1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The Internet Protocol (IP) output module. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Donald Becker, <becker@super.org> 12 * Alan Cox, <Alan.Cox@linux.org> 13 * Richard Underwood 14 * Stefan Becker, <stefanb@yello.ping.de> 15 * Jorge Cwik, <jorge@laser.satlink.net> 16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 17 * Hirokazu Takahashi, <taka@valinux.co.jp> 18 * 19 * See ip_input.c for original log 20 * 21 * Fixes: 22 * Alan Cox : Missing nonblock feature in ip_build_xmit. 23 * Mike Kilburn : htons() missing in ip_build_xmit. 24 * Bradford Johnson: Fix faulty handling of some frames when 25 * no route is found. 26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 27 * (in case if packet not accepted by 28 * output firewall rules) 29 * Mike McLagan : Routing by source 30 * Alexey Kuznetsov: use new route cache 31 * Andi Kleen: Fix broken PMTU recovery and remove 32 * some redundant tests. 33 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 34 * Andi Kleen : Replace ip_reply with ip_send_reply. 35 * Andi Kleen : Split fast and slow ip_build_xmit path 36 * for decreased register pressure on x86 37 * and more readability. 38 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 39 * silently drop skb instead of failing with -EPERM. 40 * Detlev Wengorz : Copy protocol for fragments. 41 * Hirokazu Takahashi: HW checksumming for outgoing UDP 42 * datagrams. 43 * Hirokazu Takahashi: sendfile() on UDP works now. 44 */ 45 46 #include <linux/uaccess.h> 47 #include <linux/module.h> 48 #include <linux/types.h> 49 #include <linux/kernel.h> 50 #include <linux/mm.h> 51 #include <linux/string.h> 52 #include <linux/errno.h> 53 #include <linux/highmem.h> 54 #include <linux/slab.h> 55 56 #include <linux/socket.h> 57 #include <linux/sockios.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/etherdevice.h> 62 #include <linux/proc_fs.h> 63 #include <linux/stat.h> 64 #include <linux/init.h> 65 66 #include <net/snmp.h> 67 #include <net/ip.h> 68 #include <net/protocol.h> 69 #include <net/route.h> 70 #include <net/xfrm.h> 71 #include <linux/skbuff.h> 72 #include <net/sock.h> 73 #include <net/arp.h> 74 #include <net/icmp.h> 75 #include <net/checksum.h> 76 #include <net/gso.h> 77 #include <net/inetpeer.h> 78 #include <net/inet_ecn.h> 79 #include <net/lwtunnel.h> 80 #include <net/inet_dscp.h> 81 #include <linux/bpf-cgroup.h> 82 #include <linux/igmp.h> 83 #include <linux/netfilter_ipv4.h> 84 #include <linux/netfilter_bridge.h> 85 #include <linux/netlink.h> 86 #include <linux/tcp.h> 87 88 static int 89 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 90 unsigned int mtu, 91 int (*output)(struct net *, struct sock *, struct sk_buff *)); 92 93 /* Generate a checksum for an outgoing IP datagram. */ 94 void ip_send_check(struct iphdr *iph) 95 { 96 iph->check = 0; 97 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 98 } 99 EXPORT_SYMBOL(ip_send_check); 100 101 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 102 { 103 struct iphdr *iph = ip_hdr(skb); 104 105 IP_INC_STATS(net, IPSTATS_MIB_OUTREQUESTS); 106 107 iph_set_totlen(iph, skb->len); 108 ip_send_check(iph); 109 110 /* if egress device is enslaved to an L3 master device pass the 111 * skb to its handler for processing 112 */ 113 skb = l3mdev_ip_out(sk, skb); 114 if (unlikely(!skb)) 115 return 0; 116 117 skb->protocol = htons(ETH_P_IP); 118 119 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 120 net, sk, skb, NULL, skb_dst(skb)->dev, 121 dst_output); 122 } 123 124 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 125 { 126 int err; 127 128 err = __ip_local_out(net, sk, skb); 129 if (likely(err == 1)) 130 err = dst_output(net, sk, skb); 131 132 return err; 133 } 134 EXPORT_SYMBOL_GPL(ip_local_out); 135 136 static inline int ip_select_ttl(const struct inet_sock *inet, 137 const struct dst_entry *dst) 138 { 139 int ttl = READ_ONCE(inet->uc_ttl); 140 141 if (ttl < 0) 142 ttl = ip4_dst_hoplimit(dst); 143 return ttl; 144 } 145 146 /* 147 * Add an ip header to a skbuff and send it out. 148 * 149 */ 150 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 151 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt, 152 u8 tos) 153 { 154 const struct inet_sock *inet = inet_sk(sk); 155 struct rtable *rt = skb_rtable(skb); 156 struct net *net = sock_net(sk); 157 struct iphdr *iph; 158 159 /* Build the IP header. */ 160 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 161 skb_reset_network_header(skb); 162 iph = ip_hdr(skb); 163 iph->version = 4; 164 iph->ihl = 5; 165 iph->tos = tos; 166 iph->ttl = ip_select_ttl(inet, &rt->dst); 167 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 168 iph->saddr = saddr; 169 iph->protocol = sk->sk_protocol; 170 /* Do not bother generating IPID for small packets (eg SYNACK) */ 171 if (skb->len <= IPV4_MIN_MTU || ip_dont_fragment(sk, &rt->dst)) { 172 iph->frag_off = htons(IP_DF); 173 iph->id = 0; 174 } else { 175 iph->frag_off = 0; 176 /* TCP packets here are SYNACK with fat IPv4/TCP options. 177 * Avoid using the hashed IP ident generator. 