1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The Internet Protocol (IP) output module. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Donald Becker, <becker@super.org> 11 * Alan Cox, <Alan.Cox@linux.org> 12 * Richard Underwood 13 * Stefan Becker, <stefanb@yello.ping.de> 14 * Jorge Cwik, <jorge@laser.satlink.net> 15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 16 * Hirokazu Takahashi, <taka@valinux.co.jp> 17 * 18 * See ip_input.c for original log 19 * 20 * Fixes: 21 * Alan Cox : Missing nonblock feature in ip_build_xmit. 22 * Mike Kilburn : htons() missing in ip_build_xmit. 23 * Bradford Johnson: Fix faulty handling of some frames when 24 * no route is found. 25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 26 * (in case if packet not accepted by 27 * output firewall rules) 28 * Mike McLagan : Routing by source 29 * Alexey Kuznetsov: use new route cache 30 * Andi Kleen: Fix broken PMTU recovery and remove 31 * some redundant tests. 32 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 33 * Andi Kleen : Replace ip_reply with ip_send_reply. 34 * Andi Kleen : Split fast and slow ip_build_xmit path 35 * for decreased register pressure on x86 36 * and more readibility. 37 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 38 * silently drop skb instead of failing with -EPERM. 39 * Detlev Wengorz : Copy protocol for fragments. 40 * Hirokazu Takahashi: HW checksumming for outgoing UDP 41 * datagrams. 42 * Hirokazu Takahashi: sendfile() on UDP works now. 43 */ 44 45 #include <asm/uaccess.h> 46 #include <linux/module.h> 47 #include <linux/types.h> 48 #include <linux/kernel.h> 49 #include <linux/mm.h> 50 #include <linux/string.h> 51 #include <linux/errno.h> 52 #include <linux/highmem.h> 53 #include <linux/slab.h> 54 55 #include <linux/socket.h> 56 #include <linux/sockios.h> 57 #include <linux/in.h> 58 #include <linux/inet.h> 59 #include <linux/netdevice.h> 60 #include <linux/etherdevice.h> 61 #include <linux/proc_fs.h> 62 #include <linux/stat.h> 63 #include <linux/init.h> 64 65 #include <net/snmp.h> 66 #include <net/ip.h> 67 #include <net/protocol.h> 68 #include <net/route.h> 69 #include <net/xfrm.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <net/arp.h> 73 #include <net/icmp.h> 74 #include <net/checksum.h> 75 #include <net/inetpeer.h> 76 #include <net/lwtunnel.h> 77 #include <linux/igmp.h> 78 #include <linux/netfilter_ipv4.h> 79 #include <linux/netfilter_bridge.h> 80 #include <linux/netlink.h> 81 #include <linux/tcp.h> 82 83 static int 84 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 85 unsigned int mtu, 86 int (*output)(struct net *, struct sock *, struct sk_buff *)); 87 88 /* Generate a checksum for an outgoing IP datagram. */ 89 void ip_send_check(struct iphdr *iph) 90 { 91 iph->check = 0; 92 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 93 } 94 EXPORT_SYMBOL(ip_send_check); 95 96 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 97 { 98 struct iphdr *iph = ip_hdr(skb); 99 100 iph->tot_len = htons(skb->len); 101 ip_send_check(iph); 102 103 /* if egress device is enslaved to an L3 master device pass the 104 * skb to its handler for processing 105 */ 106 skb = l3mdev_ip_out(sk, skb); 107 if (unlikely(!skb)) 108 return 0; 109 110 skb->protocol = htons(ETH_P_IP); 111 112 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 113 net, sk, skb, NULL, skb_dst(skb)->dev, 114 dst_output); 115 } 116 117 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 118 { 119 int err; 120 121 err = __ip_local_out(net, sk, skb); 122 if (likely(err == 1)) 123 err = dst_output(net, sk, skb); 124 125 return err; 126 } 127 EXPORT_SYMBOL_GPL(ip_local_out); 128 129 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 130 { 131 int ttl = inet->uc_ttl; 132 133 if (ttl < 0) 134 ttl = ip4_dst_hoplimit(dst); 135 return ttl; 136 } 137 138 /* 139 * Add an ip header to a skbuff and send it out. 140 * 141 */ 142 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 143 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 144 { 145 struct inet_sock *inet = inet_sk(sk); 146 struct rtable *rt = skb_rtable(skb); 147 struct net *net = sock_net(sk); 148 struct iphdr *iph; 149 150 /* Build the IP header. */ 151 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 152 skb_reset_network_header(skb); 153 iph = ip_hdr(skb); 154 iph->version = 4; 155 iph->ihl = 5; 156 iph->tos = inet->tos; 157 iph->ttl = ip_select_ttl(inet, &rt->dst); 158 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 159 iph->saddr = saddr; 160 iph->protocol = sk->sk_protocol; 161 if (ip_dont_fragment(sk, &rt->dst)) { 162 iph->frag_off = htons(IP_DF); 163 iph->id = 0; 164 } else { 165 iph->frag_off = 0; 166 __ip_select_ident(net, iph, 1); 167 } 168 169 if (opt && opt->opt.optlen) { 170 iph->ihl += opt->opt.optlen>>2; 171 ip_options_build(skb, &opt->opt, daddr, rt, 0); 172 } 173 174 skb->priority = sk->sk_priority; 175 skb->mark = sk->sk_mark; 176 177 /* Send it out. */ 178 return ip_local_out(net, skb->sk, skb); 179 } 180 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 181 182 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 183 { 184 struct dst_entry *dst = skb_dst(skb); 185 struct rtable *rt = (struct rtable *)dst; 186 struct net_device *dev = dst->dev; 187 unsigned int hh_len = LL_RESERVED_SPACE(dev); 188 struct neighbour *neigh; 189 u32 nexthop; 190 191 if (rt->rt_type == RTN_MULTICAST) { 192 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 193 } else if (rt->rt_type == RTN_BROADCAST) 194 