = first_len - skb_headlen(skb);
620 		skb->len = first_len;
621 		iph->tot_len = htons(first_len);
622 		iph->frag_off = htons(IP_MF);
623 		ip_send_check(iph);
624 
625 		for (;;) {
626 			/* Prepare header of the next frame,
627 			 * before previous one went down. */
628 			if (frag) {
629 				frag->ip_summed = CHECKSUM_NONE;
630 				skb_reset_transport_header(frag);
631 				__skb_push(frag, hlen);
632 				skb_reset_network_header(frag);
633 				memcpy(skb_network_header(frag), iph, hlen);
634 				iph = ip_hdr(frag);
635 				iph->tot_len = htons(frag->len);
636 				ip_copy_metadata(frag, skb);
637 				if (offset == 0)
638 					ip_options_fragment(frag);
639 				offset += skb->len - hlen;
640 				iph->frag_off = htons(offset>>3);
641 				if (frag->next)
642 					iph->frag_off |= htons(IP_MF);
643 				/* Ready, complete checksum */
644 				ip_send_check(iph);
645 			}
646 
647 			err = output(net, sk, skb);
648 
649 			if (!err)
650 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
651 			if (err || !frag)
652 				break;
653 
654 			skb = frag;
655 			frag = skb->next;
656 			skb->next = NULL;
657 		}
658 
659 		if (err == 0) {
660 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
661 			return 0;
662 		}
663 
664 		while (frag) {
665 			skb = frag->next;
666 			kfree_skb(frag);
667 			frag = skb;
668 		}
669 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
670 		return err;
671 
672 slow_path_clean:
673 		skb_walk_frags(skb, frag2) {
674 			if (frag2 == frag)
675 				break;
676 			frag2->sk = NULL;
677 			frag2->destructor = NULL;
678 			skb->truesize += frag2->truesize;
679 		}
680 	}
681 
682 slow_path:
683 	iph = ip_hdr(skb);
684 
685 	left = skb->len - hlen;		/* Space per frame */
686 	ptr = hlen;		/* Where to start from */
687 
688 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
689 
690 	/*
691 	 *	Fragment the datagram.
692 	 */
693 
694 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
695 	not_last_frag = iph->frag_off & htons(IP_MF);
696 
697 	/*
698 	 *	Keep copying data until we run out.
699 	 */
700 
701 	while (left > 0) {
702 		len = left;
703 		/* IF: it doesn't fit, use 'mtu' - the data space left */
704 		if (len > mtu)
705 			len = mtu;
706 		/* IF: we are not sending up to and including the packet end
707 		   then align the next start on an eight byte boundary */
708 		if (len < left)	{
709 			len &= ~7;
710 		}
711 
712 		/* Allocate buffer */
713 		skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
714 		if (!skb2) {
715 			err = -ENOMEM;
716 			goto fail;
717 		}
718 
719 		/*
720 		 *	Set up data on packet
721 		 */
722 
723 		ip_copy_metadata(skb2, skb);
724 		skb_reserve(skb2, ll_rs);
725 		skb_put(skb2, len + hlen);
726 		skb_reset_network_header(skb2);
727 		skb2->transport_header = skb2->network_header + hlen;
728 
729 		/*
730 		 *	Charge the memory for the fragment to any owner
731 		 *	it might possess
732 		 */
733 
734 		if (skb->sk)
735 			skb_set_owner_w(skb2, skb->sk);
736 
737 		/*
738 		 *	Copy the packet header into the new buffer.
739 		 */
740 
741 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
742 
743 		/*
744 		 *	Copy a block of the IP datagram.
745 		 */
746 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
747 			BUG();
748 		left -= len;
749 
750 		/*
751 		 *	Fill in the new header fields.
752 		 */
753 		iph = ip_hdr(skb2);
754 		iph->frag_off = htons((offset >> 3));
755 
756 		if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
757 			iph->frag_off |= htons(IP_DF);
758 
759 		/* ANK: dirty, but effective trick. Upgrade options only if
760 		 * the segment to be fragmented was THE FIRST (otherwise,
761 		 * options are already fixed) and make it ONCE
762 		 * on the initial skb, so that all the following fragments
763 		 * will inherit fixed options.