178 */ 179 if (sk->sk_protocol == IPPROTO_TCP) 180 iph->id = (__force __be16)get_random_u16(); 181 else 182 __ip_select_ident(net, iph, 1); 183 } 184 185 if (opt && opt->opt.optlen) { 186 iph->ihl += opt->opt.optlen>>2; 187 ip_options_build(skb, &opt->opt, daddr, rt); 188 } 189 190 skb->priority = READ_ONCE(sk->sk_priority); 191 if (!skb->mark) 192 skb->mark = READ_ONCE(sk->sk_mark); 193 194 /* Send it out. */ 195 return ip_local_out(net, skb->sk, skb); 196 } 197 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 198 199 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 200 { 201 struct dst_entry *dst = skb_dst(skb); 202 struct rtable *rt = dst_rtable(dst); 203 struct net_device *dev = dst->dev; 204 unsigned int hh_len = LL_RESERVED_SPACE(dev); 205 struct neighbour *neigh; 206 bool is_v6gw = false; 207 208 if (rt->rt_type == RTN_MULTICAST) { 209 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 210 } else if (rt->rt_type == RTN_BROADCAST) 211 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 212 213 /* OUTOCTETS should be counted after fragment */ 214 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 215 216 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 217 skb = skb_expand_head(skb, hh_len); 218 if (!skb) 219 return -ENOMEM; 220 } 221 222 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 223 int res = lwtunnel_xmit(skb); 224 225 if (res != LWTUNNEL_XMIT_CONTINUE) 226 return res; 227 } 228 229 rcu_read_lock(); 230 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 231 if (!IS_ERR(neigh)) { 232 int res; 233 234 sock_confirm_neigh(skb, neigh); 235 /* if crossing protocols, can not use the cached header */ 236 res = neigh_output(neigh, skb, is_v6gw); 237 rcu_read_unlock(); 238 return res; 239 } 240 rcu_read_unlock(); 241 242 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 243 __func__); 244 kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL); 245 return PTR_ERR(neigh); 246 } 247 248 static int ip_finish_output_gso(struct net *net, struct sock *sk, 249 struct sk_buff *skb, unsigned int mtu) 250 { 251 struct sk_buff *segs, *nskb; 252 netdev_features_t features; 253 int ret = 0; 254 255 /* common case: seglen is <= mtu 256 */ 257 if (skb_gso_validate_network_len(skb, mtu)) 258 return ip_finish_output2(net, sk, skb); 259 260 /* Slowpath - GSO segment length exceeds the egress MTU. 261 * 262 * This can happen in several cases: 263 * - Forwarding of a TCP GRO skb, when DF flag is not set. 264 * - Forwarding of an skb that arrived on a virtualization interface 265 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 266 * stack. 267 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 268 * interface with a smaller MTU. 269 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 270 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 271 * insufficient MTU. 272 */ 273 features = netif_skb_features(skb); 274 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET); 275 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 276 if (IS_ERR_OR_NULL(segs)) { 277 kfree_skb(skb); 278 return -ENOMEM; 279 } 280 281 consume_skb(skb); 282 283 skb_list_walk_safe(segs, segs, nskb) { 284 int err; 285 286 skb_mark_not_on_list(segs); 287 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 288 289 if (err && ret == 0) 290 ret = err; 291 } 292 293 return ret; 294 } 295 296 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 297 { 298 unsigned int mtu; 299 300 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 301 /* Policy lookup after SNAT yielded a new policy */ 302 if (skb_dst(skb)->xfrm) { 303 IPCB(skb)->flags |= IPSKB_REROUTED; 304 return dst_output(net, sk, skb); 305 } 306 #endif 307 mtu = ip_skb_dst_mtu(sk, skb); 308 if (skb_is_gso(skb)) 309 return ip_finish_output_gso(net, sk, skb, mtu); 310 311 if (skb->len > mtu || IPCB(skb)->frag_max_size) 312 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 313 314 return ip_finish_output2(net, sk, skb); 315 } 316 317 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 318 { 319 int ret; 320 321 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 322 switch (ret) { 323 case NET_XMIT_SUCCESS: 324 return __ip_finish_output(net, sk, skb); 325 case NET_XMIT_CN: 326 return __ip_finish_output(net, sk, skb) ? : ret; 327 default: 328 kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS); 329 return ret; 330 } 331 } 332 333 static int ip_mc_finish_output(struct net *net, struct sock *sk, 334 struct sk_buff *skb) 335 { 336 struct rtable *new_rt; 337 bool do_cn = false; 338 int ret, err; 339 340 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 341 switch (ret) { 342 case NET_XMIT_CN: 343 do_cn = true; 344 fallthrough; 345 case NET_XMIT_SUCCESS: 346 break; 347 default: 348 kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS); 349 return ret; 350 } 351 352 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting 353 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten, 354 * see ipv4_pktinfo_prepare(). 355 */ 356 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb)); 357 if (new_rt) { 358 new_rt->rt_iif = 0; 359 skb_dst_drop(skb); 360 skb_dst_set(skb, &new_rt->dst); 361 } 362 363 err = dev_loopback_xmit(net, sk, skb); 364 return (do_cn && err) ? ret : err; 365 } 366 367 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 368 { 369 struct rtable *rt = skb_rtable(skb); 370 struct net_device *dev = rt->dst.dev; 371 372 /* 373 * If the indicated interface is up and running, send the packet. 374 */ 375 skb->dev = dev; 376 skb->protocol = htons(ETH_P_IP); 377 378 /* 379 * Multicasts are looped back for other local users 380 */ 381 382 if (rt->rt_flags&RTCF_MULTICAST) { 383 if (sk_mc_loop(sk) 384 #ifdef CONFIG_IP_MROUTE 385 /* Small optimization: do not loopback not local frames, 386 which returned after forwarding; they will be dropped 387 by ip_mr_input in any case. 388 Note, that local frames are looped back to be delivered 389 to local recipients. 390 391 This check is duplicated in ip_mr_input at the moment. 392 */ 393 && 394 ((rt->rt_flags & RTCF_LOCAL) || 395 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 396 #endif 397 ) { 398 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 399 if (newskb) 400 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 401 net, sk, newskb, NULL, newskb->dev, 402 ip_mc_finish_output); 403 } 404 405 /* Multicasts with ttl 0 must not go beyond the host */ 406 407 if (ip_hdr(skb)->ttl == 0) { 408 kfree_skb(skb); 409 return 0; 410 } 411 } 412 413 if (rt->rt_flags&RTCF_BROADCAST) { 414 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 415 if (newskb) 416 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 417 net, sk, newskb, NULL, newskb->dev, 418 ip_mc_finish_output); 419 } 420 421 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 422 net, sk, skb, NULL, skb->dev, 423 ip_finish_output, 424 !