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 195 196 /* Be paranoid, rather than too clever. */ 197 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 198 struct sk_buff *skb2; 199 200 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 201 if (!skb2) { 202 kfree_skb(skb); 203 return -ENOMEM; 204 } 205 if (skb->sk) 206 skb_set_owner_w(skb2, skb->sk); 207 consume_skb(skb); 208 skb = skb2; 209 } 210 211 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 212 int res = lwtunnel_xmit(skb); 213 214 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 215 return res; 216 } 217 218 rcu_read_lock_bh(); 219 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr); 220 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 221 if (unlikely(!neigh)) 222 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 223 if (!IS_ERR(neigh)) { 224 int res = dst_neigh_output(dst, neigh, skb); 225 226 rcu_read_unlock_bh(); 227 return res; 228 } 229 rcu_read_unlock_bh(); 230 231 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 232 __func__); 233 kfree_skb(skb); 234 return -EINVAL; 235 } 236 237 static int ip_finish_output_gso(struct net *net, struct sock *sk, 238 struct sk_buff *skb, unsigned int mtu) 239 { 240 netdev_features_t features; 241 struct sk_buff *segs; 242 int ret = 0; 243 244 /* common case: seglen is <= mtu 245 */ 246 if (skb_gso_validate_mtu(skb, mtu)) 247 return ip_finish_output2(net, sk, skb); 248 249 /* Slowpath - GSO segment length exceeds the egress MTU. 250 * 251 * This can happen in several cases: 252 * - Forwarding of a TCP GRO skb, when DF flag is not set. 253 * - Forwarding of an skb that arrived on a virtualization interface 254 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 255 * stack. 256 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 257 * interface with a smaller MTU. 258 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 259 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 260 * insufficent MTU. 261 */ 262 features = netif_skb_features(skb); 263 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET); 264 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 265 if (IS_ERR_OR_NULL(segs)) { 266 kfree_skb(skb); 267 return -ENOMEM; 268 } 269 270 consume_skb(skb); 271 272 do { 273 struct sk_buff *nskb = segs->next; 274 int err; 275 276 segs->next = NULL; 277 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 278 279 if (err && ret == 0) 280 ret = err; 281 segs = nskb; 282 } while (segs); 283 284 return ret; 285 } 286 287 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 288 { 289 unsigned int mtu; 290 291 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 292 /* Policy lookup after SNAT yielded a new policy */ 293 if (skb_dst(skb)->xfrm) { 294 IPCB(skb)->flags |= IPSKB_REROUTED; 295 return dst_output(net, sk, skb); 296 } 297 #endif 298 mtu = ip_skb_dst_mtu(sk, skb); 299 if (skb_is_gso(skb)) 300 return ip_finish_output_gso(net, sk, skb, mtu); 301 302 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 303 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 304 305 return ip_finish_output2(net, sk, skb); 306 } 307 308 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 309 { 310 struct rtable *rt = skb_rtable(skb); 311 struct net_device *dev = rt->dst.dev; 312 313 /* 314 * If the indicated interface is up and running, send the packet. 315 */ 316 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 317 318 skb->dev = dev; 319 skb->protocol = htons(ETH_P_IP); 320 321 /* 322 * Multicasts are looped back for other local users 323 */ 324 325 if (rt->rt_flags&RTCF_MULTICAST) { 326 if (sk_mc_loop(sk) 327 #ifdef CONFIG_IP_MROUTE 328 /* Small optimization: do not loopback not local frames, 329 which returned after forwarding; they will be dropped 330 by ip_mr_input in any case. 331 Note, that local frames are looped back to be delivered 332 to local recipients. 333 334 This check is duplicated in ip_mr_input at the moment. 335 */ 336 && 337 ((rt->rt_flags & RTCF_LOCAL) || 338 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 339 #endif 340 ) { 341 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 342 if (newskb) 343 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 344 net, sk, newskb, NULL, newskb->dev, 345 dev_loopback_xmit); 346 } 347 348 /* Multicasts with ttl 0 must not go beyond the host */ 349 350 if (ip_hdr(skb)->ttl == 0) { 351 kfree_skb(skb); 352 return 0; 353 } 354 } 355 356 if (rt->rt_flags&RTCF_BROADCAST) { 357 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 358 if (newskb) 359 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 360 net, sk, newskb, NULL, newskb->dev, 361 dev_loopback_xmit); 362 } 363 364 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 365 net, sk, skb, NULL, skb->dev, 366 ip_finish_output, 367 !(IPCB(skb)->flags & IPSKB_REROUTED)); 368 } 369 370 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 371 { 372 struct net_device *dev = skb_dst(skb)->dev; 373 374 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 375 376 skb->dev = dev; 377 skb->protocol = htons(ETH_P_IP); 378 379 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 380 net, sk, skb, NULL, dev, 381 ip_finish_output, 382 !