xref: /linux/net/ipv4/ip_output.c (revision 8b4a40809e5330c9da5d20107d693d92d73b31dc)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Version:	$Id: ip_output.c,v 1.100 2002/02/01 22:01:03 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Donald Becker, <becker@super.org>
13  *		Alan Cox, <Alan.Cox@linux.org>
14  *		Richard Underwood
15  *		Stefan Becker, <stefanb@yello.ping.de>
16  *		Jorge Cwik, <jorge@laser.satlink.net>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Hirokazu Takahashi, <taka@valinux.co.jp>
19  *
20  *	See ip_input.c for original log
21  *
22  *	Fixes:
23  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
24  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
25  *		Bradford Johnson:	Fix faulty handling of some frames when
26  *					no route is found.
27  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
28  *					(in case if packet not accepted by
29  *					output firewall rules)
30  *		Mike McLagan	:	Routing by source
31  *		Alexey Kuznetsov:	use new route cache
32  *		Andi Kleen:		Fix broken PMTU recovery and remove
33  *					some redundant tests.
34  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
35  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
36  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
37  *					for decreased register pressure on x86
38  *					and more readibility.
39  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
40  *					silently drop skb instead of failing with -EPERM.
41  *		Detlev Wengorz	:	Copy protocol for fragments.
42  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
43  *					datagrams.
44  *		Hirokazu Takahashi:	sendfile() on UDP works now.
45  */
46 
47 #include <asm/uaccess.h>
48 #include <asm/system.h>
49 #include <linux/module.h>
50 #include <linux/types.h>
51 #include <linux/kernel.h>
52 #include <linux/mm.h>
53 #include <linux/string.h>
54 #include <linux/errno.h>
55 #include <linux/highmem.h>
56 
57 #include <linux/socket.h>
58 #include <linux/sockios.h>
59 #include <linux/in.h>
60 #include <linux/inet.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/stat.h>
65 #include <linux/init.h>
66 
67 #include <net/snmp.h>
68 #include <net/ip.h>
69 #include <net/protocol.h>
70 #include <net/route.h>
71 #include <net/xfrm.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <net/arp.h>
75 #include <net/icmp.h>
76 #include <net/checksum.h>
77 #include <net/inetpeer.h>
78 #include <net/checksum.h>
79 #include <linux/igmp.h>
80 #include <linux/netfilter_ipv4.h>
81 #include <linux/netfilter_bridge.h>
82 #include <linux/mroute.h>
83 #include <linux/netlink.h>
84 #include <linux/tcp.h>
85 
86 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
87 
88 /* Generate a checksum for an outgoing IP datagram. */
89 __inline__ void ip_send_check(struct iphdr *iph)
90 {
91 	iph->check = 0;
92 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
93 }
94 
95 /* dev_loopback_xmit for use with netfilter. */
96 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
97 {
98 	skb_reset_mac_header(newskb);
99 	__skb_pull(newskb, skb_network_offset(newskb));
100 	newskb->pkt_type = PACKET_LOOPBACK;
101 	newskb->ip_summed = CHECKSUM_UNNECESSARY;
102 	BUG_TRAP(newskb->dst);
103 	netif_rx(newskb);
104 	return 0;
105 }
106 
107 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
108 {
109 	int ttl = inet->uc_ttl;
110 
111 	if (ttl < 0)
112 		ttl = dst_metric(dst, RTAX_HOPLIMIT);
113 	return ttl;
114 }
115 
116 /*
117  *		Add an ip header to a skbuff and send it out.
118  *
119  */
120 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
121 			  __be32 saddr, __be32 daddr, struct ip_options *opt)
122 {
123 	struct inet_sock *inet = inet_sk(sk);
124 	struct rtable *rt = (struct rtable *)skb->dst;
125 	struct iphdr *iph;
126 
127 	/* Build the IP header. */
128 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
129 	skb_reset_network_header(skb);
130 	iph = ip_hdr(skb);
131 	iph->version  = 4;
132 	iph->ihl      = 5;
133 	iph->tos      = inet->tos;
134 	if (ip_dont_fragment(sk, &rt->u.dst))
135 		iph->frag_off = htons(IP_DF);
136 	else
137 		iph->frag_off = 0;
138 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
139 	iph->daddr    = rt->rt_dst;
140 	iph->saddr    = rt->rt_src;
141 	iph->protocol = sk->sk_protocol;
142 	iph->tot_len  = htons(skb->len);
143 	ip_select_ident(iph, &rt->u.dst, sk);
144 
145 	if (opt && opt->optlen) {
146 		iph->ihl += opt->optlen>>2;
147 		ip_options_build(skb, opt, daddr, rt, 0);
148 	}
149 	ip_send_check(iph);
150 
151 	skb->priority = sk->sk_priority;
152 
153 	/* Send it out. */
154 	return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
155 		       dst_output);
156 }
157 
158 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
159 
160 static inline int ip_finish_output2(struct sk_buff *skb)
161 {
162 	struct dst_entry *dst = skb->dst;
163 	struct rtable *rt = (struct rtable *)dst;
164 	struct net_device *dev = dst->dev;
165 	int hh_len = LL_RESERVED_SPACE(dev);
166 
167 	if (rt->rt_type == RTN_MULTICAST)
168 		IP_INC_STATS(IPSTATS_MIB_OUTMCASTPKTS);
169 	else if (rt->rt_type == RTN_BROADCAST)
170 		IP_INC_STATS(IPSTATS_MIB_OUTBCASTPKTS);
171 
172 	/* Be paranoid, rather than too clever. */
173 	if (unlikely(skb_headroom(skb) < hh_len && dev->hard_header)) {
174 		struct sk_buff *skb2;
175 
176 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
177 		if (skb2 == NULL) {
178 			kfree_skb(skb);
179 			return -ENOMEM;
180 		}
181 		if (skb->sk)
182 			skb_set_owner_w(skb2, skb->sk);
183 		kfree_skb(skb);
184 		skb = skb2;
185 	}
186 
187 	if (dst->hh)
188 		return neigh_hh_output(dst->hh, skb);
189 	else if (dst->neighbour)
190 		return dst->neighbour->output(skb);
191 
192 	if (net_ratelimit())
193 		printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
194 	kfree_skb(skb);
195 	return -EINVAL;
196 }
197 
198 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
199 {
200 	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
201 
202 	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
203 	       skb->dst->dev->mtu : dst_mtu(skb->dst);
204 }
205 
206 static inline int ip_finish_output(struct sk_buff *skb)
207 {
208 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
209 	/* Policy lookup after SNAT yielded a new policy */
210 	if (skb->dst->xfrm != NULL) {
211 		IPCB(skb)->flags |= IPSKB_REROUTED;
212 		return dst_output(skb);
213 	}
214 #endif
215 	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
216 		return ip_fragment(skb, ip_finish_output2);
217 	else
218 		return ip_finish_output2(skb);
219 }
220 
221 int ip_mc_output(struct sk_buff *skb)
222 {
223 	struct sock *sk = skb->sk;
224 	struct rtable *rt = (struct rtable*)skb->dst;
225 	struct net_device *dev = rt->u.dst.dev;
226 
227 	/*
228 	 *	If the indicated interface is up and running, send the packet.
