xref: /linux/net/ipv4/ip_output.c (revision 920c293af8d01942caa10300ad97eabf778e8598)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The Internet Protocol (IP) output module.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Donald Becker, <becker@super.org>
12  *		Alan Cox, <Alan.Cox@linux.org>
13  *		Richard Underwood
14  *		Stefan Becker, <stefanb@yello.ping.de>
15  *		Jorge Cwik, <jorge@laser.satlink.net>
16  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17  *		Hirokazu Takahashi, <taka@valinux.co.jp>
18  *
19  *	See ip_input.c for original log
20  *
21  *	Fixes:
22  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
23  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
24  *		Bradford Johnson:	Fix faulty handling of some frames when
25  *					no route is found.
26  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
27  *					(in case if packet not accepted by
28  *					output firewall rules)
29  *		Mike McLagan	:	Routing by source
30  *		Alexey Kuznetsov:	use new route cache
31  *		Andi Kleen:		Fix broken PMTU recovery and remove
32  *					some redundant tests.
33  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
34  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
35  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
36  *					for decreased register pressure on x86
37  *					and more readability.
38  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
39  *					silently drop skb instead of failing with -EPERM.
40  *		Detlev Wengorz	:	Copy protocol for fragments.
41  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
42  *					datagrams.
43  *		Hirokazu Takahashi:	sendfile() on UDP works now.
44  */
45 
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55 
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65 
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <net/inet_ecn.h>
78 #include <net/lwtunnel.h>
79 #include <linux/bpf-cgroup.h>
80 #include <linux/igmp.h>
81 #include <linux/netfilter_ipv4.h>
82 #include <linux/netfilter_bridge.h>
83 #include <linux/netlink.h>
84 #include <linux/tcp.h>
85 
86 static int
87 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
88 	    unsigned int mtu,
89 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
90 
91 /* Generate a checksum for an outgoing IP datagram. */
92 void ip_send_check(struct iphdr *iph)
93 {
94 	iph->check = 0;
95 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
96 }
97 EXPORT_SYMBOL(ip_send_check);
98 
99 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
100 {
101 	struct iphdr *iph = ip_hdr(skb);
102 
103 	iph->tot_len = htons(skb->len);
104 	ip_send_check(iph);
105 
106 	/* if egress device is enslaved to an L3 master device pass the
107 	 * skb to its handler for processing
108 	 */
109 	skb = l3mdev_ip_out(sk, skb);
110 	if (unlikely(!skb))
111 		return 0;
112 
113 	skb->protocol = htons(ETH_P_IP);
114 
115 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
116 		       net, sk, skb, NULL, skb_dst(skb)->dev,
117 		       dst_output);
118 }
119 
120 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
121 {
122 	int err;
123 
124 	err = __ip_local_out(net, sk, skb);
125 	if (likely(err == 1))
126 		err = dst_output(net, sk, skb);
127 
128 	return err;
129 }
130 EXPORT_SYMBOL_GPL(ip_local_out);
131 
132 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
133 {
134 	int ttl = inet->uc_ttl;
135 
136 	if (ttl < 0)
137 		ttl = ip4_dst_hoplimit(dst);
138 	return ttl;
139 }
140 
141 /*
142  *		Add an ip header to a skbuff and send it out.
143  *
144  */
145 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
146 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt,
147 			  u8 tos)
148 {
149 	struct inet_sock *inet = inet_sk(sk);
150 	struct rtable *rt = skb_rtable(skb);
151 	struct net *net = sock_net(sk);
152 	struct iphdr *iph;
153 
154 	/* Build the IP header. */
155 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
156 	skb_reset_network_header(skb);
157 	iph = ip_hdr(skb);
158 	iph->version  = 4;
159 	iph->ihl      = 5;
160 	iph->tos      = tos;
161 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
162 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
163 	iph->saddr    = saddr;
164 	iph->protocol = sk->sk_protocol;
165 	if (ip_dont_fragment(sk, &rt->dst)) {
166 		iph->frag_off = htons(IP_DF);
167 		iph->id = 0;
168 	} else {
169 		iph->frag_off = 0;
170 		__ip_select_ident(net, iph, 1);
171 	}
172 
173 	if (opt && opt->opt.optlen) {
174 		iph->ihl += opt->opt.optlen>>2;
175 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
176 	}
177 
178 	skb->priority = sk->sk_priority;
179 	if (!skb->mark)
180 		skb->mark = sk->sk_mark;
181 
182 	/* Send it out. */
183 	return ip_local_out(net, skb->sk, skb);
184 }
185 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
186 
187 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
188 {
189 	struct dst_entry *dst = skb_dst(skb);
190 	struct rtable *rt = (struct rtable *)dst;
191 	struct net_device *dev = dst->dev;
192 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
193 	struct neighbour *neigh;
194 	bool is_v6gw = false;
195 
196 	if (rt->rt_type == RTN_MULTICAST) {
197 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
198 	} else if (rt->rt_type == RTN_BROADCAST)
199 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
200 
201 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
202 		skb = skb_expand_head(skb, hh_len);
203 		if (!skb)
204 			return -ENOMEM;
205 	}
206 
207 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
208 		int res = lwtunnel_xmit(skb);
209 
210 		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
211 			return res;
212 	}
213 
214 	rcu_read_lock_bh();
215 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
216 	if (!IS_ERR(neigh)) {
217 		int res;
218 
219 		sock_confirm_neigh(skb, neigh);
220 		/* if crossing protocols, can not use the cached header */
221 		res = neigh_output(neigh, skb, is_v6gw);
222 		rcu_read_unlock_bh();
223 		return res;
224 	}
225 	rcu_read_unlock_bh();
226 
227 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
228 			    __func__);
229 	kfree_skb(skb);
230 	return -EINVAL;
231 }
232 
233 static int ip_finish_output_gso(struct net *net, struct sock *sk,
234 				struct sk_buff *skb, unsigned int mtu)
235 {
236 	struct sk_buff *segs, *nskb;
237 	netdev_features_t features;
238 	int ret = 0;
239 
240 	/* common case: seglen is <= mtu
241 	 */
242 	if (skb_gso_validate_network_len(skb, mtu))
243 		return ip_finish_output2(net, sk, skb);
244 
245 	/* Slowpath -  GSO segment length exceeds the egress MTU.
246 	 *
247 	 * This can happen in several cases:
248 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
249 	 *  - Forwarding of an skb that arrived on a virtualization interface
250 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
251 	 *    stack.
252 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
253 	 *    interface with a smaller MTU.
254 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
255 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
256 	 *    insufficient MTU.
