xref: /linux/net/ipv4/ip_output.c (revision 3ce095c16263630dde46d6051854073edaacf3d7)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82 
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 EXPORT_SYMBOL(sysctl_ip_default_ttl);
85 
86 /* Generate a checksum for an outgoing IP datagram. */
87 void ip_send_check(struct iphdr *iph)
88 {
89 	iph->check = 0;
90 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
91 }
92 EXPORT_SYMBOL(ip_send_check);
93 
94 int __ip_local_out_sk(struct sock *sk, struct sk_buff *skb)
95 {
96 	struct iphdr *iph = ip_hdr(skb);
97 
98 	iph->tot_len = htons(skb->len);
99 	ip_send_check(iph);
100 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, sk, skb, NULL,
101 		       skb_dst(skb)->dev, dst_output_sk);
102 }
103 
104 int __ip_local_out(struct sk_buff *skb)
105 {
106 	return __ip_local_out_sk(skb->sk, skb);
107 }
108 
109 int ip_local_out_sk(struct sock *sk, struct sk_buff *skb)
110 {
111 	int err;
112 
113 	err = __ip_local_out(skb);
114 	if (likely(err == 1))
115 		err = dst_output_sk(sk, skb);
116 
117 	return err;
118 }
119 EXPORT_SYMBOL_GPL(ip_local_out_sk);
120 
121 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
122 {
123 	int ttl = inet->uc_ttl;
124 
125 	if (ttl < 0)
126 		ttl = ip4_dst_hoplimit(dst);
127 	return ttl;
128 }
129 
130 /*
131  *		Add an ip header to a skbuff and send it out.
132  *
133  */
134 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
135 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
136 {
137 	struct inet_sock *inet = inet_sk(sk);
138 	struct rtable *rt = skb_rtable(skb);
139 	struct iphdr *iph;
140 
141 	/* Build the IP header. */
142 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
143 	skb_reset_network_header(skb);
144 	iph = ip_hdr(skb);
145 	iph->version  = 4;
146 	iph->ihl      = 5;
147 	iph->tos      = inet->tos;
148 	if (ip_dont_fragment(sk, &rt->dst))
149 		iph->frag_off = htons(IP_DF);
150 	else
151 		iph->frag_off = 0;
152 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
153 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
154 	iph->saddr    = saddr;
155 	iph->protocol = sk->sk_protocol;
156 	ip_select_ident(sock_net(sk), skb, sk);
157 
158 	if (opt && opt->opt.optlen) {
159 		iph->ihl += opt->opt.optlen>>2;
160 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
161 	}
162 
163 	skb->priority = sk->sk_priority;
164 	skb->mark = sk->sk_mark;
165 
166 	/* Send it out. */
167 	return ip_local_out(skb);
168 }
169 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
170 
171 static inline int ip_finish_output2(struct sock *sk, struct sk_buff *skb)
172 {
173 	struct dst_entry *dst = skb_dst(skb);
174 	struct rtable *rt = (struct rtable *)dst;
175 	struct net_device *dev = dst->dev;
176 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
177 	struct neighbour *neigh;
178 	u32 nexthop;
179 
180 	if (rt->rt_type == RTN_MULTICAST) {
181 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
182 	} else if (rt->rt_type == RTN_BROADCAST)
183 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
184 
185 	/* Be paranoid, rather than too clever. */
186 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
187 		struct sk_buff *skb2;
188 
189 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
190 		if (!skb2) {
191 			kfree_skb(skb);
192 			return -ENOMEM;
193 		}
194 		if (skb->sk)
195 			skb_set_owner_w(skb2, skb->sk);
196 		consume_skb(skb);
197 		skb = skb2;
198 	}
199 
200 	rcu_read_lock_bh();
201 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
202 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
203 	if (unlikely(!neigh))
204 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
205 	if (!IS_ERR(neigh)) {
206 		int res = dst_neigh_output(dst, neigh, skb);
207 
208 		rcu_read_unlock_bh();
209 		return res;
210 	}
211 	rcu_read_unlock_bh();
212 
213 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
214 			    __func__);
215 	kfree_skb(skb);
216 	return -EINVAL;
217 }
218 
219 static int ip_finish_output_gso(struct sock *sk, struct sk_buff *skb)
220 {
221 	netdev_features_t features;
222 	struct sk_buff *segs;
223 	int ret = 0;
224 
225 	/* common case: locally created skb or seglen is <= mtu */
226 	if (((IPCB(skb)->flags & IPSKB_FORWARDED) == 0) ||
227 	      skb_gso_network_seglen(skb) <= ip_skb_dst_mtu(skb))
228 		return ip_finish_output2(sk, skb);
229 
230 	/* Slowpath -  GSO segment length is exceeding the dst MTU.
231 	 *
232 	 * This can happen in two cases:
233 	 * 1) TCP GRO packet, DF bit not set
234 	 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly
235 	 * from host network stack.