229 	 */
230 	IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
231 
232 	skb->dev = dev;
233 	skb->protocol = htons(ETH_P_IP);
234 
235 	/*
236 	 *	Multicasts are looped back for other local users
237 	 */
238 
239 	if (rt->rt_flags&RTCF_MULTICAST) {
240 		if ((!sk || inet_sk(sk)->mc_loop)
241 #ifdef CONFIG_IP_MROUTE
242 		/* Small optimization: do not loopback not local frames,
243 		   which returned after forwarding; they will be  dropped
244 		   by ip_mr_input in any case.
245 		   Note, that local frames are looped back to be delivered
246 		   to local recipients.
247 
248 		   This check is duplicated in ip_mr_input at the moment.
249 		 */
250 		    && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
251 #endif
252 		) {
253 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
254 			if (newskb)
255 				NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
256 					newskb->dev,
257 					ip_dev_loopback_xmit);
258 		}
259 
260 		/* Multicasts with ttl 0 must not go beyond the host */
261 
262 		if (ip_hdr(skb)->ttl == 0) {
263 			kfree_skb(skb);
264 			return 0;
265 		}
266 	}
267 
268 	if (rt->rt_flags&RTCF_BROADCAST) {
269 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
270 		if (newskb)
271 			NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
272 				newskb->dev, ip_dev_loopback_xmit);
273 	}
274 
275 	return NF_HOOK_COND(PF_INET, NF_IP_POST_ROUTING, skb, NULL, skb->dev,
276 			    ip_finish_output,
277 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
278 }
279 
280 int ip_output(struct sk_buff *skb)
281 {
282 	struct net_device *dev = skb->dst->dev;
283 
284 	IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
285 
286 	skb->dev = dev;
287 	skb->protocol = htons(ETH_P_IP);
288 
289 	return NF_HOOK_COND(PF_INET, NF_IP_POST_ROUTING, skb, NULL, dev,
290 			    ip_finish_output,
291 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
292 }
293 
294 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
295 {
296 	struct sock *sk = skb->sk;
297 	struct inet_sock *inet = inet_sk(sk);
298 	struct ip_options *opt = inet->opt;
299 	struct rtable *rt;
300 	struct iphdr *iph;
301 
302 	/* Skip all of this if the packet is already routed,
303 	 * f.e. by something like SCTP.
304 	 */
305 	rt = (struct rtable *) skb->dst;
306 	if (rt != NULL)
307 		goto packet_routed;
308 
309 	/* Make sure we can route this packet. */
310 	rt = (struct rtable *)__sk_dst_check(sk, 0);
311 	if (rt == NULL) {
312 		__be32 daddr;
313 
314 		/* Use correct destination address if we have options. */
315 		daddr = inet->daddr;
316 		if(opt && opt->srr)
317 			daddr = opt->faddr;
318 
319 		{
320 			struct flowi fl = { .oif = sk->sk_bound_dev_if,
321 					    .nl_u = { .ip4_u =
322 						      { .daddr = daddr,
323 							.saddr = inet->saddr,
324 							.tos = RT_CONN_FLAGS(sk) } },
325 					    .proto = sk->sk_protocol,
326 					    .uli_u = { .ports =
327 						       { .sport = inet->sport,
328 							 .dport = inet->dport } } };
329 
330 			/* If this fails, retransmit mechanism of transport layer will
331 			 * keep trying until route appears or the connection times
332 			 * itself out.