257 	 */
258 	features = netif_skb_features(skb);
259 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET);
260 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
261 	if (IS_ERR_OR_NULL(segs)) {
262 		kfree_skb(skb);
263 		return -ENOMEM;
264 	}
265 
266 	consume_skb(skb);
267 
268 	skb_list_walk_safe(segs, segs, nskb) {
269 		int err;
270 
271 		skb_mark_not_on_list(segs);
272 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
273 
274 		if (err && ret == 0)
275 			ret = err;
276 	}
277 
278 	return ret;
279 }
280 
281 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
282 {
283 	unsigned int mtu;
284 
285 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
286 	/* Policy lookup after SNAT yielded a new policy */
287 	if (skb_dst(skb)->xfrm) {
288 		IPCB(skb)->flags |= IPSKB_REROUTED;
289 		return dst_output(net, sk, skb);
290 	}
291 #endif
292 	mtu = ip_skb_dst_mtu(sk, skb);
293 	if (skb_is_gso(skb))
294 		return ip_finish_output_gso(net, sk, skb, mtu);
295 
296 	if (skb->len > mtu || IPCB(skb)->frag_max_size)
297 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
298 
299 	return ip_finish_output2(net, sk, skb);
300 }
301 
302 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
303 {
304 	int ret;
305 
306 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
307 	switch (ret) {
308 	case NET_XMIT_SUCCESS:
309 		return __ip_finish_output(net, sk, skb);
310 	case NET_XMIT_CN:
311 		return __ip_finish_output(net, sk, skb) ? : ret;
312 	default:
313 		kfree_skb(skb);
314 		return ret;
315 	}
316 }
317 
318 static int ip_mc_finish_output(struct net *net, struct sock *sk,
319 			       struct sk_buff *skb)
320 {
321 	struct rtable *new_rt;
322 	bool do_cn = false;
323 	int ret, err;
324 
325 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
326 	switch (ret) {
327 	case NET_XMIT_CN:
328 		do_cn = true;
329 		fallthrough;
330 	case NET_XMIT_SUCCESS:
331 		break;
332 	default:
333 		kfree_skb(skb);
334 		return ret;
335 	}
336 
337 	/* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
338 	 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
339 	 * see ipv4_pktinfo_prepare().
340 	 */
341 	new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
342 	if (new_rt) {
343 		new_rt->rt_iif = 0;
344 		skb_dst_drop(skb);
345 		skb_dst_set(skb, &new_rt->dst);
346 	}
347 
348 	err = dev_loopback_xmit(net, sk, skb);
349 	return (do_cn && err) ? ret : err;
350 }
351 
352 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
353 {
354 	struct rtable *rt = skb_rtable(skb);
355 	struct net_device *dev = rt->dst.dev;
356 
357 	/*
358 	 *	If the indicated interface is up and running, send the packet.
359 	 */
360 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
361 
362 	skb->dev = dev;
363 	skb->protocol = htons(ETH_P_IP);
364 
365 	/*
366 	 *	Multicasts are looped back for other local users
367 	 */
368 
369 	if (rt->rt_flags&RTCF_MULTICAST) {
370 		if (sk_mc_loop(sk)
371 #ifdef CONFIG_IP_MROUTE
372 		/* Small optimization: do not loopback not local frames,
373 		   which returned after forwarding; they will be  dropped
374 		   by ip_mr_input in any case.
375 		   Note, that local frames are looped back to be delivered
376 		   to local recipients.
377 
378 		   This check is duplicated in ip_mr_input at the moment.
379 		 */
380 		    &&
381 		    ((rt->rt_flags & RTCF_LOCAL) ||
382 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
383 #endif
384 		   ) {
385 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
386 			if (newskb)
387 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
388 					net, sk, newskb, NULL, newskb->dev,
389 					ip_mc_finish_output);
390 		}
391 
392 		/* Multicasts with ttl 0 must not go beyond the host */
393 
394 		if (ip_hdr(skb)->ttl == 0) {
395 			kfree_skb(skb);
396 			return 0;
397 		}
398 	}
399 
400 	if (rt->rt_flags&RTCF_BROADCAST) {
401 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
402 		if (newskb)
403 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
404 				net, sk, newskb, NULL, newskb->dev,
405 				ip_mc_finish_output);
406 	}
407 
408 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
409 			    net, sk, skb, NULL, skb->dev,
410 			    ip_finish_output,
411 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
412 }
413 
414 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
415 {
416 	struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev;
417 
418 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
419 
420 	skb->dev = dev;
421 	skb->protocol = htons(ETH_P_IP);
422 
423 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
424 			    net, sk, skb, indev, dev,
425 			    ip_finish_output,
426 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
427 }
428 EXPORT_SYMBOL(ip_output);
429 
430 /*
431  * copy saddr and daddr, possibly using 64bit load/stores
432  * Equivalent to :
433  *   iph->saddr = fl4->saddr;
434  *   iph->daddr = fl4->daddr;
435  */
436 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
437 {
438 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
439 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
440 
441 	iph->saddr = fl4->saddr;
442 	iph->daddr = fl4->daddr;
443 }
444 
445 /* Note: skb->sk can be different from sk, in case of tunnels */
446 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
447 		    __u8 tos)
448 {
449 	struct inet_sock *inet = inet_sk(sk);
450 	struct net *net = sock_net(sk);
451 	struct ip_options_rcu *inet_opt;
452 	struct flowi4 *fl4;
453 	struct rtable *rt;
454 	struct iphdr *iph;
455 	int res;
456 
457 	/* Skip all of this if the packet is already routed,
458 	 * f.e. by something like SCTP.
459 	 */
460 	rcu_read_lock();
461 	inet_opt = rcu_dereference(inet->inet_opt);
462 	fl4 = &fl->u.ip4;
463 	rt = skb_rtable(skb);
464 	if (rt)
465 		goto packet_routed;
466 
467 	/* Make sure we can route this packet. */
468 	rt = (struct rtable *)__sk_dst_check(sk, 0);
469 	if (!rt) {
470 		__be32 daddr;
471 
472 		/* Use correct destination address if we have options. */
473 		daddr = inet->inet_daddr;
474 		if (inet_opt && inet_opt->opt.srr)
475 			daddr = inet_opt->opt.faddr;
476 
477 		/* If this fails, retransmit mechanism of transport layer will
478 		 * keep trying until route appears or the connection times
479 		 * itself out.