(IPCB(skb)->flags & IPSKB_REROUTED)); 425 } 426 427 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 428 { 429 struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev; 430 431 skb->dev = dev; 432 skb->protocol = htons(ETH_P_IP); 433 434 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 435 net, sk, skb, indev, dev, 436 ip_finish_output, 437 !(IPCB(skb)->flags & IPSKB_REROUTED)); 438 } 439 EXPORT_SYMBOL(ip_output); 440 441 /* 442 * copy saddr and daddr, possibly using 64bit load/stores 443 * Equivalent to : 444 * iph->saddr = fl4->saddr; 445 * iph->daddr = fl4->daddr; 446 */ 447 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 448 { 449 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 450 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 451 452 iph->saddr = fl4->saddr; 453 iph->daddr = fl4->daddr; 454 } 455 456 /* Note: skb->sk can be different from sk, in case of tunnels */ 457 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, 458 __u8 tos) 459 { 460 struct inet_sock *inet = inet_sk(sk); 461 struct net *net = sock_net(sk); 462 struct ip_options_rcu *inet_opt; 463 struct flowi4 *fl4; 464 struct rtable *rt; 465 struct iphdr *iph; 466 int res; 467 468 /* Skip all of this if the packet is already routed, 469 * f.e. by something like SCTP. 470 */ 471 rcu_read_lock(); 472 inet_opt = rcu_dereference(inet->inet_opt); 473 fl4 = &fl->u.ip4; 474 rt = skb_rtable(skb); 475 if (rt) 476 goto packet_routed; 477 478 /* Make sure we can route this packet. */ 479 rt = dst_rtable(__sk_dst_check(sk, 0)); 480 if (!rt) { 481 __be32 daddr; 482 483 /* Use correct destination address if we have options. */ 484 daddr = inet->inet_daddr; 485 if (inet_opt && inet_opt->opt.srr) 486 daddr = inet_opt->opt.faddr; 487 488 /* If this fails, retransmit mechanism of transport layer will 489 * keep trying until route appears or the connection times 490 * itself out. 491 */ 492 rt = ip_route_output_ports(net, fl4, sk, 493 daddr, inet->inet_saddr, 494 inet->inet_dport, 495 inet->inet_sport, 496 sk->sk_protocol, 497 tos & INET_DSCP_MASK, 498 sk->sk_bound_dev_if); 499 if (IS_ERR(rt)) 500 goto no_route; 501 sk_setup_caps(sk, &rt->dst); 502 } 503 skb_dst_set_noref(skb, &rt->dst); 504 505 packet_routed: 506 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 507 goto no_route; 508 509 /* OK, we know where to send it, allocate and build IP header. */ 510 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 511 skb_reset_network_header(skb); 512 iph = ip_hdr(skb); 513 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); 514 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 515 iph->frag_off = htons(IP_DF); 516 else 517 iph->frag_off = 0; 518 iph->ttl = ip_select_ttl(inet, &rt->dst); 519 iph->protocol = sk->sk_protocol; 520 ip_copy_addrs(iph, fl4); 521 522 /* Transport layer set skb->h.foo itself. */ 523 524 if (inet_opt && inet_opt->opt.optlen) { 525 iph->ihl += inet_opt->opt.optlen >> 2; 526 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt); 527 } 528 529 ip_select_ident_segs(net, skb, sk, 530 skb_shinfo(skb)->gso_segs ?: 1); 531 532 /* TODO : should we use skb->sk here instead of sk ? */ 533 skb->priority = READ_ONCE(sk->sk_priority); 534 skb->mark = READ_ONCE(sk->sk_mark); 535 536 res = ip_local_out(net, sk, skb); 537 rcu_read_unlock(); 538 return res; 539 540 no_route: 541 rcu_read_unlock(); 542 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 543 kfree_skb_reason(skb, SKB_DROP_REASON_IP_OUTNOROUTES); 544 return -EHOSTUNREACH; 545 } 546 EXPORT_SYMBOL(__ip_queue_xmit); 547 548 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 549 { 550 return __ip_queue_xmit(sk, skb, fl, READ_ONCE(inet_sk(sk)->tos)); 551 } 552 EXPORT_SYMBOL(ip_queue_xmit); 553 554 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 555 { 556 to->pkt_type = from->pkt_type; 557 to->priority = from->priority; 558 to->protocol = from->protocol; 559 to->skb_iif = from->skb_iif; 560 skb_dst_drop(to); 561 skb_dst_copy(to, from); 562 to->dev = from->dev; 563 to->mark = from->mark; 564 565 skb_copy_hash(to, from); 566 567 #ifdef CONFIG_NET_SCHED 568 to->tc_index = from->tc_index; 569 #endif 570 nf_copy(to, from); 571 skb_ext_copy(to, from); 572 #if IS_ENABLED(CONFIG_IP_VS) 573 to->ipvs_property = from->ipvs_property; 574 #endif 575 skb_copy_secmark(to, from); 576 } 577 578 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 579 unsigned int mtu, 580 int (*output)(struct net *, struct sock *, struct sk_buff *)) 581 { 582 struct iphdr *iph = ip_hdr(skb); 583 584 if ((iph->frag_off & htons(IP_DF)) == 0) 585 return ip_do_fragment(net, sk, skb, output); 586 587 if (unlikely(!skb->ignore_df || 588 (IPCB(skb)->frag_max_size && 589 IPCB(skb)->frag_max_size > mtu))) { 590 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 591 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 592 htonl(mtu)); 593 kfree_skb(skb); 594 return -EMSGSIZE; 595 } 596 597 return ip_do_fragment(net, sk, skb, output); 598 } 599 600 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph, 601 unsigned int hlen, struct ip_fraglist_iter *iter) 602 { 603 unsigned int first_len = skb_pagelen(skb); 604 605 iter->frag = skb_shinfo(skb)->frag_list; 606 skb_frag_list_init(skb); 607 608 iter->offset = 0; 609 iter->iph = iph; 610 iter->hlen = hlen; 611 612 skb->data_len = first_len - skb_headlen(skb); 613 skb->len = first_len; 614 iph->tot_len = htons(first_len); 615 iph->frag_off = htons(IP_MF); 616 ip_send_check(iph); 617 } 618 EXPORT_SYMBOL(ip_fraglist_init); 619 620 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter) 621 { 622 unsigned int hlen = iter->hlen; 623 struct iphdr *iph = iter->iph; 624 struct sk_buff *frag; 625 