333 			 */
334 			security_sk_classify_flow(sk, &fl);
335 			if (ip_route_output_flow(&rt, &fl, sk, 0))
336 				goto no_route;
337 		}
338 		sk_setup_caps(sk, &rt->u.dst);
339 	}
340 	skb->dst = dst_clone(&rt->u.dst);
341 
342 packet_routed:
343 	if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
344 		goto no_route;
345 
346 	/* OK, we know where to send it, allocate and build IP header. */
347 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
348 	skb_reset_network_header(skb);
349 	iph = ip_hdr(skb);
350 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
351 	iph->tot_len = htons(skb->len);
352 	if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
353 		iph->frag_off = htons(IP_DF);
354 	else
355 		iph->frag_off = 0;
356 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
357 	iph->protocol = sk->sk_protocol;
358 	iph->saddr    = rt->rt_src;
359 	iph->daddr    = rt->rt_dst;
360 	/* Transport layer set skb->h.foo itself. */
361 
362 	if (opt && opt->optlen) {
363 		iph->ihl += opt->optlen >> 2;
364 		ip_options_build(skb, opt, inet->daddr, rt, 0);
365 	}
366 
367 	ip_select_ident_more(iph, &rt->u.dst, sk,
368 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
369 
370 	/* Add an IP checksum. */
371 	ip_send_check(iph);
372 
373 	skb->priority = sk->sk_priority;
374 
375 	return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
376 		       dst_output);
377 
378 no_route:
379 	IP_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
380 	kfree_skb(skb);
381 	return -EHOSTUNREACH;
382 }
383 
384 
385 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
386 {
387 	to->pkt_type = from->pkt_type;
388 	to->priority = from->priority;
389 	to->protocol = from->protocol;
390 	dst_release(to->dst);
391 	to->dst = dst_clone(from->dst);
392 	to->dev = from->dev;
393 	to->mark = from->mark;
394 
395 	/* Copy the flags to each fragment. */
396 	IPCB(to)->flags = IPCB(from)->flags;
397 
398 #ifdef CONFIG_NET_SCHED
399 	to->tc_index = from->tc_index;
400 #endif
401 	nf_copy(to, from);
402 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
403     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
404 	to->nf_trace = from->nf_trace;
405 #endif
406 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
407 	to->ipvs_property = from->ipvs_property;
408 #endif
409 	skb_copy_secmark(to, from);
410 }
411 
412 /*
413  *	This IP datagram is too large to be sent in one piece.  Break it up into
414  *	smaller pieces (each of size equal to IP header plus
415  *	a block of the data of the original IP data part) that will yet fit in a
416  *	single device frame, and queue such a frame for sending.
417  */
418 
419 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))
420 {
421 	struct iphdr *iph;
422 	int raw = 0;
423 	int ptr;
424 	struct net_device *dev;
425 	struct sk_buff *skb2;
426 	unsigned int mtu, hlen, left, len, ll_rs, pad;
427 	int offset;
428 	__be16 not_last_frag;
429 	struct rtable *rt = (struct rtable*)skb->dst;
430 	int err = 0;
431 
432 	dev = rt->u.dst.dev;
433 
434 	/*
435 	 *	Point into the IP datagram header.
436 	 */
437 
438 	iph = ip_hdr(skb);
439 
440 	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
441 		IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
442 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
443 			  htonl(ip_skb_dst_mtu(skb)));
444 		kfree_skb(skb);
445 		return -EMSGSIZE;
446 	}
447 
448 	/*
449 	 *	Setup starting values.
450 	 */
451 
452 	hlen = iph->ihl * 4;
453 	mtu = dst_mtu(&rt->u.dst) - hlen;	/* Size of data space */
454 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
455 
456 	/* When frag_list is given, use it. First, check its validity:
457 	 * some transformers could create wrong frag_list or break existing
458 	 * one, it is not prohibited. In this case fall back to copying.
459 	 *
460 	 * LATER: this step can be merged to real generation of fragments,
461 	 * we can switch to copy when see the first bad fragment.
462 	 */
463 	if (skb_shinfo(skb)->frag_list) {
464 		struct sk_buff *frag;
465 		int first_len = skb_pagelen(skb);
466 
467 		if (first_len - hlen > mtu ||
468 		    ((first_len - hlen) & 7) ||
469 		    (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
470 		    skb_cloned(skb))
471 			goto slow_path;
472 
473 		for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
474 			/* Correct geometry. */
475 			if (frag->len > mtu ||
476 			    ((frag->len & 7) && frag->next) ||
477 			    skb_headroom(frag) < hlen)
478 			    goto slow_path;
479 
480 			/* Partially cloned skb? */
481 			if (skb_shared(frag))
482 				goto slow_path;
483 
484 			BUG_ON(frag->sk);
485 			if (skb->sk) {
486 				sock_hold(skb->sk);
487 				frag->sk = skb->sk;
488 				frag->destructor = sock_wfree;
489 				skb->truesize -= frag->truesize;
490 			}
491 		}
492 
493 		/* Everything is OK. Generate! */
494 
495 		err = 0;
496 		offset = 0;
497 		frag = skb_shinfo(skb)->frag_list;
498 		skb_shinfo(skb)->frag_list = NULL;
499 		skb->data_len = first_len - skb_headlen(skb);
500 		skb->len = first_len;
501 		iph->tot_len = htons(first_len);
502 		iph->frag_off = htons(IP_MF);
503 		ip_send_check(iph);
504 
505 		for (;;) {
506 			/* Prepare header of the next frame,
507 			 * before previous one went down. */
508 			if (frag) {
509 				frag->ip_summed = CHECKSUM_NONE;
510 				skb_reset_transport_header(frag);
511 				__skb_push(frag, hlen);
512 				skb_reset_network_header(frag);
513 				memcpy(skb_network_header(frag), iph, hlen);
514 				iph = ip_hdr(frag);
515 				iph->tot_len = htons(frag->len);
516 				ip_copy_metadata(frag, skb);
517 				if (offset == 0)
518 					ip_options_fragment(frag);
519 				offset += skb->len - hlen;
520 				iph->frag_off = htons(offset>>3);
521 				if (frag->next != NULL)
522 					iph->frag_off |= htons(IP_MF);
523 				/* Ready, complete checksum */
524 				ip_send_check(iph);
525 			}
526 
527 			err = output(skb);
528 
529 			if (!err)
530 				IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
531 			if (err || !frag)
532 				break;
533 
534 			skb = frag;
535 			frag = skb->next;
536 			skb->next = NULL;
537 		}
538 
539 		if (err == 0) {
540 			IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
541 			return 0;
542 		}
543 
544 		while (frag) {
545 			skb = frag->next;
546 			kfree_skb(frag);
547 			frag = skb;
548 		}
549 		IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
550 		return err;
551 	}
552 
553 slow_path:
554 	left = skb->len - hlen;		/* Space per frame */
555 	ptr = raw + hlen;		/* Where to start from */
556 
557 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
558 	 * we need to make room for the encapsulating header
559 	 */
560 	pad = nf_bridge_pad(skb);
561 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
562 	mtu -= pad;
563 
564 	/*
565 	 *	Fragment the datagram.
