xref: /linux/net/ipv4/ip_output.c (revision 6e8331ac6973435b1e7604c30f2ad394035b46e1)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Version:	$Id: ip_output.c,v 1.100 2002/02/01 22:01:03 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Donald Becker, <becker@super.org>
13  *		Alan Cox, <Alan.Cox@linux.org>
14  *		Richard Underwood
15  *		Stefan Becker, <stefanb@yello.ping.de>
16  *		Jorge Cwik, <jorge@laser.satlink.net>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Hirokazu Takahashi, <taka@valinux.co.jp>
19  *
20  *	See ip_input.c for original log
21  *
22  *	Fixes:
23  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
24  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
25  *		Bradford Johnson:	Fix faulty handling of some frames when
26  *					no route is found.
27  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
28  *					(in case if packet not accepted by
29  *					output firewall rules)
30  *		Mike McLagan	:	Routing by source
31  *		Alexey Kuznetsov:	use new route cache
32  *		Andi Kleen:		Fix broken PMTU recovery and remove
33  *					some redundant tests.
34  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
35  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
36  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
37  *					for decreased register pressure on x86
38  *					and more readibility.
39  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
40  *					silently drop skb instead of failing with -EPERM.
41  *		Detlev Wengorz	:	Copy protocol for fragments.
42  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
43  *					datagrams.
44  *		Hirokazu Takahashi:	sendfile() on UDP works now.
45  */
46 
47 #include <asm/uaccess.h>
48 #include <asm/system.h>
49 #include <linux/module.h>
50 #include <linux/types.h>
51 #include <linux/kernel.h>
52 #include <linux/sched.h>
53 #include <linux/mm.h>
54 #include <linux/string.h>
55 #include <linux/errno.h>
56 
57 #include <linux/socket.h>
58 #include <linux/sockios.h>
59 #include <linux/in.h>
60 #include <linux/inet.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/stat.h>
65 #include <linux/init.h>
66 
67 #include <net/snmp.h>
68 #include <net/ip.h>
69 #include <net/protocol.h>
70 #include <net/route.h>
71 #include <net/xfrm.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <net/arp.h>
75 #include <net/icmp.h>
76 #include <net/checksum.h>
77 #include <net/inetpeer.h>
78 #include <net/checksum.h>
79 #include <linux/igmp.h>
80 #include <linux/netfilter_ipv4.h>
81 #include <linux/netfilter_bridge.h>
82 #include <linux/mroute.h>
83 #include <linux/netlink.h>
84 #include <linux/tcp.h>
85 
86 int sysctl_ip_default_ttl = IPDEFTTL;
87 
88 /* Generate a checksum for an outgoing IP datagram. */
89 __inline__ void ip_send_check(struct iphdr *iph)
90 {
91 	iph->check = 0;
92 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
93 }
94 
95 /* dev_loopback_xmit for use with netfilter. */
96 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
97 {
98 	newskb->mac.raw = newskb->data;
99 	__skb_pull(newskb, newskb->nh.raw - newskb->data);
100 	newskb->pkt_type = PACKET_LOOPBACK;
101 	newskb->ip_summed = CHECKSUM_UNNECESSARY;
102 	BUG_TRAP(newskb->dst);
103 	netif_rx(newskb);
104 	return 0;
105 }
106 
107 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
108 {
109 	int ttl = inet->uc_ttl;
110 
111 	if (ttl < 0)
112 		ttl = dst_metric(dst, RTAX_HOPLIMIT);
113 	return ttl;
114 }
115 
116 /*
117  *		Add an ip header to a skbuff and send it out.
118  *
119  */
120 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
121 			  u32 saddr, u32 daddr, struct ip_options *opt)
122 {
123 	struct inet_sock *inet = inet_sk(sk);
124 	struct rtable *rt = (struct rtable *)skb->dst;
125 	struct iphdr *iph;
126 
127 	/* Build the IP header. */
128 	if (opt)
129 		iph=(struct iphdr *)skb_push(skb,sizeof(struct iphdr) + opt->optlen);
130 	else
131 		iph=(struct iphdr *)skb_push(skb,sizeof(struct iphdr));
132 
133 	iph->version  = 4;
134 	iph->ihl      = 5;
135 	iph->tos      = inet->tos;
136 	if (ip_dont_fragment(sk, &rt->u.dst))
137 		iph->frag_off = htons(IP_DF);
138 	else
139 		iph->frag_off = 0;
140 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
141 	iph->daddr    = rt->rt_dst;
142 	iph->saddr    = rt->rt_src;
143 	iph->protocol = sk->sk_protocol;
144 	iph->tot_len  = htons(skb->len);
145 	ip_select_ident(iph, &rt->u.dst, sk);
146 	skb->nh.iph   = iph;
147 
148 	if (opt && opt->optlen) {
149 		iph->ihl += opt->optlen>>2;
150 		ip_options_build(skb, opt, daddr, rt, 0);
151 	}
152 	ip_send_check(iph);
153 
154 	skb->priority = sk->sk_priority;
155 
156 	/* Send it out. */
157 	return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
158 		       dst_output);
159 }
160 
161 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
162 
163 static inline int ip_finish_output2(struct sk_buff *skb)
164 {
165 	struct dst_entry *dst = skb->dst;
166 	struct hh_cache *hh = dst->hh;
167 	struct net_device *dev = dst->dev;
168 	int hh_len = LL_RESERVED_SPACE(dev);
169 
170 	/* Be paranoid, rather than too clever. */
171 	if (unlikely(skb_headroom(skb) < hh_len && dev->hard_header)) {
172 		struct sk_buff *skb2;
173 
174 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
175 		if (skb2 == NULL) {
176 			kfree_skb(skb);
177 			return -ENOMEM;
178 		}
179 		if (skb->sk)
180 			skb_set_owner_w(skb2, skb->sk);
181 		kfree_skb(skb);
182 		skb = skb2;
183 	}
184 
185 	if (hh) {
186 		int hh_alen;
187 
188 		read_lock_bh(&hh->hh_lock);
189 		hh_alen = HH_DATA_ALIGN(hh->hh_len);
190   		memcpy(skb->data - hh_alen, hh->hh_data, hh_alen);
191 		read_unlock_bh(&hh->hh_lock);
192 	        skb_push(skb, hh->hh_len);
193 		return hh->hh_output(skb);
194 	} else if (dst->neighbour)
195 		return dst->neighbour->output(skb);
196 
197 	if (net_ratelimit())
198 		printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
199 	kfree_skb(skb);
200 	return -EINVAL;
201 }
202 
203 static inline int ip_finish_output(struct sk_buff *skb)
204 {
205 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
206 	/* Policy lookup after SNAT yielded a new policy */
207 	if (skb->dst->xfrm != NULL) {
208 		IPCB(skb)->flags |= IPSKB_REROUTED;
209 		return dst_output(skb);
210 	}
211 #endif
212 	if (skb->len > dst_mtu(skb->dst) && !skb_is_gso(skb))
213 		return ip_fragment(skb, ip_finish_output2);
214 	else
215 		return ip_finish_output2(skb);
216 }
217 
218 int ip_mc_output(struct sk_buff *skb)
219 {
220 	struct sock *sk = skb->sk;
221 	struct rtable *rt = (struct rtable*)skb->dst;
222 	struct net_device *dev = rt->u.dst.dev;
223 
224 	/*
225 	 *	If the indicated interface is up and running, send the packet.