236 	 */
237 	features = netif_skb_features(skb);
238 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
239 	if (IS_ERR_OR_NULL(segs)) {
240 		kfree_skb(skb);
241 		return -ENOMEM;
242 	}
243 
244 	consume_skb(skb);
245 
246 	do {
247 		struct sk_buff *nskb = segs->next;
248 		int err;
249 
250 		segs->next = NULL;
251 		err = ip_fragment(sk, segs, ip_finish_output2);
252 
253 		if (err && ret == 0)
254 			ret = err;
255 		segs = nskb;
256 	} while (segs);
257 
258 	return ret;
259 }
260 
261 static int ip_finish_output(struct sock *sk, struct sk_buff *skb)
262 {
263 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
264 	/* Policy lookup after SNAT yielded a new policy */
265 	if (skb_dst(skb)->xfrm) {
266 		IPCB(skb)->flags |= IPSKB_REROUTED;
267 		return dst_output_sk(sk, skb);
268 	}
269 #endif
270 	if (skb_is_gso(skb))
271 		return ip_finish_output_gso(sk, skb);
272 
273 	if (skb->len > ip_skb_dst_mtu(skb))
274 		return ip_fragment(sk, skb, ip_finish_output2);
275 
276 	return ip_finish_output2(sk, skb);
277 }
278 
279 int ip_mc_output(struct sock *sk, struct sk_buff *skb)
280 {
281 	struct rtable *rt = skb_rtable(skb);
282 	struct net_device *dev = rt->dst.dev;
283 
284 	/*
285 	 *	If the indicated interface is up and running, send the packet.
286 	 */
287 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
288 
289 	skb->dev = dev;
290 	skb->protocol = htons(ETH_P_IP);
291 
292 	/*
293 	 *	Multicasts are looped back for other local users
294 	 */
295 
296 	if (rt->rt_flags&RTCF_MULTICAST) {
297 		if (sk_mc_loop(sk)
298 #ifdef CONFIG_IP_MROUTE
299 		/* Small optimization: do not loopback not local frames,
300 		   which returned after forwarding; they will be  dropped
301 		   by ip_mr_input in any case.
302 		   Note, that local frames are looped back to be delivered
303 		   to local recipients.
304 
305 		   This check is duplicated in ip_mr_input at the moment.
306 		 */
307 		    &&
308 		    ((rt->rt_flags & RTCF_LOCAL) ||
309 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
310 #endif
311 		   ) {
312 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
313 			if (newskb)
314 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
315 					sk, newskb, NULL, newskb->dev,
316 					dev_loopback_xmit);
317 		}
318 
319 		/* Multicasts with ttl 0 must not go beyond the host */
320 
321 		if (ip_hdr(skb)->ttl == 0) {
322 			kfree_skb(skb);
323 			return 0;
324 		}
325 	}
326 
327 	if (rt->rt_flags&RTCF_BROADCAST) {
328 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
329 		if (newskb)
330 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, sk, newskb,
331 				NULL, newskb->dev, dev_loopback_xmit);
332 	}
333 
334 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, sk, skb, NULL,
335 			    skb->dev, ip_finish_output,
336 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
337 }
338 
339 int ip_output(struct sock *sk, struct sk_buff *skb)
340 {
341 	struct net_device *dev = skb_dst(skb)->dev;
342 
343 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
344 
345 	skb->dev = dev;
346 	skb->protocol = htons(ETH_P_IP);
347 
348 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, sk, skb,
349 			    NULL, dev,
350 			    ip_finish_output,
351 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
352 }
353 
354 /*
355  * copy saddr and daddr, possibly using 64bit load/stores
356  * Equivalent to :
357  *   iph->saddr = fl4->saddr;
358  *   iph->daddr = fl4->daddr;
359  */
360 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
361 {
362 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
363 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
364 	memcpy(&iph->saddr, &fl4->saddr,
365 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
366 }
367 
368 /* Note: skb->sk can be different from sk, in case of tunnels */
369 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
370 {
371 	struct inet_sock *inet = inet_sk(sk);
372 	struct ip_options_rcu *inet_opt;
373 	struct flowi4 *fl4;
374 	struct rtable *rt;
375 	struct iphdr *iph;
376 	int res;
377 
378 	/* Skip all of this if the packet is already routed,
379 	 * f.e. by something like SCTP.
380 	 */
381 	rcu_read_lock();
382 	inet_opt = rcu_dereference(inet->inet_opt);
383 	fl4 = &fl->u.ip4;
384 	rt = skb_rtable(skb);
385 	if (rt)
386 		goto packet_routed;
387 
388 	/* Make sure we can route this packet. */
389 	rt = (struct rtable *)__sk_dst_check(sk, 0);
390 	if (!rt) {
391 		__be32 daddr;
392 
393 		/* Use correct destination address if we have options. */
394 		daddr = inet->inet_daddr;
395 		if (inet_opt && inet_opt->opt.srr)
396 			daddr = inet_opt->opt.faddr;
397 
398 		/* If this fails, retransmit mechanism of transport layer will
399 		 * keep trying until route appears or the connection times
400 		 * itself out.