566 	 */
567 
568 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
569 	not_last_frag = iph->frag_off & htons(IP_MF);
570 
571 	/*
572 	 *	Keep copying data until we run out.
573 	 */
574 
575 	while (left > 0) {
576 		len = left;
577 		/* IF: it doesn't fit, use 'mtu' - the data space left */
578 		if (len > mtu)
579 			len = mtu;
580 		/* IF: we are not sending upto and including the packet end
581 		   then align the next start on an eight byte boundary */
582 		if (len < left)	{
583 			len &= ~7;
584 		}
585 		/*
586 		 *	Allocate buffer.
587 		 */
588 
589 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
590 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
591 			err = -ENOMEM;
592 			goto fail;
593 		}
594 
595 		/*
596 		 *	Set up data on packet
597 		 */
598 
599 		ip_copy_metadata(skb2, skb);
600 		skb_reserve(skb2, ll_rs);
601 		skb_put(skb2, len + hlen);
602 		skb_reset_network_header(skb2);
603 		skb2->transport_header = skb2->network_header + hlen;
604 
605 		/*
606 		 *	Charge the memory for the fragment to any owner
607 		 *	it might possess
608 		 */
609 
610 		if (skb->sk)
611 			skb_set_owner_w(skb2, skb->sk);
612 
613 		/*
614 		 *	Copy the packet header into the new buffer.
615 		 */
616 
617 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
618 
619 		/*
620 		 *	Copy a block of the IP datagram.
621 		 */
622 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
623 			BUG();
624 		left -= len;
625 
626 		/*
627 		 *	Fill in the new header fields.
628 		 */
629 		iph = ip_hdr(skb2);
630 		iph->frag_off = htons((offset >> 3));
631 
632 		/* ANK: dirty, but effective trick. Upgrade options only if
633 		 * the segment to be fragmented was THE FIRST (otherwise,
634 		 * options are already fixed) and make it ONCE
635 		 * on the initial skb, so that all the following fragments
636 		 * will inherit fixed options.
637 		 */
638 		if (offset == 0)
639 			ip_options_fragment(skb);
640 
641 		/*
642 		 *	Added AC : If we are fragmenting a fragment that's not the
643 		 *		   last fragment then keep MF on each bit
644 		 */
645 		if (left > 0 || not_last_frag)
646 			iph->frag_off |= htons(IP_MF);
647 		ptr += len;
648 		offset += len;
649 
650 		/*
651 		 *	Put this fragment into the sending queue.
652 		 */
653 		iph->tot_len = htons(len + hlen);
654 
655 		ip_send_check(iph);
656 
657 		err = output(skb2);
658 		if (err)
659 			goto fail;
660 
661 		IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
662 	}
663 	kfree_skb(skb);
664 	IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
665 	return err;
666 
667 fail:
668 	kfree_skb(skb);
669 	IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
670 	return err;
671 }
672 
673 EXPORT_SYMBOL(ip_fragment);
674 
675 int
676 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
677 {
678 	struct iovec *iov = from;
679 
680 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
681 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
682 			return -EFAULT;
683 	} else {
684 		__wsum csum = 0;
685 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
686 			return -EFAULT;
687 		skb->csum = csum_block_add(skb->csum, csum, odd);
688 	}
689 	return 0;
690 }
691 
692 static inline __wsum
693 csum_page(struct page *page, int offset, int copy)
694 {
695 	char *kaddr;
696 	__wsum csum;
697 	kaddr = kmap(page);
698 	csum = csum_partial(kaddr + offset, copy, 0);
699 	kunmap(page);
700 	return csum;
701 }
702 
703 static inline int ip_ufo_append_data(struct sock *sk,
704 			int getfrag(void *from, char *to, int offset, int len,
705 			       int odd, struct sk_buff *skb),
706 			void *from, int length, int hh_len, int fragheaderlen,
707 			int transhdrlen, int mtu,unsigned int flags)
708 {
709 	struct sk_buff *skb;
710 	int err;
711 
712 	/* There is support for UDP fragmentation offload by network
713 	 * device, so create one single skb packet containing complete
714 	 * udp datagram
715 	 */
716 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
717 		skb = sock_alloc_send_skb(sk,
718 			hh_len + fragheaderlen + transhdrlen + 20,
719 			(flags & MSG_DONTWAIT), &err);
720 
721 		if (skb == NULL)
722 			return err;
723 
724 		/* reserve space for Hardware header */
725 		skb_reserve(skb, hh_len);
726 
727 		/* create space for UDP/IP header */
728 		skb_put(skb,fragheaderlen + transhdrlen);
729 
730 		/* initialize network header pointer */
731 		skb_reset_network_header(skb);
732 
733 		/* initialize protocol header pointer */
734 		skb->transport_header = skb->network_header + fragheaderlen;
735 
736 		skb->ip_summed = CHECKSUM_PARTIAL;
737 		skb->csum = 0;
738 		sk->sk_sndmsg_off = 0;
739 	}
740 
741 	err = skb_append_datato_frags(sk,skb, getfrag, from,
742 			       (length - transhdrlen));
743 	if (!err) {
744 		/* specify the length of each IP datagram fragment*/
745 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
746 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
747 		__skb_queue_tail(&sk->sk_write_queue, skb);
748 
749 		return 0;
750 	}
751 	/* There is not enough support do UFO ,
752 	 * so follow normal path
753 	 */
754 	kfree_skb(skb);
755 	return err;
756 }
757 
758 /*
759  *	ip_append_data() and ip_append_page() can make one large IP datagram
760  *	from many pieces of data. Each pieces will be holded on the socket
761  *	until ip_push_pending_frames() is called. Each piece can be a page
762  *	or non-page data.
