1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The Internet Protocol (IP) output module. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Donald Becker, <becker@super.org> 11 * Alan Cox, <Alan.Cox@linux.org> 12 * Richard Underwood 13 * Stefan Becker, <stefanb@yello.ping.de> 14 * Jorge Cwik, <jorge@laser.satlink.net> 15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 16 * Hirokazu Takahashi, <taka@valinux.co.jp> 17 * 18 * See ip_input.c for original log 19 * 20 * Fixes: 21 * Alan Cox : Missing nonblock feature in ip_build_xmit. 22 * Mike Kilburn : htons() missing in ip_build_xmit. 23 * Bradford Johnson: Fix faulty handling of some frames when 24 * no route is found. 25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 26 * (in case if packet not accepted by 27 * output firewall rules) 28 * Mike McLagan : Routing by source 29 * Alexey Kuznetsov: use new route cache 30 * Andi Kleen: Fix broken PMTU recovery and remove 31 * some redundant tests. 32 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 33 * Andi Kleen : Replace ip_reply with ip_send_reply. 34 * Andi Kleen : Split fast and slow ip_build_xmit path 35 * for decreased register pressure on x86 36 * and more readibility. 37 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 38 * silently drop skb instead of failing with -EPERM. 39 * Detlev Wengorz : Copy protocol for fragments. 40 * Hirokazu Takahashi: HW checksumming for outgoing UDP 41 * datagrams. 42 * Hirokazu Takahashi: sendfile() on UDP works now. 43 */ 44 45 #include <linux/uaccess.h> 46 #include <linux/module.h> 47 #include <linux/types.h> 48 #include <linux/kernel.h> 49 #include <linux/mm.h> 50 #include <linux/string.h> 51 #include <linux/errno.h> 52 #include <linux/highmem.h> 53 #include <linux/slab.h> 54 55 #include <linux/socket.h> 56 #include <linux/sockios.h> 57 #include <linux/in.h> 58 #include <linux/inet.h> 59 #include <linux/netdevice.h> 60 #include <linux/etherdevice.h> 61 #include <linux/proc_fs.h> 62 #include <linux/stat.h> 63 #include <linux/init.h> 64 65 #include <net/snmp.h> 66 #include <net/ip.h> 67 #include <net/protocol.h> 68 #include <net/route.h> 69 #include <net/xfrm.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <net/arp.h> 73 #include <net/icmp.h> 74 #include <net/checksum.h> 75 #include <net/inetpeer.h> 76 #include <net/lwtunnel.h> 77 #include <linux/bpf-cgroup.h> 78 #include <linux/igmp.h> 79 #include <linux/netfilter_ipv4.h> 80 #include <linux/netfilter_bridge.h> 81 #include <linux/netlink.h> 82 #include <linux/tcp.h> 83 84 static int 85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 86 unsigned int mtu, 87 int (*output)(struct net *, struct sock *, struct sk_buff *)); 88 89 /* Generate a checksum for an outgoing IP datagram. */ 90 void ip_send_check(struct iphdr *iph) 91 { 92 iph->check = 0; 93 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 94 } 95 EXPORT_SYMBOL(ip_send_check); 96 97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 98 { 99 struct iphdr *iph = ip_hdr(skb); 100 101 iph->tot_len = htons(skb->len); 102 ip_send_check(iph); 103 104 /* if egress device is enslaved to an L3 master device pass the 105 * skb to its handler for processing 106 */ 107 skb = l3mdev_ip_out(sk, skb); 108 if (unlikely(!skb)) 109 return 0; 110 111 skb->protocol = htons(ETH_P_IP); 112 113 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 114 net, sk, skb, NULL, skb_dst(skb)->dev, 115 dst_output); 116 } 117 118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 119 { 120 int err; 121 122 err = __ip_local_out(net, sk, skb); 123 if (likely(err == 1)) 124 err = dst_output(net, sk, skb); 125 126 return err; 127 } 128 EXPORT_SYMBOL_GPL(ip_local_out); 129 130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 131 { 132 int ttl = inet->uc_ttl; 133 134 if (ttl < 0) 135 ttl = ip4_dst_hoplimit(dst); 136 return ttl; 137 } 138 139 /* 140 * Add an ip header to a skbuff and send it out. 141 * 142 */ 143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 144 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 145 { 146 struct inet_sock *inet = inet_sk(sk); 147 struct rtable *rt = skb_rtable(skb); 148 struct net *net = sock_net(sk); 149 struct iphdr *iph; 150 151 /* Build the IP header. */ 152 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 153 skb_reset_network_header(skb); 154 iph = ip_hdr(skb); 155 iph->version = 4; 156 iph->ihl = 5; 157 iph->tos = inet->tos; 158 iph->ttl = ip_select_ttl(inet, &rt->dst); 159 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 160 iph->saddr = saddr; 161 iph->protocol = sk->sk_protocol; 162 if (ip_dont_fragment(sk, &rt->dst)) { 163 iph->frag_off = htons(IP_DF); 164 iph->id = 0; 165 } else { 166 iph->frag_off = 0; 167 __ip_select_ident(net, iph, 1); 168 } 169 170 if (opt && opt->opt.optlen) { 171 iph->ihl += opt->opt.optlen>>2; 172 ip_options_build(skb, &opt->opt, daddr, rt, 0); 173 } 174 175 skb->priority = sk->sk_priority; 176 if (!skb->mark) 177 skb->mark = sk->sk_mark; 178 179 /* Send it out. */ 180 return ip_local_out(net, skb->sk, skb); 181 } 182 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 183 184 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 185 { 186 struct dst_entry *dst = skb_dst(skb); 187 struct rtable *rt = (struct rtable *)dst; 188 struct net_device *dev = dst->dev; 189 unsigned int hh_len = LL_RESERVED_SPACE(dev); 190 struct neighbour *neigh; 191 u32 nexthop; 192 193 if (rt->rt_type == RTN_MULTICAST) { 194 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 195 } else if (rt->rt_type == RTN_BROADCAST) 196 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 197 198 /* Be paranoid, rather than too clever. */ 199 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 200 struct sk_buff *skb2; 201 202 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 203 if (!skb2) { 204 kfree_skb(skb); 205 return -ENOMEM; 206 } 207 if (skb->sk) 208 skb_set_owner_w(skb2, skb->sk); 209 consume_skb(skb); 210 skb = skb2; 211 } 212 213 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 214 int res = lwtunnel_xmit(skb); 215 216 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 217 return res; 218 } 219 220 rcu_read_lock_bh(); 221 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr); 222 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 223 if (unlikely(!neigh)) 224 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 225 if (!IS_ERR(neigh)) { 226 int res; 227 228 sock_confirm_neigh(skb, neigh); 229 res = neigh_output(neigh, skb); 230 231 rcu_read_unlock_bh(); 232 return res; 233 } 234 rcu_read_unlock_bh(); 235 236 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 237 __func__); 238 kfree_skb(skb); 239 return -EINVAL; 240 } 241 242 static int ip_finish_output_gso(struct net *net, struct sock *sk, 243 struct sk_buff *skb, unsigned int mtu) 244 { 245 netdev_features_t features; 246 struct sk_buff *segs; 247 int ret = 0; 248 249 /* common case: seglen is <= mtu 250 */ 251 if (skb_gso_validate_network_len(skb, mtu)) 252 return ip_finish_output2(net, sk, skb); 253 254 /* Slowpath - GSO segment length exceeds the egress MTU. 255 * 256 * This can happen in several cases: 257 * - Forwarding of a TCP GRO skb, when DF flag is not set. 258 * - Forwarding of an skb that arrived on a virtualization interface 259 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 260 * stack. 261 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 262 * interface with a smaller MTU. 263 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 264 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 265 * insufficent MTU. 266 */ 267 features = netif_skb_features(skb); 268 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET); 269 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 270 if (IS_ERR_OR_NULL(segs)) { 271 kfree_skb(skb); 272 return -ENOMEM; 273 } 274 275 consume_skb(skb); 276 277 do { 278 struct sk_buff *nskb = segs->next; 279 int err; 280 281 segs->next = NULL; 282 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 283 284 if (err && ret == 0) 285 ret = err; 286 segs = nskb; 287 } while (segs); 288 289 return ret; 290 } 291 292 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 293 { 294 unsigned int mtu; 295 int ret; 296 297 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 298 if (ret) { 299 kfree_skb(skb); 300 return ret; 301 } 302 303 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 304 /* Policy lookup after SNAT yielded a new policy */ 305 if (skb_dst(skb)->xfrm) { 306 IPCB(skb)->flags |= IPSKB_REROUTED; 307 return dst_output(net, sk, skb); 308 } 309 #endif 310 mtu = ip_skb_dst_mtu(sk, skb); 311 if (skb_is_gso(skb)) 312 return ip_finish_output_gso(net, sk, skb, mtu); 313 314 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 315 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 316 317 return ip_finish_output2(net, sk, skb); 318 } 319 320 static int ip_mc_finish_output(struct net *net, struct sock *sk, 321 struct sk_buff *skb) 322 { 323 int ret; 324 325 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 326 if (ret) { 327 kfree_skb(skb); 328 return ret; 329 } 330 331 return dev_loopback_xmit(net, sk, skb); 332 } 333 334 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 335 { 336 struct rtable *rt = skb_rtable(skb); 337 struct net_device *dev = rt->dst.dev; 338 339 /* 340 * If the indicated interface is up and running, send the packet. 341 */ 342 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 343 344 skb->dev = dev; 345 skb->protocol = htons(ETH_P_IP); 346 347 /* 348 * Multicasts are looped back for other local users 349 */ 350 351 if (rt->rt_flags&RTCF_MULTICAST) { 352 if (sk_mc_loop(sk) 353 #ifdef CONFIG_IP_MROUTE 354 /* Small optimization: do not loopback not local frames, 355 which returned after forwarding; they will be dropped 356 by ip_mr_input in any case. 357 Note, that local frames are looped back to be delivered 358 to local recipients. 359 360 This check is duplicated in ip_mr_input at the moment. 361 */ 362 && 363 ((rt->rt_flags & RTCF_LOCAL) || 364 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 365 #endif 366 ) { 367 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 368 if (newskb) 369 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 370 net, sk, newskb, NULL, newskb->dev, 371 ip_mc_finish_output); 372 } 373 374 /* Multicasts with ttl 0 must not go beyond the host */ 375 376 if (ip_hdr(skb)->ttl == 0) { 377 kfree_skb(skb); 378 return 0; 379 } 380 } 381 382 if (rt->rt_flags&RTCF_BROADCAST) { 383 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 384 if (newskb) 385 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 386 net, sk, newskb, NULL, newskb->dev, 387 ip_mc_finish_output); 388 } 389 390 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 391 net, sk, skb, NULL, skb->dev, 392 ip_finish_output, 393 !