764 		 */
765 		if (offset == 0)
766 			ip_options_fragment(skb);
767 
768 		/*
769 		 *	Added AC : If we are fragmenting a fragment that's not the
770 		 *		   last fragment then keep MF on each bit
771 		 */
772 		if (left > 0 || not_last_frag)
773 			iph->frag_off |= htons(IP_MF);
774 		ptr += len;
775 		offset += len;
776 
777 		/*
778 		 *	Put this fragment into the sending queue.
779 		 */
780 		iph->tot_len = htons(len + hlen);
781 
782 		ip_send_check(iph);
783 
784 		err = output(net, sk, skb2);
785 		if (err)
786 			goto fail;
787 
788 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
789 	}
790 	consume_skb(skb);
791 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
792 	return err;
793 
794 fail:
795 	kfree_skb(skb);
796 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
797 	return err;
798 }
799 EXPORT_SYMBOL(ip_do_fragment);
800 
801 int
802 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
803 {
804 	struct msghdr *msg = from;
805 
806 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
807 		if (copy_from_iter(to, len, &msg->msg_iter) != len)
808 			return -EFAULT;
809 	} else {
810 		__wsum csum = 0;
811 		if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
812 			return -EFAULT;
813 		skb->csum = csum_block_add(skb->csum, csum, odd);
814 	}
815 	return 0;
816 }
817 EXPORT_SYMBOL(ip_generic_getfrag);
818 
819 static inline __wsum
820 csum_page(struct page *page, int offset, int copy)
821 {
822 	char *kaddr;
823 	__wsum csum;
824 	kaddr = kmap(page);
825 	csum = csum_partial(kaddr + offset, copy, 0);
826 	kunmap(page);
827 	return csum;
828 }
829 
830 static inline int ip_ufo_append_data(struct sock *sk,
831 			struct sk_buff_head *queue,
832 			int getfrag(void *from, char *to, int offset, int len,
833 			       int odd, struct sk_buff *skb),
834 			void *from, int length, int hh_len, int fragheaderlen,
835 			int transhdrlen, int maxfraglen, unsigned int flags)
836 {
837 	struct sk_buff *skb;
838 	int err;
839 
840 	/* There is support for UDP fragmentation offload by network
841 	 * device, so create one single skb packet containing complete
842 	 * udp datagram
843 	 */
844 	skb = skb_peek_tail(queue);
845 	if (!skb) {
846 		skb = sock_alloc_send_skb(sk,
847 			hh_len + fragheaderlen + transhdrlen + 20,
848 			(flags & MSG_DONTWAIT), &err);
849 
850 		if (!skb)
851 			return err;
852 
853 		/* reserve space for Hardware header */
854 		skb_reserve(skb, hh_len);
855 
856 		/* create space for UDP/IP header */
857 		skb_put(skb, fragheaderlen + transhdrlen);
858 
859 		/* initialize network header pointer */
860 		skb_reset_network_header(skb);
861 
862 		/* initialize protocol header pointer */
863 		skb->transport_header = skb->network_header + fragheaderlen;
864 
865 		skb->csum = 0;
866 
867 		__skb_queue_tail(queue, skb);
868 	} else if (skb_is_gso(skb)) {
869 		goto append;
870 	}
871 
872 	skb->ip_summed = CHECKSUM_PARTIAL;
873 	/* specify the length of each IP datagram fragment */
874 	skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
875 	skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
876 
877 append:
878 	return skb_append_datato_frags(sk, skb, getfrag, from,
879 				       (length - transhdrlen));
880 }
881 
882 static int __ip_append_data(struct sock *sk,
883 			    struct flowi4 *fl4,
884 			    struct sk_buff_head *queue,
885 			    struct inet_cork *cork,
886 			    struct page_frag *pfrag,
887 			    int getfrag(void *from, char *to, int offset,
888 					int len, int odd, struct sk_buff *skb),
889 			    void *from, int length, int transhdrlen,
890 			    unsigned int flags)
891 {
892 	struct inet_sock *inet = inet_sk(sk);
893 	struct sk_buff *skb;
894 
895 	struct ip_options *opt = cork->opt;
896 	int hh_len;
897 	int exthdrlen;
898 	int mtu;
899 	int copy;
900 	int err;
901 	int offset = 0;
902 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
903 	int csummode = CHECKSUM_NONE;
904 	struct rtable *rt = (struct rtable *)cork->dst;
905 	u32 tskey = 0;
906 
907 	skb = skb_peek_tail(queue);
908 
909 	exthdrlen = !skb ? rt->dst.header_len : 0;
910 	mtu = cork->fragsize;
911 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
912 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
913 		tskey = sk->sk_tskey++;
914 
915 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
916 
917 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
918 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
919 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
920 
921 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
922 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
923 			       mtu - (opt ? opt->optlen : 0));
924 		return -EMSGSIZE;
925 	}
926 
927 	/*
928 	 * transhdrlen > 0 means that this is the first fragment and we wish
929 	 * it won't be fragmented in the future.