763  *
764  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
765  *	this interface potentially.
766  *
767  *	LATER: length must be adjusted by pad at tail, when it is required.
768  */
769 int ip_append_data(struct sock *sk,
770 		   int getfrag(void *from, char *to, int offset, int len,
771 			       int odd, struct sk_buff *skb),
772 		   void *from, int length, int transhdrlen,
773 		   struct ipcm_cookie *ipc, struct rtable *rt,
774 		   unsigned int flags)
775 {
776 	struct inet_sock *inet = inet_sk(sk);
777 	struct sk_buff *skb;
778 
779 	struct ip_options *opt = NULL;
780 	int hh_len;
781 	int exthdrlen;
782 	int mtu;
783 	int copy;
784 	int err;
785 	int offset = 0;
786 	unsigned int maxfraglen, fragheaderlen;
787 	int csummode = CHECKSUM_NONE;
788 
789 	if (flags&MSG_PROBE)
790 		return 0;
791 
792 	if (skb_queue_empty(&sk->sk_write_queue)) {
793 		/*
794 		 * setup for corking.
795 		 */
796 		opt = ipc->opt;
797 		if (opt) {
798 			if (inet->cork.opt == NULL) {
799 				inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
800 				if (unlikely(inet->cork.opt == NULL))
801 					return -ENOBUFS;
802 			}
803 			memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
804 			inet->cork.flags |= IPCORK_OPT;
805 			inet->cork.addr = ipc->addr;
806 		}
807 		dst_hold(&rt->u.dst);
808 		inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
809 					    rt->u.dst.dev->mtu :
810 					    dst_mtu(rt->u.dst.path);
811 		inet->cork.rt = rt;
812 		inet->cork.length = 0;
813 		sk->sk_sndmsg_page = NULL;
814 		sk->sk_sndmsg_off = 0;
815 		if ((exthdrlen = rt->u.dst.header_len) != 0) {
816 			length += exthdrlen;
817 			transhdrlen += exthdrlen;
818 		}
819 	} else {
820 		rt = inet->cork.rt;
821 		if (inet->cork.flags & IPCORK_OPT)
822 			opt = inet->cork.opt;
823 
824 		transhdrlen = 0;
825 		exthdrlen = 0;
826 		mtu = inet->cork.fragsize;
827 	}
828 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
829 
830 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
831 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
832 
833 	if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
834 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
835 		return -EMSGSIZE;
836 	}
837 
838 	/*
839 	 * transhdrlen > 0 means that this is the first fragment and we wish
840 	 * it won't be fragmented in the future.
841 	 */
842 	if (transhdrlen &&
843 	    length + fragheaderlen <= mtu &&
844 	    rt->u.dst.dev->features & NETIF_F_V4_CSUM &&
845 	    !exthdrlen)
846 		csummode = CHECKSUM_PARTIAL;
847 
848 	inet->cork.length += length;
849 	if (((length > mtu) && (sk->sk_protocol == IPPROTO_UDP)) &&
850 			(rt->u.dst.dev->features & NETIF_F_UFO)) {
851 
852 		err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
853 					 fragheaderlen, transhdrlen, mtu,
854 					 flags);
855 		if (err)
856 			goto error;
857 		return 0;
858 	}
859 
860 	/* So, what's going on in the loop below?
861 	 *
862 	 * We use calculated fragment length to generate chained skb,
863 	 * each of segments is IP fragment ready for sending to network after
864 	 * adding appropriate IP header.
865 	 */
866 
867 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
868 		goto alloc_new_skb;
869 
870 	while (length > 0) {
871 		/* Check if the remaining data fits into current packet. */
872 		copy = mtu - skb->len;
873 		if (copy < length)
874 			copy = maxfraglen - skb->len;
875 		if (copy <= 0) {
876 			char *data;
877 			unsigned int datalen;
878 			unsigned int fraglen;
879 			unsigned int fraggap;
880 			unsigned int alloclen;
881 			struct sk_buff *skb_prev;
882 alloc_new_skb:
883 			skb_prev = skb;
884 			if (skb_prev)
885 				fraggap = skb_prev->len - maxfraglen;
886 			else
887 				fraggap = 0;
888 
889 			/*
890 			 * If remaining data exceeds the mtu,
891 			 * we know we need more fragment(s).
892 			 */
893 			datalen = length + fraggap;
894 			if (datalen > mtu - fragheaderlen)
895 				datalen = maxfraglen - fragheaderlen;
896 			fraglen = datalen + fragheaderlen;
897 
898 			if ((flags & MSG_MORE) &&
899 			    !(rt->u.dst.dev->features&NETIF_F_SG))
900 				alloclen = mtu;
901 			else
902 				alloclen = datalen + fragheaderlen;
903 
904 			/* The last fragment gets additional space at tail.
905 			 * Note, with MSG_MORE we overallocate on fragments,
906 			 * because we have no idea what fragment will be
907 			 * the last.