401 		 */
402 		rt = ip_route_output_ports(sock_net(sk), fl4, sk,
403 					   daddr, inet->inet_saddr,
404 					   inet->inet_dport,
405 					   inet->inet_sport,
406 					   sk->sk_protocol,
407 					   RT_CONN_FLAGS(sk),
408 					   sk->sk_bound_dev_if);
409 		if (IS_ERR(rt))
410 			goto no_route;
411 		sk_setup_caps(sk, &rt->dst);
412 	}
413 	skb_dst_set_noref(skb, &rt->dst);
414 
415 packet_routed:
416 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
417 		goto no_route;
418 
419 	/* OK, we know where to send it, allocate and build IP header. */
420 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
421 	skb_reset_network_header(skb);
422 	iph = ip_hdr(skb);
423 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
424 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
425 		iph->frag_off = htons(IP_DF);
426 	else
427 		iph->frag_off = 0;
428 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
429 	iph->protocol = sk->sk_protocol;
430 	ip_copy_addrs(iph, fl4);
431 
432 	/* Transport layer set skb->h.foo itself. */
433 
434 	if (inet_opt && inet_opt->opt.optlen) {
435 		iph->ihl += inet_opt->opt.optlen >> 2;
436 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
437 	}
438 
439 	ip_select_ident_segs(sock_net(sk), skb, sk,
440 			     skb_shinfo(skb)->gso_segs ?: 1);
441 
442 	/* TODO : should we use skb->sk here instead of sk ? */
443 	skb->priority = sk->sk_priority;
444 	skb->mark = sk->sk_mark;
445 
446 	res = ip_local_out(skb);
447 	rcu_read_unlock();
448 	return res;
449 
450 no_route:
451 	rcu_read_unlock();
452 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
453 	kfree_skb(skb);
454 	return -EHOSTUNREACH;
455 }
456 EXPORT_SYMBOL(ip_queue_xmit);
457 
458 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
459 {
460 	to->pkt_type = from->pkt_type;
461 	to->priority = from->priority;
462 	to->protocol = from->protocol;
463 	skb_dst_drop(to);
464 	skb_dst_copy(to, from);
465 	to->dev = from->dev;
466 	to->mark = from->mark;
467 
468 	/* Copy the flags to each fragment. */
469 	IPCB(to)->flags = IPCB(from)->flags;
470 
471 #ifdef CONFIG_NET_SCHED
472 	to->tc_index = from->tc_index;
473 #endif
474 	nf_copy(to, from);
475 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
476 	to->ipvs_property = from->ipvs_property;
477 #endif
478 	skb_copy_secmark(to, from);
479 }
480 
481 /*
482  *	This IP datagram is too large to be sent in one piece.  Break it up into
483  *	smaller pieces (each of size equal to IP header plus
484  *	a block of the data of the original IP data part) that will yet fit in a
485  *	single device frame, and queue such a frame for sending.
486  */
487 
488 int ip_fragment(struct sock *sk, struct sk_buff *skb,
489 		int (*output)(struct sock *, struct sk_buff *))
490 {
491 	struct iphdr *iph;
492 	int ptr;
493 	struct net_device *dev;
494 	struct sk_buff *skb2;
495 	unsigned int mtu, hlen, left, len, ll_rs;
496 	int offset;
497 	__be16 not_last_frag;
498 	struct rtable *rt = skb_rtable(skb);
499 	int err = 0;
500 
501 	dev = rt->dst.dev;
502 
503 	/*
504 	 *	Point into the IP datagram header.
505 	 */
506 
507 	iph = ip_hdr(skb);
508 
509 	mtu = ip_skb_dst_mtu(skb);
510 	if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->ignore_df) ||
511 		     (IPCB(skb)->frag_max_size &&
512 		      IPCB(skb)->frag_max_size > mtu))) {
513 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
514 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
515 			  htonl(mtu));
516 		kfree_skb(skb);
517 		return -EMSGSIZE;
518 	}
519 
520 	/*
521 	 *	Setup starting values.
522 	 */
523 
524 	hlen = iph->ihl * 4;
525 	mtu = mtu - hlen;	/* Size of data space */
526 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
527 	if (skb->nf_bridge)
528 		mtu -= nf_bridge_mtu_reduction(skb);
529 #endif
530 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
531 
532 	/* When frag_list is given, use it. First, check its validity:
533 	 * some transformers could create wrong frag_list or break existing
534 	 * one, it is not prohibited. In this case fall back to copying.
535 	 *
536 	 * LATER: this step can be merged to real generation of fragments,
537 	 * we can switch to copy when see the first bad fragment.