930 	 */
931 	if (transhdrlen &&
932 	    length + fragheaderlen <= mtu &&
933 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
934 	    !(flags & MSG_MORE) &&
935 	    !exthdrlen)
936 		csummode = CHECKSUM_PARTIAL;
937 
938 	cork->length += length;
939 	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
940 	    (sk->sk_protocol == IPPROTO_UDP) &&
941 	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
942 	    (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) {
943 		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
944 					 hh_len, fragheaderlen, transhdrlen,
945 					 maxfraglen, flags);
946 		if (err)
947 			goto error;
948 		return 0;
949 	}
950 
951 	/* So, what's going on in the loop below?
952 	 *
953 	 * We use calculated fragment length to generate chained skb,
954 	 * each of segments is IP fragment ready for sending to network after
955 	 * adding appropriate IP header.
956 	 */
957 
958 	if (!skb)
959 		goto alloc_new_skb;
960 
961 	while (length > 0) {
962 		/* Check if the remaining data fits into current packet. */
963 		copy = mtu - skb->len;
964 		if (copy < length)
965 			copy = maxfraglen - skb->len;
966 		if (copy <= 0) {
967 			char *data;
968 			unsigned int datalen;
969 			unsigned int fraglen;
970 			unsigned int fraggap;
971 			unsigned int alloclen;
972 			struct sk_buff *skb_prev;
973 alloc_new_skb:
974 			skb_prev = skb;
975 			if (skb_prev)
976 				fraggap = skb_prev->len - maxfraglen;
977 			else
978 				fraggap = 0;
979 
980 			/*
981 			 * If remaining data exceeds the mtu,
982 			 * we know we need more fragment(s).
983 			 */
984 			datalen = length + fraggap;
985 			if (datalen > mtu - fragheaderlen)
986 				datalen = maxfraglen - fragheaderlen;
987 			fraglen = datalen + fragheaderlen;
988 
989 			if ((flags & MSG_MORE) &&
990 			    !(rt->dst.dev->features&NETIF_F_SG))
991 				alloclen = mtu;
992 			else
993 				alloclen = fraglen;
994 
995 			alloclen += exthdrlen;
996 
997 			/* The last fragment gets additional space at tail.
998 			 * Note, with MSG_MORE we overallocate on fragments,
999 			 * because we have no idea what fragment will be
1000 			 * the last.
1001 			 */
1002 			if (datalen == length + fraggap)
1003 				alloclen += rt->dst.trailer_len;
1004 
1005 			if (transhdrlen) {
1006 				skb = sock_alloc_send_skb(sk,
1007 						alloclen + hh_len + 15,
1008 						(flags & MSG_DONTWAIT), &err);
1009 			} else {
1010 				skb = NULL;
1011 				if (atomic_read(&sk->sk_wmem_alloc) <=
1012 				    2 * sk->sk_sndbuf)
1013 					skb = sock_wmalloc(sk,
1014 							   alloclen + hh_len + 15, 1,
1015 							   sk->sk_allocation);
1016 				if (unlikely(!skb))
1017 					err = -ENOBUFS;
1018 			}
1019 			if (!skb)
1020 				goto error;
1021 
1022 			/*
1023 			 *	Fill in the control structures
1024 			 */
1025 			skb->ip_summed = csummode;
1026 			skb->csum = 0;
1027 			skb_reserve(skb, hh_len);
1028 
1029 			/* only the initial fragment is time stamped */
1030 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1031 			cork->tx_flags = 0;
1032 			skb_shinfo(skb)->tskey = tskey;
1033 			tskey = 0;
1034 
1035 			/*
1036 			 *	Find where to start putting bytes.