908 			 */
909 			if (datalen == length + fraggap)
910 				alloclen += rt->u.dst.trailer_len;
911 
912 			if (transhdrlen) {
913 				skb = sock_alloc_send_skb(sk,
914 						alloclen + hh_len + 15,
915 						(flags & MSG_DONTWAIT), &err);
916 			} else {
917 				skb = NULL;
918 				if (atomic_read(&sk->sk_wmem_alloc) <=
919 				    2 * sk->sk_sndbuf)
920 					skb = sock_wmalloc(sk,
921 							   alloclen + hh_len + 15, 1,
922 							   sk->sk_allocation);
923 				if (unlikely(skb == NULL))
924 					err = -ENOBUFS;
925 			}
926 			if (skb == NULL)
927 				goto error;
928 
929 			/*
930 			 *	Fill in the control structures
931 			 */
932 			skb->ip_summed = csummode;
933 			skb->csum = 0;
934 			skb_reserve(skb, hh_len);
935 
936 			/*
937 			 *	Find where to start putting bytes.
938 			 */
939 			data = skb_put(skb, fraglen);
940 			skb_set_network_header(skb, exthdrlen);
941 			skb->transport_header = (skb->network_header +
942 						 fragheaderlen);
943 			data += fragheaderlen;
944 
945 			if (fraggap) {
946 				skb->csum = skb_copy_and_csum_bits(
947 					skb_prev, maxfraglen,
948 					data + transhdrlen, fraggap, 0);
949 				skb_prev->csum = csum_sub(skb_prev->csum,
950 							  skb->csum);
951 				data += fraggap;
952 				pskb_trim_unique(skb_prev, maxfraglen);
953 			}
954 
955 			copy = datalen - transhdrlen - fraggap;
956 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
957 				err = -EFAULT;
958 				kfree_skb(skb);
959 				goto error;
960 			}
961 
962 			offset += copy;
963 			length -= datalen - fraggap;
964 			transhdrlen = 0;
965 			exthdrlen = 0;
966 			csummode = CHECKSUM_NONE;
967 
968 			/*
969 			 * Put the packet on the pending queue.
970 			 */
971 			__skb_queue_tail(&sk->sk_write_queue, skb);
972 			continue;
973 		}
974 
975 		if (copy > length)
976 			copy = length;
977 
978 		if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
979 			unsigned int off;
980 
981 			off = skb->len;
982 			if (getfrag(from, skb_put(skb, copy),
983 					offset, copy, off, skb) < 0) {
984 				__skb_trim(skb, off);
985 				err = -EFAULT;
986 				goto error;
987 			}
988 		} else {
989 			int i = skb_shinfo(skb)->nr_frags;
990 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
991 			struct page *page = sk->sk_sndmsg_page;
992 			int off = sk->sk_sndmsg_off;
993 			unsigned int left;
994 
995 			if (page && (left = PAGE_SIZE - off) > 0) {
996 				if (copy >= left)
997 					copy = left;
998 				if (page != frag->page) {
999 					if (i == MAX_SKB_FRAGS) {
1000 						err = -EMSGSIZE;
1001 						goto error;
1002 					}
1003 					get_page(page);
1004 					skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1005 					frag = &skb_shinfo(skb)->frags[i];
1006 				}
1007 			} else if (i < MAX_SKB_FRAGS) {
1008 				if (copy > PAGE_SIZE)
1009 					copy = PAGE_SIZE;
1010 				page = alloc_pages(sk->sk_allocation, 0);
1011 				if (page == NULL)  {
1012 					err = -ENOMEM;
1013 					goto error;
1014 				}
1015 				sk->sk_sndmsg_page = page;
1016 				sk->sk_sndmsg_off = 0;
1017 
1018 				skb_fill_page_desc(skb, i, page, 0, 0);
1019 				frag = &skb_shinfo(skb)->frags[i];
1020 				skb->truesize += PAGE_SIZE;
1021 				atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1022 			} else {
1023 				err = -EMSGSIZE;
1024 				goto error;
1025 			}
1026 			if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1027 				err = -EFAULT;
1028 				goto error;
1029 			}
1030 			sk->sk_sndmsg_off += copy;
1031 			frag->size += copy;
1032 			skb->len += copy;
1033 			skb->data_len += copy;
1034 		}
1035 		offset += copy;
1036 		length -= copy;
1037 	}
1038 
1039 	return 0;
1040 
1041 error:
1042 	inet->cork.length -= length;
1043 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1044 	return err;
1045 }
1046 
1047 ssize_t	ip_append_page(struct sock *sk, struct page *page,
1048 		       int offset, size_t size, int flags)
1049 {
1050 	struct inet_sock *inet = inet_sk(sk);
1051 	struct sk_buff *skb;
1052 	struct rtable *rt;
1053 	struct ip_options *opt = NULL;
1054 	int hh_len;
1055 	int mtu;
1056 	int len;
1057 	int err;
1058 	unsigned int maxfraglen, fragheaderlen, fraggap;
1059 
1060 	if (inet->hdrincl)
1061 		return -EPERM;
1062 
1063 	if (flags&MSG_PROBE)
1064 		return 0;
1065 
1066 	if (skb_queue_empty(&sk->sk_write_queue))
1067 		return -EINVAL;
1068 
1069 	rt = inet->cork.rt;
1070 	if (inet->cork.flags & IPCORK_OPT)
1071 		opt = inet->cork.opt;
1072 
1073 	if (!(rt->u.dst.dev->features&NETIF_F_SG))
1074 		return -EOPNOTSUPP;
1075 
1076 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1077 	mtu = inet->cork.fragsize;
1078 
1079 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1080 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1081 
1082 	if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1083 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1084 		return -EMSGSIZE;
1085 	}
1086 
1087 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1088 		return -EINVAL;
1089 
1090 	inet->cork.length += size;
1091 	if ((sk->sk_protocol == IPPROTO_UDP) &&
1092 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
1093 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1094 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1095 	}
1096 
1097 
1098 	while (size > 0) {
1099 		int i;
1100 
1101 		if (skb_is_gso(skb))
1102 			len = size;
1103 		else {
1104 
1105 			/* Check if the remaining data fits into current packet. */
1106 			len = mtu - skb->len;
1107 			if (len < size)
1108 				len = maxfraglen - skb->len;
1109 		}
1110 		if (len <= 0) {
1111 			struct sk_buff *skb_prev;
1112 			int alloclen;
1113 
1114 			skb_prev = skb;
1115 			fraggap = skb_prev->len - maxfraglen;
1116 
1117 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1118 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1119 			if (unlikely(!skb)) {
1120 				err = -ENOBUFS;
1121 				goto error;
1122 			}
1123 
1124 			/*
1125 			 *	Fill in the control structures
1126 			 */
1127 			skb->ip_summed = CHECKSUM_NONE;
1128 			skb->csum = 0;
1129 			skb_reserve(skb, hh_len);
1130 
1131 			/*
1132 			 *	Find where to start putting bytes.