480 		 */
481 		rt = ip_route_output_ports(net, fl4, sk,
482 					   daddr, inet->inet_saddr,
483 					   inet->inet_dport,
484 					   inet->inet_sport,
485 					   sk->sk_protocol,
486 					   RT_CONN_FLAGS_TOS(sk, tos),
487 					   sk->sk_bound_dev_if);
488 		if (IS_ERR(rt))
489 			goto no_route;
490 		sk_setup_caps(sk, &rt->dst);
491 	}
492 	skb_dst_set_noref(skb, &rt->dst);
493 
494 packet_routed:
495 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
496 		goto no_route;
497 
498 	/* OK, we know where to send it, allocate and build IP header. */
499 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
500 	skb_reset_network_header(skb);
501 	iph = ip_hdr(skb);
502 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
503 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
504 		iph->frag_off = htons(IP_DF);
505 	else
506 		iph->frag_off = 0;
507 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
508 	iph->protocol = sk->sk_protocol;
509 	ip_copy_addrs(iph, fl4);
510 
511 	/* Transport layer set skb->h.foo itself. */
512 
513 	if (inet_opt && inet_opt->opt.optlen) {
514 		iph->ihl += inet_opt->opt.optlen >> 2;
515 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
516 	}
517 
518 	ip_select_ident_segs(net, skb, sk,
519 			     skb_shinfo(skb)->gso_segs ?: 1);
520 
521 	/* TODO : should we use skb->sk here instead of sk ? */
522 	skb->priority = sk->sk_priority;
523 	skb->mark = sk->sk_mark;
524 
525 	res = ip_local_out(net, sk, skb);
526 	rcu_read_unlock();
527 	return res;
528 
529 no_route:
530 	rcu_read_unlock();
531 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
532 	kfree_skb(skb);
533 	return -EHOSTUNREACH;
534 }
535 EXPORT_SYMBOL(__ip_queue_xmit);
536 
537 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
538 {
539 	return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos);
540 }
541 EXPORT_SYMBOL(ip_queue_xmit);
542 
543 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
544 {
545 	to->pkt_type = from->pkt_type;
546 	to->priority = from->priority;
547 	to->protocol = from->protocol;
548 	to->skb_iif = from->skb_iif;
549 	skb_dst_drop(to);
550 	skb_dst_copy(to, from);
551 	to->dev = from->dev;
552 	to->mark = from->mark;
553 
554 	skb_copy_hash(to, from);
555 
556 #ifdef CONFIG_NET_SCHED
557 	to->tc_index = from->tc_index;
558 #endif
559 	nf_copy(to, from);
560 	skb_ext_copy(to, from);
561 #if IS_ENABLED(CONFIG_IP_VS)
562 	to->ipvs_property = from->ipvs_property;
563 #endif
564 	skb_copy_secmark(to, from);
565 }
566 
567 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
568 		       unsigned int mtu,
569 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
570 {
571 	struct iphdr *iph = ip_hdr(skb);
572 
573 	if ((iph->frag_off & htons(IP_DF)) == 0)
574 		return ip_do_fragment(net, sk, skb, output);
575 
576 	if (unlikely(!skb->ignore_df ||
577 		     (IPCB(skb)->frag_max_size &&
578 		      IPCB(skb)->frag_max_size > mtu))) {
579 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
580 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
581 			  htonl(mtu));
582 		kfree_skb(skb);
583 		return -EMSGSIZE;
584 	}
585 
586 	return ip_do_fragment(net, sk, skb, output);
587 }
588 
589 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
590 		      unsigned int hlen, struct ip_fraglist_iter *iter)
591 {
592 	unsigned int first_len = skb_pagelen(skb);
593 
594 	iter->frag = skb_shinfo(skb)->frag_list;
595 	skb_frag_list_init(skb);
596 
597 	iter->offset = 0;
598 	iter->iph = iph;
599 	iter->hlen = hlen;
600 
601 	skb->data_len = first_len - skb_headlen(skb);
602 	skb->len = first_len;
603 	iph->tot_len = htons(first_len);
604 	iph->frag_off = htons(IP_MF);
605 	ip_send_check(iph);
606 }
607 EXPORT_SYMBOL(ip_fraglist_init);
608 
609 static void ip_fraglist_ipcb_prepare(struct sk_buff *skb,
610 				     struct ip_fraglist_iter *iter)
611 {
612 	struct sk_buff *to = iter->frag;
613 
614 	/* Copy the flags to each fragment. */
615 	IPCB(to)->flags = IPCB(skb)->flags;
616 
617 	if (iter->offset == 0)
618 		ip_options_fragment(to);
619 }
620 
621 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
622 {
623 	unsigned int hlen = iter->hlen;
624 	struct iphdr *iph = iter->iph;
625 	struct sk_buff *frag;
626 
627 	frag = iter->frag;
628 	frag->ip_summed = CHECKSUM_NONE;
629 	skb_reset_transport_header(frag);
630 	__skb_push(frag, hlen);
631 	skb_reset_network_header(frag);
632 	memcpy(skb_network_header(frag), iph, hlen);
633 	iter->iph = ip_hdr(frag);
634 	iph = iter->iph;
635 	iph->tot_len = htons(frag->len);
636 	ip_copy_metadata(frag, skb);
637 	iter->offset += skb->len - hlen;
638 	iph->frag_off = htons(iter->offset >> 3);
639 	if (frag->next)
640 		iph->frag_off |= htons(IP_MF);
641 	/* Ready, complete checksum */
642 	ip_send_check(iph);
643 }
644 EXPORT_SYMBOL(ip_fraglist_prepare);
645 
646 void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
647 		  unsigned int ll_rs, unsigned int mtu, bool DF,
648 		  struct ip_frag_state *state)
649 {
650 	struct iphdr *iph = ip_hdr(skb);
651 
652 	state->DF = DF;
653 	state->hlen = hlen;
654 	state->ll_rs = ll_rs;
655 	state->mtu = mtu;
656 
657 	state->left = skb->len - hlen;	/* Space per frame */
658 	state->ptr = hlen;		/* Where to start from */
659 
660 	state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
661 	state->not_last_frag = iph->frag_off & htons(IP_MF);
662 }
663 EXPORT_SYMBOL(ip_frag_init);
664 
665 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
666 			 bool first_frag, struct ip_frag_state *state)
667 {
668 	/* Copy the flags to each fragment. */
669 	IPCB(to)->flags = IPCB(from)->flags;
670 
671 	/* ANK: dirty, but effective trick. Upgrade options only if
672 	 * the segment to be fragmented was THE FIRST (otherwise,
673 	 * options are already fixed) and make it ONCE
674 	 * on the initial skb, so that all the following fragments
675 	 * will inherit fixed options.