1037 			 */
1038 			data = skb_put(skb, fraglen + exthdrlen);
1039 			skb_set_network_header(skb, exthdrlen);
1040 			skb->transport_header = (skb->network_header +
1041 						 fragheaderlen);
1042 			data += fragheaderlen + exthdrlen;
1043 
1044 			if (fraggap) {
1045 				skb->csum = skb_copy_and_csum_bits(
1046 					skb_prev, maxfraglen,
1047 					data + transhdrlen, fraggap, 0);
1048 				skb_prev->csum = csum_sub(skb_prev->csum,
1049 							  skb->csum);
1050 				data += fraggap;
1051 				pskb_trim_unique(skb_prev, maxfraglen);
1052 			}
1053 
1054 			copy = datalen - transhdrlen - fraggap;
1055 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1056 				err = -EFAULT;
1057 				kfree_skb(skb);
1058 				goto error;
1059 			}
1060 
1061 			offset += copy;
1062 			length -= datalen - fraggap;
1063 			transhdrlen = 0;
1064 			exthdrlen = 0;
1065 			csummode = CHECKSUM_NONE;
1066 
1067 			/*
1068 			 * Put the packet on the pending queue.
1069 			 */
1070 			__skb_queue_tail(queue, skb);
1071 			continue;
1072 		}
1073 
1074 		if (copy > length)
1075 			copy = length;
1076 
1077 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
1078 			unsigned int off;
1079 
1080 			off = skb->len;
1081 			if (getfrag(from, skb_put(skb, copy),
1082 					offset, copy, off, skb) < 0) {
1083 				__skb_trim(skb, off);
1084 				err = -EFAULT;
1085 				goto error;
1086 			}
1087 		} else {
1088 			int i = skb_shinfo(skb)->nr_frags;
1089 
1090 			err = -ENOMEM;
1091 			if (!sk_page_frag_refill(sk, pfrag))
1092 				goto error;
1093 
1094 			if (!skb_can_coalesce(skb, i, pfrag->page,
1095 					      pfrag->offset)) {
1096 				err = -EMSGSIZE;
1097 				if (i == MAX_SKB_FRAGS)
1098 					goto error;
1099 
1100 				__skb_fill_page_desc(skb, i, pfrag->page,
1101 						     pfrag->offset, 0);
1102 				skb_shinfo(skb)->nr_frags = ++i;
1103 				get_page(pfrag->page);
1104 			}
1105 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1106 			if (getfrag(from,
1107 				    page_address(pfrag->page) + pfrag->offset,
1108 				    offset, copy, skb->len, skb) < 0)
1109 				goto error_efault;
1110 
1111 			pfrag->offset += copy;
1112 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1113 			skb->len += copy;
1114 			skb->data_len += copy;
1115 			skb->truesize += copy;
1116 			atomic_add(copy, &sk->sk_wmem_alloc);
1117 		}
1118 		offset += copy;
1119 		length -= copy;
1120 	}
1121 
1122 	return 0;
1123 
1124 error_efault:
1125 	err = -EFAULT;
1126 error:
1127 	cork->length -= length;
1128 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1129 	return err;
1130 }
1131 
1132 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1133 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1134 {
1135 	struct ip_options_rcu *opt;
1136 	struct rtable *rt;
1137 
1138 	/*
1139 	 * setup for corking.