(IPCB(skb)->flags & IPSKB_REROUTED)); 383 } 384 385 /* 386 * copy saddr and daddr, possibly using 64bit load/stores 387 * Equivalent to : 388 * iph->saddr = fl4->saddr; 389 * iph->daddr = fl4->daddr; 390 */ 391 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 392 { 393 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 394 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 395 memcpy(&iph->saddr, &fl4->saddr, 396 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 397 } 398 399 /* Note: skb->sk can be different from sk, in case of tunnels */ 400 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 401 { 402 struct inet_sock *inet = inet_sk(sk); 403 struct net *net = sock_net(sk); 404 struct ip_options_rcu *inet_opt; 405 struct flowi4 *fl4; 406 struct rtable *rt; 407 struct iphdr *iph; 408 int res; 409 410 /* Skip all of this if the packet is already routed, 411 * f.e. by something like SCTP. 412 */ 413 rcu_read_lock(); 414 inet_opt = rcu_dereference(inet->inet_opt); 415 fl4 = &fl->u.ip4; 416 rt = skb_rtable(skb); 417 if (rt) 418 goto packet_routed; 419 420 /* Make sure we can route this packet. */ 421 rt = (struct rtable *)__sk_dst_check(sk, 0); 422 if (!rt) { 423 __be32 daddr; 424 425 /* Use correct destination address if we have options. */ 426 daddr = inet->inet_daddr; 427 if (inet_opt && inet_opt->opt.srr) 428 daddr = inet_opt->opt.faddr; 429 430 /* If this fails, retransmit mechanism of transport layer will 431 * keep trying until route appears or the connection times 432 * itself out. 433 */ 434 rt = ip_route_output_ports(net, fl4, sk, 435 daddr, inet->inet_saddr, 436 inet->inet_dport, 437 inet->inet_sport, 438 sk->sk_protocol, 439 RT_CONN_FLAGS(sk), 440 sk->sk_bound_dev_if); 441 if (IS_ERR(rt)) 442 goto no_route; 443 sk_setup_caps(sk, &rt->dst); 444 } 445 skb_dst_set_noref(skb, &rt->dst); 446 447 packet_routed: 448 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 449 goto no_route; 450 451 /* OK, we know where to send it, allocate and build IP header. */ 452 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 453 skb_reset_network_header(skb); 454 iph = ip_hdr(skb); 455 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff)); 456 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 457 iph->frag_off = htons(IP_DF); 458 else 459 iph->frag_off = 0; 460 iph->ttl = ip_select_ttl(inet, &rt->dst); 461 iph->protocol = sk->sk_protocol; 462 ip_copy_addrs(iph, fl4); 463 464 /* Transport layer set skb->h.foo itself. */ 465 466 if (inet_opt && inet_opt->opt.optlen) { 467 iph->ihl += inet_opt->opt.optlen >> 2; 468 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 469 } 470 471 ip_select_ident_segs(net, skb, sk, 472 skb_shinfo(skb)->gso_segs ?: 1); 473 474 /* TODO : should we use skb->sk here instead of sk ? */ 475 skb->priority = sk->sk_priority; 476 skb->mark = sk->sk_mark; 477 478 res = ip_local_out(net, sk, skb); 479 rcu_read_unlock(); 480 return res; 481 482 no_route: 483 rcu_read_unlock(); 484 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 485 kfree_skb(skb); 486 return -EHOSTUNREACH; 487 } 488 EXPORT_SYMBOL(ip_queue_xmit); 489 490 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 491 { 492 to->pkt_type = from->pkt_type; 493 to->priority = from->priority; 494 to->protocol = from->protocol; 495 skb_dst_drop(to); 496 skb_dst_copy(to, from); 497 to->dev = from->dev; 498 to->mark = from->mark; 499 500 /* Copy the flags to each fragment. */ 501 IPCB(to)->flags = IPCB(from)->flags; 502 503 #ifdef CONFIG_NET_SCHED 504 to->tc_index = from->tc_index; 505 #endif 506 nf_copy(to, from); 507 #if IS_ENABLED(CONFIG_IP_VS) 508 to->ipvs_property = from->ipvs_property; 509 #endif 510 skb_copy_secmark(to, from); 511 } 512 513 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 514 unsigned int mtu, 515 int (*output)(struct net *, struct sock *, struct sk_buff *)) 516 { 517 struct iphdr *iph = ip_hdr(skb); 518 519 if ((iph->frag_off & htons(IP_DF)) == 0) 520 return ip_do_fragment(net, sk, skb, output); 521 522 if (unlikely(!skb->ignore_df || 523 (IPCB(skb)->frag_max_size && 524 IPCB(skb)->frag_max_size > mtu))) { 525 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 526 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 527 htonl(mtu)); 528 kfree_skb(skb); 529 return -EMSGSIZE; 530 } 531 532 return ip_do_fragment(net, sk, skb, output); 533 } 534 535 /* 536 * This IP datagram is too large to be sent in one piece. Break it up into 537 * smaller pieces (each of size equal to IP header plus 538 * a block of the data of the original IP data part) that will yet fit in a 539 * single device frame, and queue such a frame for sending. 540 */ 541 542 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 543 int (*output)(struct net *, struct sock *, struct sk_buff *)) 544 { 545 struct iphdr *iph; 546 int ptr; 547 struct sk_buff *skb2; 548 unsigned int mtu, hlen, left, len, ll_rs; 549 int offset; 550 __be16 not_last_frag; 551 struct rtable *rt = skb_rtable(skb); 552 int err = 0; 553 554 /* for offloaded checksums cleanup checksum before fragmentation */ 555 if (skb->ip_summed == CHECKSUM_PARTIAL && 556 (err = skb_checksum_help(skb))) 557 goto fail; 558 559 /* 560 * Point into the IP datagram header. 561 */ 562 563 iph = ip_hdr(skb); 564 565 mtu = ip_skb_dst_mtu(sk, skb); 566 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 567 mtu = IPCB(skb)->frag_max_size; 568 569 /* 570 * Setup starting values. 571 */ 572 573 hlen = iph->ihl * 4; 574 mtu = mtu - hlen; /* Size of data space */ 575 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 576 577 /* When frag_list is given, use it. First, check its validity: 578 * some transformers could create wrong frag_list or break existing 579 * one, it is not prohibited. In this case fall back to copying. 580 * 581 * LATER: this step can be merged to real generation of fragments, 582 * we can switch to copy when see the first bad fragment. 