226 	 */
227 	IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
228 
229 	skb->dev = dev;
230 	skb->protocol = htons(ETH_P_IP);
231 
232 	/*
233 	 *	Multicasts are looped back for other local users
234 	 */
235 
236 	if (rt->rt_flags&RTCF_MULTICAST) {
237 		if ((!sk || inet_sk(sk)->mc_loop)
238 #ifdef CONFIG_IP_MROUTE
239 		/* Small optimization: do not loopback not local frames,
240 		   which returned after forwarding; they will be  dropped
241 		   by ip_mr_input in any case.
242 		   Note, that local frames are looped back to be delivered
243 		   to local recipients.
244 
245 		   This check is duplicated in ip_mr_input at the moment.
246 		 */
247 		    && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
248 #endif
249 		) {
250 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
251 			if (newskb)
252 				NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
253 					newskb->dev,
254 					ip_dev_loopback_xmit);
255 		}
256 
257 		/* Multicasts with ttl 0 must not go beyond the host */
258 
259 		if (skb->nh.iph->ttl == 0) {
260 			kfree_skb(skb);
261 			return 0;
262 		}
263 	}
264 
265 	if (rt->rt_flags&RTCF_BROADCAST) {
266 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
267 		if (newskb)
268 			NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
269 				newskb->dev, ip_dev_loopback_xmit);
270 	}
271 
272 	return NF_HOOK_COND(PF_INET, NF_IP_POST_ROUTING, skb, NULL, skb->dev,
273 			    ip_finish_output,
274 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
275 }
276 
277 int ip_output(struct sk_buff *skb)
278 {
279 	struct net_device *dev = skb->dst->dev;
280 
281 	IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
282 
283 	skb->dev = dev;
284 	skb->protocol = htons(ETH_P_IP);
285 
286 	return NF_HOOK_COND(PF_INET, NF_IP_POST_ROUTING, skb, NULL, dev,
287 		            ip_finish_output,
288 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
289 }
290 
291 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
292 {
293 	struct sock *sk = skb->sk;
294 	struct inet_sock *inet = inet_sk(sk);
295 	struct ip_options *opt = inet->opt;
296 	struct rtable *rt;
297 	struct iphdr *iph;
298 
299 	/* Skip all of this if the packet is already routed,
300 	 * f.e. by something like SCTP.
301 	 */
302 	rt = (struct rtable *) skb->dst;
303 	if (rt != NULL)
304 		goto packet_routed;
305 
306 	/* Make sure we can route this packet. */
307 	rt = (struct rtable *)__sk_dst_check(sk, 0);
308 	if (rt == NULL) {
309 		u32 daddr;
310 
311 		/* Use correct destination address if we have options. */
312 		daddr = inet->daddr;
313 		if(opt && opt->srr)
314 			daddr = opt->faddr;
315 
316 		{
317 			struct flowi fl = { .oif = sk->sk_bound_dev_if,
318 					    .nl_u = { .ip4_u =
319 						      { .daddr = daddr,
320 							.saddr = inet->saddr,
321 							.tos = RT_CONN_FLAGS(sk) } },
322 					    .proto = sk->sk_protocol,
323 					    .uli_u = { .ports =
324 						       { .sport = inet->sport,
325 							 .dport = inet->dport } } };
326 
327 			/* If this fails, retransmit mechanism of transport layer will
328 			 * keep trying until route appears or the connection times
329 			 * itself out.