1140 	 */
1141 	opt = ipc->opt;
1142 	if (opt) {
1143 		if (!cork->opt) {
1144 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1145 					    sk->sk_allocation);
1146 			if (unlikely(!cork->opt))
1147 				return -ENOBUFS;
1148 		}
1149 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1150 		cork->flags |= IPCORK_OPT;
1151 		cork->addr = ipc->addr;
1152 	}
1153 	rt = *rtp;
1154 	if (unlikely(!rt))
1155 		return -EFAULT;
1156 	/*
1157 	 * We steal reference to this route, caller should not release it
1158 	 */
1159 	*rtp = NULL;
1160 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1161 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1162 	cork->dst = &rt->dst;
1163 	cork->length = 0;
1164 	cork->ttl = ipc->ttl;
1165 	cork->tos = ipc->tos;
1166 	cork->priority = ipc->priority;
1167 	cork->tx_flags = ipc->tx_flags;
1168 
1169 	return 0;
1170 }
1171 
1172 /*
1173  *	ip_append_data() and ip_append_page() can make one large IP datagram
1174  *	from many pieces of data. Each pieces will be holded on the socket
1175  *	until ip_push_pending_frames() is called. Each piece can be a page
1176  *	or non-page data.
1177  *
1178  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1179  *	this interface potentially.
1180  *
1181  *	LATER: length must be adjusted by pad at tail, when it is required.
1182  */
1183 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1184 		   int getfrag(void *from, char *to, int offset, int len,
1185 			       int odd, struct sk_buff *skb),
1186 		   void *from, int length, int transhdrlen,
1187 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1188 		   unsigned int flags)
1189 {
1190 	struct inet_sock *inet = inet_sk(sk);
1191 	int err;
1192 
1193 	if (flags&MSG_PROBE)
1194 		return 0;
1195 
1196 	if (skb_queue_empty(&sk->sk_write_queue)) {
1197 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1198 		if (err)
1199 			return err;
1200 	} else {
1201 		transhdrlen = 0;
1202 	}
1203 
1204 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1205 				sk_page_frag(sk), getfrag,
1206 				from, length, transhdrlen, flags);
1207 }
1208 
1209 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1210 		       int offset, size_t size, int flags)
1211 {
1212 	struct inet_sock *inet = inet_sk(sk);
1213 	struct sk_buff *skb;
1214 	struct rtable *rt;
1215 	struct ip_options *opt = NULL;
1216 	struct inet_cork *cork;
1217 	int hh_len;
1218 	int mtu;
1219 	int len;
1220 	int err;
1221 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1222 
1223 	if (inet->hdrincl)
1224 		return -EPERM;
1225 
1226 	if (flags&MSG_PROBE)
1227 		return 0;
1228 
1229 	if (skb_queue_empty(&sk->sk_write_queue))
1230 		return -EINVAL;
1231 
1232 	cork = &inet->cork.base;
1233 	rt = (struct rtable *)cork->dst;
1234 	if (cork->flags & IPCORK_OPT)
1235 		opt = cork->opt;
1236 
1237 	if (!(rt->dst.dev->features&NETIF_F_SG))
1238 		return -EOPNOTSUPP;
1239 
1240 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1241 	mtu = cork->fragsize;
1242 
1243 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1244 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1245 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1246 
1247 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1248 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1249 			       mtu - (opt ? opt->optlen : 0));
1250 		return -EMSGSIZE;
1251 	}
1252 
1253 	skb = skb_peek_tail(&sk->sk_write_queue);
1254 	if (!skb)
1255 		return -EINVAL;
1256 
1257 	if ((size + skb->len > mtu) &&
1258 	    (sk->sk_protocol == IPPROTO_UDP) &&
1259 	    (rt->dst.dev->features & NETIF_F_UFO)) {
1260 		if (skb->ip_summed != CHECKSUM_PARTIAL)
1261 			return -EOPNOTSUPP;
1262 
1263 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1264 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1265 	}
1266 	cork->length += size;
1267 
1268 	while (size > 0) {
1269 		if (skb_is_gso(skb)) {
1270 			len = size;
1271 		} else {
1272 
1273 			/* Check if the remaining data fits into current packet. */
1274 			len = mtu - skb->len;
1275 			if (len < size)
1276 				len = maxfraglen - skb->len;
1277 		}
1278 		if (len <= 0) {
1279 			struct sk_buff *skb_prev;
1280 			int alloclen;
1281 
1282 			skb_prev = skb;
1283 			fraggap = skb_prev->len - maxfraglen;
1284 
1285 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1286 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1287 			if (unlikely(!skb)) {
1288 				err = -ENOBUFS;
1289 				goto error;
1290 			}
1291 
1292 			/*
1293 			 *	Fill in the control structures
1294 			 */
1295 			skb->ip_summed = CHECKSUM_NONE;
1296 			skb->csum = 0;
1297 			skb_reserve(skb, hh_len);
1298 
1299 			/*
1300 			 *	Find where to start putting bytes.