(IPCB(skb)->flags & IPSKB_REROUTED)); 394 } 395 396 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 397 { 398 struct net_device *dev = skb_dst(skb)->dev; 399 400 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 401 402 skb->dev = dev; 403 skb->protocol = htons(ETH_P_IP); 404 405 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 406 net, sk, skb, NULL, dev, 407 ip_finish_output, 408 !(IPCB(skb)->flags & IPSKB_REROUTED)); 409 } 410 411 /* 412 * copy saddr and daddr, possibly using 64bit load/stores 413 * Equivalent to : 414 * iph->saddr = fl4->saddr; 415 * iph->daddr = fl4->daddr; 416 */ 417 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 418 { 419 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 420 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 421 memcpy(&iph->saddr, &fl4->saddr, 422 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 423 } 424 425 /* Note: skb->sk can be different from sk, in case of tunnels */ 426 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 427 { 428 struct inet_sock *inet = inet_sk(sk); 429 struct net *net = sock_net(sk); 430 struct ip_options_rcu *inet_opt; 431 struct flowi4 *fl4; 432 struct rtable *rt; 433 struct iphdr *iph; 434 int res; 435 436 /* Skip all of this if the packet is already routed, 437 * f.e. by something like SCTP. 438 */ 439 rcu_read_lock(); 440 inet_opt = rcu_dereference(inet->inet_opt); 441 fl4 = &fl->u.ip4; 442 rt = skb_rtable(skb); 443 if (rt) 444 goto packet_routed; 445 446 /* Make sure we can route this packet. */ 447 rt = (struct rtable *)__sk_dst_check(sk, 0); 448 if (!rt) { 449 __be32 daddr; 450 451 /* Use correct destination address if we have options. */ 452 daddr = inet->inet_daddr; 453 if (inet_opt && inet_opt->opt.srr) 454 daddr = inet_opt->opt.faddr; 455 456 /* If this fails, retransmit mechanism of transport layer will 457 * keep trying until route appears or the connection times 458 * itself out. 459 */ 460 rt = ip_route_output_ports(net, fl4, sk, 461 daddr, inet->inet_saddr, 462 inet->inet_dport, 463 inet->inet_sport, 464 sk->sk_protocol, 465 RT_CONN_FLAGS(sk), 466 sk->sk_bound_dev_if); 467 if (IS_ERR(rt)) 468 goto no_route; 469 sk_setup_caps(sk, &rt->dst); 470 } 471 skb_dst_set_noref(skb, &rt->dst); 472 473 packet_routed: 474 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 475 goto no_route; 476 477 /* OK, we know where to send it, allocate and build IP header. */ 478 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 479 skb_reset_network_header(skb); 480 iph = ip_hdr(skb); 481 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff)); 482 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 483 iph->frag_off = htons(IP_DF); 484 else 485 iph->frag_off = 0; 486 iph->ttl = ip_select_ttl(inet, &rt->dst); 487 iph->protocol = sk->sk_protocol; 488 ip_copy_addrs(iph, fl4); 489 490 /* Transport layer set skb->h.foo itself. */ 491 492 if (inet_opt && inet_opt->opt.optlen) { 493 iph->ihl += inet_opt->opt.optlen >> 2; 494 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 495 } 496 497 ip_select_ident_segs(net, skb, sk, 498 skb_shinfo(skb)->gso_segs ?: 1); 499 500 /* TODO : should we use skb->sk here instead of sk ? */ 501 skb->priority = sk->sk_priority; 502 skb->mark = sk->sk_mark; 503 504 res = ip_local_out(net, sk, skb); 505 rcu_read_unlock(); 506 return res; 507 508 no_route: 509 rcu_read_unlock(); 510 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 511 kfree_skb(skb); 512 return -EHOSTUNREACH; 513 } 514 EXPORT_SYMBOL(ip_queue_xmit); 515 516 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 517 { 518 to->pkt_type = from->pkt_type; 519 to->priority = from->priority; 520 to->protocol = from->protocol; 521 skb_dst_drop(to); 522 skb_dst_copy(to, from); 523 to->dev = from->dev; 524 to->mark = from->mark; 525 526 /* Copy the flags to each fragment. */ 527 IPCB(to)->flags = IPCB(from)->flags; 528 529 #ifdef CONFIG_NET_SCHED 530 to->tc_index = from->tc_index; 531 #endif 532 nf_copy(to, from); 533 #if IS_ENABLED(CONFIG_IP_VS) 534 to->ipvs_property = from->ipvs_property; 535 #endif 536 skb_copy_secmark(to, from); 537 } 538 539 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 540 unsigned int mtu, 541 int (*output)(struct net *, struct sock *, struct sk_buff *)) 542 { 543 struct iphdr *iph = ip_hdr(skb); 544 545 if ((iph->frag_off & htons(IP_DF)) == 0) 546 return ip_do_fragment(net, sk, skb, output); 547 548 if (unlikely(!skb->ignore_df || 549 (IPCB(skb)->frag_max_size && 550 IPCB(skb)->frag_max_size > mtu))) { 551 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 552 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 553 htonl(mtu)); 554 kfree_skb(skb); 555 return -EMSGSIZE; 556 } 557 558 return ip_do_fragment(net, sk, skb, output); 559 } 560 561 /* 562 * This IP datagram is too large to be sent in one piece. Break it up into 563 * smaller pieces (each of size equal to IP header plus 564 * a block of the data of the original IP data part) that will yet fit in a 565 * single device frame, and queue such a frame for sending. 566 */ 567 568 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 569 int (*output)(struct net *, struct sock *, struct sk_buff *)) 570 { 571 struct iphdr *iph; 572 int ptr; 573 struct sk_buff *skb2; 574 unsigned int mtu, hlen, left, len, ll_rs; 575 int offset; 576 __be16 not_last_frag; 577 struct rtable *rt = skb_rtable(skb); 578 int err = 0; 579 580 /* for offloaded checksums cleanup checksum before fragmentation */ 581 if (skb->ip_summed == CHECKSUM_PARTIAL && 582 (err = skb_checksum_help(skb))) 583 goto fail; 584 585 /* 586 * Point into the IP datagram header. 