1133 			 */
1134 			skb_put(skb, fragheaderlen + fraggap);
1135 			skb_reset_network_header(skb);
1136 			skb->transport_header = (skb->network_header +
1137 						 fragheaderlen);
1138 			if (fraggap) {
1139 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1140 								   maxfraglen,
1141 						    skb_transport_header(skb),
1142 								   fraggap, 0);
1143 				skb_prev->csum = csum_sub(skb_prev->csum,
1144 							  skb->csum);
1145 				pskb_trim_unique(skb_prev, maxfraglen);
1146 			}
1147 
1148 			/*
1149 			 * Put the packet on the pending queue.
1150 			 */
1151 			__skb_queue_tail(&sk->sk_write_queue, skb);
1152 			continue;
1153 		}
1154 
1155 		i = skb_shinfo(skb)->nr_frags;
1156 		if (len > size)
1157 			len = size;
1158 		if (skb_can_coalesce(skb, i, page, offset)) {
1159 			skb_shinfo(skb)->frags[i-1].size += len;
1160 		} else if (i < MAX_SKB_FRAGS) {
1161 			get_page(page);
1162 			skb_fill_page_desc(skb, i, page, offset, len);
1163 		} else {
1164 			err = -EMSGSIZE;
1165 			goto error;
1166 		}
1167 
1168 		if (skb->ip_summed == CHECKSUM_NONE) {
1169 			__wsum csum;
1170 			csum = csum_page(page, offset, len);
1171 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1172 		}
1173 
1174 		skb->len += len;
1175 		skb->data_len += len;
1176 		offset += len;
1177 		size -= len;
1178 	}
1179 	return 0;
1180 
1181 error:
1182 	inet->cork.length -= size;
1183 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1184 	return err;
1185 }
1186 
1187 /*
1188  *	Combined all pending IP fragments on the socket as one IP datagram
1189  *	and push them out.
1190  */
1191 int ip_push_pending_frames(struct sock *sk)
1192 {
1193 	struct sk_buff *skb, *tmp_skb;
1194 	struct sk_buff **tail_skb;
1195 	struct inet_sock *inet = inet_sk(sk);
1196 	struct ip_options *opt = NULL;
1197 	struct rtable *rt = inet->cork.rt;
1198 	struct iphdr *iph;
1199 	__be16 df = 0;
1200 	__u8 ttl;
1201 	int err = 0;
1202 
1203 	if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1204 		goto out;
1205 	tail_skb = &(skb_shinfo(skb)->frag_list);
1206 
1207 	/* move skb->data to ip header from ext header */
1208 	if (skb->data < skb_network_header(skb))
1209 		__skb_pull(skb, skb_network_offset(skb));
1210 	while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1211 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1212 		*tail_skb = tmp_skb;
1213 		tail_skb = &(tmp_skb->next);
1214 		skb->len += tmp_skb->len;
1215 		skb->data_len += tmp_skb->len;
1216 		skb->truesize += tmp_skb->truesize;
1217 		__sock_put(tmp_skb->sk);
1218 		tmp_skb->destructor = NULL;
1219 		tmp_skb->sk = NULL;
1220 	}
1221 
1222 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1223 	 * to fragment the frame generated here. No matter, what transforms
1224 	 * how transforms change size of the packet, it will come out.
1225 	 */
1226 	if (inet->pmtudisc < IP_PMTUDISC_DO)
1227 		skb->local_df = 1;
1228 
1229 	/* DF bit is set when we want to see DF on outgoing frames.