1301 			 */
1302 			skb_put(skb, fragheaderlen + fraggap);
1303 			skb_reset_network_header(skb);
1304 			skb->transport_header = (skb->network_header +
1305 						 fragheaderlen);
1306 			if (fraggap) {
1307 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1308 								   maxfraglen,
1309 						    skb_transport_header(skb),
1310 								   fraggap, 0);
1311 				skb_prev->csum = csum_sub(skb_prev->csum,
1312 							  skb->csum);
1313 				pskb_trim_unique(skb_prev, maxfraglen);
1314 			}
1315 
1316 			/*
1317 			 * Put the packet on the pending queue.
1318 			 */
1319 			__skb_queue_tail(&sk->sk_write_queue, skb);
1320 			continue;
1321 		}
1322 
1323 		if (len > size)
1324 			len = size;
1325 
1326 		if (skb_append_pagefrags(skb, page, offset, len)) {
1327 			err = -EMSGSIZE;
1328 			goto error;
1329 		}
1330 
1331 		if (skb->ip_summed == CHECKSUM_NONE) {
1332 			__wsum csum;
1333 			csum = csum_page(page, offset, len);
1334 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1335 		}
1336 
1337 		skb->len += len;
1338 		skb->data_len += len;
1339 		skb->truesize += len;
1340 		atomic_add(len, &sk->sk_wmem_alloc);
1341 		offset += len;
1342 		size -= len;
1343 	}
1344 	return 0;
1345 
1346 error:
1347 	cork->length -= size;
1348 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1349 	return err;
1350 }
1351 
1352 static void ip_cork_release(struct inet_cork *cork)
1353 {
1354 	cork->flags &= ~IPCORK_OPT;
1355 	kfree(cork->opt);
1356 	cork->opt = NULL;
1357 	dst_release(cork->dst);
1358 	cork->dst = NULL;
1359 }
1360 
1361 /*
1362  *	Combined all pending IP fragments on the socket as one IP datagram
1363  *	and push them out.
1364  */
1365 struct sk_buff *__ip_make_skb(struct sock *sk,
1366 			      struct flowi4 *fl4,
1367 			      struct sk_buff_head *queue,
1368 			      struct inet_cork *cork)
1369 {
1370 	struct sk_buff *skb, *tmp_skb;
1371 	struct sk_buff **tail_skb;
1372 	struct inet_sock *inet = inet_sk(sk);
1373 	struct net *net = sock_net(sk);
1374 	struct ip_options *opt = NULL;
1375 	struct rtable *rt = (struct rtable *)cork->dst;
1376 	struct iphdr *iph;
1377 	__be16 df = 0;
1378 	__u8 ttl;
1379 
1380 	skb = __skb_dequeue(queue);
1381 	if (!skb)
1382 		goto out;
1383 	tail_skb = &(skb_shinfo(skb)->frag_list);
1384 
1385 	/* move skb->data to ip header from ext header */
1386 	if (skb->data < skb_network_header(skb))
1387 		__skb_pull(skb, skb_network_offset(skb));
1388 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1389 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1390 		*tail_skb = tmp_skb;
1391 		tail_skb = &(tmp_skb->next);
1392 		skb->len += tmp_skb->len;
1393 		skb->data_len += tmp_skb->len;
1394 		skb->truesize += tmp_skb->truesize;
1395 		tmp_skb->destructor = NULL;
1396 		tmp_skb->sk = NULL;
1397 	}
1398 
1399 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1400 	 * to fragment the frame generated here. No matter, what transforms
1401 	 * how transforms change size of the packet, it will come out.