587 */ 588 589 iph = ip_hdr(skb); 590 591 mtu = ip_skb_dst_mtu(sk, skb); 592 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 593 mtu = IPCB(skb)->frag_max_size; 594 595 /* 596 * Setup starting values. 597 */ 598 599 hlen = iph->ihl * 4; 600 mtu = mtu - hlen; /* Size of data space */ 601 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 602 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 603 604 /* When frag_list is given, use it. First, check its validity: 605 * some transformers could create wrong frag_list or break existing 606 * one, it is not prohibited. In this case fall back to copying. 607 * 608 * LATER: this step can be merged to real generation of fragments, 609 * we can switch to copy when see the first bad fragment. 610 */ 611 if (skb_has_frag_list(skb)) { 612 struct sk_buff *frag, *frag2; 613 unsigned int first_len = skb_pagelen(skb); 614 615 if (first_len - hlen > mtu || 616 ((first_len - hlen) & 7) || 617 ip_is_fragment(iph) || 618 skb_cloned(skb) || 619 skb_headroom(skb) < ll_rs) 620 goto slow_path; 621 622 skb_walk_frags(skb, frag) { 623 /* Correct geometry. */ 624 if (frag->len > mtu || 625 ((frag->len & 7) && frag->next) || 626 skb_headroom(frag) < hlen + ll_rs) 627 goto slow_path_clean; 628 629 /* Partially cloned skb? */ 630 if (skb_shared(frag)) 631 goto slow_path_clean; 632 633 BUG_ON(frag->sk); 634 if (skb->sk) { 635 frag->sk = skb->sk; 636 frag->destructor = sock_wfree; 637 } 638 skb->truesize -= frag->truesize; 639 } 640 641 /* Everything is OK. Generate! */ 642 643 err = 0; 644 offset = 0; 645 frag = skb_shinfo(skb)->frag_list; 646 skb_frag_list_init(skb); 647 skb->data_len = first_len - skb_headlen(skb); 648 skb->len = first_len; 649 iph->tot_len = htons(first_len); 650 iph->frag_off = htons(IP_MF); 651 ip_send_check(iph); 652 653 for (;;) { 654 /* Prepare header of the next frame, 655 * before previous one went down. */ 656 if (frag) { 657 frag->ip_summed = CHECKSUM_NONE; 658 skb_reset_transport_header(frag); 659 __skb_push(frag, hlen); 660 skb_reset_network_header(frag); 661 memcpy(skb_network_header(frag), iph, hlen); 662 iph = ip_hdr(frag); 663 iph->tot_len = htons(frag->len); 664 ip_copy_metadata(frag, skb); 665 if (offset == 0) 666 ip_options_fragment(frag); 667 offset += skb->len - hlen; 668 iph->frag_off = htons(offset>>3); 669 if (frag->next) 670 iph->frag_off |= htons(IP_MF); 671 /* Ready, complete checksum */ 672 ip_send_check(iph); 673 } 674 675 err = output(net, sk, skb); 676 677 if (!err) 678 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 679 if (err || !frag) 680 break; 681 682 skb = frag; 683 frag = skb->next; 684 skb->next = NULL; 685 } 686 687 if (err == 0) { 688 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 689 return 0; 690 } 691 692 while (frag) { 693 skb = frag->next; 694 kfree_skb(frag); 695 frag = skb; 696 } 697 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 698 return err; 699 700 slow_path_clean: 701 skb_walk_frags(skb, frag2) { 702 if (frag2 == frag) 703 break; 704 frag2->sk = NULL; 705 frag2->destructor = NULL; 706 skb->truesize += frag2->truesize; 707 } 708 } 709 710 slow_path: 711 iph = ip_hdr(skb); 712 713 left = skb->len - hlen; /* Space per frame */ 714 ptr = hlen; /* Where to start from */ 715 716 /* 717 * Fragment the datagram. 718 */ 719 720 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 721 not_last_frag = iph->frag_off & htons(IP_MF); 722 723 /* 724 * Keep copying data until we run out. 725 */ 726 727 while (left > 0) { 728 len = left; 729 /* IF: it doesn't fit, use 'mtu' - the data space left */ 730 if (len > mtu) 731 len = mtu; 732 /* IF: we are not sending up to and including the packet end 733 then align the next start on an eight byte boundary */ 734 if (len < left) { 735 len &= ~7; 736 } 737 738 /* Allocate buffer */ 739 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); 740 if (!skb2) { 741 err = -ENOMEM; 742 goto fail; 743 } 744 745 /* 746 * Set up data on packet 747 */ 748 749 ip_copy_metadata(skb2, skb); 750 skb_reserve(skb2, ll_rs); 751 skb_put(skb2, len + hlen); 752 skb_reset_network_header(skb2); 753 skb2->transport_header = skb2->network_header + hlen; 754 755 /* 756 * Charge the memory for the fragment to any owner 757 * it might possess 758 */ 759 760 if (skb->sk) 761 skb_set_owner_w(skb2, skb->sk); 762 763 /* 764 * Copy the packet header into the new buffer. 765 */ 766 767 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); 768 769 /* 770 * Copy a block of the IP datagram. 771 */ 772 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) 773 BUG(); 774 left -= len; 775 776 /* 777 * Fill in the new header fields. 778 */ 779 iph = ip_hdr(skb2); 780 iph->frag_off = htons((offset >> 3)); 781 782 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) 783 iph->frag_off |= htons(IP_DF); 784 785 /* ANK: dirty, but effective trick. Upgrade options only if 786 * the segment to be fragmented was THE FIRST (otherwise, 787 * options are already fixed) and make it ONCE 788 * on the initial skb, so that all the following fragments 789 * will inherit fixed options. 