538 	 */
539 	if (skb_has_frag_list(skb)) {
540 		struct sk_buff *frag, *frag2;
541 		int first_len = skb_pagelen(skb);
542 
543 		if (first_len - hlen > mtu ||
544 		    ((first_len - hlen) & 7) ||
545 		    ip_is_fragment(iph) ||
546 		    skb_cloned(skb))
547 			goto slow_path;
548 
549 		skb_walk_frags(skb, frag) {
550 			/* Correct geometry. */
551 			if (frag->len > mtu ||
552 			    ((frag->len & 7) && frag->next) ||
553 			    skb_headroom(frag) < hlen)
554 				goto slow_path_clean;
555 
556 			/* Partially cloned skb? */
557 			if (skb_shared(frag))
558 				goto slow_path_clean;
559 
560 			BUG_ON(frag->sk);
561 			if (skb->sk) {
562 				frag->sk = skb->sk;
563 				frag->destructor = sock_wfree;
564 			}
565 			skb->truesize -= frag->truesize;
566 		}
567 
568 		/* Everything is OK. Generate! */
569 
570 		err = 0;
571 		offset = 0;
572 		frag = skb_shinfo(skb)->frag_list;
573 		skb_frag_list_init(skb);
574 		skb->data_len = first_len - skb_headlen(skb);
575 		skb->len = first_len;
576 		iph->tot_len = htons(first_len);
577 		iph->frag_off = htons(IP_MF);
578 		ip_send_check(iph);
579 
580 		for (;;) {
581 			/* Prepare header of the next frame,
582 			 * before previous one went down. */
583 			if (frag) {
584 				frag->ip_summed = CHECKSUM_NONE;
585 				skb_reset_transport_header(frag);
586 				__skb_push(frag, hlen);
587 				skb_reset_network_header(frag);
588 				memcpy(skb_network_header(frag), iph, hlen);
589 				iph = ip_hdr(frag);
590 				iph->tot_len = htons(frag->len);
591 				ip_copy_metadata(frag, skb);
592 				if (offset == 0)
593 					ip_options_fragment(frag);
594 				offset += skb->len - hlen;
595 				iph->frag_off = htons(offset>>3);
596 				if (frag->next)
597 					iph->frag_off |= htons(IP_MF);
598 				/* Ready, complete checksum */
599 				ip_send_check(iph);
600 			}
601 
602 			err = output(sk, skb);
603 
604 			if (!err)
605 				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
606 			if (err || !frag)
607 				break;
608 
609 			skb = frag;
610 			frag = skb->next;
611 			skb->next = NULL;
612 		}
613 
614 		if (err == 0) {
615 			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
616 			return 0;
617 		}
618 
619 		while (frag) {
620 			skb = frag->next;
621 			kfree_skb(frag);
622 			frag = skb;
623 		}
624 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
625 		return err;
626 
627 slow_path_clean:
628 		skb_walk_frags(skb, frag2) {
629 			if (frag2 == frag)
630 				break;
631 			frag2->sk = NULL;
632 			frag2->destructor = NULL;
633 			skb->truesize += frag2->truesize;
634 		}
635 	}
636 
637 slow_path:
638 	/* for offloaded checksums cleanup checksum before fragmentation */
639 	if ((skb->ip_summed == CHECKSUM_PARTIAL) && skb_checksum_help(skb))
640 		goto fail;
641 	iph = ip_hdr(skb);
642 
643 	left = skb->len - hlen;		/* Space per frame */
644 	ptr = hlen;		/* Where to start from */
645 
646 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
647 
648 	/*
649 	 *	Fragment the datagram.
650 	 */
651 
652 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
653 	not_last_frag = iph->frag_off & htons(IP_MF);
654 
655 	/*
656 	 *	Keep copying data until we run out.
657 	 */
658 
659 	while (left > 0) {
660 		len = left;
661 		/* IF: it doesn't fit, use 'mtu' - the data space left */
662 		if (len > mtu)
663 			len = mtu;
664 		/* IF: we are not sending up to and including the packet end
665 		   then align the next start on an eight byte boundary */
666 		if (len < left)	{
667 			len &= ~7;
668 		}
669 
670 		/* Allocate buffer */
671 		skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
672 		if (!skb2) {
673 			err = -ENOMEM;
674 			goto fail;
675 		}
676 
677 		/*
678 		 *	Set up data on packet
679 		 */
680 
681 		ip_copy_metadata(skb2, skb);
682 		skb_reserve(skb2, ll_rs);
683 		skb_put(skb2, len + hlen);
684 		skb_reset_network_header(skb2);
685 		skb2->transport_header = skb2->network_header + hlen;
686 
687 		/*
688 		 *	Charge the memory for the fragment to any owner
689 		 *	it might possess
690 		 */
691 
692 		if (skb->sk)
693 			skb_set_owner_w(skb2, skb->sk);
694 
695 		/*
696 		 *	Copy the packet header into the new buffer.
697 		 */
698 
699 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
700 
701 		/*
702 		 *	Copy a block of the IP datagram.
703 		 */
704 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
705 			BUG();
706 		left -= len;
707 
708 		/*
709 		 *	Fill in the new header fields.