330 			 */
331 			if (ip_route_output_flow(&rt, &fl, sk, 0))
332 				goto no_route;
333 		}
334 		sk_setup_caps(sk, &rt->u.dst);
335 	}
336 	skb->dst = dst_clone(&rt->u.dst);
337 
338 packet_routed:
339 	if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
340 		goto no_route;
341 
342 	/* OK, we know where to send it, allocate and build IP header. */
343 	iph = (struct iphdr *) skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
344 	*((__u16 *)iph)	= htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
345 	iph->tot_len = htons(skb->len);
346 	if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
347 		iph->frag_off = htons(IP_DF);
348 	else
349 		iph->frag_off = 0;
350 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
351 	iph->protocol = sk->sk_protocol;
352 	iph->saddr    = rt->rt_src;
353 	iph->daddr    = rt->rt_dst;
354 	skb->nh.iph   = iph;
355 	/* Transport layer set skb->h.foo itself. */
356 
357 	if (opt && opt->optlen) {
358 		iph->ihl += opt->optlen >> 2;
359 		ip_options_build(skb, opt, inet->daddr, rt, 0);
360 	}
361 
362 	ip_select_ident_more(iph, &rt->u.dst, sk,
363 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
364 
365 	/* Add an IP checksum. */
366 	ip_send_check(iph);
367 
368 	skb->priority = sk->sk_priority;
369 
370 	return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
371 		       dst_output);
372 
373 no_route:
374 	IP_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
375 	kfree_skb(skb);
376 	return -EHOSTUNREACH;
377 }
378 
379 
380 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
381 {
382 	to->pkt_type = from->pkt_type;
383 	to->priority = from->priority;
384 	to->protocol = from->protocol;
385 	dst_release(to->dst);
386 	to->dst = dst_clone(from->dst);
387 	to->dev = from->dev;
388 
389 	/* Copy the flags to each fragment. */
390 	IPCB(to)->flags = IPCB(from)->flags;
391 
392 #ifdef CONFIG_NET_SCHED
393 	to->tc_index = from->tc_index;
394 #endif
395 #ifdef CONFIG_NETFILTER
396 	to->nfmark = from->nfmark;
397 	/* Connection association is same as pre-frag packet */
398 	nf_conntrack_put(to->nfct);
399 	to->nfct = from->nfct;
400 	nf_conntrack_get(to->nfct);
401 	to->nfctinfo = from->nfctinfo;
402 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
403 	to->ipvs_property = from->ipvs_property;
404 #endif
405 #ifdef CONFIG_BRIDGE_NETFILTER
406 	nf_bridge_put(to->nf_bridge);
407 	to->nf_bridge = from->nf_bridge;
408 	nf_bridge_get(to->nf_bridge);
409 #endif
410 #endif
411 	skb_copy_secmark(to, from);
412 }
413 
414 /*
415  *	This IP datagram is too large to be sent in one piece.  Break it up into
416  *	smaller pieces (each of size equal to IP header plus
417  *	a block of the data of the original IP data part) that will yet fit in a
418  *	single device frame, and queue such a frame for sending.
419  */
420 
421 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))
422 {
423 	struct iphdr *iph;
424 	int raw = 0;
425 	int ptr;
426 	struct net_device *dev;
427 	struct sk_buff *skb2;
428 	unsigned int mtu, hlen, left, len, ll_rs;
429 	int offset;
430 	__be16 not_last_frag;
431 	struct rtable *rt = (struct rtable*)skb->dst;
432 	int err = 0;
433 
434 	dev = rt->u.dst.dev;
435 
436 	/*
437 	 *	Point into the IP datagram header.
438 	 */
439 
440 	iph = skb->nh.iph;
441 
442 	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
443 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
444 			  htonl(dst_mtu(&rt->u.dst)));
445 		kfree_skb(skb);
446 		return -EMSGSIZE;
447 	}
448 
449 	/*
450 	 *	Setup starting values.
451 	 */
452 
453 	hlen = iph->ihl * 4;
454 	mtu = dst_mtu(&rt->u.dst) - hlen;	/* Size of data space */
455 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
456 
457 	/* When frag_list is given, use it. First, check its validity:
458 	 * some transformers could create wrong frag_list or break existing
459 	 * one, it is not prohibited. In this case fall back to copying.
460 	 *
461 	 * LATER: this step can be merged to real generation of fragments,
462 	 * we can switch to copy when see the first bad fragment.
463 	 */
464 	if (skb_shinfo(skb)->frag_list) {
465 		struct sk_buff *frag;
466 		int first_len = skb_pagelen(skb);
467 
468 		if (first_len - hlen > mtu ||
469 		    ((first_len - hlen) & 7) ||
470 		    (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
471 		    skb_cloned(skb))
472 			goto slow_path;
473 
474 		for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
475 			/* Correct geometry. */
476 			if (frag->len > mtu ||
477 			    ((frag->len & 7) && frag->next) ||
478 			    skb_headroom(frag) < hlen)
479 			    goto slow_path;
480 
481 			/* Partially cloned skb? */
482 			if (skb_shared(frag))
483 				goto slow_path;
484 
485 			BUG_ON(frag->sk);
486 			if (skb->sk) {
487 				sock_hold(skb->sk);
488 				frag->sk = skb->sk;
489 				frag->destructor = sock_wfree;
490 				skb->truesize -= frag->truesize;
491 			}
492 		}
493 
494 		/* Everything is OK. Generate! */
495 
496 		err = 0;
497 		offset = 0;
498 		frag = skb_shinfo(skb)->frag_list;
499 		skb_shinfo(skb)->frag_list = NULL;
500 		skb->data_len = first_len - skb_headlen(skb);
501 		skb->len = first_len;
502 		iph->tot_len = htons(first_len);
503 		iph->frag_off = htons(IP_MF);
504 		ip_send_check(iph);
505 
506 		for (;;) {
507 			/* Prepare header of the next frame,
508 			 * before previous one went down. */
509 			if (frag) {
510 				frag->ip_summed = CHECKSUM_NONE;
511 				frag->h.raw = frag->data;
512 				frag->nh.raw = __skb_push(frag, hlen);
513 				memcpy(frag->nh.raw, iph, hlen);
514 				iph = frag->nh.iph;
515 				iph->tot_len = htons(frag->len);
516 				ip_copy_metadata(frag, skb);
517 				if (offset == 0)
518 					ip_options_fragment(frag);
519 				offset += skb->len - hlen;
520 				iph->frag_off = htons(offset>>3);
521 				if (frag->next != NULL)
522 					iph->frag_off |= htons(IP_MF);
523 				/* Ready, complete checksum */
524 				ip_send_check(iph);
525 			}
526 
527 			err = output(skb);
528 
529 			if (!err)
530 				IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
531 			if (err || !frag)
532 				break;
533 
534 			skb = frag;
535 			frag = skb->next;
536 			skb->next = NULL;
537 		}
538 
539 		if (err == 0) {
540 			IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
541 			return 0;
542 		}
543 
544 		while (frag) {
545 			skb = frag->next;
546 			kfree_skb(frag);
547 			frag = skb;
548 		}
549 		IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
550 		return err;
551 	}
552 
553 slow_path:
554 	left = skb->len - hlen;		/* Space per frame */
555 	ptr = raw + hlen;		/* Where to start from */
556 
557 #ifdef CONFIG_BRIDGE_NETFILTER
558 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
559 	 * we need to make room for the encapsulating header */
560 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, nf_bridge_pad(skb));
561 	mtu -= nf_bridge_pad(skb);
562 #else
563 	ll_rs = LL_RESERVED_SPACE(rt->u.dst.dev);
564 #endif
565 	/*
566 	 *	Fragment the datagram.