790 */ 791 if (offset == 0) 792 ip_options_fragment(skb); 793 794 /* 795 * Added AC : If we are fragmenting a fragment that's not the 796 * last fragment then keep MF on each bit 797 */ 798 if (left > 0 || not_last_frag) 799 iph->frag_off |= htons(IP_MF); 800 ptr += len; 801 offset += len; 802 803 /* 804 * Put this fragment into the sending queue. 805 */ 806 iph->tot_len = htons(len + hlen); 807 808 ip_send_check(iph); 809 810 err = output(net, sk, skb2); 811 if (err) 812 goto fail; 813 814 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 815 } 816 consume_skb(skb); 817 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 818 return err; 819 820 fail: 821 kfree_skb(skb); 822 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 823 return err; 824 } 825 EXPORT_SYMBOL(ip_do_fragment); 826 827 int 828 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 829 { 830 struct msghdr *msg = from; 831 832 if (skb->ip_summed == CHECKSUM_PARTIAL) { 833 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 834 return -EFAULT; 835 } else { 836 __wsum csum = 0; 837 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 838 return -EFAULT; 839 skb->csum = csum_block_add(skb->csum, csum, odd); 840 } 841 return 0; 842 } 843 EXPORT_SYMBOL(ip_generic_getfrag); 844 845 static inline __wsum 846 csum_page(struct page *page, int offset, int copy) 847 { 848 char *kaddr; 849 __wsum csum; 850 kaddr = kmap(page); 851 csum = csum_partial(kaddr + offset, copy, 0); 852 kunmap(page); 853 return csum; 854 } 855 856 static int __ip_append_data(struct sock *sk, 857 struct flowi4 *fl4, 858 struct sk_buff_head *queue, 859 struct inet_cork *cork, 860 struct page_frag *pfrag, 861 int getfrag(void *from, char *to, int offset, 862 int len, int odd, struct sk_buff *skb), 863 void *from, int length, int transhdrlen, 864 unsigned int flags) 865 { 866 struct inet_sock *inet = inet_sk(sk); 867 struct sk_buff *skb; 868 869 struct ip_options *opt = cork->opt; 870 int hh_len; 871 int exthdrlen; 872 int mtu; 873 int copy; 874 int err; 875 int offset = 0; 876 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 877 int csummode = CHECKSUM_NONE; 878 struct rtable *rt = (struct rtable *)cork->dst; 879 unsigned int wmem_alloc_delta = 0; 880 u32 tskey = 0; 881 bool paged; 882 883 skb = skb_peek_tail(queue); 884 885 exthdrlen = !skb ? rt->dst.header_len : 0; 886 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 887 paged = !!cork->gso_size; 888 889 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 890 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 891 tskey = sk->sk_tskey++; 892 893 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 894 895 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 896 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 897 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 898 899 if (cork->length + length > maxnonfragsize - fragheaderlen) { 900 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 901 mtu - (opt ? opt->optlen : 0)); 902 return -EMSGSIZE; 903 } 904 905 /* 906 * transhdrlen > 0 means that this is the first fragment and we wish 907 * it won't be fragmented in the future. 908 */ 909 if (transhdrlen && 910 length + fragheaderlen <= mtu && 911 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 912 (!(flags & MSG_MORE) || cork->gso_size) && 913 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) 914 csummode = CHECKSUM_PARTIAL; 915 916 cork->length += length; 917 918 /* So, what's going on in the loop below? 919 * 920 * We use calculated fragment length to generate chained skb, 921 * each of segments is IP fragment ready for sending to network after 922 * adding appropriate IP header. 923 */ 924 925 if (!skb) 926 goto alloc_new_skb; 927 928 while (length > 0) { 929 /* Check if the remaining data fits into current packet. */ 930 copy = mtu - skb->len; 931 if (copy < length) 932 copy = maxfraglen - skb->len; 933 if (copy <= 0) { 934 char *data; 935 unsigned int datalen; 936 unsigned int fraglen; 937 unsigned int fraggap; 938 unsigned int alloclen; 939 unsigned int pagedlen = 0; 940 struct sk_buff *skb_prev; 941 alloc_new_skb: 942 skb_prev = skb; 943 if (skb_prev) 944 fraggap = skb_prev->len - maxfraglen; 945 else 946 fraggap = 0; 947 948 /* 949 * If remaining data exceeds the mtu, 950 * we know we need more fragment(s). 951 */ 952 datalen = length + fraggap; 953 if (datalen > mtu - fragheaderlen) 954 datalen = maxfraglen - fragheaderlen; 955 fraglen = datalen + fragheaderlen; 956 957 if ((flags & MSG_MORE) && 958 !(rt->dst.dev->features&NETIF_F_SG)) 959 alloclen = mtu; 960 else if (!paged) 961 alloclen = fraglen; 962 else { 963 alloclen = min_t(int, fraglen, MAX_HEADER); 964 pagedlen = fraglen - alloclen; 965 } 966 967 alloclen += exthdrlen; 968 969 /* The last fragment gets additional space at tail. 970 * Note, with MSG_MORE we overallocate on fragments, 971 * because we have no idea what fragment will be 972 * the last. 973 */ 974 if (datalen == length + fraggap) 975 alloclen += rt->dst.trailer_len; 976 977 if (transhdrlen) { 978 skb = sock_alloc_send_skb(sk, 979 alloclen + hh_len + 15, 980 (flags & MSG_DONTWAIT), &err); 981 } else { 982 skb = NULL; 983 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 984 2 * sk->sk_sndbuf) 985 skb = alloc_skb(alloclen + hh_len + 15, 986 sk->sk_allocation); 987 if (unlikely(!skb)) 988 err = -ENOBUFS; 989 } 990 if (!skb) 991 goto error; 992 993 /* 994 * Fill in the control structures 995 */ 996 skb->ip_summed = csummode; 997 skb->csum = 0; 998 skb_reserve(skb, hh_len); 999 1000 /* only the initial fragment is time stamped */ 1001 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1002 cork->tx_flags = 0; 1003 skb_shinfo(skb)->tskey = tskey; 1004 tskey = 0; 1005 1006 /* 1007 * Find where to start putting bytes. 