1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The Internet Protocol (IP) output module. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Donald Becker, <becker@super.org> 12 * Alan Cox, <Alan.Cox@linux.org> 13 * Richard Underwood 14 * Stefan Becker, <stefanb@yello.ping.de> 15 * Jorge Cwik, <jorge@laser.satlink.net> 16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 17 * Hirokazu Takahashi, <taka@valinux.co.jp> 18 * 19 * See ip_input.c for original log 20 * 21 * Fixes: 22 * Alan Cox : Missing nonblock feature in ip_build_xmit. 23 * Mike Kilburn : htons() missing in ip_build_xmit. 24 * Bradford Johnson: Fix faulty handling of some frames when 25 * no route is found. 26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 27 * (in case if packet not accepted by 28 * output firewall rules) 29 * Mike McLagan : Routing by source 30 * Alexey Kuznetsov: use new route cache 31 * Andi Kleen: Fix broken PMTU recovery and remove 32 * some redundant tests. 33 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 34 * Andi Kleen : Replace ip_reply with ip_send_reply. 35 * Andi Kleen : Split fast and slow ip_build_xmit path 36 * for decreased register pressure on x86 37 * and more readability. 38 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 39 * silently drop skb instead of failing with -EPERM. 40 * Detlev Wengorz : Copy protocol for fragments. 41 * Hirokazu Takahashi: HW checksumming for outgoing UDP 42 * datagrams. 43 * Hirokazu Takahashi: sendfile() on UDP works now. 44 */ 45 46 #include <linux/uaccess.h> 47 #include <linux/module.h> 48 #include <linux/types.h> 49 #include <linux/kernel.h> 50 #include <linux/mm.h> 51 #include <linux/string.h> 52 #include <linux/errno.h> 53 #include <linux/highmem.h> 54 #include <linux/slab.h> 55 56 #include <linux/socket.h> 57 #include <linux/sockios.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/etherdevice.h> 62 #include <linux/proc_fs.h> 63 #include <linux/stat.h> 64 #include <linux/init.h> 65 66 #include <net/snmp.h> 67 #include <net/ip.h> 68 #include <net/protocol.h> 69 #include <net/route.h> 70 #include <net/xfrm.h> 71 #include <linux/skbuff.h> 72 #include <net/sock.h> 73 #include <net/arp.h> 74 #include <net/icmp.h> 75 #include <net/checksum.h> 76 #include <net/inetpeer.h> 77 #include <net/inet_ecn.h> 78 #include <net/lwtunnel.h> 79 #include <linux/bpf-cgroup.h> 80 #include <linux/igmp.h> 81 #include <linux/netfilter_ipv4.h> 82 #include <linux/netfilter_bridge.h> 83 #include <linux/netlink.h> 84 #include <linux/tcp.h> 85 86 static int 87 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 88 unsigned int mtu, 89 int (*output)(struct net *, struct sock *, struct sk_buff *)); 90 91 /* Generate a checksum for an outgoing IP datagram. */ 92 void ip_send_check(struct iphdr *iph) 93 { 94 iph->check = 0; 95 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 96 } 97 EXPORT_SYMBOL(ip_send_check); 98 99 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 100 { 101 struct iphdr *iph = ip_hdr(skb); 102 103 iph->tot_len = htons(skb->len); 104 ip_send_check(iph); 105 106 /* if egress device is enslaved to an L3 master device pass the 107 * skb to its handler for processing 108 */ 109 skb = l3mdev_ip_out(sk, skb); 110 if (unlikely(!skb)) 111 return 0; 112 113 skb->protocol = htons(ETH_P_IP); 114 115 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 116 net, sk, skb, NULL, skb_dst(skb)->dev, 117 dst_output); 118 } 119 120 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 121 { 122 int err; 123 124 err = __ip_local_out(net, sk, skb); 125 if (likely(err == 1)) 126 err = dst_output(net, sk, skb); 127 128 return err; 129 } 130 EXPORT_SYMBOL_GPL(ip_local_out); 131 132 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 133 { 134 int ttl = inet->uc_ttl; 135 136 if (ttl < 0) 137 ttl = ip4_dst_hoplimit(dst); 138 return ttl; 139 } 140 141 /* 142 * Add an ip header to a skbuff and send it out. 143 * 144 */ 145 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 146 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt, 147 u8 tos) 148 { 149 struct inet_sock *inet = inet_sk(sk); 150 struct rtable *rt = skb_rtable(skb); 151 struct net *net = sock_net(sk); 152 struct iphdr *iph; 153 154 /* Build the IP header. */ 155 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 156 skb_reset_network_header(skb); 157 iph = ip_hdr(skb); 158 iph->version = 4; 159 iph->ihl = 5; 160 iph->tos = tos; 161 iph->ttl = ip_select_ttl(inet, &rt->dst); 162 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 163 iph->saddr = saddr; 164 iph->protocol = sk->sk_protocol; 165 if (ip_dont_fragment(sk, &rt->dst)) { 166 iph->frag_off = htons(IP_DF); 167 iph->id = 0; 168 } else { 169 iph->frag_off = 0; 170 __ip_select_ident(net, iph, 1); 171 } 172 173 if (opt && opt->opt.optlen) { 174 iph->ihl += opt->opt.optlen>>2; 175 ip_options_build(skb, &opt->opt, daddr, rt, 0); 176 } 177 178 skb->priority = sk->sk_priority; 179 if (!skb->mark) 180 skb->mark = sk->sk_mark; 181 182 /* Send it out. */ 183 return ip_local_out(net, skb->sk, skb); 184 } 185 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 186 187 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 188 { 189 struct dst_entry *dst = skb_dst(skb); 190 struct rtable *rt = (struct rtable *)dst; 191 struct net_device *dev = dst->dev; 192 unsigned int hh_len = LL_RESERVED_SPACE(dev); 193 struct neighbour *neigh; 194 bool is_v6gw = false; 195 196 if (rt->rt_type == RTN_MULTICAST) { 197 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 198 } else if (rt->rt_type == RTN_BROADCAST) 199 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 200 201 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 202 skb = skb_expand_head(skb, hh_len); 203 if (!skb) 204 return -ENOMEM; 205 } 206 207 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 208 int res = lwtunnel_xmit(skb); 209 210 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 