567 	 */
568 
569 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
570 	not_last_frag = iph->frag_off & htons(IP_MF);
571 
572 	/*
573 	 *	Keep copying data until we run out.
574 	 */
575 
576 	while(left > 0)	{
577 		len = left;
578 		/* IF: it doesn't fit, use 'mtu' - the data space left */
579 		if (len > mtu)
580 			len = mtu;
581 		/* IF: we are not sending upto and including the packet end
582 		   then align the next start on an eight byte boundary */
583 		if (len < left)	{
584 			len &= ~7;
585 		}
586 		/*
587 		 *	Allocate buffer.
588 		 */
589 
590 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
591 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
592 			err = -ENOMEM;
593 			goto fail;
594 		}
595 
596 		/*
597 		 *	Set up data on packet
598 		 */
599 
600 		ip_copy_metadata(skb2, skb);
601 		skb_reserve(skb2, ll_rs);
602 		skb_put(skb2, len + hlen);
603 		skb2->nh.raw = skb2->data;
604 		skb2->h.raw = skb2->data + hlen;
605 
606 		/*
607 		 *	Charge the memory for the fragment to any owner
608 		 *	it might possess
609 		 */
610 
611 		if (skb->sk)
612 			skb_set_owner_w(skb2, skb->sk);
613 
614 		/*
615 		 *	Copy the packet header into the new buffer.
616 		 */
617 
618 		memcpy(skb2->nh.raw, skb->data, hlen);
619 
620 		/*
621 		 *	Copy a block of the IP datagram.
622 		 */
623 		if (skb_copy_bits(skb, ptr, skb2->h.raw, len))
624 			BUG();
625 		left -= len;
626 
627 		/*
628 		 *	Fill in the new header fields.
629 		 */
630 		iph = skb2->nh.iph;
631 		iph->frag_off = htons((offset >> 3));
632 
633 		/* ANK: dirty, but effective trick. Upgrade options only if
634 		 * the segment to be fragmented was THE FIRST (otherwise,
635 		 * options are already fixed) and make it ONCE
636 		 * on the initial skb, so that all the following fragments
637 		 * will inherit fixed options.
638 		 */
639 		if (offset == 0)
640 			ip_options_fragment(skb);
641 
642 		/*
643 		 *	Added AC : If we are fragmenting a fragment that's not the
644 		 *		   last fragment then keep MF on each bit
645 		 */
646 		if (left > 0 || not_last_frag)
647 			iph->frag_off |= htons(IP_MF);
648 		ptr += len;
649 		offset += len;
650 
651 		/*
652 		 *	Put this fragment into the sending queue.
653 		 */
654 		iph->tot_len = htons(len + hlen);
655 
656 		ip_send_check(iph);
657 
658 		err = output(skb2);
659 		if (err)
660 			goto fail;
661 
662 		IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
663 	}
664 	kfree_skb(skb);
665 	IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
666 	return err;
667 
668 fail:
669 	kfree_skb(skb);
670 	IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
671 	return err;
672 }
673 
674 EXPORT_SYMBOL(ip_fragment);
675 
676 int
677 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
678 {
679 	struct iovec *iov = from;
680 
681 	if (skb->ip_summed == CHECKSUM_HW) {
682 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
683 			return -EFAULT;
684 	} else {
685 		unsigned int csum = 0;
686 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
687 			return -EFAULT;
688 		skb->csum = csum_block_add(skb->csum, csum, odd);
689 	}
690 	return 0;
691 }
692 
693 static inline unsigned int
694 csum_page(struct page *page, int offset, int copy)
695 {
696 	char *kaddr;
697 	unsigned int csum;
698 	kaddr = kmap(page);
699 	csum = csum_partial(kaddr + offset, copy, 0);
700 	kunmap(page);
701 	return csum;
702 }
703 
704 static inline int ip_ufo_append_data(struct sock *sk,
705 			int getfrag(void *from, char *to, int offset, int len,
706 			       int odd, struct sk_buff *skb),
707 			void *from, int length, int hh_len, int fragheaderlen,
708 			int transhdrlen, int mtu,unsigned int flags)
709 {
710 	struct sk_buff *skb;
711 	int err;
712 
713 	/* There is support for UDP fragmentation offload by network
714 	 * device, so create one single skb packet containing complete
715 	 * udp datagram
716 	 */
717 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
718 		skb = sock_alloc_send_skb(sk,
719 			hh_len + fragheaderlen + transhdrlen + 20,
720 			(flags & MSG_DONTWAIT), &err);
721 
722 		if (skb == NULL)
723 			return err;
724 
725 		/* reserve space for Hardware header */
726 		skb_reserve(skb, hh_len);
727 
728 		/* create space for UDP/IP header */
729 		skb_put(skb,fragheaderlen + transhdrlen);
730 
731 		/* initialize network header pointer */
732 		skb->nh.raw = skb->data;
733 
734 		/* initialize protocol header pointer */
735 		skb->h.raw = skb->data + fragheaderlen;
736 
737 		skb->ip_summed = CHECKSUM_HW;
738 		skb->csum = 0;
739 		sk->sk_sndmsg_off = 0;
740 	}
741 
742 	err = skb_append_datato_frags(sk,skb, getfrag, from,
743 			       (length - transhdrlen));
744 	if (!err) {
745 		/* specify the length of each IP datagram fragment*/
746 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
747 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
748 		__skb_queue_tail(&sk->sk_write_queue, skb);
749 
750 		return 0;
751 	}
752 	/* There is not enough support do UFO ,
753 	 * so follow normal path
754 	 */
755 	kfree_skb(skb);
756 	return err;
757 }
758 
759 /*
760  *	ip_append_data() and ip_append_page() can make one large IP datagram
761  *	from many pieces of data. Each pieces will be holded on the socket
762  *	until ip_push_pending_frames() is called. Each piece can be a page
763  *	or non-page data.