1008 */ 1009 data = skb_put(skb, fraglen + exthdrlen - pagedlen); 1010 skb_set_network_header(skb, exthdrlen); 1011 skb->transport_header = (skb->network_header + 1012 fragheaderlen); 1013 data += fragheaderlen + exthdrlen; 1014 1015 if (fraggap) { 1016 skb->csum = skb_copy_and_csum_bits( 1017 skb_prev, maxfraglen, 1018 data + transhdrlen, fraggap, 0); 1019 skb_prev->csum = csum_sub(skb_prev->csum, 1020 skb->csum); 1021 data += fraggap; 1022 pskb_trim_unique(skb_prev, maxfraglen); 1023 } 1024 1025 copy = datalen - transhdrlen - fraggap - pagedlen; 1026 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1027 err = -EFAULT; 1028 kfree_skb(skb); 1029 goto error; 1030 } 1031 1032 offset += copy; 1033 length -= copy + transhdrlen; 1034 transhdrlen = 0; 1035 exthdrlen = 0; 1036 csummode = CHECKSUM_NONE; 1037 1038 if ((flags & MSG_CONFIRM) && !skb_prev) 1039 skb_set_dst_pending_confirm(skb, 1); 1040 1041 /* 1042 * Put the packet on the pending queue. 1043 */ 1044 if (!skb->destructor) { 1045 skb->destructor = sock_wfree; 1046 skb->sk = sk; 1047 wmem_alloc_delta += skb->truesize; 1048 } 1049 __skb_queue_tail(queue, skb); 1050 continue; 1051 } 1052 1053 if (copy > length) 1054 copy = length; 1055 1056 if (!(rt->dst.dev->features&NETIF_F_SG) && 1057 skb_tailroom(skb) >= copy) { 1058 unsigned int off; 1059 1060 off = skb->len; 1061 if (getfrag(from, skb_put(skb, copy), 1062 offset, copy, off, skb) < 0) { 1063 __skb_trim(skb, off); 1064 err = -EFAULT; 1065 goto error; 1066 } 1067 } else { 1068 int i = skb_shinfo(skb)->nr_frags; 1069 1070 err = -ENOMEM; 1071 if (!sk_page_frag_refill(sk, pfrag)) 1072 goto error; 1073 1074 if (!skb_can_coalesce(skb, i, pfrag->page, 1075 pfrag->offset)) { 1076 err = -EMSGSIZE; 1077 if (i == MAX_SKB_FRAGS) 1078 goto error; 1079 1080 __skb_fill_page_desc(skb, i, pfrag->page, 1081 pfrag->offset, 0); 1082 skb_shinfo(skb)->nr_frags = ++i; 1083 get_page(pfrag->page); 1084 } 1085 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1086 if (getfrag(from, 1087 page_address(pfrag->page) + pfrag->offset, 1088 offset, copy, skb->len, skb) < 0) 1089 goto error_efault; 1090 1091 pfrag->offset += copy; 1092 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1093 skb->len += copy; 1094 skb->data_len += copy; 1095 skb->truesize += copy; 1096 wmem_alloc_delta += copy; 1097 } 1098 offset += copy; 1099 length -= copy; 1100 } 1101 1102 if (wmem_alloc_delta) 1103 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1104 return 0; 1105 1106 error_efault: 1107 err = -EFAULT; 1108 error: 1109 cork->length -= length; 1110 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1111 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1112 return err; 1113 } 1114 1115 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1116 struct ipcm_cookie *ipc, struct rtable **rtp) 1117 { 1118 struct ip_options_rcu *opt; 1119 struct rtable *rt; 1120 1121 rt = *rtp; 1122 if (unlikely(!rt)) 1123 return -EFAULT; 1124 1125 /* 1126 * setup for corking. 1127 */ 1128 opt = ipc->opt; 1129 if (opt) { 1130 if (!cork->opt) { 1131 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1132 sk->sk_allocation); 1133 if (unlikely(!cork->opt)) 1134 return -ENOBUFS; 1135 } 1136 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1137 cork->flags |= IPCORK_OPT; 1138 cork->addr = ipc->addr; 1139 } 1140 1141 /* 1142 * We steal reference to this route, caller should not release it 1143 */ 1144 *rtp = NULL; 1145 cork->fragsize = ip_sk_use_pmtu(sk) ? 1146 dst_mtu(&rt->dst) : rt->dst.dev->mtu; 1147 1148 cork->gso_size = sk->sk_type == SOCK_DGRAM ? ipc->gso_size : 0; 1149 cork->dst = &rt->dst; 1150 cork->length = 0; 1151 cork->ttl = ipc->ttl; 1152 cork->tos = ipc->tos; 1153 cork->priority = ipc->priority; 1154 cork->tx_flags = ipc->tx_flags; 1155 1156 return 0; 1157 } 1158 1159 /* 1160 * ip_append_data() and ip_append_page() can make one large IP datagram 1161 * from many pieces of data. Each pieces will be holded on the socket 1162 * until ip_push_pending_frames() is called. Each piece can be a page 1163 * or non-page data. 1164 * 1165 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1166 * this interface potentially. 1167 * 1168 * LATER: length must be adjusted by pad at tail, when it is required. 1169 */ 1170 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1171 int getfrag(void *from, char *to, int offset, int len, 1172 int odd, struct sk_buff *skb), 1173 void *from, int length, int transhdrlen, 1174 struct ipcm_cookie *ipc, struct rtable **rtp, 1175 unsigned int flags) 1176 { 1177 struct inet_sock *inet = inet_sk(sk); 1178 int err; 1179 1180 if (flags&MSG_PROBE) 1181 return 0; 1182 1183 if (skb_queue_empty(&sk->sk_write_queue)) { 1184 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1185 if (err) 1186 return err; 1187 } else { 1188 transhdrlen = 0; 1189 } 1190 1191 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1192 sk_page_frag(sk), getfrag, 1193 from, length, transhdrlen, flags); 1194 } 1195 1196 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1197 int offset, size_t size, int flags) 1198 { 1199 struct inet_sock *inet = inet_sk(sk); 1200 struct sk_buff *skb; 1201 struct rtable *rt; 1202 struct ip_options *opt = NULL; 1203 struct inet_cork *cork; 1204 int hh_len; 1205 int mtu; 1206 int len; 1207 int err; 1208 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1209 1210 if (inet->hdrincl) 1211 return -EPERM; 1212 1213 if (flags&MSG_PROBE) 1214 return 0; 1215 1216 if (skb_queue_empty(&sk->sk_write_queue)) 1217 return -EINVAL; 1218 1219 cork = &inet->cork.base; 1220 rt = (struct rtable *)cork->dst; 1221 if (cork->flags & IPCORK_OPT) 1222 opt = cork->opt; 1223 1224 if (!