583 */ 584 if (skb_has_frag_list(skb)) { 585 struct sk_buff *frag, *frag2; 586 int first_len = skb_pagelen(skb); 587 588 if (first_len - hlen > mtu || 589 ((first_len - hlen) & 7) || 590 ip_is_fragment(iph) || 591 skb_cloned(skb)) 592 goto slow_path; 593 594 skb_walk_frags(skb, frag) { 595 /* Correct geometry. */ 596 if (frag->len > mtu || 597 ((frag->len & 7) && frag->next) || 598 skb_headroom(frag) < hlen) 599 goto slow_path_clean; 600 601 /* Partially cloned skb? */ 602 if (skb_shared(frag)) 603 goto slow_path_clean; 604 605 BUG_ON(frag->sk); 606 if (skb->sk) { 607 frag->sk = skb->sk; 608 frag->destructor = sock_wfree; 609 } 610 skb->truesize -= frag->truesize; 611 } 612 613 /* Everything is OK. Generate! */ 614 615 err = 0; 616 offset = 0; 617 frag = skb_shinfo(skb)->frag_list; 618 skb_frag_list_init(skb); 619 skb->data_len = first_len - skb_headlen(skb); 620 skb->len = first_len; 621 iph->tot_len = htons(first_len); 622 iph->frag_off = htons(IP_MF); 623 ip_send_check(iph); 624 625 for (;;) { 626 /* Prepare header of the next frame, 627 * before previous one went down. */ 628 if (frag) { 629 frag->ip_summed = CHECKSUM_NONE; 630 skb_reset_transport_header(frag); 631 __skb_push(frag, hlen); 632 skb_reset_network_header(frag); 633 memcpy(skb_network_header(frag), iph, hlen); 634 iph = ip_hdr(frag); 635 iph->tot_len = htons(frag->len); 636 ip_copy_metadata(frag, skb); 637 if (offset == 0) 638 ip_options_fragment(frag); 639 offset += skb->len - hlen; 640 iph->frag_off = htons(offset>>3); 641 if (frag->next) 642 iph->frag_off |= htons(IP_MF); 643 /* Ready, complete checksum */ 644 ip_send_check(iph); 645 } 646 647 err = output(net, sk, skb); 648 649 if (!err) 650 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 651 if (err || !frag) 652 break; 653 654 skb = frag; 655 frag = skb->next; 656 skb->next = NULL; 657 } 658 659 if (err == 0) { 660 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 661 return 0; 662 } 663 664 while (frag) { 665 skb = frag->next; 666 kfree_skb(frag); 667 frag = skb; 668 } 669 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 670 return err; 671 672 slow_path_clean: 673 skb_walk_frags(skb, frag2) { 674 if (frag2 == frag) 675 break; 676 frag2->sk = NULL; 677 frag2->destructor = NULL; 678 skb->truesize += frag2->truesize; 679 } 680 } 681 682 slow_path: 683 iph = ip_hdr(skb); 684 685 left = skb->len - hlen; /* Space per frame */ 686 ptr = hlen; /* Where to start from */ 687 688 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 689 690 /* 691 * Fragment the datagram. 692 */ 693 694 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 695 not_last_frag = iph->frag_off & htons(IP_MF); 696 697 /* 698 * Keep copying data until we run out. 699 */ 700 701 while (left > 0) { 702 len = left; 703 /* IF: it doesn't fit, use 'mtu' - the data space left */ 704 if (len > mtu) 705 len = mtu; 706 /* IF: we are not sending up to and including the packet end 707 then align the next start on an eight byte boundary */ 708 if (len < left) { 709 len &= ~7; 710 } 711 712 /* Allocate buffer */ 713 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); 714 if (!skb2) { 715 err = -ENOMEM; 716 goto fail; 717 } 718 719 /* 720 * Set up data on packet 721 */ 722 723 ip_copy_metadata(skb2, skb); 724 skb_reserve(skb2, ll_rs); 725 skb_put(skb2, len + hlen); 726 skb_reset_network_header(skb2); 727 skb2->transport_header = skb2->network_header + hlen; 728 729 /* 730 * Charge the memory for the fragment to any owner 731 * it might possess 732 */ 733 734 if (skb->sk) 735 skb_set_owner_w(skb2, skb->sk); 736 737 /* 738 * Copy the packet header into the new buffer. 739 */ 740 741 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); 742 743 /* 744 * Copy a block of the IP datagram. 745 */ 746 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) 747 BUG(); 748 left -= len; 749 750 /* 751 * Fill in the new header fields. 752 */ 753 iph = ip_hdr(skb2); 754 iph->frag_off = htons((offset >> 3)); 755 756 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) 757 iph->frag_off |= htons(IP_DF); 758 759 /* ANK: dirty, but effective trick. Upgrade options only if 760 * the segment to be fragmented was THE FIRST (otherwise, 761 * options are already fixed) and make it ONCE 762 * on the initial skb, so that all the following fragments 763 * will inherit fixed options. 764 */ 765 if (offset == 0) 766 ip_options_fragment(skb); 767 768 /* 769 * Added AC : If we are fragmenting a fragment that's not the 770 * last fragment then keep MF on each bit 771 */ 772 if (left > 0 || not_last_frag) 773 iph->frag_off |= htons(IP_MF); 774 ptr += len; 775 offset += len; 776 777 /* 778 * Put this fragment into the sending queue. 