764  *
765  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
766  *	this interface potentially.
767  *
768  *	LATER: length must be adjusted by pad at tail, when it is required.
769  */
770 int ip_append_data(struct sock *sk,
771 		   int getfrag(void *from, char *to, int offset, int len,
772 			       int odd, struct sk_buff *skb),
773 		   void *from, int length, int transhdrlen,
774 		   struct ipcm_cookie *ipc, struct rtable *rt,
775 		   unsigned int flags)
776 {
777 	struct inet_sock *inet = inet_sk(sk);
778 	struct sk_buff *skb;
779 
780 	struct ip_options *opt = NULL;
781 	int hh_len;
782 	int exthdrlen;
783 	int mtu;
784 	int copy;
785 	int err;
786 	int offset = 0;
787 	unsigned int maxfraglen, fragheaderlen;
788 	int csummode = CHECKSUM_NONE;
789 
790 	if (flags&MSG_PROBE)
791 		return 0;
792 
793 	if (skb_queue_empty(&sk->sk_write_queue)) {
794 		/*
795 		 * setup for corking.
796 		 */
797 		opt = ipc->opt;
798 		if (opt) {
799 			if (inet->cork.opt == NULL) {
800 				inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
801 				if (unlikely(inet->cork.opt == NULL))
802 					return -ENOBUFS;
803 			}
804 			memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
805 			inet->cork.flags |= IPCORK_OPT;
806 			inet->cork.addr = ipc->addr;
807 		}
808 		dst_hold(&rt->u.dst);
809 		inet->cork.fragsize = mtu = dst_mtu(rt->u.dst.path);
810 		inet->cork.rt = rt;
811 		inet->cork.length = 0;
812 		sk->sk_sndmsg_page = NULL;
813 		sk->sk_sndmsg_off = 0;
814 		if ((exthdrlen = rt->u.dst.header_len) != 0) {
815 			length += exthdrlen;
816 			transhdrlen += exthdrlen;
817 		}
818 	} else {
819 		rt = inet->cork.rt;
820 		if (inet->cork.flags & IPCORK_OPT)
821 			opt = inet->cork.opt;
822 
823 		transhdrlen = 0;
824 		exthdrlen = 0;
825 		mtu = inet->cork.fragsize;
826 	}
827 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
828 
829 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
830 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
831 
832 	if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
833 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
834 		return -EMSGSIZE;
835 	}
836 
837 	/*
838 	 * transhdrlen > 0 means that this is the first fragment and we wish
839 	 * it won't be fragmented in the future.
840 	 */
841 	if (transhdrlen &&
842 	    length + fragheaderlen <= mtu &&
843 	    rt->u.dst.dev->features & NETIF_F_ALL_CSUM &&
844 	    !exthdrlen)
845 		csummode = CHECKSUM_HW;
846 
847 	inet->cork.length += length;
848 	if (((length > mtu) && (sk->sk_protocol == IPPROTO_UDP)) &&
849 			(rt->u.dst.dev->features & NETIF_F_UFO)) {
850 
851 		err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
852 					 fragheaderlen, transhdrlen, mtu,
853 					 flags);
854 		if (err)
855 			goto error;
856 		return 0;
857 	}
858 
859 	/* So, what's going on in the loop below?
860 	 *
861 	 * We use calculated fragment length to generate chained skb,
862 	 * each of segments is IP fragment ready for sending to network after
863 	 * adding appropriate IP header.
864 	 */
865 
866 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
867 		goto alloc_new_skb;
868 
869 	while (length > 0) {
870 		/* Check if the remaining data fits into current packet. */
871 		copy = mtu - skb->len;
872 		if (copy < length)
873 			copy = maxfraglen - skb->len;
874 		if (copy <= 0) {
875 			char *data;
876 			unsigned int datalen;
877 			unsigned int fraglen;
878 			unsigned int fraggap;
879 			unsigned int alloclen;
880 			struct sk_buff *skb_prev;
881 alloc_new_skb:
882 			skb_prev = skb;
883 			if (skb_prev)
884 				fraggap = skb_prev->len - maxfraglen;
885 			else
886 				fraggap = 0;
887 
888 			/*
889 			 * If remaining data exceeds the mtu,
890 			 * we know we need more fragment(s).
891 			 */
892 			datalen = length + fraggap;
893 			if (datalen > mtu - fragheaderlen)
894 				datalen = maxfraglen - fragheaderlen;
895 			fraglen = datalen + fragheaderlen;
896 
897 			if ((flags & MSG_MORE) &&
898 			    !(rt->u.dst.dev->features&NETIF_F_SG))
899 				alloclen = mtu;
900 			else
901 				alloclen = datalen + fragheaderlen;
902 
903 			/* The last fragment gets additional space at tail.