(rt->dst.dev->features&NETIF_F_SG)) 1225 return -EOPNOTSUPP; 1226 1227 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1228 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 1229 1230 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1231 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1232 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1233 1234 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1235 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1236 mtu - (opt ? opt->optlen : 0)); 1237 return -EMSGSIZE; 1238 } 1239 1240 skb = skb_peek_tail(&sk->sk_write_queue); 1241 if (!skb) 1242 return -EINVAL; 1243 1244 cork->length += size; 1245 1246 while (size > 0) { 1247 /* Check if the remaining data fits into current packet. */ 1248 len = mtu - skb->len; 1249 if (len < size) 1250 len = maxfraglen - skb->len; 1251 1252 if (len <= 0) { 1253 struct sk_buff *skb_prev; 1254 int alloclen; 1255 1256 skb_prev = skb; 1257 fraggap = skb_prev->len - maxfraglen; 1258 1259 alloclen = fragheaderlen + hh_len + fraggap + 15; 1260 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1261 if (unlikely(!skb)) { 1262 err = -ENOBUFS; 1263 goto error; 1264 } 1265 1266 /* 1267 * Fill in the control structures 1268 */ 1269 skb->ip_summed = CHECKSUM_NONE; 1270 skb->csum = 0; 1271 skb_reserve(skb, hh_len); 1272 1273 /* 1274 * Find where to start putting bytes. 1275 */ 1276 skb_put(skb, fragheaderlen + fraggap); 1277 skb_reset_network_header(skb); 1278 skb->transport_header = (skb->network_header + 1279 fragheaderlen); 1280 if (fraggap) { 1281 skb->csum = skb_copy_and_csum_bits(skb_prev, 1282 maxfraglen, 1283 skb_transport_header(skb), 1284 fraggap, 0); 1285 skb_prev->csum = csum_sub(skb_prev->csum, 1286 skb->csum); 1287 pskb_trim_unique(skb_prev, maxfraglen); 1288 } 1289 1290 /* 1291 * Put the packet on the pending queue. 1292 */ 1293 __skb_queue_tail(&sk->sk_write_queue, skb); 1294 continue; 1295 } 1296 1297 if (len > size) 1298 len = size; 1299 1300 if (skb_append_pagefrags(skb, page, offset, len)) { 1301 err = -EMSGSIZE; 1302 goto error; 1303 } 1304 1305 if (skb->ip_summed == CHECKSUM_NONE) { 1306 __wsum csum; 1307 csum = csum_page(page, offset, len); 1308 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1309 } 1310 1311 skb->len += len; 1312 skb->data_len += len; 1313 skb->truesize += len; 1314 refcount_add(len, &sk->sk_wmem_alloc); 1315 offset += len; 1316 size -= len; 1317 } 1318 return 0; 1319 1320 error: 1321 cork->length -= size; 1322 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1323 return err; 1324 } 1325 1326 static void ip_cork_release(struct inet_cork *cork) 1327 { 1328 cork->flags &= ~IPCORK_OPT; 1329 kfree(cork->opt); 1330 cork->opt = NULL; 1331 dst_release(cork->dst); 1332 cork->dst = NULL; 1333 } 1334 1335 /* 1336 * Combined all pending IP fragments on the socket as one IP datagram 1337 * and push them out. 1338 */ 1339 struct sk_buff *__ip_make_skb(struct sock *sk, 1340 struct flowi4 *fl4, 1341 struct sk_buff_head *queue, 1342 struct inet_cork *cork) 1343 { 1344 struct sk_buff *skb, *tmp_skb; 1345 struct sk_buff **tail_skb; 1346 struct inet_sock *inet = inet_sk(sk); 1347 struct net *net = sock_net(sk); 1348 struct ip_options *opt = NULL; 1349 struct rtable *rt = (struct rtable *)cork->dst; 1350 struct iphdr *iph; 1351 __be16 df = 0; 1352 __u8 ttl; 1353 1354 skb = __skb_dequeue(queue); 1355 if (!skb) 1356 goto out; 1357 tail_skb = &(skb_shinfo(skb)->frag_list); 1358 1359 /* move skb->data to ip header from ext header */ 1360 if (skb->data < skb_network_header(skb)) 1361 __skb_pull(skb, skb_network_offset(skb)); 1362 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1363 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1364 *tail_skb = tmp_skb; 1365 tail_skb = &(tmp_skb->next); 1366 skb->len += tmp_skb->len; 1367 skb->data_len += tmp_skb->len; 1368 skb->truesize += tmp_skb->truesize; 1369 tmp_skb->destructor = NULL; 1370 tmp_skb->sk = NULL; 1371 } 1372 1373 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1374 * to fragment the frame generated here. No matter, what transforms 1375 * how transforms change size of the packet, it will come out. 1376 */ 1377 skb->ignore_df = ip_sk_ignore_df(sk); 1378 1379 /* DF bit is set when we want to see DF on outgoing frames. 