779 */ 780 iph->tot_len = htons(len + hlen); 781 782 ip_send_check(iph); 783 784 err = output(net, sk, skb2); 785 if (err) 786 goto fail; 787 788 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 789 } 790 consume_skb(skb); 791 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 792 return err; 793 794 fail: 795 kfree_skb(skb); 796 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 797 return err; 798 } 799 EXPORT_SYMBOL(ip_do_fragment); 800 801 int 802 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 803 { 804 struct msghdr *msg = from; 805 806 if (skb->ip_summed == CHECKSUM_PARTIAL) { 807 if (copy_from_iter(to, len, &msg->msg_iter) != len) 808 return -EFAULT; 809 } else { 810 __wsum csum = 0; 811 if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len) 812 return -EFAULT; 813 skb->csum = csum_block_add(skb->csum, csum, odd); 814 } 815 return 0; 816 } 817 EXPORT_SYMBOL(ip_generic_getfrag); 818 819 static inline __wsum 820 csum_page(struct page *page, int offset, int copy) 821 { 822 char *kaddr; 823 __wsum csum; 824 kaddr = kmap(page); 825 csum = csum_partial(kaddr + offset, copy, 0); 826 kunmap(page); 827 return csum; 828 } 829 830 static inline int ip_ufo_append_data(struct sock *sk, 831 struct sk_buff_head *queue, 832 int getfrag(void *from, char *to, int offset, int len, 833 int odd, struct sk_buff *skb), 834 void *from, int length, int hh_len, int fragheaderlen, 835 int transhdrlen, int maxfraglen, unsigned int flags) 836 { 837 struct sk_buff *skb; 838 int err; 839 840 /* There is support for UDP fragmentation offload by network 841 * device, so create one single skb packet containing complete 842 * udp datagram 843 */ 844 skb = skb_peek_tail(queue); 845 if (!skb) { 846 skb = sock_alloc_send_skb(sk, 847 hh_len + fragheaderlen + transhdrlen + 20, 848 (flags & MSG_DONTWAIT), &err); 849 850 if (!skb) 851 return err; 852 853 /* reserve space for Hardware header */ 854 skb_reserve(skb, hh_len); 855 856 /* create space for UDP/IP header */ 857 skb_put(skb, fragheaderlen + transhdrlen); 858 859 /* initialize network header pointer */ 860 skb_reset_network_header(skb); 861 862 /* initialize protocol header pointer */ 863 skb->transport_header = skb->network_header + fragheaderlen; 864 865 skb->csum = 0; 866 867 __skb_queue_tail(queue, skb); 868 } else if (skb_is_gso(skb)) { 869 goto append; 870 } 871 872 skb->ip_summed = CHECKSUM_PARTIAL; 873 /* specify the length of each IP datagram fragment */ 874 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen; 875 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 876 877 append: 878 return skb_append_datato_frags(sk, skb, getfrag, from, 879 (length - transhdrlen)); 880 } 881 882 static int __ip_append_data(struct sock *sk, 883 struct flowi4 *fl4, 884 struct sk_buff_head *queue, 885 struct inet_cork *cork, 886 struct page_frag *pfrag, 887 int getfrag(void *from, char *to, int offset, 888 int len, int odd, struct sk_buff *skb), 889 void *from, int length, int transhdrlen, 890 unsigned int flags) 891 { 892 struct inet_sock *inet = inet_sk(sk); 893 struct sk_buff *skb; 894 895 struct ip_options *opt = cork->opt; 896 int hh_len; 897 int exthdrlen; 898 int mtu; 899 int copy; 900 int err; 901 int offset = 0; 902 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 903 int csummode = CHECKSUM_NONE; 904 struct rtable *rt = (struct rtable *)cork->dst; 905 u32 tskey = 0; 906 907 skb = skb_peek_tail(queue); 908 909 exthdrlen = !skb ? rt->dst.header_len : 0; 910 mtu = cork->fragsize; 911 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 912 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 913 tskey = sk->sk_tskey++; 914 915 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 916 917 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 918 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 919 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 920 921 if (cork->length + length > maxnonfragsize - fragheaderlen) { 922 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 923 mtu - (opt ? opt->optlen : 0)); 924 return -EMSGSIZE; 925 } 926 927 /* 928 * transhdrlen > 0 means that this is the first fragment and we wish 929 * it won't be fragmented in the future. 930 */ 931 if (transhdrlen && 932 length + fragheaderlen <= mtu && 933 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 934 !(flags & MSG_MORE) && 935 !exthdrlen) 936 csummode = CHECKSUM_PARTIAL; 937 938 cork->length += length; 939 if (((length > mtu) || (skb && skb_is_gso(skb))) && 940 (sk->sk_protocol == IPPROTO_UDP) && 941 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len && 942 (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) { 943 err = ip_ufo_append_data(sk, queue, getfrag, from, length, 944 hh_len, fragheaderlen, transhdrlen, 945 maxfraglen, flags); 946 if (err) 947 goto error; 948 return 0; 949 } 950 951 /* So, what's going on in the loop below? 952 * 953 * We use calculated fragment length to generate chained skb, 954 * each of segments is IP fragment ready for sending to network after 955 * adding appropriate IP header. 956 */ 957 958 if (!skb) 959 goto alloc_new_skb; 960 961 while (length > 0) { 962 /* Check if the remaining data fits into current packet. */ 963 copy = mtu - skb->len; 964 if (copy < length) 965 copy = maxfraglen - skb->len; 966 if (copy <= 0) { 967 char *data; 968 unsigned int datalen; 969 unsigned int fraglen; 970 unsigned int fraggap; 971 unsigned int alloclen; 972 struct sk_buff *skb_prev; 973 alloc_new_skb: 974 skb_prev = skb; 975 if (skb_prev) 976 fraggap = skb_prev->len - maxfraglen; 977 else 978 fraggap = 0; 979 980 /* 981 * If remaining data exceeds the mtu, 982 * we know we need more fragment(s). 983 */ 984 datalen = length + fraggap; 985 if (datalen > mtu - fragheaderlen) 986 datalen = maxfraglen - fragheaderlen; 987 fraglen = datalen + fragheaderlen; 988 989 if ((flags & MSG_MORE) && 990 !