676 	 */
677 	if (first_frag)
678 		ip_options_fragment(from);
679 }
680 
681 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
682 {
683 	unsigned int len = state->left;
684 	struct sk_buff *skb2;
685 	struct iphdr *iph;
686 
687 	len = state->left;
688 	/* IF: it doesn't fit, use 'mtu' - the data space left */
689 	if (len > state->mtu)
690 		len = state->mtu;
691 	/* IF: we are not sending up to and including the packet end
692 	   then align the next start on an eight byte boundary */
693 	if (len < state->left)	{
694 		len &= ~7;
695 	}
696 
697 	/* Allocate buffer */
698 	skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
699 	if (!skb2)
700 		return ERR_PTR(-ENOMEM);
701 
702 	/*
703 	 *	Set up data on packet
704 	 */
705 
706 	ip_copy_metadata(skb2, skb);
707 	skb_reserve(skb2, state->ll_rs);
708 	skb_put(skb2, len + state->hlen);
709 	skb_reset_network_header(skb2);
710 	skb2->transport_header = skb2->network_header + state->hlen;
711 
712 	/*
713 	 *	Charge the memory for the fragment to any owner
714 	 *	it might possess
715 	 */
716 
717 	if (skb->sk)
718 		skb_set_owner_w(skb2, skb->sk);
719 
720 	/*
721 	 *	Copy the packet header into the new buffer.
722 	 */
723 
724 	skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
725 
726 	/*
727 	 *	Copy a block of the IP datagram.
728 	 */
729 	if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
730 		BUG();
731 	state->left -= len;
732 
733 	/*
734 	 *	Fill in the new header fields.
735 	 */
736 	iph = ip_hdr(skb2);
737 	iph->frag_off = htons((state->offset >> 3));
738 	if (state->DF)
739 		iph->frag_off |= htons(IP_DF);
740 
741 	/*
742 	 *	Added AC : If we are fragmenting a fragment that's not the
743 	 *		   last fragment then keep MF on each bit
744 	 */
745 	if (state->left > 0 || state->not_last_frag)
746 		iph->frag_off |= htons(IP_MF);
747 	state->ptr += len;
748 	state->offset += len;
749 
750 	iph->tot_len = htons(len + state->hlen);
751 
752 	ip_send_check(iph);
753 
754 	return skb2;
755 }
756 EXPORT_SYMBOL(ip_frag_next);
757 
758 /*
759  *	This IP datagram is too large to be sent in one piece.  Break it up into
760  *	smaller pieces (each of size equal to IP header plus
761  *	a block of the data of the original IP data part) that will yet fit in a
762  *	single device frame, and queue such a frame for sending.
763  */
764 
765 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
766 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
767 {
768 	struct iphdr *iph;
769 	struct sk_buff *skb2;
770 	struct rtable *rt = skb_rtable(skb);
771 	unsigned int mtu, hlen, ll_rs;
772 	struct ip_fraglist_iter iter;
773 	ktime_t tstamp = skb->tstamp;
774 	struct ip_frag_state state;
775 	int err = 0;
776 
777 	/* for offloaded checksums cleanup checksum before fragmentation */
778 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
779 	    (err = skb_checksum_help(skb)))
780 		goto fail;
781 
782 	/*
783 	 *	Point into the IP datagram header.
784 	 */
785 
786 	iph = ip_hdr(skb);
787 
788 	mtu = ip_skb_dst_mtu(sk, skb);
789 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
790 		mtu = IPCB(skb)->frag_max_size;
791 
792 	/*
793 	 *	Setup starting values.
794 	 */
795 
796 	hlen = iph->ihl * 4;
797 	mtu = mtu - hlen;	/* Size of data space */
798 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
799 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
800 
801 	/* When frag_list is given, use it. First, check its validity:
802 	 * some transformers could create wrong frag_list or break existing
803 	 * one, it is not prohibited. In this case fall back to copying.
804 	 *
805 	 * LATER: this step can be merged to real generation of fragments,
806 	 * we can switch to copy when see the first bad fragment.
807 	 */
808 	if (skb_has_frag_list(skb)) {
809 		struct sk_buff *frag, *frag2;
810 		unsigned int first_len = skb_pagelen(skb);
811 
812 		if (first_len - hlen > mtu ||
813 		    ((first_len - hlen) & 7) ||
814 		    ip_is_fragment(iph) ||
815 		    skb_cloned(skb) ||
816 		    skb_headroom(skb) < ll_rs)
817 			goto slow_path;
818 
819 		skb_walk_frags(skb, frag) {
820 			/* Correct geometry. */
821 			if (frag->len > mtu ||
822 			    ((frag->len & 7) && frag->next) ||
823 			    skb_headroom(frag) < hlen + ll_rs)
824 				goto slow_path_clean;
825 
826 			/* Partially cloned skb? */
827 			if (skb_shared(frag))
828 				goto slow_path_clean;
829 
830 			BUG_ON(frag->sk);
831 			if (skb->sk) {
832 				frag->sk = skb->sk;
833 				frag->destructor = sock_wfree;
834 			}
835 			skb->truesize -= frag->truesize;
836 		}
837 
838 		/* Everything is OK. Generate! */
839 		ip_fraglist_init(skb, iph, hlen, &iter);
840 
841 		for (;;) {
842 			/* Prepare header of the next frame,
843 			 * before previous one went down. */
844 			if (iter.frag) {
845 				ip_fraglist_ipcb_prepare(skb, &iter);
846 				ip_fraglist_prepare(skb, &iter);
847 			}
848 
849 			skb->tstamp = tstamp;
850 			err = output(net, sk, skb);
851 
852 			if (!err)
853 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
854 			if (err || !iter.frag)
855 				break;
856 
857 			skb = ip_fraglist_next(&iter);
858 		}
859 
860 		if (err == 0) {
861 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
862 			return 0;
863 		}
864 
865 		kfree_skb_list(iter.frag);
866 
867 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
868 		return err;
869 
870 slow_path_clean:
871 		skb_walk_frags(skb, frag2) {
872 			if (frag2 == frag)
873 				break;
874 			frag2->sk = NULL;
875 			frag2->destructor = NULL;
876 			skb->truesize += frag2->truesize;
877 		}
878 	}
879 
880 slow_path:
881 	/*
882 	 *	Fragment the datagram.
883 	 */
884 
885 	ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
886 		     &state);
887 
888 	/*
889 	 *	Keep copying data until we run out.
890 	 */
891 
892 	while (state.left > 0) {
893 		bool first_frag = (state.offset == 0);
894 
895 		skb2 = ip_frag_next(skb, &state);
896 		if (IS_ERR(skb2)) {
897 			err = PTR_ERR(skb2);
898 			goto fail;
899 		}
900 		ip_frag_ipcb(skb, skb2, first_frag, &state);
901 
902 		/*
903 		 *	Put this fragment into the sending queue.