626 frag = iter->frag; 627 frag->ip_summed = CHECKSUM_NONE; 628 skb_reset_transport_header(frag); 629 __skb_push(frag, hlen); 630 skb_reset_network_header(frag); 631 memcpy(skb_network_header(frag), iph, hlen); 632 iter->iph = ip_hdr(frag); 633 iph = iter->iph; 634 iph->tot_len = htons(frag->len); 635 ip_copy_metadata(frag, skb); 636 iter->offset += skb->len - hlen; 637 iph->frag_off = htons(iter->offset >> 3); 638 if (frag->next) 639 iph->frag_off |= htons(IP_MF); 640 /* Ready, complete checksum */ 641 ip_send_check(iph); 642 } 643 EXPORT_SYMBOL(ip_fraglist_prepare); 644 645 void ip_frag_init(struct sk_buff *skb, unsigned int hlen, 646 unsigned int ll_rs, unsigned int mtu, bool DF, 647 struct ip_frag_state *state) 648 { 649 struct iphdr *iph = ip_hdr(skb); 650 651 state->DF = DF; 652 state->hlen = hlen; 653 state->ll_rs = ll_rs; 654 state->mtu = mtu; 655 656 state->left = skb->len - hlen; /* Space per frame */ 657 state->ptr = hlen; /* Where to start from */ 658 659 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 660 state->not_last_frag = iph->frag_off & htons(IP_MF); 661 } 662 EXPORT_SYMBOL(ip_frag_init); 663 664 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to, 665 bool first_frag) 666 { 667 /* Copy the flags to each fragment. */ 668 IPCB(to)->flags = IPCB(from)->flags; 669 670 /* ANK: dirty, but effective trick. Upgrade options only if 671 * the segment to be fragmented was THE FIRST (otherwise, 672 * options are already fixed) and make it ONCE 673 * on the initial skb, so that all the following fragments 674 * will inherit fixed options. 675 */ 676 if (first_frag) 677 ip_options_fragment(from); 678 } 679 680 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state) 681 { 682 unsigned int len = state->left; 683 struct sk_buff *skb2; 684 struct iphdr *iph; 685 686 /* IF: it doesn't fit, use 'mtu' - the data space left */ 687 if (len > state->mtu) 688 len = state->mtu; 689 /* IF: we are not sending up to and including the packet end 690 then align the next start on an eight byte boundary */ 691 if (len < state->left) { 692 len &= ~7; 693 } 694 695 /* Allocate buffer */ 696 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC); 697 if (!skb2) 698 return ERR_PTR(-ENOMEM); 699 700 /* 701 * Set up data on packet 702 */ 703 704 ip_copy_metadata(skb2, skb); 705 skb_reserve(skb2, state->ll_rs); 706 skb_put(skb2, len + state->hlen); 707 skb_reset_network_header(skb2); 708 skb2->transport_header = skb2->network_header + state->hlen; 709 710 /* 711 * Charge the memory for the fragment to any owner 712 * it might possess 713 */ 714 715 if (skb->sk) 716 skb_set_owner_w(skb2, skb->sk); 717 718 /* 719 * Copy the packet header into the new buffer. 720 */ 721 722 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen); 723 724 /* 725 * Copy a block of the IP datagram. 726 */ 727 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len)) 728 BUG(); 729 state->left -= len; 730 731 /* 732 * Fill in the new header fields. 733 */ 734 iph = ip_hdr(skb2); 735 iph->frag_off = htons((state->offset >> 3)); 736 if (state->DF) 737 iph->frag_off |= htons(IP_DF); 738 739 /* 740 * Added AC : If we are fragmenting a fragment that's not the 741 * last fragment then keep MF on each bit 742 */ 743 if (state->left > 0 || state->not_last_frag) 744 iph->frag_off |= htons(IP_MF); 745 state->ptr += len; 746 state->offset += len; 747 748 iph->tot_len = htons(len + state->hlen); 749 750 ip_send_check(iph); 751 752 return skb2; 753 } 754 EXPORT_SYMBOL(ip_frag_next); 755 756 /* 757 * This IP datagram is too large to be sent in one piece. Break it up into 758 * smaller pieces (each of size equal to IP header plus 759 * a block of the data of the original IP data part) that will yet fit in a 760 * single device frame, and queue such a frame for sending. 761 */ 762 763 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 764 int (*output)(struct net *, struct sock *, struct sk_buff *)) 765 { 766 struct iphdr *iph; 767 struct sk_buff *skb2; 768 u8 tstamp_type = skb->tstamp_type; 769 struct rtable *rt = skb_rtable(skb); 770 unsigned int mtu, hlen, ll_rs; 771 struct ip_fraglist_iter iter; 772 ktime_t tstamp = skb->tstamp; 773 struct ip_frag_state state; 774 int err = 0; 775 776 /* for offloaded checksums cleanup checksum before fragmentation */ 777 if (skb->ip_summed == CHECKSUM_PARTIAL && 778 (err = skb_checksum_help(skb))) 779 goto fail; 780 781 /* 782 * Point into the IP datagram header. 783 */ 784 785 iph = ip_hdr(skb); 786 787 mtu = ip_skb_dst_mtu(sk, skb); 788 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 789 mtu = IPCB(skb)->frag_max_size; 790 791 /* 792 * Setup starting values. 793 */ 794 795 hlen = iph->ihl * 4; 796 mtu = mtu - hlen; /* Size of data space */ 797 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 798 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 799 800 /* When frag_list is given, use it. First, check its validity: 801 * some transformers could create wrong frag_list or break existing 802 * one, it is not prohibited. In this case fall back to copying. 803 * 804 * LATER: this step can be merged to real generation of fragments, 805 * we can switch to copy when see the first bad fragment. 