(rt->dst.dev->features&NETIF_F_SG)) 991 alloclen = mtu; 992 else 993 alloclen = fraglen; 994 995 alloclen += exthdrlen; 996 997 /* The last fragment gets additional space at tail. 998 * Note, with MSG_MORE we overallocate on fragments, 999 * because we have no idea what fragment will be 1000 * the last. 1001 */ 1002 if (datalen == length + fraggap) 1003 alloclen += rt->dst.trailer_len; 1004 1005 if (transhdrlen) { 1006 skb = sock_alloc_send_skb(sk, 1007 alloclen + hh_len + 15, 1008 (flags & MSG_DONTWAIT), &err); 1009 } else { 1010 skb = NULL; 1011 if (atomic_read(&sk->sk_wmem_alloc) <= 1012 2 * sk->sk_sndbuf) 1013 skb = sock_wmalloc(sk, 1014 alloclen + hh_len + 15, 1, 1015 sk->sk_allocation); 1016 if (unlikely(!skb)) 1017 err = -ENOBUFS; 1018 } 1019 if (!skb) 1020 goto error; 1021 1022 /* 1023 * Fill in the control structures 1024 */ 1025 skb->ip_summed = csummode; 1026 skb->csum = 0; 1027 skb_reserve(skb, hh_len); 1028 1029 /* only the initial fragment is time stamped */ 1030 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1031 cork->tx_flags = 0; 1032 skb_shinfo(skb)->tskey = tskey; 1033 tskey = 0; 1034 1035 /* 1036 * Find where to start putting bytes. 1037 */ 1038 data = skb_put(skb, fraglen + exthdrlen); 1039 skb_set_network_header(skb, exthdrlen); 1040 skb->transport_header = (skb->network_header + 1041 fragheaderlen); 1042 data += fragheaderlen + exthdrlen; 1043 1044 if (fraggap) { 1045 skb->csum = skb_copy_and_csum_bits( 1046 skb_prev, maxfraglen, 1047 data + transhdrlen, fraggap, 0); 1048 skb_prev->csum = csum_sub(skb_prev->csum, 1049 skb->csum); 1050 data += fraggap; 1051 pskb_trim_unique(skb_prev, maxfraglen); 1052 } 1053 1054 copy = datalen - transhdrlen - fraggap; 1055 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1056 err = -EFAULT; 1057 kfree_skb(skb); 1058 goto error; 1059 } 1060 1061 offset += copy; 1062 length -= datalen - fraggap; 1063 transhdrlen = 0; 1064 exthdrlen = 0; 1065 csummode = CHECKSUM_NONE; 1066 1067 /* 1068 * Put the packet on the pending queue. 1069 */ 1070 __skb_queue_tail(queue, skb); 1071 continue; 1072 } 1073 1074 if (copy > length) 1075 copy = length; 1076 1077 if (!(rt->dst.dev->features&NETIF_F_SG)) { 1078 unsigned int off; 1079 1080 off = skb->len; 1081 if (getfrag(from, skb_put(skb, copy), 1082 offset, copy, off, skb) < 0) { 1083 __skb_trim(skb, off); 1084 err = -EFAULT; 1085 goto error; 1086 } 1087 } else { 1088 int i = skb_shinfo(skb)->nr_frags; 1089 1090 err = -ENOMEM; 1091 if (!sk_page_frag_refill(sk, pfrag)) 1092 goto error; 1093 1094 if (!skb_can_coalesce(skb, i, pfrag->page, 1095 pfrag->offset)) { 1096 err = -EMSGSIZE; 1097 if (i == MAX_SKB_FRAGS) 1098 goto error; 1099 1100 __skb_fill_page_desc(skb, i, pfrag->page, 1101 pfrag->offset, 0); 1102 skb_shinfo(skb)->nr_frags = ++i; 1103 get_page(pfrag->page); 1104 } 1105 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1106 if (getfrag(from, 1107 page_address(pfrag->page) + pfrag->offset, 1108 offset, copy, skb->len, skb) < 0) 1109 goto error_efault; 1110 1111 pfrag->offset += copy; 1112 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1113 skb->len += copy; 1114 skb->data_len += copy; 1115 skb->truesize += copy; 1116 atomic_add(copy, &sk->sk_wmem_alloc); 1117 } 1118 offset += copy; 1119 length -= copy; 1120 } 1121 1122 return 0; 1123 1124 error_efault: 1125 err = -EFAULT; 1126 error: 1127 cork->length -= length; 1128 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1129 return err; 1130 } 1131 1132 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1133 struct ipcm_cookie *ipc, struct rtable **rtp) 1134 { 1135 struct ip_options_rcu *opt; 1136 struct rtable *rt; 1137 1138 /* 1139 * setup for corking. 1140 */ 1141 opt = ipc->opt; 1142 if (opt) { 1143 if (!cork->opt) { 1144 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1145 sk->sk_allocation); 1146 if (unlikely(!cork->opt)) 1147 return -ENOBUFS; 1148 } 1149 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1150 cork->flags |= IPCORK_OPT; 1151 cork->addr = ipc->addr; 1152 } 1153 rt = *rtp; 1154 if (unlikely(!rt)) 1155 return -EFAULT; 1156 /* 1157 * We steal reference to this route, caller should not release it 1158 */ 1159 *rtp = NULL; 1160 cork->fragsize = ip_sk_use_pmtu(sk) ? 1161 dst_mtu(&rt->dst) : rt->dst.dev->mtu; 1162 cork->dst = &rt->dst; 1163 cork->length = 0; 1164 cork->ttl = ipc->ttl; 1165 cork->tos = ipc->tos; 1166 cork->priority = ipc->priority; 1167 cork->tx_flags = ipc->tx_flags; 1168 1169 return 0; 1170 } 1171 1172 /* 1173 * ip_append_data() and ip_append_page() can make one large IP datagram 1174 * from many pieces of data. Each pieces will be holded on the socket 1175 * until ip_push_pending_frames() is called. Each piece can be a page 1176 * or non-page data. 1177 * 1178 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1179 * this interface potentially. 1180 * 1181 * LATER: length must be adjusted by pad at tail, when it is required. 1182 */ 1183 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1184 int getfrag(void *from, char *to, int offset, int len, 1185 int odd, struct sk_buff *skb), 1186 void *from, int length, int transhdrlen, 1187 struct ipcm_cookie *ipc, struct rtable **rtp, 1188 unsigned int flags) 1189 { 1190 struct inet_sock *inet = inet_sk(sk); 1191 int err; 1192 1193 if (flags&MSG_PROBE) 1194 return 0; 1195 1196 if (skb_queue_empty(&sk->sk_write_queue)) { 1197 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1198 if (err) 1199 return err; 1200 } else { 1201 transhdrlen = 0; 1202 } 1203 1204 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1205 sk_page_frag(sk), getfrag, 1206 from, length, transhdrlen, flags); 1207 } 1208 1209 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1210 int offset, size_t size, int flags) 1211 { 1212 struct inet_sock *inet = inet_sk(sk); 1213 struct sk_buff *skb; 1214 struct rtable *rt; 1215 struct ip_options *opt = NULL; 1216 struct inet_cork *cork; 1217 int hh_len; 1218 int mtu; 1219 int len; 1220 int err; 1221 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1222 1223 if (inet->hdrincl) 1224 return -EPERM; 1225 1226 if (flags&MSG_PROBE) 1227 return 0; 1228 1229 if (skb_queue_empty(&sk->sk_write_queue)) 1230 return -EINVAL; 1231 1232 cork = &inet->cork.base; 1233 rt = (struct rtable *)cork->dst; 1234 if (cork->flags & IPCORK_OPT) 1235 opt = cork->opt; 1236 1237 if (!