904 			 * Note, with MSG_MORE we overallocate on fragments,
905 			 * because we have no idea what fragment will be
906 			 * the last.
907 			 */
908 			if (datalen == length + fraggap)
909 				alloclen += rt->u.dst.trailer_len;
910 
911 			if (transhdrlen) {
912 				skb = sock_alloc_send_skb(sk,
913 						alloclen + hh_len + 15,
914 						(flags & MSG_DONTWAIT), &err);
915 			} else {
916 				skb = NULL;
917 				if (atomic_read(&sk->sk_wmem_alloc) <=
918 				    2 * sk->sk_sndbuf)
919 					skb = sock_wmalloc(sk,
920 							   alloclen + hh_len + 15, 1,
921 							   sk->sk_allocation);
922 				if (unlikely(skb == NULL))
923 					err = -ENOBUFS;
924 			}
925 			if (skb == NULL)
926 				goto error;
927 
928 			/*
929 			 *	Fill in the control structures
930 			 */
931 			skb->ip_summed = csummode;
932 			skb->csum = 0;
933 			skb_reserve(skb, hh_len);
934 
935 			/*
936 			 *	Find where to start putting bytes.
937 			 */
938 			data = skb_put(skb, fraglen);
939 			skb->nh.raw = data + exthdrlen;
940 			data += fragheaderlen;
941 			skb->h.raw = data + exthdrlen;
942 
943 			if (fraggap) {
944 				skb->csum = skb_copy_and_csum_bits(
945 					skb_prev, maxfraglen,
946 					data + transhdrlen, fraggap, 0);
947 				skb_prev->csum = csum_sub(skb_prev->csum,
948 							  skb->csum);
949 				data += fraggap;
950 				skb_trim(skb_prev, maxfraglen);
951 			}
952 
953 			copy = datalen - transhdrlen - fraggap;
954 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
955 				err = -EFAULT;
956 				kfree_skb(skb);
957 				goto error;
958 			}
959 
960 			offset += copy;
961 			length -= datalen - fraggap;
962 			transhdrlen = 0;
963 			exthdrlen = 0;
964 			csummode = CHECKSUM_NONE;
965 
966 			/*
967 			 * Put the packet on the pending queue.
968 			 */
969 			__skb_queue_tail(&sk->sk_write_queue, skb);
970 			continue;
971 		}
972 
973 		if (copy > length)
974 			copy = length;
975 
976 		if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
977 			unsigned int off;
978 
979 			off = skb->len;
980 			if (getfrag(from, skb_put(skb, copy),
981 					offset, copy, off, skb) < 0) {
982 				__skb_trim(skb, off);
983 				err = -EFAULT;
984 				goto error;
985 			}
986 		} else {
987 			int i = skb_shinfo(skb)->nr_frags;
988 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
989 			struct page *page = sk->sk_sndmsg_page;
990 			int off = sk->sk_sndmsg_off;
991 			unsigned int left;
992 
993 			if (page && (left = PAGE_SIZE - off) > 0) {
994 				if (copy >= left)
995 					copy = left;
996 				if (page != frag->page) {
997 					if (i == MAX_SKB_FRAGS) {
998 						err = -EMSGSIZE;
999 						goto error;
1000 					}
1001 					get_page(page);
1002 	 				skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1003 					frag = &skb_shinfo(skb)->frags[i];
1004 				}
1005 			} else if (i < MAX_SKB_FRAGS) {
1006 				if (copy > PAGE_SIZE)
1007 					copy = PAGE_SIZE;
1008 				page = alloc_pages(sk->sk_allocation, 0);
1009 				if (page == NULL)  {
1010 					err = -ENOMEM;
1011 					goto error;
1012 				}
1013 				sk->sk_sndmsg_page = page;
1014 				sk->sk_sndmsg_off = 0;
1015 
1016 				skb_fill_page_desc(skb, i, page, 0, 0);
1017 				frag = &skb_shinfo(skb)->frags[i];
1018 				skb->truesize += PAGE_SIZE;
1019 				atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1020 			} else {
1021 				err = -EMSGSIZE;
1022 				goto error;
1023 			}
1024 			if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1025 				err = -EFAULT;
1026 				goto error;
1027 			}
1028 			sk->sk_sndmsg_off += copy;
1029 			frag->size += copy;
1030 			skb->len += copy;
1031 			skb->data_len += copy;
1032 		}
1033 		offset += copy;
1034 		length -= copy;
1035 	}
1036 
1037 	return 0;
1038 
1039 error:
1040 	inet->cork.length -= length;
1041 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1042 	return err;
1043 }
1044 
1045 ssize_t	ip_append_page(struct sock *sk, struct page *page,
1046 		       int offset, size_t size, int flags)
1047 {
1048 	struct inet_sock *inet = inet_sk(sk);
1049 	struct sk_buff *skb;
1050 	struct rtable *rt;
1051 	struct ip_options *opt = NULL;
1052 	int hh_len;
1053 	int mtu;
1054 	int len;
1055 	int err;
1056 	unsigned int maxfraglen, fragheaderlen, fraggap;
1057 
1058 	if (inet->hdrincl)
1059 		return -EPERM;
1060 
1061 	if (flags&MSG_PROBE)
1062 		return 0;
1063 
1064 	if (skb_queue_empty(&sk->sk_write_queue))
1065 		return -EINVAL;
1066 
1067 	rt = inet->cork.rt;
1068 	if (inet->cork.flags & IPCORK_OPT)
1069 		opt = inet->cork.opt;
1070 
1071 	if (!(rt->u.dst.dev->features&NETIF_F_SG))
1072 		return -EOPNOTSUPP;
1073 
1074 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1075 	mtu = inet->cork.fragsize;
1076 
1077 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1078 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1079 
1080 	if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1081 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1082 		return -EMSGSIZE;
1083 	}
1084 
1085 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1086 		return -EINVAL;
1087 
1088 	inet->cork.length += size;
1089 	if ((sk->sk_protocol == IPPROTO_UDP) &&
1090 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
1091 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1092 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1093 	}
1094 
1095 
1096 	while (size > 0) {
1097 		int i;
1098 
1099 		if (skb_is_gso(skb))
1100 			len = size;
1101 		else {
1102 
1103 			/* Check if the remaining data fits into current packet. */
1104 			len = mtu - skb->len;
1105 			if (len < size)
1106 				len = maxfraglen - skb->len;
1107 		}
1108 		if (len <= 0) {
1109 			struct sk_buff *skb_prev;
1110 			char *data;
1111 			struct iphdr *iph;
1112 			int alloclen;
1113 
1114 			skb_prev = skb;
1115 			fraggap = skb_prev->len - maxfraglen;
1116 
1117 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1118 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1119 			if (unlikely(!skb)) {
1120 				err = -ENOBUFS;
1121 				goto error;
1122 			}
1123 
1124 			/*
1125 			 *	Fill in the control structures
1126 			 */
1127 			skb->ip_summed = CHECKSUM_NONE;
1128 			skb->csum = 0;
1129 			skb_reserve(skb, hh_len);
1130 
1131 			/*
1132 			 *	Find where to start putting bytes.