806 */ 807 if (skb_has_frag_list(skb)) { 808 struct sk_buff *frag, *frag2; 809 unsigned int first_len = skb_pagelen(skb); 810 811 if (first_len - hlen > mtu || 812 ((first_len - hlen) & 7) || 813 ip_is_fragment(iph) || 814 skb_cloned(skb) || 815 skb_headroom(skb) < ll_rs) 816 goto slow_path; 817 818 skb_walk_frags(skb, frag) { 819 /* Correct geometry. */ 820 if (frag->len > mtu || 821 ((frag->len & 7) && frag->next) || 822 skb_headroom(frag) < hlen + ll_rs) 823 goto slow_path_clean; 824 825 /* Partially cloned skb? */ 826 if (skb_shared(frag)) 827 goto slow_path_clean; 828 829 BUG_ON(frag->sk); 830 if (skb->sk) { 831 frag->sk = skb->sk; 832 frag->destructor = sock_wfree; 833 } 834 skb->truesize -= frag->truesize; 835 } 836 837 /* Everything is OK. Generate! */ 838 ip_fraglist_init(skb, iph, hlen, &iter); 839 840 for (;;) { 841 /* Prepare header of the next frame, 842 * before previous one went down. */ 843 if (iter.frag) { 844 bool first_frag = (iter.offset == 0); 845 846 IPCB(iter.frag)->flags = IPCB(skb)->flags; 847 ip_fraglist_prepare(skb, &iter); 848 if (first_frag && IPCB(skb)->opt.optlen) { 849 /* ipcb->opt is not populated for frags 850 * coming from __ip_make_skb(), 851 * ip_options_fragment() needs optlen 852 */ 853 IPCB(iter.frag)->opt.optlen = 854 IPCB(skb)->opt.optlen; 855 ip_options_fragment(iter.frag); 856 ip_send_check(iter.iph); 857 } 858 } 859 860 skb_set_delivery_time(skb, tstamp, tstamp_type); 861 err = output(net, sk, skb); 862 863 if (!err) 864 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 865 if (err || !iter.frag) 866 break; 867 868 skb = ip_fraglist_next(&iter); 869 } 870 871 if (err == 0) { 872 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 873 return 0; 874 } 875 876 kfree_skb_list(iter.frag); 877 878 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 879 return err; 880 881 slow_path_clean: 882 skb_walk_frags(skb, frag2) { 883 if (frag2 == frag) 884 break; 885 frag2->sk = NULL; 886 frag2->destructor = NULL; 887 skb->truesize += frag2->truesize; 888 } 889 } 890 891 slow_path: 892 /* 893 * Fragment the datagram. 894 */ 895 896 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU, 897 &state); 898 899 /* 900 * Keep copying data until we run out. 901 */ 902 903 while (state.left > 0) { 904 bool first_frag = (state.offset == 0); 905 906 skb2 = ip_frag_next(skb, &state); 907 if (IS_ERR(skb2)) { 908 err = PTR_ERR(skb2); 909 goto fail; 910 } 911 ip_frag_ipcb(skb, skb2, first_frag); 912 913 /* 914 * Put this fragment into the sending queue. 915 */ 916 skb_set_delivery_time(skb2, tstamp, tstamp_type); 917 err = output(net, sk, skb2); 918 if (err) 919 goto fail; 920 921 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 922 } 923 consume_skb(skb); 924 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 925 return err; 926 927 fail: 928 kfree_skb(skb); 929 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 930 return err; 931 } 932 EXPORT_SYMBOL(ip_do_fragment); 933 934 int 935 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 936 { 937 struct msghdr *msg = from; 938 939 if (skb->ip_summed == CHECKSUM_PARTIAL) { 940 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 941 return -EFAULT; 942 } else { 943 __wsum csum = 0; 944 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 945 return -EFAULT; 946 skb->csum = csum_block_add(skb->csum, csum, odd); 947 } 948 return 0; 949 } 950 EXPORT_SYMBOL(ip_generic_getfrag); 951 952 static int __ip_append_data(struct sock *sk, 953 struct flowi4 *fl4, 954 struct sk_buff_head *queue, 955 struct inet_cork *cork, 956 struct page_frag *pfrag, 957 int getfrag(void *from, char *to, int offset, 958 int len, int odd, struct sk_buff *skb), 959 void *from, int length, int transhdrlen, 960 unsigned int flags) 961 { 962 struct inet_sock *inet = inet_sk(sk); 963 struct ubuf_info *uarg = NULL; 964 struct sk_buff *skb; 965 struct ip_options *opt = cork->opt; 966 int hh_len; 967 int exthdrlen; 968 int mtu; 969 int copy; 970 int err; 971 int offset = 0; 972 bool zc = false; 973 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 974 int csummode = CHECKSUM_NONE; 975 struct rtable *rt = dst_rtable(cork->dst); 976 bool paged, hold_tskey = false, extra_uref = false; 977 unsigned int wmem_alloc_delta = 0; 978 u32 tskey = 0; 979 980 skb = skb_peek_tail(queue); 981 982 exthdrlen = !skb ? rt->dst.header_len : 0; 983 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 984 paged = !!cork->gso_size; 985 986 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 987 988 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 989 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 990 maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu; 991 992 if (cork->length + length > maxnonfragsize - fragheaderlen) { 993 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 994 mtu - (opt ? opt->optlen : 0)); 995 return -EMSGSIZE; 996 } 997 998 /* 999 * transhdrlen > 0 means that this is the first fragment and we wish 1000 * it won't be fragmented in the future. 1001 */ 1002 if (transhdrlen && 1003 length + fragheaderlen <= mtu && 1004 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 1005 (!(flags & MSG_MORE) || cork->gso_size) && 1006 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) 1007 csummode = CHECKSUM_PARTIAL; 1008 1009 if ((flags & MSG_ZEROCOPY) && length) { 1010 struct msghdr *msg = from; 1011 1012 if (getfrag == ip_generic_getfrag && msg->msg_ubuf) { 1013 if (skb_zcopy(skb) && msg->msg_ubuf != skb_zcopy(skb)) 1014 return -EINVAL; 1015 1016 /* Leave uarg NULL if can't zerocopy, callers should 1017 * be able to handle it. 1018 */ 1019 if ((rt->dst.dev->features & NETIF_F_SG) && 1020 csummode == CHECKSUM_PARTIAL) { 1021 paged = true; 1022 zc = true; 1023 uarg = msg->msg_ubuf; 1024 } 1025 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1026 uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb)); 1027 if (!uarg) 1028 return -ENOBUFS; 1029 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */ 1030 if (rt->dst.dev->features & NETIF_F_SG && 1031 csummode == CHECKSUM_PARTIAL) { 1032 paged = true; 1033 zc = true; 1034 } else { 1035 uarg_to_msgzc(uarg)->zerocopy = 0; 1036 skb_zcopy_set(skb, uarg, &extra_uref); 1037 } 1038 } 1039 } else if ((flags & MSG_SPLICE_PAGES) && length) { 1040 if (inet_test_bit(HDRINCL, sk)) 1041 return -EPERM; 1042 if (rt->dst.dev->features & NETIF_F_SG && 1043 getfrag == ip_generic_getfrag) 1044 /* We need an empty buffer to attach stuff to */ 1045 paged = true; 1046 else 1047 flags &= ~MSG_SPLICE_PAGES; 1048 } 1049 1050 cork->length += length; 1051 1052 if (cork->tx_flags & SKBTX_ANY_TSTAMP && 1053 READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 1054 if (cork->flags & IPCORK_TS_OPT_ID) { 1055 tskey = cork->ts_opt_id; 1056 } else { 1057 tskey = atomic_inc_return(&sk->sk_tskey) - 1; 1058 hold_tskey = true; 1059 } 1060 } 1061 1062 /* So, what's going on in the loop below? 