710 		 */
711 		iph = ip_hdr(skb2);
712 		iph->frag_off = htons((offset >> 3));
713 
714 		/* ANK: dirty, but effective trick. Upgrade options only if
715 		 * the segment to be fragmented was THE FIRST (otherwise,
716 		 * options are already fixed) and make it ONCE
717 		 * on the initial skb, so that all the following fragments
718 		 * will inherit fixed options.
719 		 */
720 		if (offset == 0)
721 			ip_options_fragment(skb);
722 
723 		/*
724 		 *	Added AC : If we are fragmenting a fragment that's not the
725 		 *		   last fragment then keep MF on each bit
726 		 */
727 		if (left > 0 || not_last_frag)
728 			iph->frag_off |= htons(IP_MF);
729 		ptr += len;
730 		offset += len;
731 
732 		/*
733 		 *	Put this fragment into the sending queue.
734 		 */
735 		iph->tot_len = htons(len + hlen);
736 
737 		ip_send_check(iph);
738 
739 		err = output(sk, skb2);
740 		if (err)
741 			goto fail;
742 
743 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
744 	}
745 	consume_skb(skb);
746 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
747 	return err;
748 
749 fail:
750 	kfree_skb(skb);
751 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
752 	return err;
753 }
754 EXPORT_SYMBOL(ip_fragment);
755 
756 int
757 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
758 {
759 	struct msghdr *msg = from;
760 
761 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
762 		if (copy_from_iter(to, len, &msg->msg_iter) != len)
763 			return -EFAULT;
764 	} else {
765 		__wsum csum = 0;
766 		if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
767 			return -EFAULT;
768 		skb->csum = csum_block_add(skb->csum, csum, odd);
769 	}
770 	return 0;
771 }
772 EXPORT_SYMBOL(ip_generic_getfrag);
773 
774 static inline __wsum
775 csum_page(struct page *page, int offset, int copy)
776 {
777 	char *kaddr;
778 	__wsum csum;
779 	kaddr = kmap(page);
780 	csum = csum_partial(kaddr + offset, copy, 0);
781 	kunmap(page);
782 	return csum;
783 }
784 
785 static inline int ip_ufo_append_data(struct sock *sk,
786 			struct sk_buff_head *queue,
787 			int getfrag(void *from, char *to, int offset, int len,
788 			       int odd, struct sk_buff *skb),
789 			void *from, int length, int hh_len, int fragheaderlen,
790 			int transhdrlen, int maxfraglen, unsigned int flags)
791 {
792 	struct sk_buff *skb;
793 	int err;
794 
795 	/* There is support for UDP fragmentation offload by network
796 	 * device, so create one single skb packet containing complete
797 	 * udp datagram
798 	 */
799 	skb = skb_peek_tail(queue);
800 	if (!skb) {
801 		skb = sock_alloc_send_skb(sk,
802 			hh_len + fragheaderlen + transhdrlen + 20,
803 			(flags & MSG_DONTWAIT), &err);
804 
805 		if (!skb)
806 			return err;
807 
808 		/* reserve space for Hardware header */
809 		skb_reserve(skb, hh_len);
810 
811 		/* create space for UDP/IP header */
812 		skb_put(skb, fragheaderlen + transhdrlen);
813 
814 		/* initialize network header pointer */
815 		skb_reset_network_header(skb);
816 
817 		/* initialize protocol header pointer */
818 		skb->transport_header = skb->network_header + fragheaderlen;
819 
820 		skb->csum = 0;
821 
822 		__skb_queue_tail(queue, skb);
823 	} else if (skb_is_gso(skb)) {
824 		goto append;
825 	}
826 
827 	skb->ip_summed = CHECKSUM_PARTIAL;
828 	/* specify the length of each IP datagram fragment */
829 	skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
830 	skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
831 
832 append:
833 	return skb_append_datato_frags(sk, skb, getfrag, from,
834 				       (length - transhdrlen));
835 }
836 
837 static int __ip_append_data(struct sock *sk,
838 			    struct flowi4 *fl4,
839 			    struct sk_buff_head *queue,
840 			    struct inet_cork *cork,
841 			    struct page_frag *pfrag,
842 			    int getfrag(void *from, char *to, int offset,
843 					int len, int odd, struct sk_buff *skb),
844 			    void *from, int length, int transhdrlen,
845 			    unsigned int flags)
846 {
847 	struct inet_sock *inet = inet_sk(sk);
848 	struct sk_buff *skb;
849 
850 	struct ip_options *opt = cork->opt;
851 	int hh_len;
852 	int exthdrlen;
853 	int mtu;
854 	int copy;
855 	int err;
856 	int offset = 0;
857 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
858 	int csummode = CHECKSUM_NONE;
859 	struct rtable *rt = (struct rtable *)cork->dst;
860 	u32 tskey = 0;
861 
862 	skb = skb_peek_tail(queue);
863 
864 	exthdrlen = !skb ? rt->dst.header_len : 0;
865 	mtu = cork->fragsize;
866 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
867 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
868 		tskey = sk->sk_tskey++;
869 
870 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
871 
872 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
873 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
874 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
875 
876 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
877 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
878 			       mtu - (opt ? opt->optlen : 0));
879 		return -EMSGSIZE;
880 	}
881 
882 	/*
883 	 * transhdrlen > 0 means that this is the first fragment and we wish
884 	 * it won't be fragmented in the future.