1380 * If ignore_df is set too, we still allow to fragment this frame 1381 * locally. */ 1382 if (inet->pmtudisc == IP_PMTUDISC_DO || 1383 inet->pmtudisc == IP_PMTUDISC_PROBE || 1384 (skb->len <= dst_mtu(&rt->dst) && 1385 ip_dont_fragment(sk, &rt->dst))) 1386 df = htons(IP_DF); 1387 1388 if (cork->flags & IPCORK_OPT) 1389 opt = cork->opt; 1390 1391 if (cork->ttl != 0) 1392 ttl = cork->ttl; 1393 else if (rt->rt_type == RTN_MULTICAST) 1394 ttl = inet->mc_ttl; 1395 else 1396 ttl = ip_select_ttl(inet, &rt->dst); 1397 1398 iph = ip_hdr(skb); 1399 iph->version = 4; 1400 iph->ihl = 5; 1401 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1402 iph->frag_off = df; 1403 iph->ttl = ttl; 1404 iph->protocol = sk->sk_protocol; 1405 ip_copy_addrs(iph, fl4); 1406 ip_select_ident(net, skb, sk); 1407 1408 if (opt) { 1409 iph->ihl += opt->optlen>>2; 1410 ip_options_build(skb, opt, cork->addr, rt, 0); 1411 } 1412 1413 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1414 skb->mark = sk->sk_mark; 1415 /* 1416 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1417 * on dst refcount 1418 */ 1419 cork->dst = NULL; 1420 skb_dst_set(skb, &rt->dst); 1421 1422 if (iph->protocol == IPPROTO_ICMP) 1423 icmp_out_count(net, ((struct icmphdr *) 1424 skb_transport_header(skb))->type); 1425 1426 ip_cork_release(cork); 1427 out: 1428 return skb; 1429 } 1430 1431 int ip_send_skb(struct net *net, struct sk_buff *skb) 1432 { 1433 int err; 1434 1435 err = ip_local_out(net, skb->sk, skb); 1436 if (err) { 1437 if (err > 0) 1438 err = net_xmit_errno(err); 1439 if (err) 1440 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1441 } 1442 1443 return err; 1444 } 1445 1446 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1447 { 1448 struct sk_buff *skb; 1449 1450 skb = ip_finish_skb(sk, fl4); 1451 if (!skb) 1452 return 0; 1453 1454 /* Netfilter gets whole the not fragmented skb. */ 1455 return ip_send_skb(sock_net(sk), skb); 1456 } 1457 1458 /* 1459 * Throw away all pending data on the socket. 1460 */ 1461 static void __ip_flush_pending_frames(struct sock *sk, 1462 struct sk_buff_head *queue, 1463 struct inet_cork *cork) 1464 { 1465 struct sk_buff *skb; 1466 1467 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1468 kfree_skb(skb); 1469 1470 ip_cork_release(cork); 1471 } 1472 1473 void ip_flush_pending_frames(struct sock *sk) 1474 { 1475 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1476 } 1477 1478 struct sk_buff *ip_make_skb(struct sock *sk, 1479 struct flowi4 *fl4, 1480 int getfrag(void *from, char *to, int offset, 1481 int len, int odd, struct sk_buff *skb), 1482 void *from, int length, int transhdrlen, 1483 struct ipcm_cookie *ipc, struct rtable **rtp, 1484 struct inet_cork *cork, unsigned int flags) 1485 { 1486 struct sk_buff_head queue; 1487 int err; 1488 1489 if (flags & MSG_PROBE) 1490 return NULL; 1491 1492 __skb_queue_head_init(&queue); 1493 1494 cork->flags = 0; 1495 cork->addr = 0; 1496 cork->opt = NULL; 1497 err = ip_setup_cork(sk, cork, ipc, rtp); 1498 if (err) 1499 return ERR_PTR(err); 1500 1501 err = __ip_append_data(sk, fl4, &queue, cork, 1502 ¤t->task_frag, getfrag, 1503 from, length, transhdrlen, flags); 1504 if (err) { 1505 __ip_flush_pending_frames(sk, &queue, cork); 1506 return ERR_PTR(err); 1507 } 1508 1509 return __ip_make_skb(sk, fl4, &queue, cork); 1510 } 1511 1512 /* 1513 * Fetch data from kernel space and fill in checksum if needed. 1514 */ 1515 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1516 int len, int odd, struct sk_buff *skb) 1517 { 1518 __wsum csum; 1519 1520 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); 1521 skb->csum = csum_block_add(skb->csum, csum, odd); 1522 return 0; 1523 } 1524 1525 /* 1526 * Generic function to send a packet as reply to another packet. 1527 * Used to send some TCP resets/acks so far. 1528 */ 1529 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1530 const struct ip_options *sopt, 1531 __be32 daddr, __be32 saddr, 1532 const struct ip_reply_arg *arg, 1533 unsigned int len) 1534 { 1535 struct ip_options_data replyopts; 1536 struct ipcm_cookie ipc; 1537 struct flowi4 fl4; 1538 struct rtable *rt = skb_rtable(skb); 1539 struct net *net = sock_net(sk); 1540 struct sk_buff *nskb; 1541 int err; 1542 int oif; 1543 1544 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) 1545 return; 1546 1547 ipc.addr = daddr; 1548 ipc.opt = NULL; 1549 ipc.tx_flags = 0; 1550 ipc.ttl = 0; 1551 ipc.tos = -1; 1552 1553 if (replyopts.opt.opt.optlen) { 1554 ipc.opt = &replyopts.opt; 1555 1556 if (replyopts.opt.opt.srr) 1557 daddr = replyopts.opt.opt.faddr; 1558 } 1559 1560 oif = arg->bound_dev_if; 1561 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1562 oif = skb->skb_iif; 1563 1564 flowi4_init_output(&fl4, oif, 1565 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, 1566 RT_TOS(arg->tos), 1567 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1568 ip_reply_arg_flowi_flags(arg), 1569 daddr, saddr, 1570 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1571 arg->uid); 1572 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1573 rt = ip_route_output_key(net, &fl4); 1574 if (IS_ERR(rt)) 1575 return; 1576 1577 inet_sk(sk)->tos = arg->tos; 1578 1579 sk->sk_priority = skb->priority; 1580 sk->sk_protocol = ip_hdr(skb)->protocol; 1581 sk->sk_bound_dev_if = arg->bound_dev_if; 1582 sk->sk_sndbuf = sysctl_wmem_default; 1583 sk->sk_mark = fl4.flowi4_mark; 1584 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1585 len, 0, &ipc, &rt, MSG_DONTWAIT); 1586 if (unlikely(err)) { 1587 ip_flush_pending_frames(sk); 1588 goto out; 1589 } 1590 1591 nskb = skb_peek(&sk->sk_write_queue); 1592 if (nskb) { 1593 if (arg->csumoffset >= 0) 1594 *((__sum16 *)skb_transport_header(nskb) + 1595 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1596 arg->csum)); 1597 nskb->ip_summed = CHECKSUM_NONE; 1598 ip_push_pending_frames(sk, &fl4); 1599 } 1600 out: 1601 ip_rt_put(rt); 1602 } 1603 1604 void __init ip_init(void) 1605 { 1606 ip_rt_init(); 1607 inet_initpeers(); 1608 1609 #if defined(CONFIG_IP_MULTICAST) 1610 igmp_mc_init(); 1611 #endif 1612 } 1613