1063 * 1064 * We use calculated fragment length to generate chained skb, 1065 * each of segments is IP fragment ready for sending to network after 1066 * adding appropriate IP header. 1067 */ 1068 1069 if (!skb) 1070 goto alloc_new_skb; 1071 1072 while (length > 0) { 1073 /* Check if the remaining data fits into current packet. */ 1074 copy = mtu - skb->len; 1075 if (copy < length) 1076 copy = maxfraglen - skb->len; 1077 if (copy <= 0) { 1078 char *data; 1079 unsigned int datalen; 1080 unsigned int fraglen; 1081 unsigned int fraggap; 1082 unsigned int alloclen, alloc_extra; 1083 unsigned int pagedlen; 1084 struct sk_buff *skb_prev; 1085 alloc_new_skb: 1086 skb_prev = skb; 1087 if (skb_prev) 1088 fraggap = skb_prev->len - maxfraglen; 1089 else 1090 fraggap = 0; 1091 1092 /* 1093 * If remaining data exceeds the mtu, 1094 * we know we need more fragment(s). 1095 */ 1096 datalen = length + fraggap; 1097 if (datalen > mtu - fragheaderlen) 1098 datalen = maxfraglen - fragheaderlen; 1099 fraglen = datalen + fragheaderlen; 1100 pagedlen = 0; 1101 1102 alloc_extra = hh_len + 15; 1103 alloc_extra += exthdrlen; 1104 1105 /* The last fragment gets additional space at tail. 1106 * Note, with MSG_MORE we overallocate on fragments, 1107 * because we have no idea what fragment will be 1108 * the last. 1109 */ 1110 if (datalen == length + fraggap) 1111 alloc_extra += rt->dst.trailer_len; 1112 1113 if ((flags & MSG_MORE) && 1114 !(rt->dst.dev->features&NETIF_F_SG)) 1115 alloclen = mtu; 1116 else if (!paged && 1117 (fraglen + alloc_extra < SKB_MAX_ALLOC || 1118 !(rt->dst.dev->features & NETIF_F_SG))) 1119 alloclen = fraglen; 1120 else { 1121 alloclen = fragheaderlen + transhdrlen; 1122 pagedlen = datalen - transhdrlen; 1123 } 1124 1125 alloclen += alloc_extra; 1126 1127 if (transhdrlen) { 1128 skb = sock_alloc_send_skb(sk, alloclen, 1129 (flags & MSG_DONTWAIT), &err); 1130 } else { 1131 skb = NULL; 1132 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 1133 2 * sk->sk_sndbuf) 1134 skb = alloc_skb(alloclen, 1135 sk->sk_allocation); 1136 if (unlikely(!skb)) 1137 err = -ENOBUFS; 1138 } 1139 if (!skb) 1140 goto error; 1141 1142 /* 1143 * Fill in the control structures 1144 */ 1145 skb->ip_summed = csummode; 1146 skb->csum = 0; 1147 skb_reserve(skb, hh_len); 1148 1149 /* 1150 * Find where to start putting bytes. 1151 */ 1152 data = skb_put(skb, fraglen + exthdrlen - pagedlen); 1153 skb_set_network_header(skb, exthdrlen); 1154 skb->transport_header = (skb->network_header + 1155 fragheaderlen); 1156 data += fragheaderlen + exthdrlen; 1157 1158 if (fraggap) { 1159 skb->csum = skb_copy_and_csum_bits( 1160 skb_prev, maxfraglen, 1161 data + transhdrlen, fraggap); 1162 skb_prev->csum = csum_sub(skb_prev->csum, 1163 skb->csum); 1164 data += fraggap; 1165 pskb_trim_unique(skb_prev, maxfraglen); 1166 } 1167 1168 copy = datalen - transhdrlen - fraggap - pagedlen; 1169 /* [!] NOTE: copy will be negative if pagedlen>0 1170 * because then the equation reduces to -fraggap. 1171 */ 1172 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1173 err = -EFAULT; 1174 kfree_skb(skb); 1175 goto error; 1176 } else if (flags & MSG_SPLICE_PAGES) { 1177 copy = 0; 1178 } 1179 1180 offset += copy; 1181 length -= copy + transhdrlen; 1182 transhdrlen = 0; 1183 exthdrlen = 0; 1184 csummode = CHECKSUM_NONE; 1185 1186 /* only the initial fragment is time stamped */ 1187 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1188 cork->tx_flags = 0; 1189 skb_shinfo(skb)->tskey = tskey; 1190 tskey = 0; 1191 skb_zcopy_set(skb, uarg, &extra_uref); 1192 1193 if ((flags & MSG_CONFIRM) && !skb_prev) 1194 skb_set_dst_pending_confirm(skb, 1); 1195 1196 /* 1197 * Put the packet on the pending queue. 1198 */ 1199 if (!skb->destructor) { 1200 skb->destructor = sock_wfree; 1201 skb->sk = sk; 1202 wmem_alloc_delta += skb->truesize; 1203 } 1204 __skb_queue_tail(queue, skb); 1205 continue; 1206 } 1207 1208 if (copy > length) 1209 copy = length; 1210 1211 if (!(rt->dst.dev->features&NETIF_F_SG) && 1212 skb_tailroom(skb) >= copy) { 1213 unsigned int off; 1214 1215 off = skb->len; 1216 if (getfrag(from, skb_put(skb, copy), 1217 offset, copy, off, skb) < 0) { 1218 __skb_trim(skb, off); 1219 err = -EFAULT; 1220 goto error; 1221 } 1222 } else if (flags & MSG_SPLICE_PAGES) { 1223 struct msghdr *msg = from; 1224 1225 err = -EIO; 1226 if (WARN_ON_ONCE(copy > msg->msg_iter.count)) 1227 goto error; 1228 1229 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1230 sk->sk_allocation); 1231 if (err < 0) 1232 goto error; 1233 copy = err; 1234 wmem_alloc_delta += copy; 1235 } else if (!zc) { 1236 int i = skb_shinfo(skb)->nr_frags; 1237 1238 err = -ENOMEM; 1239 if (!sk_page_frag_refill(sk, pfrag)) 1240 goto error; 1241 1242 skb_zcopy_downgrade_managed(skb); 1243 if (!skb_can_coalesce(skb, i, pfrag->page, 1244 pfrag->offset)) { 1245 err = -EMSGSIZE; 1246 if (i == MAX_SKB_FRAGS) 1247 goto error; 1248 1249 __skb_fill_page_desc(skb, i, pfrag->page, 1250 pfrag->offset, 0); 1251 skb_shinfo(skb)->nr_frags = ++i; 1252 get_page(pfrag->page); 1253 } 1254 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1255 if (getfrag(from, 1256 page_address(pfrag->page) + pfrag->offset, 1257 offset, copy, skb->len, skb) < 0) 1258 goto error_efault; 1259 1260 pfrag->offset += copy; 1261 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1262 skb_len_add(skb, copy); 1263 wmem_alloc_delta += copy; 1264 } else { 1265 err = skb_zerocopy_iter_dgram(skb, from, copy); 1266 if (err < 0) 1267 goto error; 1268 } 1269 offset += copy; 1270 length -= copy; 1271 } 1272 1273 if (wmem_alloc_delta) 1274 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1275 return 0; 1276 1277 error_efault: 1278 err = -EFAULT; 1279 error: 1280 net_zcopy_put_abort(uarg, extra_uref); 1281 cork->length -= length; 1282 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1283 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1284 if (hold_tskey) 1285 atomic_dec(&sk->sk_tskey); 1286 return err; 1287 } 1288 1289 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1290 struct ipcm_cookie *ipc, struct rtable **rtp) 1291 { 1292 struct ip_options_rcu *opt; 1293 struct rtable *rt; 1294 1295 rt = *rtp; 1296 if (unlikely(!rt)) 1297 return -EFAULT; 1298 1299 cork->fragsize = ip_sk_use_pmtu(sk) ? 