885 	 */
886 	if (transhdrlen &&
887 	    length + fragheaderlen <= mtu &&
888 	    rt->dst.dev->features & NETIF_F_V4_CSUM &&
889 	    !exthdrlen)
890 		csummode = CHECKSUM_PARTIAL;
891 
892 	cork->length += length;
893 	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
894 	    (sk->sk_protocol == IPPROTO_UDP) &&
895 	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
896 	    (sk->sk_type == SOCK_DGRAM)) {
897 		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
898 					 hh_len, fragheaderlen, transhdrlen,
899 					 maxfraglen, flags);
900 		if (err)
901 			goto error;
902 		return 0;
903 	}
904 
905 	/* So, what's going on in the loop below?
906 	 *
907 	 * We use calculated fragment length to generate chained skb,
908 	 * each of segments is IP fragment ready for sending to network after
909 	 * adding appropriate IP header.
910 	 */
911 
912 	if (!skb)
913 		goto alloc_new_skb;
914 
915 	while (length > 0) {
916 		/* Check if the remaining data fits into current packet. */
917 		copy = mtu - skb->len;
918 		if (copy < length)
919 			copy = maxfraglen - skb->len;
920 		if (copy <= 0) {
921 			char *data;
922 			unsigned int datalen;
923 			unsigned int fraglen;
924 			unsigned int fraggap;
925 			unsigned int alloclen;
926 			struct sk_buff *skb_prev;
927 alloc_new_skb:
928 			skb_prev = skb;
929 			if (skb_prev)
930 				fraggap = skb_prev->len - maxfraglen;
931 			else
932 				fraggap = 0;
933 
934 			/*
935 			 * If remaining data exceeds the mtu,
936 			 * we know we need more fragment(s).
937 			 */
938 			datalen = length + fraggap;
939 			if (datalen > mtu - fragheaderlen)
940 				datalen = maxfraglen - fragheaderlen;
941 			fraglen = datalen + fragheaderlen;
942 
943 			if ((flags & MSG_MORE) &&
944 			    !(rt->dst.dev->features&NETIF_F_SG))
945 				alloclen = mtu;
946 			else
947 				alloclen = fraglen;
948 
949 			alloclen += exthdrlen;
950 
951 			/* The last fragment gets additional space at tail.
952 			 * Note, with MSG_MORE we overallocate on fragments,
953 			 * because we have no idea what fragment will be
954 			 * the last.
955 			 */
956 			if (datalen == length + fraggap)
957 				alloclen += rt->dst.trailer_len;
958 
959 			if (transhdrlen) {
960 				skb = sock_alloc_send_skb(sk,
961 						alloclen + hh_len + 15,
962 						(flags & MSG_DONTWAIT), &err);
963 			} else {
964 				skb = NULL;
965 				if (atomic_read(&sk->sk_wmem_alloc) <=
966 				    2 * sk->sk_sndbuf)
967 					skb = sock_wmalloc(sk,
968 							   alloclen + hh_len + 15, 1,
969 							   sk->sk_allocation);
970 				if (unlikely(!skb))
971 					err = -ENOBUFS;
972 			}
973 			if (!skb)
974 				goto error;
975 
976 			/*
977 			 *	Fill in the control structures
978 			 */
979 			skb->ip_summed = csummode;
980 			skb->csum = 0;
981 			skb_reserve(skb, hh_len);
982 
983 			/* only the initial fragment is time stamped */
984 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
985 			cork->tx_flags = 0;
986 			skb_shinfo(skb)->tskey = tskey;
987 			tskey = 0;
988 
989 			/*
990 			 *	Find where to start putting bytes.
991 			 */
992 			data = skb_put(skb, fraglen + exthdrlen);
993 			skb_set_network_header(skb, exthdrlen);
994 			skb->transport_header = (skb->network_header +
995 						 fragheaderlen);
996 			data += fragheaderlen + exthdrlen;
997 
998 			if (fraggap) {
999 				skb->csum = skb_copy_and_csum_bits(
1000 					skb_prev, maxfraglen,
1001 					data + transhdrlen, fraggap, 0);
1002 				skb_prev->csum = csum_sub(skb_prev->csum,
1003 							  skb->csum);
1004 				data += fraggap;
1005 				pskb_trim_unique(skb_prev, maxfraglen);
1006 			}
1007 
1008 			copy = datalen - transhdrlen - fraggap;
1009 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1010 				err = -EFAULT;
1011 				kfree_skb(skb);
1012 				goto error;
1013 			}
1014 
1015 			offset += copy;
1016 			length -= datalen - fraggap;
1017 			transhdrlen = 0;
1018 			exthdrlen = 0;
1019 			csummode = CHECKSUM_NONE;
1020 
1021 			/*
1022 			 * Put the packet on the pending queue.