211 return res; 212 } 213 214 rcu_read_lock_bh(); 215 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 216 if (!IS_ERR(neigh)) { 217 int res; 218 219 sock_confirm_neigh(skb, neigh); 220 /* if crossing protocols, can not use the cached header */ 221 res = neigh_output(neigh, skb, is_v6gw); 222 rcu_read_unlock_bh(); 223 return res; 224 } 225 rcu_read_unlock_bh(); 226 227 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 228 __func__); 229 kfree_skb(skb); 230 return -EINVAL; 231 } 232 233 static int ip_finish_output_gso(struct net *net, struct sock *sk, 234 struct sk_buff *skb, unsigned int mtu) 235 { 236 struct sk_buff *segs, *nskb; 237 netdev_features_t features; 238 int ret = 0; 239 240 /* common case: seglen is <= mtu 241 */ 242 if (skb_gso_validate_network_len(skb, mtu)) 243 return ip_finish_output2(net, sk, skb); 244 245 /* Slowpath - GSO segment length exceeds the egress MTU. 246 * 247 * This can happen in several cases: 248 * - Forwarding of a TCP GRO skb, when DF flag is not set. 249 * - Forwarding of an skb that arrived on a virtualization interface 250 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 251 * stack. 252 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 253 * interface with a smaller MTU. 254 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 255 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 256 * insufficient MTU. 257 */ 258 features = netif_skb_features(skb); 259 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET); 260 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 261 if (IS_ERR_OR_NULL(segs)) { 262 kfree_skb(skb); 263 return -ENOMEM; 264 } 265 266 consume_skb(skb); 267 268 skb_list_walk_safe(segs, segs, nskb) { 269 int err; 270 271 skb_mark_not_on_list(segs); 272 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 273 274 if (err && ret == 0) 275 ret = err; 276 } 277 278 return ret; 279 } 280 281 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 282 { 283 unsigned int mtu; 284 285 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 286 /* Policy lookup after SNAT yielded a new policy */ 287 if (skb_dst(skb)->xfrm) { 288 IPCB(skb)->flags |= IPSKB_REROUTED; 289 return dst_output(net, sk, skb); 290 } 291 #endif 292 mtu = ip_skb_dst_mtu(sk, skb); 293 if (skb_is_gso(skb)) 294 return ip_finish_output_gso(net, sk, skb, mtu); 295 296 if (skb->len > mtu || IPCB(skb)->frag_max_size) 297 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 298 299 return ip_finish_output2(net, sk, skb); 300 } 301 302 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 303 { 304 int ret; 305 306 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 307 switch (ret) { 308 case NET_XMIT_SUCCESS: 309 return __ip_finish_output(net, sk, skb); 310 case NET_XMIT_CN: 311 return __ip_finish_output(net, sk, skb) ? : ret; 312 default: 313 kfree_skb(skb); 314 return ret; 315 } 316 } 317 318 static int ip_mc_finish_output(struct net *net, struct sock *sk, 319 struct sk_buff *skb) 320 { 321 struct rtable *new_rt; 322 bool do_cn = false; 323 int ret, err; 324 325 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 326 switch (ret) { 327 case NET_XMIT_CN: 328 do_cn = true; 329 fallthrough; 330 case NET_XMIT_SUCCESS: 331 break; 332 default: 333 kfree_skb(skb); 334 return ret; 335 } 336 337 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting 338 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten, 339 * see ipv4_pktinfo_prepare(). 340 */ 341 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb)); 342 if (new_rt) { 343 new_rt->rt_iif = 0; 344 skb_dst_drop(skb); 345 skb_dst_set(skb, &new_rt->dst); 346 } 347 348 err = dev_loopback_xmit(net, sk, skb); 349 return (do_cn && err) ? ret : err; 350 } 351 352 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 353 { 354 struct rtable *rt = skb_rtable(skb); 355 struct net_device *dev = rt->dst.dev; 356 357 /* 358 * If the indicated interface is up and running, send the packet. 359 */ 360 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 361 362 skb->dev = dev; 363 skb->protocol = htons(ETH_P_IP); 364 365 /* 366 * Multicasts are looped back for other local users 367 */ 368 369 if (rt->rt_flags&RTCF_MULTICAST) { 370 if (sk_mc_loop(sk) 371 #ifdef CONFIG_IP_MROUTE 372 /* Small optimization: do not loopback not local frames, 373 which returned after forwarding; they will be dropped 374 by ip_mr_input in any case. 375 Note, that local frames are looped back to be delivered 376 to local recipients. 377 378 This check is duplicated in ip_mr_input at the moment. 379 */ 380 && 381 ((rt->rt_flags & RTCF_LOCAL) || 382 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 383 #endif 384 ) { 385 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 386 if (newskb) 387 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 388 net, sk, newskb, NULL, newskb->dev, 389 ip_mc_finish_output); 390 } 391 392 /* Multicasts with ttl 0 must not go beyond the host */ 393 394 if (ip_hdr(skb)->ttl == 0) { 395 kfree_skb(skb); 396 return 0; 397 } 398 } 399 400 if (rt->rt_flags&RTCF_BROADCAST) { 401 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 402 if (newskb) 403 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 404 net, sk, newskb, NULL, newskb->dev, 405 ip_mc_finish_output); 406 } 407 408 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 409 net, sk, skb, NULL, skb->dev, 410 ip_finish_output, 411 !(IPCB(skb)->flags & IPSKB_REROUTED)); 412 } 413 414 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 415 { 416 struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev; 417 418 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 419 420 skb->dev = dev; 421 skb->protocol = htons(ETH_P_IP); 422 423 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 424 net, sk, skb, indev, dev, 425 ip_finish_output, 426 !