(rt->dst.dev->features&NETIF_F_SG)) 1238 return -EOPNOTSUPP; 1239 1240 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1241 mtu = cork->fragsize; 1242 1243 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1244 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1245 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1246 1247 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1248 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1249 mtu - (opt ? opt->optlen : 0)); 1250 return -EMSGSIZE; 1251 } 1252 1253 skb = skb_peek_tail(&sk->sk_write_queue); 1254 if (!skb) 1255 return -EINVAL; 1256 1257 if ((size + skb->len > mtu) && 1258 (sk->sk_protocol == IPPROTO_UDP) && 1259 (rt->dst.dev->features & NETIF_F_UFO)) { 1260 if (skb->ip_summed != CHECKSUM_PARTIAL) 1261 return -EOPNOTSUPP; 1262 1263 skb_shinfo(skb)->gso_size = mtu - fragheaderlen; 1264 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 1265 } 1266 cork->length += size; 1267 1268 while (size > 0) { 1269 if (skb_is_gso(skb)) { 1270 len = size; 1271 } else { 1272 1273 /* Check if the remaining data fits into current packet. */ 1274 len = mtu - skb->len; 1275 if (len < size) 1276 len = maxfraglen - skb->len; 1277 } 1278 if (len <= 0) { 1279 struct sk_buff *skb_prev; 1280 int alloclen; 1281 1282 skb_prev = skb; 1283 fraggap = skb_prev->len - maxfraglen; 1284 1285 alloclen = fragheaderlen + hh_len + fraggap + 15; 1286 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1287 if (unlikely(!skb)) { 1288 err = -ENOBUFS; 1289 goto error; 1290 } 1291 1292 /* 1293 * Fill in the control structures 1294 */ 1295 skb->ip_summed = CHECKSUM_NONE; 1296 skb->csum = 0; 1297 skb_reserve(skb, hh_len); 1298 1299 /* 1300 * Find where to start putting bytes. 1301 */ 1302 skb_put(skb, fragheaderlen + fraggap); 1303 skb_reset_network_header(skb); 1304 skb->transport_header = (skb->network_header + 1305 fragheaderlen); 1306 if (fraggap) { 1307 skb->csum = skb_copy_and_csum_bits(skb_prev, 1308 maxfraglen, 1309 skb_transport_header(skb), 1310 fraggap, 0); 1311 skb_prev->csum = csum_sub(skb_prev->csum, 1312 skb->csum); 1313 pskb_trim_unique(skb_prev, maxfraglen); 1314 } 1315 1316 /* 1317 * Put the packet on the pending queue. 1318 */ 1319 __skb_queue_tail(&sk->sk_write_queue, skb); 1320 continue; 1321 } 1322 1323 if (len > size) 1324 len = size; 1325 1326 if (skb_append_pagefrags(skb, page, offset, len)) { 1327 err = -EMSGSIZE; 1328 goto error; 1329 } 1330 1331 if (skb->ip_summed == CHECKSUM_NONE) { 1332 __wsum csum; 1333 csum = csum_page(page, offset, len); 1334 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1335 } 1336 1337 skb->len += len; 1338 skb->data_len += len; 1339 skb->truesize += len; 1340 atomic_add(len, &sk->sk_wmem_alloc); 1341 offset += len; 1342 size -= len; 1343 } 1344 return 0; 1345 1346 error: 1347 cork->length -= size; 1348 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1349 return err; 1350 } 1351 1352 static void ip_cork_release(struct inet_cork *cork) 1353 { 1354 cork->flags &= ~IPCORK_OPT; 1355 kfree(cork->opt); 1356 cork->opt = NULL; 1357 dst_release(cork->dst); 1358 cork->dst = NULL; 1359 } 1360 1361 /* 1362 * Combined all pending IP fragments on the socket as one IP datagram 1363 * and push them out. 1364 */ 1365 struct sk_buff *__ip_make_skb(struct sock *sk, 1366 struct flowi4 *fl4, 1367 struct sk_buff_head *queue, 1368 struct inet_cork *cork) 1369 { 1370 struct sk_buff *skb, *tmp_skb; 1371 struct sk_buff **tail_skb; 1372 struct inet_sock *inet = inet_sk(sk); 1373 struct net *net = sock_net(sk); 1374 struct ip_options *opt = NULL; 1375 struct rtable *rt = (struct rtable *)cork->dst; 1376 struct iphdr *iph; 1377 __be16 df = 0; 1378 __u8 ttl; 1379 1380 skb = __skb_dequeue(queue); 1381 if (!skb) 1382 goto out; 1383 tail_skb = &(skb_shinfo(skb)->frag_list); 1384 1385 /* move skb->data to ip header from ext header */ 1386 if (skb->data < skb_network_header(skb)) 1387 __skb_pull(skb, skb_network_offset(skb)); 1388 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1389 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1390 *tail_skb = tmp_skb; 1391 tail_skb = &(tmp_skb->next); 1392 skb->len += tmp_skb->len; 1393 skb->data_len += tmp_skb->len; 1394 skb->truesize += tmp_skb->truesize; 1395 tmp_skb->destructor = NULL; 1396 tmp_skb->sk = NULL; 1397 } 1398 1399 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1400 * to fragment the frame generated here. No matter, what transforms 1401 * how transforms change size of the packet, it will come out. 1402 */ 1403 skb->ignore_df = ip_sk_ignore_df(sk); 1404 1405 /* DF bit is set when we want to see DF on outgoing frames. 