1402 	 */
1403 	skb->ignore_df = ip_sk_ignore_df(sk);
1404 
1405 	/* DF bit is set when we want to see DF on outgoing frames.
1406 	 * If ignore_df is set too, we still allow to fragment this frame
1407 	 * locally. */
1408 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1409 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1410 	    (skb->len <= dst_mtu(&rt->dst) &&
1411 	     ip_dont_fragment(sk, &rt->dst)))
1412 		df = htons(IP_DF);
1413 
1414 	if (cork->flags & IPCORK_OPT)
1415 		opt = cork->opt;
1416 
1417 	if (cork->ttl != 0)
1418 		ttl = cork->ttl;
1419 	else if (rt->rt_type == RTN_MULTICAST)
1420 		ttl = inet->mc_ttl;
1421 	else
1422 		ttl = ip_select_ttl(inet, &rt->dst);
1423 
1424 	iph = ip_hdr(skb);
1425 	iph->version = 4;
1426 	iph->ihl = 5;
1427 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1428 	iph->frag_off = df;
1429 	iph->ttl = ttl;
1430 	iph->protocol = sk->sk_protocol;
1431 	ip_copy_addrs(iph, fl4);
1432 	ip_select_ident(net, skb, sk);
1433 
1434 	if (opt) {
1435 		iph->ihl += opt->optlen>>2;
1436 		ip_options_build(skb, opt, cork->addr, rt, 0);
1437 	}
1438 
1439 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1440 	skb->mark = sk->sk_mark;
1441 	/*
1442 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1443 	 * on dst refcount
1444 	 */
1445 	cork->dst = NULL;
1446 	skb_dst_set(skb, &rt->dst);
1447 
1448 	if (iph->protocol == IPPROTO_ICMP)
1449 		icmp_out_count(net, ((struct icmphdr *)
1450 			skb_transport_header(skb))->type);
1451 
1452 	ip_cork_release(cork);
1453 out:
1454 	return skb;
1455 }
1456 
1457 int ip_send_skb(struct net *net, struct sk_buff *skb)
1458 {
1459 	int err;
1460 
1461 	err = ip_local_out(net, skb->sk, skb);
1462 	if (err) {
1463 		if (err > 0)
1464 			err = net_xmit_errno(err);
1465 		if (err)
1466 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1467 	}
1468 
1469 	return err;
1470 }
1471 
1472 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1473 {
1474 	struct sk_buff *skb;
1475 
1476 	skb = ip_finish_skb(sk, fl4);
1477 	if (!skb)
1478 		return 0;
1479 
1480 	/* Netfilter gets whole the not fragmented skb. */
1481 	return ip_send_skb(sock_net(sk), skb);
1482 }
1483 
1484 /*
1485  *	Throw away all pending data on the socket.
1486  */
1487 static void __ip_flush_pending_frames(struct sock *sk,
1488 				      struct sk_buff_head *queue,
1489 				      struct inet_cork *cork)
1490 {
1491 	struct sk_buff *skb;
1492 
1493 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1494 		kfree_skb(skb);
1495 
1496 	ip_cork_release(cork);
1497 }
1498 
1499 void ip_flush_pending_frames(struct sock *sk)
1500 {
1501 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1502 }
1503 
1504 struct sk_buff *ip_make_skb(struct sock *sk,
1505 			    struct flowi4 *fl4,
1506 			    int getfrag(void *from, char *to, int offset,
1507 					int len, int odd, struct sk_buff *skb),
1508 			    void *from, int length, int transhdrlen,
1509 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1510 			    unsigned int flags)
1511 {
1512 	struct inet_cork cork;
1513 	struct sk_buff_head queue;
1514 	int err;
1515 
1516 	if (flags & MSG_PROBE)
1517 		return NULL;
1518 
1519 	__skb_queue_head_init(&queue);
1520 
1521 	cork.flags = 0;
1522 	cork.addr = 0;
1523 	cork.opt = NULL;
1524 	err = ip_setup_cork(sk, &cork, ipc, rtp);
1525 	if (err)
1526 		return ERR_PTR(err);
1527 
1528 	err = __ip_append_data(sk, fl4, &queue, &cork,
1529 			       &current->task_frag, getfrag,
1530 			       from, length, transhdrlen, flags);
1531 	if (err) {
1532 		__ip_flush_pending_frames(sk, &queue, &cork);
1533 		return ERR_PTR(err);
1534 	}
1535 
1536 	return __ip_make_skb(sk, fl4, &queue, &cork);
1537 }
1538 
1539 /*
1540  *	Fetch data from kernel space and fill in checksum if needed.