904 		 */
905 		skb2->tstamp = tstamp;
906 		err = output(net, sk, skb2);
907 		if (err)
908 			goto fail;
909 
910 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
911 	}
912 	consume_skb(skb);
913 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
914 	return err;
915 
916 fail:
917 	kfree_skb(skb);
918 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
919 	return err;
920 }
921 EXPORT_SYMBOL(ip_do_fragment);
922 
923 int
924 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
925 {
926 	struct msghdr *msg = from;
927 
928 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
929 		if (!copy_from_iter_full(to, len, &msg->msg_iter))
930 			return -EFAULT;
931 	} else {
932 		__wsum csum = 0;
933 		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
934 			return -EFAULT;
935 		skb->csum = csum_block_add(skb->csum, csum, odd);
936 	}
937 	return 0;
938 }
939 EXPORT_SYMBOL(ip_generic_getfrag);
940 
941 static inline __wsum
942 csum_page(struct page *page, int offset, int copy)
943 {
944 	char *kaddr;
945 	__wsum csum;
946 	kaddr = kmap(page);
947 	csum = csum_partial(kaddr + offset, copy, 0);
948 	kunmap(page);
949 	return csum;
950 }
951 
952 static int __ip_append_data(struct sock *sk,
953 			    struct flowi4 *fl4,
954 			    struct sk_buff_head *queue,
955 			    struct inet_cork *cork,
956 			    struct page_frag *pfrag,
957 			    int getfrag(void *from, char *to, int offset,
958 					int len, int odd, struct sk_buff *skb),
959 			    void *from, int length, int transhdrlen,
960 			    unsigned int flags)
961 {
962 	struct inet_sock *inet = inet_sk(sk);
963 	struct ubuf_info *uarg = NULL;
964 	struct sk_buff *skb;
965 
966 	struct ip_options *opt = cork->opt;
967 	int hh_len;
968 	int exthdrlen;
969 	int mtu;
970 	int copy;
971 	int err;
972 	int offset = 0;
973 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
974 	int csummode = CHECKSUM_NONE;
975 	struct rtable *rt = (struct rtable *)cork->dst;
976 	unsigned int wmem_alloc_delta = 0;
977 	bool paged, extra_uref = false;
978 	u32 tskey = 0;
979 
980 	skb = skb_peek_tail(queue);
981 
982 	exthdrlen = !skb ? rt->dst.header_len : 0;
983 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
984 	paged = !!cork->gso_size;
985 
986 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
987 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
988 		tskey = sk->sk_tskey++;
989 
990 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
991 
992 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
993 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
994 	maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu;
995 
996 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
997 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
998 			       mtu - (opt ? opt->optlen : 0));
999 		return -EMSGSIZE;
1000 	}
1001 
1002 	/*
1003 	 * transhdrlen > 0 means that this is the first fragment and we wish
1004 	 * it won't be fragmented in the future.
1005 	 */
1006 	if (transhdrlen &&
1007 	    length + fragheaderlen <= mtu &&
1008 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1009 	    (!(flags & MSG_MORE) || cork->gso_size) &&
1010 	    (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1011 		csummode = CHECKSUM_PARTIAL;
1012 
1013 	if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
1014 		uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb));
1015 		if (!uarg)
1016 			return -ENOBUFS;
1017 		extra_uref = !skb_zcopy(skb);	/* only ref on new uarg */
1018 		if (rt->dst.dev->features & NETIF_F_SG &&
1019 		    csummode == CHECKSUM_PARTIAL) {
1020 			paged = true;
1021 		} else {
1022 			uarg->zerocopy = 0;
1023 			skb_zcopy_set(skb, uarg, &extra_uref);
1024 		}
1025 	}
1026 
1027 	cork->length += length;
1028 
1029 	/* So, what's going on in the loop below?
1030 	 *
1031 	 * We use calculated fragment length to generate chained skb,
1032 	 * each of segments is IP fragment ready for sending to network after
1033 	 * adding appropriate IP header.
1034 	 */
1035 
1036 	if (!skb)
1037 		goto alloc_new_skb;
1038 
1039 	while (length > 0) {
1040 		/* Check if the remaining data fits into current packet. */
1041 		copy = mtu - skb->len;
1042 		if (copy < length)
1043 			copy = maxfraglen - skb->len;
1044 		if (copy <= 0) {
1045 			char *data;
1046 			unsigned int datalen;
1047 			unsigned int fraglen;
1048 			unsigned int fraggap;
1049 			unsigned int alloclen, alloc_extra;
1050 			unsigned int pagedlen;
1051 			struct sk_buff *skb_prev;
1052 alloc_new_skb:
1053 			skb_prev = skb;
1054 			if (skb_prev)
1055 				fraggap = skb_prev->len - maxfraglen;
1056 			else
1057 				fraggap = 0;
1058 
1059 			/*
1060 			 * If remaining data exceeds the mtu,
1061 			 * we know we need more fragment(s).
1062 			 */
1063 			datalen = length + fraggap;
1064 			if (datalen > mtu - fragheaderlen)
1065 				datalen = maxfraglen - fragheaderlen;
1066 			fraglen = datalen + fragheaderlen;
1067 			pagedlen = 0;
1068 
1069 			alloc_extra = hh_len + 15;
1070 			alloc_extra += exthdrlen;
1071 
1072 			/* The last fragment gets additional space at tail.
1073 			 * Note, with MSG_MORE we overallocate on fragments,
1074 			 * because we have no idea what fragment will be
1075 			 * the last.
1076 			 */
1077 			if (datalen == length + fraggap)
1078 				alloc_extra += rt->dst.trailer_len;
1079 
1080 			if ((flags & MSG_MORE) &&
1081 			    !(rt->dst.dev->features&NETIF_F_SG))
1082 				alloclen = mtu;
1083 			else if (!paged &&
1084 				 (fraglen + alloc_extra < SKB_MAX_ALLOC ||
1085 				  !(rt->dst.dev->features & NETIF_F_SG)))
1086 				alloclen = fraglen;
1087 			else {
1088 				alloclen = min_t(int, fraglen, MAX_HEADER);
1089 				pagedlen = fraglen - alloclen;
1090 			}
1091 
1092 			alloclen += alloc_extra;
1093 
1094 			if (transhdrlen) {
1095 				skb = sock_alloc_send_skb(sk, alloclen,
1096 						(flags & MSG_DONTWAIT), &err);
1097 			} else {
1098 				skb = NULL;
1099 				if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1100 				    2 * sk->sk_sndbuf)
1101 					skb = alloc_skb(alloclen,
1102 							sk->sk_allocation);
1103 				if (unlikely(!skb))
1104 					err = -ENOBUFS;
1105 			}
1106 			if (!skb)
1107 				goto error;
1108 
1109 			/*
1110 			 *	Fill in the control structures
1111 			 */
1112 			skb->ip_summed = csummode;
1113 			skb->csum = 0;
1114 			skb_reserve(skb, hh_len);
1115 
1116 			/*
1117 			 *	Find where to start putting bytes.