1023 			 */
1024 			__skb_queue_tail(queue, skb);
1025 			continue;
1026 		}
1027 
1028 		if (copy > length)
1029 			copy = length;
1030 
1031 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
1032 			unsigned int off;
1033 
1034 			off = skb->len;
1035 			if (getfrag(from, skb_put(skb, copy),
1036 					offset, copy, off, skb) < 0) {
1037 				__skb_trim(skb, off);
1038 				err = -EFAULT;
1039 				goto error;
1040 			}
1041 		} else {
1042 			int i = skb_shinfo(skb)->nr_frags;
1043 
1044 			err = -ENOMEM;
1045 			if (!sk_page_frag_refill(sk, pfrag))
1046 				goto error;
1047 
1048 			if (!skb_can_coalesce(skb, i, pfrag->page,
1049 					      pfrag->offset)) {
1050 				err = -EMSGSIZE;
1051 				if (i == MAX_SKB_FRAGS)
1052 					goto error;
1053 
1054 				__skb_fill_page_desc(skb, i, pfrag->page,
1055 						     pfrag->offset, 0);
1056 				skb_shinfo(skb)->nr_frags = ++i;
1057 				get_page(pfrag->page);
1058 			}
1059 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1060 			if (getfrag(from,
1061 				    page_address(pfrag->page) + pfrag->offset,
1062 				    offset, copy, skb->len, skb) < 0)
1063 				goto error_efault;
1064 
1065 			pfrag->offset += copy;
1066 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1067 			skb->len += copy;
1068 			skb->data_len += copy;
1069 			skb->truesize += copy;
1070 			atomic_add(copy, &sk->sk_wmem_alloc);
1071 		}
1072 		offset += copy;
1073 		length -= copy;
1074 	}
1075 
1076 	return 0;
1077 
1078 error_efault:
1079 	err = -EFAULT;
1080 error:
1081 	cork->length -= length;
1082 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1083 	return err;
1084 }
1085 
1086 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1087 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1088 {
1089 	struct ip_options_rcu *opt;
1090 	struct rtable *rt;
1091 
1092 	/*
1093 	 * setup for corking.
1094 	 */
1095 	opt = ipc->opt;
1096 	if (opt) {
1097 		if (!cork->opt) {
1098 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1099 					    sk->sk_allocation);
1100 			if (unlikely(!cork->opt))
1101 				return -ENOBUFS;
1102 		}
1103 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1104 		cork->flags |= IPCORK_OPT;
1105 		cork->addr = ipc->addr;
1106 	}
1107 	rt = *rtp;
1108 	if (unlikely(!rt))
1109 		return -EFAULT;
1110 	/*
1111 	 * We steal reference to this route, caller should not release it
1112 	 */
1113 	*rtp = NULL;
1114 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1115 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1116 	cork->dst = &rt->dst;
1117 	cork->length = 0;
1118 	cork->ttl = ipc->ttl;
1119 	cork->tos = ipc->tos;
1120 	cork->priority = ipc->priority;
1121 	cork->tx_flags = ipc->tx_flags;
1122 
1123 	return 0;
1124 }
1125 
1126 /*
1127  *	ip_append_data() and ip_append_page() can make one large IP datagram
1128  *	from many pieces of data. Each pieces will be holded on the socket
1129  *	until ip_push_pending_frames() is called. Each piece can be a page
1130  *	or non-page data.
1131  *
1132  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1133  *	this interface potentially.
1134  *
1135  *	LATER: length must be adjusted by pad at tail, when it is required.