(IPCB(skb)->flags & IPSKB_REROUTED)); 427 } 428 EXPORT_SYMBOL(ip_output); 429 430 /* 431 * copy saddr and daddr, possibly using 64bit load/stores 432 * Equivalent to : 433 * iph->saddr = fl4->saddr; 434 * iph->daddr = fl4->daddr; 435 */ 436 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 437 { 438 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 439 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 440 441 iph->saddr = fl4->saddr; 442 iph->daddr = fl4->daddr; 443 } 444 445 /* Note: skb->sk can be different from sk, in case of tunnels */ 446 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, 447 __u8 tos) 448 { 449 struct inet_sock *inet = inet_sk(sk); 450 struct net *net = sock_net(sk); 451 struct ip_options_rcu *inet_opt; 452 struct flowi4 *fl4; 453 struct rtable *rt; 454 struct iphdr *iph; 455 int res; 456 457 /* Skip all of this if the packet is already routed, 458 * f.e. by something like SCTP. 459 */ 460 rcu_read_lock(); 461 inet_opt = rcu_dereference(inet->inet_opt); 462 fl4 = &fl->u.ip4; 463 rt = skb_rtable(skb); 464 if (rt) 465 goto packet_routed; 466 467 /* Make sure we can route this packet. */ 468 rt = (struct rtable *)__sk_dst_check(sk, 0); 469 if (!rt) { 470 __be32 daddr; 471 472 /* Use correct destination address if we have options. */ 473 daddr = inet->inet_daddr; 474 if (inet_opt && inet_opt->opt.srr) 475 daddr = inet_opt->opt.faddr; 476 477 /* If this fails, retransmit mechanism of transport layer will 478 * keep trying until route appears or the connection times 479 * itself out. 480 */ 481 rt = ip_route_output_ports(net, fl4, sk, 482 daddr, inet->inet_saddr, 483 inet->inet_dport, 484 inet->inet_sport, 485 sk->sk_protocol, 486 RT_CONN_FLAGS_TOS(sk, tos), 487 sk->sk_bound_dev_if); 488 if (IS_ERR(rt)) 489 goto no_route; 490 sk_setup_caps(sk, &rt->dst); 491 } 492 skb_dst_set_noref(skb, &rt->dst); 493 494 packet_routed: 495 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 496 goto no_route; 497 498 /* OK, we know where to send it, allocate and build IP header. */ 499 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 500 skb_reset_network_header(skb); 501 iph = ip_hdr(skb); 502 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); 503 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 504 iph->frag_off = htons(IP_DF); 505 else 506 iph->frag_off = 0; 507 iph->ttl = ip_select_ttl(inet, &rt->dst); 508 iph->protocol = sk->sk_protocol; 509 ip_copy_addrs(iph, fl4); 510 511 /* Transport layer set skb->h.foo itself. */ 512 513 if (inet_opt && inet_opt->opt.optlen) { 514 iph->ihl += inet_opt->opt.optlen >> 2; 515 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 516 } 517 518 ip_select_ident_segs(net, skb, sk, 519 skb_shinfo(skb)->gso_segs ?: 1); 520 521 /* TODO : should we use skb->sk here instead of sk ? */ 522 skb->priority = sk->sk_priority; 523 skb->mark = sk->sk_mark; 524 525 res = ip_local_out(net, sk, skb); 526 rcu_read_unlock(); 527 return res; 528 529 no_route: 530 rcu_read_unlock(); 531 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 532 kfree_skb(skb); 533 return -EHOSTUNREACH; 534 } 535 EXPORT_SYMBOL(__ip_queue_xmit); 536 537 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 538 { 539 return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos); 540 } 541 EXPORT_SYMBOL(ip_queue_xmit); 542 543 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 544 { 545 to->pkt_type = from->pkt_type; 546 to->priority = from->priority; 547 to->protocol = from->protocol; 548 to->skb_iif = from->skb_iif; 549 skb_dst_drop(to); 550 skb_dst_copy(to, from); 551 to->dev = from->dev; 552 to->mark = from->mark; 553 554 skb_copy_hash(to, from); 555 556 #ifdef CONFIG_NET_SCHED 557 to->tc_index = from->tc_index; 558 #endif 559 nf_copy(to, from); 560 skb_ext_copy(to, from); 561 #if IS_ENABLED(CONFIG_IP_VS) 562 to->ipvs_property = from->ipvs_property; 563 #endif 564 skb_copy_secmark(to, from); 565 } 566 567 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 568 unsigned int mtu, 569 int (*output)(struct net *, struct sock *, struct sk_buff *)) 570 { 571 struct iphdr *iph = ip_hdr(skb); 572 573 if ((iph->frag_off & htons(IP_DF)) == 0) 574 return ip_do_fragment(net, sk, skb, output); 575 576 if (unlikely(!skb->ignore_df || 577 (IPCB(skb)->frag_max_size && 578 IPCB(skb)->frag_max_size > mtu))) { 579 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 580 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 581 htonl(mtu)); 582 kfree_skb(skb); 583 return -EMSGSIZE; 584 } 585 586 return ip_do_fragment(net, sk, skb, output); 587 } 588 589 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph, 590 unsigned int hlen, struct ip_fraglist_iter *iter) 591 { 592 unsigned int first_len = skb_pagelen(skb); 593 594 iter->frag = skb_shinfo(skb)->frag_list; 595 skb_frag_list_init(skb); 596 597 iter->offset = 0; 598 iter->iph = iph; 599 iter->hlen = hlen; 600 601 skb->data_len = first_len - skb_headlen(skb); 602 skb->len = first_len; 603 iph->tot_len = htons(first_len); 604 iph->frag_off = htons(IP_MF); 605 ip_send_check(iph); 606 } 607 EXPORT_SYMBOL(ip_fraglist_init); 608 609 static void ip_fraglist_ipcb_prepare(struct sk_buff *skb, 610 struct ip_fraglist_iter *iter) 611 { 612 struct sk_buff *to = iter->frag; 613 614 /* Copy the flags to each fragment. */ 615 IPCB(to)->flags = IPCB(skb)->flags; 616 617 if (iter->offset == 0) 618 ip_options_fragment(to); 619 } 620 621 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter) 622 { 623 unsigned int hlen = iter->hlen; 624 struct iphdr *iph = iter->iph; 625 struct sk_buff *frag; 626 627 frag = iter->frag; 628 frag->ip_summed = CHECKSUM_NONE; 629 skb_reset_transport_header(frag); 630 __skb_push(frag, hlen); 631 skb_reset_network_header(frag); 632 memcpy(skb_network_header(frag), iph, hlen); 633 iter->iph = ip_hdr(frag); 634 iph = iter->iph; 635 iph->tot_len = htons(frag->len); 636 ip_copy_metadata(frag, skb); 637 iter->offset += skb->len - hlen; 638 iph->frag_off = htons(iter->offset >> 3); 639 if (frag->next) 640 