1118 			 */
1119 			data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1120 			skb_set_network_header(skb, exthdrlen);
1121 			skb->transport_header = (skb->network_header +
1122 						 fragheaderlen);
1123 			data += fragheaderlen + exthdrlen;
1124 
1125 			if (fraggap) {
1126 				skb->csum = skb_copy_and_csum_bits(
1127 					skb_prev, maxfraglen,
1128 					data + transhdrlen, fraggap);
1129 				skb_prev->csum = csum_sub(skb_prev->csum,
1130 							  skb->csum);
1131 				data += fraggap;
1132 				pskb_trim_unique(skb_prev, maxfraglen);
1133 			}
1134 
1135 			copy = datalen - transhdrlen - fraggap - pagedlen;
1136 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1137 				err = -EFAULT;
1138 				kfree_skb(skb);
1139 				goto error;
1140 			}
1141 
1142 			offset += copy;
1143 			length -= copy + transhdrlen;
1144 			transhdrlen = 0;
1145 			exthdrlen = 0;
1146 			csummode = CHECKSUM_NONE;
1147 
1148 			/* only the initial fragment is time stamped */
1149 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1150 			cork->tx_flags = 0;
1151 			skb_shinfo(skb)->tskey = tskey;
1152 			tskey = 0;
1153 			skb_zcopy_set(skb, uarg, &extra_uref);
1154 
1155 			if ((flags & MSG_CONFIRM) && !skb_prev)
1156 				skb_set_dst_pending_confirm(skb, 1);
1157 
1158 			/*
1159 			 * Put the packet on the pending queue.
1160 			 */
1161 			if (!skb->destructor) {
1162 				skb->destructor = sock_wfree;
1163 				skb->sk = sk;
1164 				wmem_alloc_delta += skb->truesize;
1165 			}
1166 			__skb_queue_tail(queue, skb);
1167 			continue;
1168 		}
1169 
1170 		if (copy > length)
1171 			copy = length;
1172 
1173 		if (!(rt->dst.dev->features&NETIF_F_SG) &&
1174 		    skb_tailroom(skb) >= copy) {
1175 			unsigned int off;
1176 
1177 			off = skb->len;
1178 			if (getfrag(from, skb_put(skb, copy),
1179 					offset, copy, off, skb) < 0) {
1180 				__skb_trim(skb, off);
1181 				err = -EFAULT;
1182 				goto error;
1183 			}
1184 		} else if (!uarg || !uarg->zerocopy) {
1185 			int i = skb_shinfo(skb)->nr_frags;
1186 
1187 			err = -ENOMEM;
1188 			if (!sk_page_frag_refill(sk, pfrag))
1189 				goto error;
1190 
1191 			if (!skb_can_coalesce(skb, i, pfrag->page,
1192 					      pfrag->offset)) {
1193 				err = -EMSGSIZE;
1194 				if (i == MAX_SKB_FRAGS)
1195 					goto error;
1196 
1197 				__skb_fill_page_desc(skb, i, pfrag->page,
1198 						     pfrag->offset, 0);
1199 				skb_shinfo(skb)->nr_frags = ++i;
1200 				get_page(pfrag->page);
1201 			}
1202 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1203 			if (getfrag(from,
1204 				    page_address(pfrag->page) + pfrag->offset,
1205 				    offset, copy, skb->len, skb) < 0)
1206 				goto error_efault;
1207 
1208 			pfrag->offset += copy;
1209 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1210 			skb->len += copy;
1211 			skb->data_len += copy;
1212 			skb->truesize += copy;
1213 			wmem_alloc_delta += copy;
1214 		} else {
1215 			err = skb_zerocopy_iter_dgram(skb, from, copy);
1216 			if (err < 0)
1217 				goto error;
1218 		}
1219 		offset += copy;
1220 		length -= copy;
1221 	}
1222 
1223 	if (wmem_alloc_delta)
1224 		refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1225 	return 0;
1226 
1227 error_efault:
1228 	err = -EFAULT;
1229 error:
1230 	net_zcopy_put_abort(uarg, extra_uref);
1231 	cork->length -= length;
1232 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1233 	refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1234 	return err;
1235 }
1236 
1237 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1238 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1239 {
1240 	struct ip_options_rcu *opt;
1241 	struct rtable *rt;
1242 
1243 	rt = *rtp;
1244 	if (unlikely(!rt))
1245 		return -EFAULT;
1246 
1247 	/*
1248 	 * setup for corking.
1249 	 */
1250 	opt = ipc->opt;
1251 	if (opt) {
1252 		if (!cork->opt) {
1253 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1254 					    sk->sk_allocation);
1255 			if (unlikely(!cork->opt))
1256 				return -ENOBUFS;
1257 		}
1258 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1259 		cork->flags |= IPCORK_OPT;
1260 		cork->addr = ipc->addr;
1261 	}
1262 
1263 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1264 			 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu);
1265 
1266 	if (!inetdev_valid_mtu(cork->fragsize))
1267 		return -ENETUNREACH;
1268 
1269 	cork->gso_size = ipc->gso_size;
1270 
1271 	cork->dst = &rt->dst;
1272 	/* We stole this route, caller should not release it. */
1273 	*rtp = NULL;
1274 
1275 	cork->length = 0;
1276 	cork->ttl = ipc->ttl;
1277 	cork->tos = ipc->tos;
1278 	cork->mark = ipc->sockc.mark;
1279 	cork->priority = ipc->priority;
1280 	cork->transmit_time = ipc->sockc.transmit_time;
1281 	cork->tx_flags = 0;
1282 	sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1283 
1284 	return 0;
1285 }
1286 
1287 /*
1288  *	ip_append_data() and ip_append_page() can make one large IP datagram
1289  *	from many pieces of data. Each pieces will be holded on the socket
1290  *	until ip_push_pending_frames() is called. Each piece can be a page
1291  *	or non-page data.
1292  *
1293  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1294  *	this interface potentially.
1295  *
1296  *	LATER: length must be adjusted by pad at tail, when it is required.