1541  */
1542 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1543 			      int len, int odd, struct sk_buff *skb)
1544 {
1545 	__wsum csum;
1546 
1547 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1548 	skb->csum = csum_block_add(skb->csum, csum, odd);
1549 	return 0;
1550 }
1551 
1552 /*
1553  *	Generic function to send a packet as reply to another packet.
1554  *	Used to send some TCP resets/acks so far.
1555  */
1556 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1557 			   const struct ip_options *sopt,
1558 			   __be32 daddr, __be32 saddr,
1559 			   const struct ip_reply_arg *arg,
1560 			   unsigned int len)
1561 {
1562 	struct ip_options_data replyopts;
1563 	struct ipcm_cookie ipc;
1564 	struct flowi4 fl4;
1565 	struct rtable *rt = skb_rtable(skb);
1566 	struct net *net = sock_net(sk);
1567 	struct sk_buff *nskb;
1568 	int err;
1569 	int oif;
1570 
1571 	if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1572 		return;
1573 
1574 	ipc.addr = daddr;
1575 	ipc.opt = NULL;
1576 	ipc.tx_flags = 0;
1577 	ipc.ttl = 0;
1578 	ipc.tos = -1;
1579 
1580 	if (replyopts.opt.opt.optlen) {
1581 		ipc.opt = &replyopts.opt;
1582 
1583 		if (replyopts.opt.opt.srr)
1584 			daddr = replyopts.opt.opt.faddr;
1585 	}
1586 
1587 	oif = arg->bound_dev_if;
1588 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1589 		oif = skb->skb_iif;
1590 
1591 	flowi4_init_output(&fl4, oif,
1592 			   IP4_REPLY_MARK(net, skb->mark),
1593 			   RT_TOS(arg->tos),
1594 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1595 			   ip_reply_arg_flowi_flags(arg),
1596 			   daddr, saddr,
1597 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1598 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1599 	rt = ip_route_output_key(net, &fl4);
1600 	if (IS_ERR(rt))
1601 		return;
1602 
1603 	inet_sk(sk)->tos = arg->tos;
1604 
1605 	sk->sk_priority = skb->priority;
1606 	sk->sk_protocol = ip_hdr(skb)->protocol;
1607 	sk->sk_bound_dev_if = arg->bound_dev_if;
1608 	sk->sk_sndbuf = sysctl_wmem_default;
1609 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1610 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1611 	if (unlikely(err)) {
1612 		ip_flush_pending_frames(sk);
1613 		goto out;
1614 	}
1615 
1616 	nskb = skb_peek(&sk->sk_write_queue);
1617 	if (nskb) {
1618 		if (arg->csumoffset >= 0)
1619 			*((__sum16 *)skb_transport_header(nskb) +
1620 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1621 								arg->csum));
1622 		nskb->ip_summed = CHECKSUM_NONE;
1623 		ip_push_pending_frames(sk, &fl4);
1624 	}
1625 out:
1626 	ip_rt_put(rt);
1627 }
1628 
1629 void __init ip_init(void)
1630 {
1631 	ip_rt_init();
1632 	inet_initpeers();
1633 
1634 #if defined(CONFIG_IP_MULTICAST)
1635 	igmp_mc_init();
1636 #endif
1637 }
1638