1133 			 */
1134 			data = skb_put(skb, fragheaderlen + fraggap);
1135 			skb->nh.iph = iph = (struct iphdr *)data;
1136 			data += fragheaderlen;
1137 			skb->h.raw = data;
1138 
1139 			if (fraggap) {
1140 				skb->csum = skb_copy_and_csum_bits(
1141 					skb_prev, maxfraglen,
1142 					data, fraggap, 0);
1143 				skb_prev->csum = csum_sub(skb_prev->csum,
1144 							  skb->csum);
1145 				skb_trim(skb_prev, maxfraglen);
1146 			}
1147 
1148 			/*
1149 			 * Put the packet on the pending queue.
1150 			 */
1151 			__skb_queue_tail(&sk->sk_write_queue, skb);
1152 			continue;
1153 		}
1154 
1155 		i = skb_shinfo(skb)->nr_frags;
1156 		if (len > size)
1157 			len = size;
1158 		if (skb_can_coalesce(skb, i, page, offset)) {
1159 			skb_shinfo(skb)->frags[i-1].size += len;
1160 		} else if (i < MAX_SKB_FRAGS) {
1161 			get_page(page);
1162 			skb_fill_page_desc(skb, i, page, offset, len);
1163 		} else {
1164 			err = -EMSGSIZE;
1165 			goto error;
1166 		}
1167 
1168 		if (skb->ip_summed == CHECKSUM_NONE) {
1169 			unsigned int csum;
1170 			csum = csum_page(page, offset, len);
1171 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1172 		}
1173 
1174 		skb->len += len;
1175 		skb->data_len += len;
1176 		offset += len;
1177 		size -= len;
1178 	}
1179 	return 0;
1180 
1181 error:
1182 	inet->cork.length -= size;
1183 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1184 	return err;
1185 }
1186 
1187 /*
1188  *	Combined all pending IP fragments on the socket as one IP datagram
1189  *	and push them out.
1190  */
1191 int ip_push_pending_frames(struct sock *sk)
1192 {
1193 	struct sk_buff *skb, *tmp_skb;
1194 	struct sk_buff **tail_skb;
1195 	struct inet_sock *inet = inet_sk(sk);
1196 	struct ip_options *opt = NULL;
1197 	struct rtable *rt = inet->cork.rt;
1198 	struct iphdr *iph;
1199 	__be16 df = 0;
1200 	__u8 ttl;
1201 	int err = 0;
1202 
1203 	if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1204 		goto out;
1205 	tail_skb = &(skb_shinfo(skb)->frag_list);
1206 
1207 	/* move skb->data to ip header from ext header */
1208 	if (skb->data < skb->nh.raw)
1209 		__skb_pull(skb, skb->nh.raw - skb->data);
1210 	while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1211 		__skb_pull(tmp_skb, skb->h.raw - skb->nh.raw);
1212 		*tail_skb = tmp_skb;
1213 		tail_skb = &(tmp_skb->next);
1214 		skb->len += tmp_skb->len;
1215 		skb->data_len += tmp_skb->len;
1216 		skb->truesize += tmp_skb->truesize;
1217 		__sock_put(tmp_skb->sk);
1218 		tmp_skb->destructor = NULL;
1219 		tmp_skb->sk = NULL;
1220 	}
1221 
1222 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1223 	 * to fragment the frame generated here. No matter, what transforms
1224 	 * how transforms change size of the packet, it will come out.
1225 	 */
1226 	if (inet->pmtudisc != IP_PMTUDISC_DO)
1227 		skb->local_df = 1;
1228 
1229 	/* DF bit is set when we want to see DF on outgoing frames.