1297  */
1298 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1299 		   int getfrag(void *from, char *to, int offset, int len,
1300 			       int odd, struct sk_buff *skb),
1301 		   void *from, int length, int transhdrlen,
1302 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1303 		   unsigned int flags)
1304 {
1305 	struct inet_sock *inet = inet_sk(sk);
1306 	int err;
1307 
1308 	if (flags&MSG_PROBE)
1309 		return 0;
1310 
1311 	if (skb_queue_empty(&sk->sk_write_queue)) {
1312 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1313 		if (err)
1314 			return err;
1315 	} else {
1316 		transhdrlen = 0;
1317 	}
1318 
1319 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1320 				sk_page_frag(sk), getfrag,
1321 				from, length, transhdrlen, flags);
1322 }
1323 
1324 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1325 		       int offset, size_t size, int flags)
1326 {
1327 	struct inet_sock *inet = inet_sk(sk);
1328 	struct sk_buff *skb;
1329 	struct rtable *rt;
1330 	struct ip_options *opt = NULL;
1331 	struct inet_cork *cork;
1332 	int hh_len;
1333 	int mtu;
1334 	int len;
1335 	int err;
1336 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1337 
1338 	if (inet->hdrincl)
1339 		return -EPERM;
1340 
1341 	if (flags&MSG_PROBE)
1342 		return 0;
1343 
1344 	if (skb_queue_empty(&sk->sk_write_queue))
1345 		return -EINVAL;
1346 
1347 	cork = &inet->cork.base;
1348 	rt = (struct rtable *)cork->dst;
1349 	if (cork->flags & IPCORK_OPT)
1350 		opt = cork->opt;
1351 
1352 	if (!(rt->dst.dev->features & NETIF_F_SG))
1353 		return -EOPNOTSUPP;
1354 
1355 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1356 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1357 
1358 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1359 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1360 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1361 
1362 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1363 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1364 			       mtu - (opt ? opt->optlen : 0));
1365 		return -EMSGSIZE;
1366 	}
1367 
1368 	skb = skb_peek_tail(&sk->sk_write_queue);
1369 	if (!skb)
1370 		return -EINVAL;
1371 
1372 	cork->length += size;
1373 
1374 	while (size > 0) {
1375 		/* Check if the remaining data fits into current packet. */
1376 		len = mtu - skb->len;
1377 		if (len < size)
1378 			len = maxfraglen - skb->len;
1379 
1380 		if (len <= 0) {
1381 			struct sk_buff *skb_prev;
1382 			int alloclen;
1383 
1384 			skb_prev = skb;
1385 			fraggap = skb_prev->len - maxfraglen;
1386 
1387 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1388 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1389 			if (unlikely(!skb)) {
1390 				err = -ENOBUFS;
1391 				goto error;
1392 			}
1393 
1394 			/*
1395 			 *	Fill in the control structures
1396 			 */
1397 			skb->ip_summed = CHECKSUM_NONE;
1398 			skb->csum = 0;
1399 			skb_reserve(skb, hh_len);
1400 
1401 			/*
1402 			 *	Find where to start putting bytes.
1403 			 */
1404 			skb_put(skb, fragheaderlen + fraggap);
1405 			skb_reset_network_header(skb);
1406 			skb->transport_header = (skb->network_header +
1407 						 fragheaderlen);
1408 			if (fraggap) {
1409 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1410 								   maxfraglen,
1411 						    skb_transport_header(skb),
1412 								   fraggap);
1413 				skb_prev->csum = csum_sub(skb_prev->csum,
1414 							  skb->csum);
1415 				pskb_trim_unique(skb_prev, maxfraglen);
1416 			}
1417 
1418 			/*
1419 			 * Put the packet on the pending queue.
1420 			 */
1421 			__skb_queue_tail(&sk->sk_write_queue, skb);
1422 			continue;
1423 		}
1424 
1425 		if (len > size)
1426 			len = size;
1427 
1428 		if (skb_append_pagefrags(skb, page, offset, len)) {
1429 			err = -EMSGSIZE;
1430 			goto error;
1431 		}
1432 
1433 		if (skb->ip_summed == CHECKSUM_NONE) {
1434 			__wsum csum;
1435 			csum = csum_page(page, offset, len);
1436 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1437 		}
1438 
1439 		skb->len += len;
1440 		skb->data_len += len;
1441 		skb->truesize += len;
1442 		refcount_add(len, &sk->sk_wmem_alloc);
1443 		offset += len;
1444 		size -= len;
1445 	}
1446 	return 0;
1447 
1448 error:
1449 	cork->length -= size;
1450 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1451 	return err;
1452 }
1453 
1454 static void ip_cork_release(struct inet_cork *cork)
1455 {
1456 	cork->flags &= ~IPCORK_OPT;
1457 	kfree(cork->opt);
1458 	cork->opt = NULL;
1459 	dst_release(cork->dst);
1460 	cork->dst = NULL;
1461 }
1462 
1463 /*
1464  *	Combined all pending IP fragments on the socket as one IP datagram
1465  *	and push them out.
1466  */
1467 struct sk_buff *__ip_make_skb(struct sock *sk,
1468 			      struct flowi4 *fl4,
1469 			      struct sk_buff_head *queue,
1470 			      struct inet_cork *cork)
1471 {
1472 	struct sk_buff *skb, *tmp_skb;
1473 	struct sk_buff **tail_skb;
1474 	struct inet_sock *inet = inet_sk(sk);
1475 	struct net *net = sock_net(sk);
1476 	struct ip_options *opt = NULL;
1477 	struct rtable *rt = (struct rtable *)cork->dst;
1478 	struct iphdr *iph;
1479 	__be16 df = 0;
1480 	__u8 ttl;
1481 
1482 	skb = __skb_dequeue(queue);
1483 	if (!skb)
1484 		goto out;
1485 	tail_skb = &(skb_shinfo(skb)->frag_list);
1486 
1487 	/* move skb->data to ip header from ext header */
1488 	if (skb->data < skb_network_header(skb))
1489 		__skb_pull(skb, skb_network_offset(skb));
1490 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1491 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1492 		*tail_skb = tmp_skb;
1493 		tail_skb = &(tmp_skb->next);
1494 		skb->len += tmp_skb->len;
1495 		skb->data_len += tmp_skb->len;
1496 		skb->truesize += tmp_skb->truesize;
1497 		tmp_skb->destructor = NULL;
1498 		tmp_skb->sk = NULL;
1499 	}
1500 
1501 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1502 	 * to fragment the frame generated here. No matter, what transforms
1503 	 * how transforms change size of the packet, it will come out.
1504 	 */
1505 	skb->ignore_df = ip_sk_ignore_df(sk);
1506 
1507 	/* DF bit is set when we want to see DF on outgoing frames.