iph->frag_off |= htons(IP_MF); 641 /* Ready, complete checksum */ 642 ip_send_check(iph); 643 } 644 EXPORT_SYMBOL(ip_fraglist_prepare); 645 646 void ip_frag_init(struct sk_buff *skb, unsigned int hlen, 647 unsigned int ll_rs, unsigned int mtu, bool DF, 648 struct ip_frag_state *state) 649 { 650 struct iphdr *iph = ip_hdr(skb); 651 652 state->DF = DF; 653 state->hlen = hlen; 654 state->ll_rs = ll_rs; 655 state->mtu = mtu; 656 657 state->left = skb->len - hlen; /* Space per frame */ 658 state->ptr = hlen; /* Where to start from */ 659 660 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 661 state->not_last_frag = iph->frag_off & htons(IP_MF); 662 } 663 EXPORT_SYMBOL(ip_frag_init); 664 665 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to, 666 bool first_frag, struct ip_frag_state *state) 667 { 668 /* Copy the flags to each fragment. */ 669 IPCB(to)->flags = IPCB(from)->flags; 670 671 /* ANK: dirty, but effective trick. Upgrade options only if 672 * the segment to be fragmented was THE FIRST (otherwise, 673 * options are already fixed) and make it ONCE 674 * on the initial skb, so that all the following fragments 675 * will inherit fixed options. 676 */ 677 if (first_frag) 678 ip_options_fragment(from); 679 } 680 681 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state) 682 { 683 unsigned int len = state->left; 684 struct sk_buff *skb2; 685 struct iphdr *iph; 686 687 len = state->left; 688 /* IF: it doesn't fit, use 'mtu' - the data space left */ 689 if (len > state->mtu) 690 len = state->mtu; 691 /* IF: we are not sending up to and including the packet end 692 then align the next start on an eight byte boundary */ 693 if (len < state->left) { 694 len &= ~7; 695 } 696 697 /* Allocate buffer */ 698 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC); 699 if (!skb2) 700 return ERR_PTR(-ENOMEM); 701 702 /* 703 * Set up data on packet 704 */ 705 706 ip_copy_metadata(skb2, skb); 707 skb_reserve(skb2, state->ll_rs); 708 skb_put(skb2, len + state->hlen); 709 skb_reset_network_header(skb2); 710 skb2->transport_header = skb2->network_header + state->hlen; 711 712 /* 713 * Charge the memory for the fragment to any owner 714 * it might possess 715 */ 716 717 if (skb->sk) 718 skb_set_owner_w(skb2, skb->sk); 719 720 /* 721 * Copy the packet header into the new buffer. 722 */ 723 724 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen); 725 726 /* 727 * Copy a block of the IP datagram. 728 */ 729 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len)) 730 BUG(); 731 state->left -= len; 732 733 /* 734 * Fill in the new header fields. 735 */ 736 iph = ip_hdr(skb2); 737 iph->frag_off = htons((state->offset >> 3)); 738 if (state->DF) 739 iph->frag_off |= htons(IP_DF); 740 741 /* 742 * Added AC : If we are fragmenting a fragment that's not the 743 * last fragment then keep MF on each bit 744 */ 745 if (state->left > 0 || state->not_last_frag) 746 iph->frag_off |= htons(IP_MF); 747 state->ptr += len; 748 state->offset += len; 749 750 iph->tot_len = htons(len + state->hlen); 751 752 ip_send_check(iph); 753 754 return skb2; 755 } 756 EXPORT_SYMBOL(ip_frag_next); 757 758 /* 759 * This IP datagram is too large to be sent in one piece. Break it up into 760 * smaller pieces (each of size equal to IP header plus 761 * a block of the data of the original IP data part) that will yet fit in a 762 * single device frame, and queue such a frame for sending. 763 */ 764 765 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 766 int (*output)(struct net *, struct sock *, struct sk_buff *)) 767 { 768 struct iphdr *iph; 769 struct sk_buff *skb2; 770 struct rtable *rt = skb_rtable(skb); 771 unsigned int mtu, hlen, ll_rs; 772 struct ip_fraglist_iter iter; 773 ktime_t tstamp = skb->tstamp; 774 struct ip_frag_state state; 775 int err = 0; 776 777 /* for offloaded checksums cleanup checksum before fragmentation */ 778 if (skb->ip_summed == CHECKSUM_PARTIAL && 779 (err = skb_checksum_help(skb))) 780 goto fail; 781 782 /* 783 * Point into the IP datagram header. 784 */ 785 786 iph = ip_hdr(skb); 787 788 mtu = ip_skb_dst_mtu(sk, skb); 789 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 790 mtu = IPCB(skb)->frag_max_size; 791 792 /* 793 * Setup starting values. 794 */ 795 796 hlen = iph->ihl * 4; 797 mtu = mtu - hlen; /* Size of data space */ 798 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 799 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 800 801 /* When frag_list is given, use it. First, check its validity: 802 * some transformers could create wrong frag_list or break existing 803 * one, it is not prohibited. In this case fall back to copying. 804 * 805 * LATER: this step can be merged to real generation of fragments, 806 * we can switch to copy when see the first bad fragment. 807 */ 808 if (skb_has_frag_list(skb)) { 809 struct sk_buff *frag, *frag2; 810 unsigned int first_len = skb_pagelen(skb); 811 812 if (first_len - hlen > mtu || 813 ((first_len - hlen) & 7) || 814 ip_is_fragment(iph) || 815 skb_cloned(skb) || 816 skb_headroom(skb) < ll_rs) 817 goto slow_path; 818 819 skb_walk_frags(skb, frag) { 820 /* Correct geometry. */ 821 if (frag->len > mtu || 822 ((frag->len & 7) && frag->next) || 823 skb_headroom(frag) < hlen + ll_rs) 824 goto slow_path_clean; 825 826 /* Partially cloned skb? */ 827 if (skb_shared(frag)) 828 goto slow_path_clean; 829 830 BUG_ON(frag->sk); 831 if (skb->sk) { 832 frag->sk = skb->sk; 833 frag->destructor = sock_wfree; 834 } 835 skb->truesize -= frag->truesize; 836 } 837 838 /* Everything is OK. Generate! */ 839 ip_fraglist_init(skb, iph, hlen, &iter); 840 841 for (;;) { 842 /* Prepare header of the next frame, 843 * before previous one went down. */ 844 if (iter.frag) { 845 ip_fraglist_ipcb_prepare(skb, &iter); 846 ip_fraglist_prepare(skb, &iter); 847 } 848 849 skb->tstamp = tstamp; 850 err = output(net, sk, skb); 851 852 if (!err) 853 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 854 if (err || !iter.frag) 855 break; 856 857 skb = ip_fraglist_next(&iter); 858 } 859 860 if (err == 0) { 861 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 862 return 0; 863 } 864 865 kfree_skb_list(iter.frag); 866 867 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 868 return err; 869 870 slow_path_clean: 871 skb_walk_frags(skb, frag2) { 872 if (frag2 == frag) 873 break; 874 frag2->sk = NULL; 875 frag2->destructor = NULL; 876 skb->truesize += frag2->truesize; 877 } 878 } 879 880 slow_path: 881 /* 882 * Fragment the datagram. 