1300 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu); 1301 1302 if (!inetdev_valid_mtu(cork->fragsize)) 1303 return -ENETUNREACH; 1304 1305 /* 1306 * setup for corking. 1307 */ 1308 opt = ipc->opt; 1309 if (opt) { 1310 if (!cork->opt) { 1311 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1312 sk->sk_allocation); 1313 if (unlikely(!cork->opt)) 1314 return -ENOBUFS; 1315 } 1316 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1317 cork->flags |= IPCORK_OPT; 1318 cork->addr = ipc->addr; 1319 } 1320 1321 cork->gso_size = ipc->gso_size; 1322 1323 cork->dst = &rt->dst; 1324 /* We stole this route, caller should not release it. */ 1325 *rtp = NULL; 1326 1327 cork->length = 0; 1328 cork->ttl = ipc->ttl; 1329 cork->tos = ipc->tos; 1330 cork->mark = ipc->sockc.mark; 1331 cork->priority = ipc->priority; 1332 cork->transmit_time = ipc->sockc.transmit_time; 1333 cork->tx_flags = 0; 1334 sock_tx_timestamp(sk, &ipc->sockc, &cork->tx_flags); 1335 if (ipc->sockc.tsflags & SOCKCM_FLAG_TS_OPT_ID) { 1336 cork->flags |= IPCORK_TS_OPT_ID; 1337 cork->ts_opt_id = ipc->sockc.ts_opt_id; 1338 } 1339 1340 return 0; 1341 } 1342 1343 /* 1344 * ip_append_data() can make one large IP datagram from many pieces of 1345 * data. Each piece will be held on the socket until 1346 * ip_push_pending_frames() is called. Each piece can be a page or 1347 * non-page data. 1348 * 1349 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1350 * this interface potentially. 1351 * 1352 * LATER: length must be adjusted by pad at tail, when it is required. 1353 */ 1354 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1355 int getfrag(void *from, char *to, int offset, int len, 1356 int odd, struct sk_buff *skb), 1357 void *from, int length, int transhdrlen, 1358 struct ipcm_cookie *ipc, struct rtable **rtp, 1359 unsigned int flags) 1360 { 1361 struct inet_sock *inet = inet_sk(sk); 1362 int err; 1363 1364 if (flags&MSG_PROBE) 1365 return 0; 1366 1367 if (skb_queue_empty(&sk->sk_write_queue)) { 1368 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1369 if (err) 1370 return err; 1371 } else { 1372 transhdrlen = 0; 1373 } 1374 1375 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1376 sk_page_frag(sk), getfrag, 1377 from, length, transhdrlen, flags); 1378 } 1379 1380 static void ip_cork_release(struct inet_cork *cork) 1381 { 1382 cork->flags &= ~IPCORK_OPT; 1383 kfree(cork->opt); 1384 cork->opt = NULL; 1385 dst_release(cork->dst); 1386 cork->dst = NULL; 1387 } 1388 1389 /* 1390 * Combined all pending IP fragments on the socket as one IP datagram 1391 * and push them out. 1392 */ 1393 struct sk_buff *__ip_make_skb(struct sock *sk, 1394 struct flowi4 *fl4, 1395 struct sk_buff_head *queue, 1396 struct inet_cork *cork) 1397 { 1398 struct sk_buff *skb, *tmp_skb; 1399 struct sk_buff **tail_skb; 1400 struct inet_sock *inet = inet_sk(sk); 1401 struct net *net = sock_net(sk); 1402 struct ip_options *opt = NULL; 1403 struct rtable *rt = dst_rtable(cork->dst); 1404 struct iphdr *iph; 1405 u8 pmtudisc, ttl; 1406 __be16 df = 0; 1407 1408 skb = __skb_dequeue(queue); 1409 if (!skb) 1410 goto out; 1411 tail_skb = &(skb_shinfo(skb)->frag_list); 1412 1413 /* move skb->data to ip header from ext header */ 1414 if (skb->data < skb_network_header(skb)) 1415 __skb_pull(skb, skb_network_offset(skb)); 1416 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1417 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1418 *tail_skb = tmp_skb; 1419 tail_skb = &(tmp_skb->next); 1420 skb->len += tmp_skb->len; 1421 skb->data_len += tmp_skb->len; 1422 skb->truesize += tmp_skb->truesize; 1423 tmp_skb->destructor = NULL; 1424 tmp_skb->sk = NULL; 1425 } 1426 1427 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1428 * to fragment the frame generated here. No matter, what transforms 1429 * how transforms change size of the packet, it will come out. 1430 */ 1431 skb->ignore_df = ip_sk_ignore_df(sk); 1432 1433 /* DF bit is set when we want to see DF on outgoing frames. 1434 * If ignore_df is set too, we still allow to fragment this frame 1435 * locally. */ 1436 pmtudisc = READ_ONCE(inet->pmtudisc); 1437 if (pmtudisc == IP_PMTUDISC_DO || 1438 pmtudisc == IP_PMTUDISC_PROBE || 1439 (skb->len <= dst_mtu(&rt->dst) && 1440 ip_dont_fragment(sk, &rt->dst))) 1441 df = htons(IP_DF); 1442 1443 if (cork->flags & IPCORK_OPT) 1444 opt = cork->opt; 1445 1446 if (cork->ttl != 0) 1447 ttl = cork->ttl; 1448 else if (rt->rt_type == RTN_MULTICAST) 1449 ttl = READ_ONCE(inet->mc_ttl); 1450 else 1451 ttl = ip_select_ttl(inet, &rt->dst); 1452 1453 iph = ip_hdr(skb); 1454 iph->version = 4; 1455 iph->ihl = 5; 1456 iph->tos = (cork->tos != -1) ? cork->tos : READ_ONCE(inet->tos); 1457 iph->frag_off = df; 1458 iph->ttl = ttl; 1459 iph->protocol = sk->sk_protocol; 1460 ip_copy_addrs(iph, fl4); 1461 ip_select_ident(net, skb, sk); 1462 1463 if (opt) { 1464 iph->ihl += opt->optlen >> 2; 1465 ip_options_build(skb, opt, cork->addr, rt); 1466 } 1467 1468 skb->priority = (cork->tos != -1) ? cork->priority: READ_ONCE(sk->sk_priority); 1469 skb->mark = cork->mark; 1470 if (sk_is_tcp(sk)) 1471 skb_set_delivery_time(skb, cork->transmit_time, SKB_CLOCK_MONOTONIC); 1472 else 1473 skb_set_delivery_type_by_clockid(skb, cork->transmit_time, sk->sk_clockid); 1474 /* 1475 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1476 * on dst refcount 1477 */ 1478 cork->dst = NULL; 1479 skb_dst_set(skb, &rt->dst); 1480 1481 if (iph->protocol == IPPROTO_ICMP) { 1482 u8 icmp_type; 1483 1484 /* For such sockets, transhdrlen is zero when do ip_append_data(), 1485 * so icmphdr does not in skb linear region and can not get icmp_type 1486 * by icmp_hdr(skb)->type. 1487 */ 1488 if (sk->sk_type == SOCK_RAW && 1489 !