1406 * If ignore_df is set too, we still allow to fragment this frame 1407 * locally. */ 1408 if (inet->pmtudisc == IP_PMTUDISC_DO || 1409 inet->pmtudisc == IP_PMTUDISC_PROBE || 1410 (skb->len <= dst_mtu(&rt->dst) && 1411 ip_dont_fragment(sk, &rt->dst))) 1412 df = htons(IP_DF); 1413 1414 if (cork->flags & IPCORK_OPT) 1415 opt = cork->opt; 1416 1417 if (cork->ttl != 0) 1418 ttl = cork->ttl; 1419 else if (rt->rt_type == RTN_MULTICAST) 1420 ttl = inet->mc_ttl; 1421 else 1422 ttl = ip_select_ttl(inet, &rt->dst); 1423 1424 iph = ip_hdr(skb); 1425 iph->version = 4; 1426 iph->ihl = 5; 1427 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1428 iph->frag_off = df; 1429 iph->ttl = ttl; 1430 iph->protocol = sk->sk_protocol; 1431 ip_copy_addrs(iph, fl4); 1432 ip_select_ident(net, skb, sk); 1433 1434 if (opt) { 1435 iph->ihl += opt->optlen>>2; 1436 ip_options_build(skb, opt, cork->addr, rt, 0); 1437 } 1438 1439 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1440 skb->mark = sk->sk_mark; 1441 /* 1442 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1443 * on dst refcount 1444 */ 1445 cork->dst = NULL; 1446 skb_dst_set(skb, &rt->dst); 1447 1448 if (iph->protocol == IPPROTO_ICMP) 1449 icmp_out_count(net, ((struct icmphdr *) 1450 skb_transport_header(skb))->type); 1451 1452 ip_cork_release(cork); 1453 out: 1454 return skb; 1455 } 1456 1457 int ip_send_skb(struct net *net, struct sk_buff *skb) 1458 { 1459 int err; 1460 1461 err = ip_local_out(net, skb->sk, skb); 1462 if (err) { 1463 if (err > 0) 1464 err = net_xmit_errno(err); 1465 if (err) 1466 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1467 } 1468 1469 return err; 1470 } 1471 1472 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1473 { 1474 struct sk_buff *skb; 1475 1476 skb = ip_finish_skb(sk, fl4); 1477 if (!skb) 1478 return 0; 1479 1480 /* Netfilter gets whole the not fragmented skb. */ 1481 return ip_send_skb(sock_net(sk), skb); 1482 } 1483 1484 /* 1485 * Throw away all pending data on the socket. 1486 */ 1487 static void __ip_flush_pending_frames(struct sock *sk, 1488 struct sk_buff_head *queue, 1489 struct inet_cork *cork) 1490 { 1491 struct sk_buff *skb; 1492 1493 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1494 kfree_skb(skb); 1495 1496 ip_cork_release(cork); 1497 } 1498 1499 void ip_flush_pending_frames(struct sock *sk) 1500 { 1501 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1502 } 1503 1504 struct sk_buff *ip_make_skb(struct sock *sk, 1505 struct flowi4 *fl4, 1506 int getfrag(void *from, char *to, int offset, 1507 int len, int odd, struct sk_buff *skb), 1508 void *from, int length, int transhdrlen, 1509 struct ipcm_cookie *ipc, struct rtable **rtp, 1510 unsigned int flags) 1511 { 1512 struct inet_cork cork; 1513 struct sk_buff_head queue; 1514 int err; 1515 1516 if (flags & MSG_PROBE) 1517 return NULL; 1518 1519 __skb_queue_head_init(&queue); 1520 1521 cork.flags = 0; 1522 cork.addr = 0; 1523 cork.opt = NULL; 1524 err = ip_setup_cork(sk, &cork, ipc, rtp); 1525 if (err) 1526 return ERR_PTR(err); 1527 1528 err = __ip_append_data(sk, fl4, &queue, &cork, 1529 ¤t->task_frag, getfrag, 1530 from, length, transhdrlen, flags); 1531 if (err) { 1532 __ip_flush_pending_frames(sk, &queue, &cork); 1533 return ERR_PTR(err); 1534 } 1535 1536 return __ip_make_skb(sk, fl4, &queue, &cork); 1537 } 1538 1539 /* 1540 * Fetch data from kernel space and fill in checksum if needed. 1541 */ 1542 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1543 int len, int odd, struct sk_buff *skb) 1544 { 1545 __wsum csum; 1546 1547 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); 1548 skb->csum = csum_block_add(skb->csum, csum, odd); 1549 return 0; 1550 } 1551 1552 /* 1553 * Generic function to send a packet as reply to another packet. 1554 * Used to send some TCP resets/acks so far. 1555 */ 1556 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1557 const struct ip_options *sopt, 1558 __be32 daddr, __be32 saddr, 1559 const struct ip_reply_arg *arg, 1560 unsigned int len) 1561 { 1562 struct ip_options_data replyopts; 1563 struct ipcm_cookie ipc; 1564 struct flowi4 fl4; 1565 struct rtable *rt = skb_rtable(skb); 1566 struct net *net = sock_net(sk); 1567 struct sk_buff *nskb; 1568 int err; 1569 int oif; 1570 1571 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt)) 1572 return; 1573 1574 ipc.addr = daddr; 1575 ipc.opt = NULL; 1576 ipc.tx_flags = 0; 1577 ipc.ttl = 0; 1578 ipc.tos = -1; 1579 1580 if (replyopts.opt.opt.optlen) { 1581 ipc.opt = &replyopts.opt; 1582 1583 if (replyopts.opt.opt.srr) 1584 daddr = replyopts.opt.opt.faddr; 1585 } 1586 1587 oif = arg->bound_dev_if; 1588 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1589 oif = skb->skb_iif; 1590 1591 flowi4_init_output(&fl4, oif, 1592 IP4_REPLY_MARK(net, skb->mark), 1593 RT_TOS(arg->tos), 1594 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1595 ip_reply_arg_flowi_flags(arg), 1596 daddr, saddr, 1597 tcp_hdr(skb)->source, tcp_hdr(skb)->dest); 1598 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1599 rt = ip_route_output_key(net, &fl4); 1600 if (IS_ERR(rt)) 1601 return; 1602 1603 inet_sk(sk)->tos = arg->tos; 1604 1605 sk->sk_priority = skb->priority; 1606 sk->sk_protocol = ip_hdr(skb)->protocol; 1607 sk->sk_bound_dev_if = arg->bound_dev_if; 1608 sk->sk_sndbuf = sysctl_wmem_default; 1609 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1610 len, 0, &ipc, &rt, MSG_DONTWAIT); 1611 if (unlikely(err)) { 1612 ip_flush_pending_frames(sk); 1613 goto out; 1614 } 1615 1616 nskb = skb_peek(&sk->sk_write_queue); 1617 if (nskb) { 1618 if (arg->csumoffset >= 0) 1619 *((__sum16 *)skb_transport_header(nskb) + 1620 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1621 arg->csum)); 1622 nskb->ip_summed = CHECKSUM_NONE; 1623 ip_push_pending_frames(sk, &fl4); 1624 } 1625 out: 1626 ip_rt_put(rt); 1627 } 1628 1629 void __init ip_init(void) 1630 { 1631 ip_rt_init(); 1632 inet_initpeers(); 1633 1634 #if defined(CONFIG_IP_MULTICAST) 1635 igmp_mc_init(); 1636 #endif 1637 } 1638