883 */ 884 885 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU, 886 &state); 887 888 /* 889 * Keep copying data until we run out. 890 */ 891 892 while (state.left > 0) { 893 bool first_frag = (state.offset == 0); 894 895 skb2 = ip_frag_next(skb, &state); 896 if (IS_ERR(skb2)) { 897 err = PTR_ERR(skb2); 898 goto fail; 899 } 900 ip_frag_ipcb(skb, skb2, first_frag, &state); 901 902 /* 903 * Put this fragment into the sending queue. 904 */ 905 skb2->tstamp = tstamp; 906 err = output(net, sk, skb2); 907 if (err) 908 goto fail; 909 910 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 911 } 912 consume_skb(skb); 913 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 914 return err; 915 916 fail: 917 kfree_skb(skb); 918 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 919 return err; 920 } 921 EXPORT_SYMBOL(ip_do_fragment); 922 923 int 924 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 925 { 926 struct msghdr *msg = from; 927 928 if (skb->ip_summed == CHECKSUM_PARTIAL) { 929 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 930 return -EFAULT; 931 } else { 932 __wsum csum = 0; 933 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 934 return -EFAULT; 935 skb->csum = csum_block_add(skb->csum, csum, odd); 936 } 937 return 0; 938 } 939 EXPORT_SYMBOL(ip_generic_getfrag); 940 941 static inline __wsum 942 csum_page(struct page *page, int offset, int copy) 943 { 944 char *kaddr; 945 __wsum csum; 946 kaddr = kmap(page); 947 csum = csum_partial(kaddr + offset, copy, 0); 948 kunmap(page); 949 return csum; 950 } 951 952 static int __ip_append_data(struct sock *sk, 953 struct flowi4 *fl4, 954 struct sk_buff_head *queue, 955 struct inet_cork *cork, 956 struct page_frag *pfrag, 957 int getfrag(void *from, char *to, int offset, 958 int len, int odd, struct sk_buff *skb), 959 void *from, int length, int transhdrlen, 960 unsigned int flags) 961 { 962 struct inet_sock *inet = inet_sk(sk); 963 struct ubuf_info *uarg = NULL; 964 struct sk_buff *skb; 965 966 struct ip_options *opt = cork->opt; 967 int hh_len; 968 int exthdrlen; 969 int mtu; 970 int copy; 971 int err; 972 int offset = 0; 973 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 974 int csummode = CHECKSUM_NONE; 975 struct rtable *rt = (struct rtable *)cork->dst; 976 unsigned int wmem_alloc_delta = 0; 977 bool paged, extra_uref = false; 978 u32 tskey = 0; 979 980 skb = skb_peek_tail(queue); 981 982 exthdrlen = !skb ? rt->dst.header_len : 0; 983 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 984 paged = !!cork->gso_size; 985 986 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 987 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 988 tskey = sk->sk_tskey++; 989 990 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 991 992 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 993 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 994 maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu; 995 996 if (cork->length + length > maxnonfragsize - fragheaderlen) { 997 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 998 mtu - (opt ? opt->optlen : 0)); 999 return -EMSGSIZE; 1000 } 1001 1002 /* 1003 * transhdrlen > 0 means that this is the first fragment and we wish 1004 * it won't be fragmented in the future. 1005 */ 1006 if (transhdrlen && 1007 length + fragheaderlen <= mtu && 1008 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 1009 (!(flags & MSG_MORE) || cork->gso_size) && 1010 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) 1011 csummode = CHECKSUM_PARTIAL; 1012 1013 if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) { 1014 uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb)); 1015 if (!uarg) 1016 return -ENOBUFS; 1017 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */ 1018 if (rt->dst.dev->features & NETIF_F_SG && 1019 csummode == CHECKSUM_PARTIAL) { 1020 paged = true; 1021 } else { 1022 uarg->zerocopy = 0; 1023 skb_zcopy_set(skb, uarg, &extra_uref); 1024 } 1025 } 1026 1027 cork->length += length; 1028 1029 /* So, what's going on in the loop below? 1030 * 1031 * We use calculated fragment length to generate chained skb, 1032 * each of segments is IP fragment ready for sending to network after 1033 * adding appropriate IP header. 1034 */ 1035 1036 if (!skb) 1037 goto alloc_new_skb; 1038 1039 while (length > 0) { 1040 /* Check if the remaining data fits into current packet. */ 1041 copy = mtu - skb->len; 1042 if (copy < length) 1043 copy = maxfraglen - skb->len; 1044 if (copy <= 0) { 1045 char *data; 1046 unsigned int datalen; 1047 unsigned int fraglen; 1048 unsigned int fraggap; 1049 unsigned int alloclen, alloc_extra; 1050 unsigned int pagedlen; 1051 struct sk_buff *skb_prev; 1052 alloc_new_skb: 1053 skb_prev = skb; 1054 if (skb_prev) 1055 fraggap = skb_prev->len - maxfraglen; 1056 else 1057 fraggap = 0; 1058 1059 /* 1060 * If remaining data exceeds the mtu, 1061 * we know we need more fragment(s). 1062 */ 1063 datalen = length + fraggap; 1064 if (datalen > mtu - fragheaderlen) 1065 datalen = maxfraglen - fragheaderlen; 1066 fraglen = datalen + fragheaderlen; 1067 pagedlen = 0; 1068 1069 alloc_extra = hh_len + 15; 1070 alloc_extra += exthdrlen; 1071 1072 /* The last fragment gets additional space at tail. 1073 * Note, with MSG_MORE we overallocate on fragments, 1074 * because we have no idea what fragment will be 1075 * the last. 1076 */ 1077 if (datalen == length + fraggap) 1078 alloc_extra += rt->dst.trailer_len; 1079 1080 if ((flags & MSG_MORE) && 1081 !