1230 	 * If local_df is set too, we still allow to fragment this frame
1231 	 * locally. */
1232 	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1233 	    (skb->len <= dst_mtu(&rt->u.dst) &&
1234 	     ip_dont_fragment(sk, &rt->u.dst)))
1235 		df = htons(IP_DF);
1236 
1237 	if (inet->cork.flags & IPCORK_OPT)
1238 		opt = inet->cork.opt;
1239 
1240 	if (rt->rt_type == RTN_MULTICAST)
1241 		ttl = inet->mc_ttl;
1242 	else
1243 		ttl = ip_select_ttl(inet, &rt->u.dst);
1244 
1245 	iph = (struct iphdr *)skb->data;
1246 	iph->version = 4;
1247 	iph->ihl = 5;
1248 	if (opt) {
1249 		iph->ihl += opt->optlen>>2;
1250 		ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1251 	}
1252 	iph->tos = inet->tos;
1253 	iph->tot_len = htons(skb->len);
1254 	iph->frag_off = df;
1255 	ip_select_ident(iph, &rt->u.dst, sk);
1256 	iph->ttl = ttl;
1257 	iph->protocol = sk->sk_protocol;
1258 	iph->saddr = rt->rt_src;
1259 	iph->daddr = rt->rt_dst;
1260 	ip_send_check(iph);
1261 
1262 	skb->priority = sk->sk_priority;
1263 	skb->dst = dst_clone(&rt->u.dst);
1264 
1265 	/* Netfilter gets whole the not fragmented skb. */
1266 	err = NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL,
1267 		      skb->dst->dev, dst_output);
1268 	if (err) {
1269 		if (err > 0)
1270 			err = inet->recverr ? net_xmit_errno(err) : 0;
1271 		if (err)
1272 			goto error;
1273 	}
1274 
1275 out:
1276 	inet->cork.flags &= ~IPCORK_OPT;
1277 	kfree(inet->cork.opt);
1278 	inet->cork.opt = NULL;
1279 	if (inet->cork.rt) {
1280 		ip_rt_put(inet->cork.rt);
1281 		inet->cork.rt = NULL;
1282 	}
1283 	return err;
1284 
1285 error:
1286 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1287 	goto out;
1288 }
1289 
1290 /*
1291  *	Throw away all pending data on the socket.
1292  */
1293 void ip_flush_pending_frames(struct sock *sk)
1294 {
1295 	struct inet_sock *inet = inet_sk(sk);
1296 	struct sk_buff *skb;
1297 
1298 	while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1299 		kfree_skb(skb);
1300 
1301 	inet->cork.flags &= ~IPCORK_OPT;
1302 	kfree(inet->cork.opt);
1303 	inet->cork.opt = NULL;
1304 	if (inet->cork.rt) {
1305 		ip_rt_put(inet->cork.rt);
1306 		inet->cork.rt = NULL;
1307 	}
1308 }
1309 
1310 
1311 /*
1312  *	Fetch data from kernel space and fill in checksum if needed.
1313  */
1314 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1315 			      int len, int odd, struct sk_buff *skb)
1316 {
1317 	__wsum csum;
1318 
1319 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1320 	skb->csum = csum_block_add(skb->csum, csum, odd);
1321 	return 0;
1322 }
1323 
1324 /*
1325  *	Generic function to send a packet as reply to another packet.
1326  *	Used to send TCP resets so far. ICMP should use this function too.
1327  *
1328  *	Should run single threaded per socket because it uses the sock
1329  *     	structure to pass arguments.
1330  *
1331  *	LATER: switch from ip_build_xmit to ip_append_*
1332  */
1333 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1334 		   unsigned int len)
1335 {
1336 	struct inet_sock *inet = inet_sk(sk);
1337 	struct {
1338 		struct ip_options	opt;
1339 		char			data[40];
1340 	} replyopts;
1341 	struct ipcm_cookie ipc;
1342 	__be32 daddr;
1343 	struct rtable *rt = (struct rtable*)skb->dst;
1344 
1345 	if (ip_options_echo(&replyopts.opt, skb))
1346 		return;
1347 
1348 	daddr = ipc.addr = rt->rt_src;
1349 	ipc.opt = NULL;
1350 
1351 	if (replyopts.opt.optlen) {
1352 		ipc.opt = &replyopts.opt;
1353 
1354 		if (ipc.opt->srr)
1355 			daddr = replyopts.opt.faddr;
1356 	}
1357 
1358 	{
1359 		struct flowi fl = { .oif = arg->bound_dev_if,
1360 				    .nl_u = { .ip4_u =
1361 					      { .daddr = daddr,
1362 						.saddr = rt->rt_spec_dst,
1363 						.tos = RT_TOS(ip_hdr(skb)->tos) } },
1364 				    /* Not quite clean, but right. */
1365 				    .uli_u = { .ports =
1366 					       { .sport = tcp_hdr(skb)->dest,
1367 						 .dport = tcp_hdr(skb)->source } },
1368 				    .proto = sk->sk_protocol };
1369 		security_skb_classify_flow(skb, &fl);
1370 		if (ip_route_output_key(&rt, &fl))
1371 			return;
1372 	}
1373 
1374 	/* And let IP do all the hard work.
1375 
1376 	   This chunk is not reenterable, hence spinlock.
1377 	   Note that it uses the fact, that this function is called
1378 	   with locally disabled BH and that sk cannot be already spinlocked.
1379 	 */
1380 	bh_lock_sock(sk);
1381 	inet->tos = ip_hdr(skb)->tos;
1382 	sk->sk_priority = skb->priority;
1383 	sk->sk_protocol = ip_hdr(skb)->protocol;
1384 	sk->sk_bound_dev_if = arg->bound_dev_if;
1385 	ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1386 		       &ipc, rt, MSG_DONTWAIT);
1387 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1388 		if (arg->csumoffset >= 0)
1389 			*((__sum16 *)skb_transport_header(skb) +
1390 			  arg->csumoffset) = csum_fold(csum_add(skb->csum,
1391 								arg->csum));
1392 		skb->ip_summed = CHECKSUM_NONE;
1393 		ip_push_pending_frames(sk);
1394 	}
1395 
1396 	bh_unlock_sock(sk);
1397 
1398 	ip_rt_put(rt);
1399 }
1400 
1401 void __init ip_init(void)
1402 {
1403 	ip_rt_init();
1404 	inet_initpeers();
1405 
1406 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1407 	igmp_mc_proc_init();
1408 #endif
1409 }
1410 
1411 EXPORT_SYMBOL(ip_generic_getfrag);
1412 EXPORT_SYMBOL(ip_queue_xmit);
1413 EXPORT_SYMBOL(ip_send_check);
1414