(fl4->flowi4_flags & FLOWI_FLAG_KNOWN_NH)) 1490 icmp_type = fl4->fl4_icmp_type; 1491 else 1492 icmp_type = icmp_hdr(skb)->type; 1493 icmp_out_count(net, icmp_type); 1494 } 1495 1496 ip_cork_release(cork); 1497 out: 1498 return skb; 1499 } 1500 1501 int ip_send_skb(struct net *net, struct sk_buff *skb) 1502 { 1503 int err; 1504 1505 err = ip_local_out(net, skb->sk, skb); 1506 if (err) { 1507 if (err > 0) 1508 err = net_xmit_errno(err); 1509 if (err) 1510 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1511 } 1512 1513 return err; 1514 } 1515 1516 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1517 { 1518 struct sk_buff *skb; 1519 1520 skb = ip_finish_skb(sk, fl4); 1521 if (!skb) 1522 return 0; 1523 1524 /* Netfilter gets whole the not fragmented skb. */ 1525 return ip_send_skb(sock_net(sk), skb); 1526 } 1527 1528 /* 1529 * Throw away all pending data on the socket. 1530 */ 1531 static void __ip_flush_pending_frames(struct sock *sk, 1532 struct sk_buff_head *queue, 1533 struct inet_cork *cork) 1534 { 1535 struct sk_buff *skb; 1536 1537 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1538 kfree_skb(skb); 1539 1540 ip_cork_release(cork); 1541 } 1542 1543 void ip_flush_pending_frames(struct sock *sk) 1544 { 1545 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1546 } 1547 1548 struct sk_buff *ip_make_skb(struct sock *sk, 1549 struct flowi4 *fl4, 1550 int getfrag(void *from, char *to, int offset, 1551 int len, int odd, struct sk_buff *skb), 1552 void *from, int length, int transhdrlen, 1553 struct ipcm_cookie *ipc, struct rtable **rtp, 1554 struct inet_cork *cork, unsigned int flags) 1555 { 1556 struct sk_buff_head queue; 1557 int err; 1558 1559 if (flags & MSG_PROBE) 1560 return NULL; 1561 1562 __skb_queue_head_init(&queue); 1563 1564 cork->flags = 0; 1565 cork->addr = 0; 1566 cork->opt = NULL; 1567 err = ip_setup_cork(sk, cork, ipc, rtp); 1568 if (err) 1569 return ERR_PTR(err); 1570 1571 err = __ip_append_data(sk, fl4, &queue, cork, 1572 ¤t->task_frag, getfrag, 1573 from, length, transhdrlen, flags); 1574 if (err) { 1575 __ip_flush_pending_frames(sk, &queue, cork); 1576 return ERR_PTR(err); 1577 } 1578 1579 return __ip_make_skb(sk, fl4, &queue, cork); 1580 } 1581 1582 /* 1583 * Fetch data from kernel space and fill in checksum if needed. 1584 */ 1585 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1586 int len, int odd, struct sk_buff *skb) 1587 { 1588 __wsum csum; 1589 1590 csum = csum_partial_copy_nocheck(dptr+offset, to, len); 1591 skb->csum = csum_block_add(skb->csum, csum, odd); 1592 return 0; 1593 } 1594 1595 /* 1596 * Generic function to send a packet as reply to another packet. 1597 * Used to send some TCP resets/acks so far. 1598 */ 1599 void ip_send_unicast_reply(struct sock *sk, const struct sock *orig_sk, 1600 struct sk_buff *skb, 1601 const struct ip_options *sopt, 1602 __be32 daddr, __be32 saddr, 1603 const struct ip_reply_arg *arg, 1604 unsigned int len, u64 transmit_time, u32 txhash) 1605 { 1606 struct ip_options_data replyopts; 1607 struct ipcm_cookie ipc; 1608 struct flowi4 fl4; 1609 struct rtable *rt = skb_rtable(skb); 1610 struct net *net = sock_net(sk); 1611 struct sk_buff *nskb; 1612 int err; 1613 int oif; 1614 1615 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) 1616 return; 1617 1618 ipcm_init(&ipc); 1619 ipc.addr = daddr; 1620 ipc.sockc.transmit_time = transmit_time; 1621 1622 if (replyopts.opt.opt.optlen) { 1623 ipc.opt = &replyopts.opt; 1624 1625 if (replyopts.opt.opt.srr) 1626 daddr = replyopts.opt.opt.faddr; 1627 } 1628 1629 oif = arg->bound_dev_if; 1630 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1631 oif = skb->skb_iif; 1632 1633 flowi4_init_output(&fl4, oif, 1634 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, 1635 arg->tos & INET_DSCP_MASK, 1636 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1637 ip_reply_arg_flowi_flags(arg), 1638 daddr, saddr, 1639 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1640 arg->uid); 1641 security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4)); 1642 rt = ip_route_output_flow(net, &fl4, sk); 1643 if (IS_ERR(rt)) 1644 return; 1645 1646 inet_sk(sk)->tos = arg->tos & ~INET_ECN_MASK; 1647 1648 sk->sk_protocol = ip_hdr(skb)->protocol; 1649 sk->sk_bound_dev_if = arg->bound_dev_if; 1650 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); 1651 ipc.sockc.mark = fl4.flowi4_mark; 1652 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1653 len, 0, &ipc, &rt, MSG_DONTWAIT); 1654 if (unlikely(err)) { 1655 ip_flush_pending_frames(sk); 1656 goto out; 1657 } 1658 1659 nskb = skb_peek(&sk->sk_write_queue); 1660 if (nskb) { 1661 if (arg->csumoffset >= 0) 1662 *((__sum16 *)skb_transport_header(nskb) + 1663 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1664 arg->csum)); 1665 nskb->ip_summed = CHECKSUM_NONE; 1666 if (orig_sk) 1667 skb_set_owner_edemux(nskb, (struct sock *)orig_sk); 1668 if (transmit_time) 1669 nskb->tstamp_type = SKB_CLOCK_MONOTONIC; 1670 if (txhash) 1671 skb_set_hash(nskb, txhash, PKT_HASH_TYPE_L4); 1672 ip_push_pending_frames(sk, &fl4); 1673 } 1674 out: 1675 ip_rt_put(rt); 1676 } 1677 1678 void __init ip_init(void) 1679 { 1680 ip_rt_init(); 1681 inet_initpeers(); 1682 1683 #if defined(CONFIG_IP_MULTICAST) 1684 igmp_mc_init(); 1685 #endif 1686 } 1687