(rt->dst.dev->features&NETIF_F_SG)) 1082 alloclen = mtu; 1083 else if (!paged && 1084 (fraglen + alloc_extra < SKB_MAX_ALLOC || 1085 !(rt->dst.dev->features & NETIF_F_SG))) 1086 alloclen = fraglen; 1087 else { 1088 alloclen = min_t(int, fraglen, MAX_HEADER); 1089 pagedlen = fraglen - alloclen; 1090 } 1091 1092 alloclen += alloc_extra; 1093 1094 if (transhdrlen) { 1095 skb = sock_alloc_send_skb(sk, alloclen, 1096 (flags & MSG_DONTWAIT), &err); 1097 } else { 1098 skb = NULL; 1099 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 1100 2 * sk->sk_sndbuf) 1101 skb = alloc_skb(alloclen, 1102 sk->sk_allocation); 1103 if (unlikely(!skb)) 1104 err = -ENOBUFS; 1105 } 1106 if (!skb) 1107 goto error; 1108 1109 /* 1110 * Fill in the control structures 1111 */ 1112 skb->ip_summed = csummode; 1113 skb->csum = 0; 1114 skb_reserve(skb, hh_len); 1115 1116 /* 1117 * Find where to start putting bytes. 1118 */ 1119 data = skb_put(skb, fraglen + exthdrlen - pagedlen); 1120 skb_set_network_header(skb, exthdrlen); 1121 skb->transport_header = (skb->network_header + 1122 fragheaderlen); 1123 data += fragheaderlen + exthdrlen; 1124 1125 if (fraggap) { 1126 skb->csum = skb_copy_and_csum_bits( 1127 skb_prev, maxfraglen, 1128 data + transhdrlen, fraggap); 1129 skb_prev->csum = csum_sub(skb_prev->csum, 1130 skb->csum); 1131 data += fraggap; 1132 pskb_trim_unique(skb_prev, maxfraglen); 1133 } 1134 1135 copy = datalen - transhdrlen - fraggap - pagedlen; 1136 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1137 err = -EFAULT; 1138 kfree_skb(skb); 1139 goto error; 1140 } 1141 1142 offset += copy; 1143 length -= copy + transhdrlen; 1144 transhdrlen = 0; 1145 exthdrlen = 0; 1146 csummode = CHECKSUM_NONE; 1147 1148 /* only the initial fragment is time stamped */ 1149 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1150 cork->tx_flags = 0; 1151 skb_shinfo(skb)->tskey = tskey; 1152 tskey = 0; 1153 skb_zcopy_set(skb, uarg, &extra_uref); 1154 1155 if ((flags & MSG_CONFIRM) && !skb_prev) 1156 skb_set_dst_pending_confirm(skb, 1); 1157 1158 /* 1159 * Put the packet on the pending queue. 1160 */ 1161 if (!skb->destructor) { 1162 skb->destructor = sock_wfree; 1163 skb->sk = sk; 1164 wmem_alloc_delta += skb->truesize; 1165 } 1166 __skb_queue_tail(queue, skb); 1167 continue; 1168 } 1169 1170 if (copy > length) 1171 copy = length; 1172 1173 if (!(rt->dst.dev->features&NETIF_F_SG) && 1174 skb_tailroom(skb) >= copy) { 1175 unsigned int off; 1176 1177 off = skb->len; 1178 if (getfrag(from, skb_put(skb, copy), 1179 offset, copy, off, skb) < 0) { 1180 __skb_trim(skb, off); 1181 err = -EFAULT; 1182 goto error; 1183 } 1184 } else if (!uarg || !uarg->zerocopy) { 1185 int i = skb_shinfo(skb)->nr_frags; 1186 1187 err = -ENOMEM; 1188 if (!sk_page_frag_refill(sk, pfrag)) 1189 goto error; 1190 1191 if (!skb_can_coalesce(skb, i, pfrag->page, 1192 pfrag->offset)) { 1193 err = -EMSGSIZE; 1194 if (i == MAX_SKB_FRAGS) 1195 goto error; 1196 1197 __skb_fill_page_desc(skb, i, pfrag->page, 1198 pfrag->offset, 0); 1199 skb_shinfo(skb)->nr_frags = ++i; 1200 get_page(pfrag->page); 1201 } 1202 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1203 if (getfrag(from, 1204 page_address(pfrag->page) + pfrag->offset, 1205 offset, copy, skb->len, skb) < 0) 1206 goto error_efault; 1207 1208 pfrag->offset += copy; 1209 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1210 skb->len += copy; 1211 skb->data_len += copy; 1212 skb->truesize += copy; 1213 wmem_alloc_delta += copy; 1214 } else { 1215 err = skb_zerocopy_iter_dgram(skb, from, copy); 1216 if (err < 0) 1217 goto error; 1218 } 1219 offset += copy; 1220 length -= copy; 1221 } 1222 1223 if (wmem_alloc_delta) 1224 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1225 return 0; 1226 1227 error_efault: 1228 err = -EFAULT; 1229 error: 1230 net_zcopy_put_abort(uarg, extra_uref); 1231 cork->length -= length; 1232 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1233 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1234 return err; 1235 } 1236 1237 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1238 struct ipcm_cookie *ipc, struct rtable **rtp) 1239 { 1240 struct ip_options_rcu *opt; 1241 struct rtable *rt; 1242 1243 rt = *rtp; 1244 if (unlikely(!rt)) 1245 return -EFAULT; 1246 1247 /* 1248 * setup for corking. 1249 */ 1250 opt = ipc->opt; 1251 if (opt) { 1252 if (!cork->opt) { 1253 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1254 sk->sk_allocation); 1255 if (unlikely(!cork->opt)) 1256 return -ENOBUFS; 1257 } 1258 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1259 cork->flags |= IPCORK_OPT; 1260 cork->addr = ipc->addr; 1261 } 1262 1263 cork->fragsize = ip_sk_use_pmtu(sk) ? 1264 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu); 1265 1266 if (!inetdev_valid_mtu(cork->fragsize)) 1267 return -ENETUNREACH; 1268 1269 cork->gso_size = ipc->gso_size; 1270 1271 cork->dst = &rt->dst; 1272 /* We stole this route, caller should not release it. */ 1273 *rtp = NULL; 1274 1275 cork->length = 0; 1276 cork->ttl = ipc->ttl; 1277 cork->tos = ipc->tos; 1278 cork->mark = ipc->sockc.mark; 1279 cork->priority = ipc->priority; 1280 cork->transmit_time = ipc->sockc.transmit_time; 1281 cork->tx_flags = 0; 1282 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags); 1283 1284 return 0; 1285 } 1286 1287 /* 1288 * ip_append_data() and ip_append_page() can make one large IP datagram 1289 * from many pieces of data. Each pieces will be holded on the socket 1290 * until ip_push_pending_frames() is called. Each piece can be a page 1291 * or non-page data. 1292 * 1293 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1294 * this interface potentially. 1295 * 1296 * LATER: length must be adjusted by pad at tail, when it is required. 