1230 	 * If local_df is set too, we still allow to fragment this frame
1231 	 * locally. */
1232 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1233 	    (skb->len <= dst_mtu(&rt->u.dst) &&
1234 	     ip_dont_fragment(sk, &rt->u.dst)))
1235 		df = htons(IP_DF);
1236 
1237 	if (inet->cork.flags & IPCORK_OPT)
1238 		opt = inet->cork.opt;
1239 
1240 	if (rt->rt_type == RTN_MULTICAST)
1241 		ttl = inet->mc_ttl;
1242 	else
1243 		ttl = ip_select_ttl(inet, &rt->u.dst);
1244 
1245 	iph = (struct iphdr *)skb->data;
1246 	iph->version = 4;
1247 	iph->ihl = 5;
1248 	if (opt) {
1249 		iph->ihl += opt->optlen>>2;
1250 		ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1251 	}
1252 	iph->tos = inet->tos;
1253 	iph->tot_len = htons(skb->len);
1254 	iph->frag_off = df;
1255 	ip_select_ident(iph, &rt->u.dst, sk);
1256 	iph->ttl = ttl;
1257 	iph->protocol = sk->sk_protocol;
1258 	iph->saddr = rt->rt_src;
1259 	iph->daddr = rt->rt_dst;
1260 	ip_send_check(iph);
1261 
1262 	skb->priority = sk->sk_priority;
1263 	skb->dst = dst_clone(&rt->u.dst);
1264 
1265 	/* Netfilter gets whole the not fragmented skb. */
1266 	err = NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL,
1267 		      skb->dst->dev, dst_output);
1268 	if (err) {
1269 		if (err > 0)
1270 			err = inet->recverr ? net_xmit_errno(err) : 0;
1271 		if (err)
1272 			goto error;
1273 	}
1274 
1275 out:
1276 	inet->cork.flags &= ~IPCORK_OPT;
1277 	kfree(inet->cork.opt);
1278 	inet->cork.opt = NULL;
1279 	if (inet->cork.rt) {
1280 		ip_rt_put(inet->cork.rt);
1281 		inet->cork.rt = NULL;
1282 	}
1283 	return err;
1284 
1285 error:
1286 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1287 	goto out;
1288 }
1289 
1290 /*
1291  *	Throw away all pending data on the socket.
1292  */
1293 void ip_flush_pending_frames(struct sock *sk)
1294 {
1295 	struct inet_sock *inet = inet_sk(sk);
1296 	struct sk_buff *skb;
1297 
1298 	while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1299 		kfree_skb(skb);
1300 
1301 	inet->cork.flags &= ~IPCORK_OPT;
1302 	kfree(inet->cork.opt);
1303 	inet->cork.opt = NULL;
1304 	if (inet->cork.rt) {
1305 		ip_rt_put(inet->cork.rt);
1306 		inet->cork.rt = NULL;
1307 	}
1308 }
1309 
1310 
1311 /*
1312  *	Fetch data from kernel space and fill in checksum if needed.
1313  */
1314 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1315 			      int len, int odd, struct sk_buff *skb)
1316 {
1317 	unsigned int csum;
1318 
1319 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1320 	skb->csum = csum_block_add(skb->csum, csum, odd);
1321 	return 0;
1322 }
1323 
1324 /*
1325  *	Generic function to send a packet as reply to another packet.
1326  *	Used to send TCP resets so far. ICMP should use this function too.
1327  *
1328  *	Should run single threaded per socket because it uses the sock
1329  *     	structure to pass arguments.
1330  *
1331  *	LATER: switch from ip_build_xmit to ip_append_*
1332  */
1333 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1334 		   unsigned int len)
1335 {
1336 	struct inet_sock *inet = inet_sk(sk);
1337 	struct {
1338 		struct ip_options	opt;
1339 		char			data[40];
1340 	} replyopts;
1341 	struct ipcm_cookie ipc;
1342 	u32 daddr;
1343 	struct rtable *rt = (struct rtable*)skb->dst;
1344 
1345 	if (ip_options_echo(&replyopts.opt, skb))
1346 		return;
1347 
1348 	daddr = ipc.addr = rt->rt_src;
1349 	ipc.opt = NULL;
1350 
1351 	if (replyopts.opt.optlen) {
1352 		ipc.opt = &replyopts.opt;
1353 
1354 		if (ipc.opt->srr)
1355 			daddr = replyopts.opt.faddr;
1356 	}
1357 
1358 	{
1359 		struct flowi fl = { .nl_u = { .ip4_u =
1360 					      { .daddr = daddr,
1361 						.saddr = rt->rt_spec_dst,
1362 						.tos = RT_TOS(skb->nh.iph->tos) } },
1363 				    /* Not quite clean, but right. */
1364 				    .uli_u = { .ports =
1365 					       { .sport = skb->h.th->dest,
1366 					         .dport = skb->h.th->source } },
1367 				    .proto = sk->sk_protocol };
1368 		if (ip_route_output_key(&rt, &fl))
1369 			return;
1370 	}
1371 
1372 	/* And let IP do all the hard work.
1373 
1374 	   This chunk is not reenterable, hence spinlock.
1375 	   Note that it uses the fact, that this function is called
1376 	   with locally disabled BH and that sk cannot be already spinlocked.
1377 	 */
1378 	bh_lock_sock(sk);
1379 	inet->tos = skb->nh.iph->tos;
1380 	sk->sk_priority = skb->priority;
1381 	sk->sk_protocol = skb->nh.iph->protocol;
1382 	ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1383 		       &ipc, rt, MSG_DONTWAIT);
1384 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1385 		if (arg->csumoffset >= 0)
1386 			*((u16 *)skb->h.raw + arg->csumoffset) = csum_fold(csum_add(skb->csum, arg->csum));
1387 		skb->ip_summed = CHECKSUM_NONE;
1388 		ip_push_pending_frames(sk);
1389 	}
1390 
1391 	bh_unlock_sock(sk);
1392 
1393 	ip_rt_put(rt);
1394 }
1395 
1396 void __init ip_init(void)
1397 {
1398 	ip_rt_init();
1399 	inet_initpeers();
1400 
1401 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1402 	igmp_mc_proc_init();
1403 #endif
1404 }
1405 
1406 EXPORT_SYMBOL(ip_generic_getfrag);
1407 EXPORT_SYMBOL(ip_queue_xmit);
1408 EXPORT_SYMBOL(ip_send_check);
1409