1508 	 * If ignore_df is set too, we still allow to fragment this frame
1509 	 * locally. */
1510 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1511 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1512 	    (skb->len <= dst_mtu(&rt->dst) &&
1513 	     ip_dont_fragment(sk, &rt->dst)))
1514 		df = htons(IP_DF);
1515 
1516 	if (cork->flags & IPCORK_OPT)
1517 		opt = cork->opt;
1518 
1519 	if (cork->ttl != 0)
1520 		ttl = cork->ttl;
1521 	else if (rt->rt_type == RTN_MULTICAST)
1522 		ttl = inet->mc_ttl;
1523 	else
1524 		ttl = ip_select_ttl(inet, &rt->dst);
1525 
1526 	iph = ip_hdr(skb);
1527 	iph->version = 4;
1528 	iph->ihl = 5;
1529 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1530 	iph->frag_off = df;
1531 	iph->ttl = ttl;
1532 	iph->protocol = sk->sk_protocol;
1533 	ip_copy_addrs(iph, fl4);
1534 	ip_select_ident(net, skb, sk);
1535 
1536 	if (opt) {
1537 		iph->ihl += opt->optlen >> 2;
1538 		ip_options_build(skb, opt, cork->addr, rt, 0);
1539 	}
1540 
1541 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1542 	skb->mark = cork->mark;
1543 	skb->tstamp = cork->transmit_time;
1544 	/*
1545 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1546 	 * on dst refcount
1547 	 */
1548 	cork->dst = NULL;
1549 	skb_dst_set(skb, &rt->dst);
1550 
1551 	if (iph->protocol == IPPROTO_ICMP)
1552 		icmp_out_count(net, ((struct icmphdr *)
1553 			skb_transport_header(skb))->type);
1554 
1555 	ip_cork_release(cork);
1556 out:
1557 	return skb;
1558 }
1559 
1560 int ip_send_skb(struct net *net, struct sk_buff *skb)
1561 {
1562 	int err;
1563 
1564 	err = ip_local_out(net, skb->sk, skb);
1565 	if (err) {
1566 		if (err > 0)
1567 			err = net_xmit_errno(err);
1568 		if (err)
1569 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1570 	}
1571 
1572 	return err;
1573 }
1574 
1575 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1576 {
1577 	struct sk_buff *skb;
1578 
1579 	skb = ip_finish_skb(sk, fl4);
1580 	if (!skb)
1581 		return 0;
1582 
1583 	/* Netfilter gets whole the not fragmented skb. */
1584 	return ip_send_skb(sock_net(sk), skb);
1585 }
1586 
1587 /*
1588  *	Throw away all pending data on the socket.
1589  */
1590 static void __ip_flush_pending_frames(struct sock *sk,
1591 				      struct sk_buff_head *queue,
1592 				      struct inet_cork *cork)
1593 {
1594 	struct sk_buff *skb;
1595 
1596 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1597 		kfree_skb(skb);
1598 
1599 	ip_cork_release(cork);
1600 }
1601 
1602 void ip_flush_pending_frames(struct sock *sk)
1603 {
1604 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1605 }
1606 
1607 struct sk_buff *ip_make_skb(struct sock *sk,
1608 			    struct flowi4 *fl4,
1609 			    int getfrag(void *from, char *to, int offset,
1610 					int len, int odd, struct sk_buff *skb),
1611 			    void *from, int length, int transhdrlen,
1612 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1613 			    struct inet_cork *cork, unsigned int flags)
1614 {
1615 	struct sk_buff_head queue;
1616 	int err;
1617 
1618 	if (flags & MSG_PROBE)
1619 		return NULL;
1620 
1621 	__skb_queue_head_init(&queue);
1622 
1623 	cork->flags = 0;
1624 	cork->addr = 0;
1625 	cork->opt = NULL;
1626 	err = ip_setup_cork(sk, cork, ipc, rtp);
1627 	if (err)
1628 		return ERR_PTR(err);
1629 
1630 	err = __ip_append_data(sk, fl4, &queue, cork,
1631 			       &current->task_frag, getfrag,
1632 			       from, length, transhdrlen, flags);
1633 	if (err) {
1634 		__ip_flush_pending_frames(sk, &queue, cork);
1635 		return ERR_PTR(err);
1636 	}
1637 
1638 	return __ip_make_skb(sk, fl4, &queue, cork);
1639 }
1640 
1641 /*
1642  *	Fetch data from kernel space and fill in checksum if needed.
1643  */
1644 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1645 			      int len, int odd, struct sk_buff *skb)
1646 {
1647 	__wsum csum;
1648 
1649 	csum = csum_partial_copy_nocheck(dptr+offset, to, len);
1650 	skb->csum = csum_block_add(skb->csum, csum, odd);
1651 	return 0;
1652 }
1653 
1654 /*
1655  *	Generic function to send a packet as reply to another packet.
1656  *	Used to send some TCP resets/acks so far.
1657  */
1658 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1659 			   const struct ip_options *sopt,
1660 			   __be32 daddr, __be32 saddr,
1661 			   const struct ip_reply_arg *arg,
1662 			   unsigned int len, u64 transmit_time)
1663 {
1664 	struct ip_options_data replyopts;
1665 	struct ipcm_cookie ipc;
1666 	struct flowi4 fl4;
1667 	struct rtable *rt = skb_rtable(skb);
1668 	struct net *net = sock_net(sk);
1669 	struct sk_buff *nskb;
1670 	int err;
1671 	int oif;
1672 
1673 	if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1674 		return;
1675 
1676 	ipcm_init(&ipc);
1677 	ipc.addr = daddr;
1678 	ipc.sockc.transmit_time = transmit_time;
1679 
1680 	if (replyopts.opt.opt.optlen) {
1681 		ipc.opt = &replyopts.opt;
1682 
1683 		if (replyopts.opt.opt.srr)
1684 			daddr = replyopts.opt.opt.faddr;
1685 	}
1686 
1687 	oif = arg->bound_dev_if;
1688 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1689 		oif = skb->skb_iif;
1690 
1691 	flowi4_init_output(&fl4, oif,
1692 			   IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1693 			   RT_TOS(arg->tos),
1694 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1695 			   ip_reply_arg_flowi_flags(arg),
1696 			   daddr, saddr,
1697 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1698 			   arg->uid);
1699 	security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4));
1700 	rt = ip_route_output_key(net, &fl4);
1701 	if (IS_ERR(rt))
1702 		return;
1703 
1704 	inet_sk(sk)->tos = arg->tos & ~INET_ECN_MASK;
1705 
1706 	sk->sk_protocol = ip_hdr(skb)->protocol;
1707 	sk->sk_bound_dev_if = arg->bound_dev_if;
1708 	sk->sk_sndbuf = sysctl_wmem_default;
1709 	ipc.sockc.mark = fl4.flowi4_mark;
1710 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1711 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1712 	if (unlikely(err)) {
1713 		ip_flush_pending_frames(sk);
1714 		goto out;
1715 	}
1716 
1717 	nskb = skb_peek(&sk->sk_write_queue);
1718 	if (nskb) {
1719 		if (arg->csumoffset >= 0)
1720 			*((__sum16 *)skb_transport_header(nskb) +
1721 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1722 								arg->csum));
1723 		nskb->ip_summed = CHECKSUM_NONE;
1724 		ip_push_pending_frames(sk, &fl4);
1725 	}
1726 out:
1727 	ip_rt_put(rt);
1728 }
1729 
1730 void __init ip_init(void)
1731 {
1732 	ip_rt_init();
1733 	inet_initpeers();
1734 
1735 #if defined(CONFIG_IP_MULTICAST)
1736 	igmp_mc_init();
1737 #endif
1738 }
1739