1297 */ 1298 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1299 int getfrag(void *from, char *to, int offset, int len, 1300 int odd, struct sk_buff *skb), 1301 void *from, int length, int transhdrlen, 1302 struct ipcm_cookie *ipc, struct rtable **rtp, 1303 unsigned int flags) 1304 { 1305 struct inet_sock *inet = inet_sk(sk); 1306 int err; 1307 1308 if (flags&MSG_PROBE) 1309 return 0; 1310 1311 if (skb_queue_empty(&sk->sk_write_queue)) { 1312 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1313 if (err) 1314 return err; 1315 } else { 1316 transhdrlen = 0; 1317 } 1318 1319 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1320 sk_page_frag(sk), getfrag, 1321 from, length, transhdrlen, flags); 1322 } 1323 1324 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1325 int offset, size_t size, int flags) 1326 { 1327 struct inet_sock *inet = inet_sk(sk); 1328 struct sk_buff *skb; 1329 struct rtable *rt; 1330 struct ip_options *opt = NULL; 1331 struct inet_cork *cork; 1332 int hh_len; 1333 int mtu; 1334 int len; 1335 int err; 1336 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1337 1338 if (inet->hdrincl) 1339 return -EPERM; 1340 1341 if (flags&MSG_PROBE) 1342 return 0; 1343 1344 if (skb_queue_empty(&sk->sk_write_queue)) 1345 return -EINVAL; 1346 1347 cork = &inet->cork.base; 1348 rt = (struct rtable *)cork->dst; 1349 if (cork->flags & IPCORK_OPT) 1350 opt = cork->opt; 1351 1352 if (!(rt->dst.dev->features & NETIF_F_SG)) 1353 return -EOPNOTSUPP; 1354 1355 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1356 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 1357 1358 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1359 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1360 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1361 1362 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1363 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1364 mtu - (opt ? opt->optlen : 0)); 1365 return -EMSGSIZE; 1366 } 1367 1368 skb = skb_peek_tail(&sk->sk_write_queue); 1369 if (!skb) 1370 return -EINVAL; 1371 1372 cork->length += size; 1373 1374 while (size > 0) { 1375 /* Check if the remaining data fits into current packet. */ 1376 len = mtu - skb->len; 1377 if (len < size) 1378 len = maxfraglen - skb->len; 1379 1380 if (len <= 0) { 1381 struct sk_buff *skb_prev; 1382 int alloclen; 1383 1384 skb_prev = skb; 1385 fraggap = skb_prev->len - maxfraglen; 1386 1387 alloclen = fragheaderlen + hh_len + fraggap + 15; 1388 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1389 if (unlikely(!skb)) { 1390 err = -ENOBUFS; 1391 goto error; 1392 } 1393 1394 /* 1395 * Fill in the control structures 1396 */ 1397 skb->ip_summed = CHECKSUM_NONE; 1398 skb->csum = 0; 1399 skb_reserve(skb, hh_len); 1400 1401 /* 1402 * Find where to start putting bytes. 1403 */ 1404 skb_put(skb, fragheaderlen + fraggap); 1405 skb_reset_network_header(skb); 1406 skb->transport_header = (skb->network_header + 1407 fragheaderlen); 1408 if (fraggap) { 1409 skb->csum = skb_copy_and_csum_bits(skb_prev, 1410 maxfraglen, 1411 skb_transport_header(skb), 1412 fraggap); 1413 skb_prev->csum = csum_sub(skb_prev->csum, 1414 skb->csum); 1415 pskb_trim_unique(skb_prev, maxfraglen); 1416 } 1417 1418 /* 1419 * Put the packet on the pending queue. 1420 */ 1421 __skb_queue_tail(&sk->sk_write_queue, skb); 1422 continue; 1423 } 1424 1425 if (len > size) 1426 len = size; 1427 1428 if (skb_append_pagefrags(skb, page, offset, len)) { 1429 err = -EMSGSIZE; 1430 goto error; 1431 } 1432 1433 if (skb->ip_summed == CHECKSUM_NONE) { 1434 __wsum csum; 1435 csum = csum_page(page, offset, len); 1436 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1437 } 1438 1439 skb->len += len; 1440 skb->data_len += len; 1441 skb->truesize += len; 1442 refcount_add(len, &sk->sk_wmem_alloc); 1443 offset += len; 1444 size -= len; 1445 } 1446 return 0; 1447 1448 error: 1449 cork->length -= size; 1450 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1451 return err; 1452 } 1453 1454 static void ip_cork_release(struct inet_cork *cork) 1455 { 1456 cork->flags &= ~IPCORK_OPT; 1457 kfree(cork->opt); 1458 cork->opt = NULL; 1459 dst_release(cork->dst); 1460 cork->dst = NULL; 1461 } 1462 1463 /* 1464 * Combined all pending IP fragments on the socket as one IP datagram 1465 * and push them out. 1466 */ 1467 struct sk_buff *__ip_make_skb(struct sock *sk, 1468 struct flowi4 *fl4, 1469 struct sk_buff_head *queue, 1470 struct inet_cork *cork) 1471 { 1472 struct sk_buff *skb, *tmp_skb; 1473 struct sk_buff **tail_skb; 1474 struct inet_sock *inet = inet_sk(sk); 1475 struct net *net = sock_net(sk); 1476 struct ip_options *opt = NULL; 1477 struct rtable *rt = (struct rtable *)cork->dst; 1478 struct iphdr *iph; 1479 __be16 df = 0; 1480 __u8 ttl; 1481 1482 skb = __skb_dequeue(queue); 1483 if (!skb) 1484 goto out; 1485 tail_skb = &(skb_shinfo(skb)->frag_list); 1486 1487 /* move skb->data to ip header from ext header */ 1488 if (skb->data < skb_network_header(skb)) 1489 __skb_pull(skb, skb_network_offset(skb)); 1490 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1491 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1492 *tail_skb = tmp_skb; 1493 tail_skb = &(tmp_skb->next); 1494 skb->len += tmp_skb->len; 1495 skb->data_len += tmp_skb->len; 1496 skb->truesize += tmp_skb->truesize; 1497 tmp_skb->destructor = NULL; 1498 tmp_skb->sk = NULL; 1499 } 1500 1501 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1502 * to fragment the frame generated here. No matter, what transforms 1503 * how transforms change size of the packet, it will come out. 1504 */ 1505 skb->ignore_df = ip_sk_ignore_df(sk); 1506 1507 /* DF bit is set when we want to see DF on outgoing frames. 1508 * If ignore_df is set too, we still allow to fragment this frame 1509 * locally. */ 1510 if (inet->pmtudisc == IP_PMTUDISC_DO || 1511 inet->pmtudisc == IP_PMTUDISC_PROBE || 1512 (skb->len <= dst_mtu(&rt->dst) && 1513 ip_dont_fragment(sk, &rt->dst))) 1514 df = htons(IP_DF); 1515 1516 if (cork->flags & IPCORK_OPT) 1517 opt = cork->opt; 1518 1519 if (cork->ttl != 0) 1520 ttl = cork->ttl; 1521 else if (rt->rt_type == RTN_MULTICAST) 1522 ttl = inet->mc_ttl; 1523 else 1524 ttl = ip_select_ttl(inet, &rt->dst); 1525 1526 iph = ip_hdr(skb); 1527 iph->version = 4; 1528 iph->ihl = 5; 1529 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1530 iph->frag_off = df; 1531 iph->ttl = ttl; 1532 iph->protocol = sk->sk_protocol; 1533 ip_copy_addrs(iph, fl4); 1534 ip_select_ident(net, skb, sk); 1535 1536 if (opt) { 1537 iph->ihl += opt->optlen >> 2; 1538 ip_options_build(skb, opt, cork->addr, rt, 0); 1539 } 1540 1541 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1542 skb->mark = cork->mark; 1543 skb->tstamp = cork->transmit_time; 1544 /* 1545 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1546 * on dst refcount 1547 */ 1548 cork->dst = NULL; 1549 skb_dst_set(skb, &rt->dst); 1550 1551 if (iph->protocol == IPPROTO_ICMP) 1552 icmp_out_count(net, ((struct icmphdr *) 1553 skb_transport_header(skb))->type); 1554 1555 ip_cork_release(cork); 1556 out: 1557 return skb; 1558 } 1559 1560 int ip_send_skb(struct net *net, struct sk_buff *skb) 1561 { 1562 int err; 1563 1564 err = ip_local_out(net, skb->sk, skb); 1565 if (err) { 1566 if (err > 0) 1567 err = net_xmit_errno(err); 1568 if (err) 1569 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1570 } 1571 1572 return err; 1573 } 1574 1575 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1576 { 1577 struct sk_buff *skb; 1578 1579 skb = ip_finish_skb(sk, fl4); 1580 if (!skb) 1581 return 0; 1582 1583 /* Netfilter gets whole the not fragmented skb. */ 1584 return ip_send_skb(sock_net(sk), skb); 1585 } 1586 1587 /* 1588 * Throw away all pending data on the socket. 1589 */ 1590 static void __ip_flush_pending_frames(struct sock *sk, 1591 struct sk_buff_head *queue, 1592 struct inet_cork *cork) 1593 { 1594 struct sk_buff *skb; 1595 1596 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1597 kfree_skb(skb); 1598 1599 ip_cork_release(cork); 1600 } 1601 1602 void ip_flush_pending_frames(struct sock *sk) 1603 { 1604 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1605 } 1606 1607 struct sk_buff *ip_make_skb(struct sock *sk, 1608 struct flowi4 *fl4, 1609 int getfrag(void *from, char *to, int offset, 1610 int len, int odd, struct sk_buff *skb), 1611 void *from, int length, int transhdrlen, 1612 struct ipcm_cookie *ipc, struct rtable **rtp, 1613 struct inet_cork *cork, unsigned int flags) 1614 { 1615 struct sk_buff_head queue; 1616 int err; 1617 1618 if (flags & MSG_PROBE) 1619 return NULL; 1620 1621 __skb_queue_head_init(&queue); 1622 1623 cork->flags = 0; 1624 cork->addr = 0; 1625 cork->opt = NULL; 1626 err = ip_setup_cork(sk, cork, ipc, rtp); 1627 if (err) 1628 return ERR_PTR(err); 1629 1630 err = __ip_append_data(sk, fl4, &queue, cork, 1631 ¤t->task_frag, getfrag, 1632 from, length, transhdrlen, flags); 1633 if (err) { 1634 __ip_flush_pending_frames(sk, &queue, cork); 1635 return ERR_PTR(err); 1636 } 1637 1638 return __ip_make_skb(sk, fl4, &queue, cork); 1639 } 1640 1641 /* 1642 * Fetch data from kernel space and fill in checksum if needed. 1643 */ 1644 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1645 int len, int odd, struct sk_buff *skb) 1646 { 1647 __wsum csum; 1648 1649 csum = csum_partial_copy_nocheck(dptr+offset, to, len); 1650 skb->csum = csum_block_add(skb->csum, csum, odd); 1651 return 0; 1652 } 1653 1654 /* 1655 * Generic function to send a packet as reply to another packet. 1656 * Used to send some TCP resets/acks so far. 1657 */ 1658 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1659 const struct ip_options *sopt, 1660 __be32 daddr, __be32 saddr, 1661 const struct ip_reply_arg *arg, 1662 unsigned int len, u64 transmit_time) 1663 { 1664 struct ip_options_data replyopts; 1665 struct ipcm_cookie ipc; 1666 struct flowi4 fl4; 1667 struct rtable *rt = skb_rtable(skb); 1668 struct net *net = sock_net(sk); 1669 struct sk_buff *nskb; 1670 int err; 1671 int oif; 1672 1673 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) 1674 return; 1675 1676 ipcm_init(&ipc); 1677 ipc.addr = daddr; 1678 ipc.sockc.transmit_time = transmit_time; 1679 1680 if (replyopts.opt.opt.optlen) { 1681 ipc.opt = &replyopts.opt; 1682 1683 if (replyopts.opt.opt.srr) 1684 daddr = replyopts.opt.opt.faddr; 1685 } 1686 1687 oif = arg->bound_dev_if; 1688 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1689 oif = skb->skb_iif; 1690 1691 flowi4_init_output(&fl4, oif, 1692 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, 1693 RT_TOS(arg->tos), 1694 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1695 ip_reply_arg_flowi_flags(arg), 1696 daddr, saddr, 1697 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1698 arg->uid); 1699 security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4)); 1700 rt = ip_route_output_key(net, &fl4); 1701 if (IS_ERR(rt)) 1702 return; 1703 1704 inet_sk(sk)->tos = arg->tos & ~INET_ECN_MASK; 1705 1706 sk->sk_protocol = ip_hdr(skb)->protocol; 1707 sk->sk_bound_dev_if = arg->bound_dev_if; 1708 sk->sk_sndbuf = sysctl_wmem_default; 1709 ipc.sockc.mark = fl4.flowi4_mark; 1710 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1711 len, 0, &ipc, &rt, MSG_DONTWAIT); 1712 if (unlikely(err)) { 1713 ip_flush_pending_frames(sk); 1714 goto out; 1715 } 1716 1717 nskb = skb_peek(&sk->sk_write_queue); 1718 if (nskb) { 1719 if (arg->csumoffset >= 0) 1720 *((__sum16 *)skb_transport_header(nskb) + 1721 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1722 arg->csum)); 1723 nskb->ip_summed = CHECKSUM_NONE; 1724 ip_push_pending_frames(sk, &fl4); 1725 } 1726 out: 1727 ip_rt_put(rt); 1728 } 1729 1730 void __init ip_init(void) 1731 { 1732 ip_rt_init(); 1733 inet_initpeers(); 1734 1735 #if defined(CONFIG_IP_MULTICAST) 1736 igmp_mc_init(); 1737 #endif 1738 } 1739