1136  */
1137 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1138 		   int getfrag(void *from, char *to, int offset, int len,
1139 			       int odd, struct sk_buff *skb),
1140 		   void *from, int length, int transhdrlen,
1141 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1142 		   unsigned int flags)
1143 {
1144 	struct inet_sock *inet = inet_sk(sk);
1145 	int err;
1146 
1147 	if (flags&MSG_PROBE)
1148 		return 0;
1149 
1150 	if (skb_queue_empty(&sk->sk_write_queue)) {
1151 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1152 		if (err)
1153 			return err;
1154 	} else {
1155 		transhdrlen = 0;
1156 	}
1157 
1158 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1159 				sk_page_frag(sk), getfrag,
1160 				from, length, transhdrlen, flags);
1161 }
1162 
1163 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1164 		       int offset, size_t size, int flags)
1165 {
1166 	struct inet_sock *inet = inet_sk(sk);
1167 	struct sk_buff *skb;
1168 	struct rtable *rt;
1169 	struct ip_options *opt = NULL;
1170 	struct inet_cork *cork;
1171 	int hh_len;
1172 	int mtu;
1173 	int len;
1174 	int err;
1175 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1176 
1177 	if (inet->hdrincl)
1178 		return -EPERM;
1179 
1180 	if (flags&MSG_PROBE)
1181 		return 0;
1182 
1183 	if (skb_queue_empty(&sk->sk_write_queue))
1184 		return -EINVAL;
1185 
1186 	cork = &inet->cork.base;
1187 	rt = (struct rtable *)cork->dst;
1188 	if (cork->flags & IPCORK_OPT)
1189 		opt = cork->opt;
1190 
1191 	if (!(rt->dst.dev->features&NETIF_F_SG))
1192 		return -EOPNOTSUPP;
1193 
1194 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1195 	mtu = cork->fragsize;
1196 
1197 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1198 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1199 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1200 
1201 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1202 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1203 			       mtu - (opt ? opt->optlen : 0));
1204 		return -EMSGSIZE;
1205 	}
1206 
1207 	skb = skb_peek_tail(&sk->sk_write_queue);
1208 	if (!skb)
1209 		return -EINVAL;
1210 
1211 	cork->length += size;
1212 	if ((size + skb->len > mtu) &&
1213 	    (sk->sk_protocol == IPPROTO_UDP) &&
1214 	    (rt->dst.dev->features & NETIF_F_UFO)) {
1215 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1216 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1217 	}
1218 
1219 	while (size > 0) {
1220 		int i;
1221 
1222 		if (skb_is_gso(skb))
1223 			len = size;
1224 		else {
1225 
1226 			/* Check if the remaining data fits into current packet. */
1227 			len = mtu - skb->len;
1228 			if (len < size)
1229 				len = maxfraglen - skb->len;
1230 		}
1231 		if (len <= 0) {
1232 			struct sk_buff *skb_prev;
1233 			int alloclen;
1234 
1235 			skb_prev = skb;
1236 			fraggap = skb_prev->len - maxfraglen;
1237 
1238 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1239 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1240 			if (unlikely(!skb)) {
1241 				err = -ENOBUFS;
1242 				goto error;
1243 			}
1244 
1245 			/*
1246 			 *	Fill in the control structures
1247 			 */
1248 			skb->ip_summed = CHECKSUM_NONE;
1249 			skb->csum = 0;
1250 			skb_reserve(skb, hh_len);
1251 
1252 			/*
1253 			 *	Find where to start putting bytes.
1254 			 */
1255 			skb_put(skb, fragheaderlen + fraggap);
1256 			skb_reset_network_header(skb);
1257 			skb->transport_header = (skb->network_header +
1258 						 fragheaderlen);
1259 			if (fraggap) {
1260 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1261 								   maxfraglen,
1262 						    skb_transport_header(skb),
1263 								   fraggap, 0);
1264 				skb_prev->csum = csum_sub(skb_prev->csum,
1265 							  skb->csum);
1266 				pskb_trim_unique(skb_prev, maxfraglen);
1267 			}
1268 
1269 			/*
1270 			 * Put the packet on the pending queue.
1271 			 */
1272 			__skb_queue_tail(&sk->sk_write_queue, skb);
1273 			continue;
1274 		}
1275 
1276 		i = skb_shinfo(skb)->nr_frags;
1277 		if (len > size)
1278 			len = size;
1279 		if (skb_can_coalesce(skb, i, page, offset)) {
1280 			skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
1281 		} else if (i < MAX_SKB_FRAGS) {
1282 			get_page(page);
1283 			skb_fill_page_desc(skb, i, page, offset, len);
1284 		} else {
1285 			err = -EMSGSIZE;
1286 			goto error;
1287 		}
1288 
1289 		if (skb->ip_summed == CHECKSUM_NONE) {
1290 			__wsum csum;
1291 			csum = csum_page(page, offset, len);
1292 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1293 		}
1294 
1295 		skb->len += len;
1296 		skb->data_len += len;
1297 		skb->truesize += len;
1298 		atomic_add(len, &sk->sk_wmem_alloc);
1299 		offset += len;
1300 		size -= len;
1301 	}
1302 	return 0;
1303 
1304 error:
1305 	cork->length -= size;
1306 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1307 	return err;
1308 }
1309 
1310 static void ip_cork_release(struct inet_cork *cork)
1311 {
1312 	cork->flags &= ~IPCORK_OPT;
1313 	kfree(cork->opt);
1314 	cork->opt = NULL;
1315 	dst_release(cork->dst);
1316 	cork->dst = NULL;
1317 }
1318 
1319 /*
1320  *	Combined all pending IP fragments on the socket as one IP datagram
1321  *	and push them out.
1322  */
1323 struct sk_buff *__ip_make_skb(struct sock *sk,
1324 			      struct flowi4 *fl4,
1325 			      struct sk_buff_head *queue,
1326 			      struct inet_cork *cork)
1327 {
1328 	struct sk_buff *skb, *tmp_skb;
1329 	struct sk_buff **tail_skb;
1330 	struct inet_sock *inet = inet_sk(sk);
1331 	struct net *net = sock_net(sk);
1332 	struct ip_options *opt = NULL;
1333 	struct rtable *rt = (struct rtable *)cork->dst;
1334 	struct iphdr *iph;
1335 	__be16 df = 0;
1336 	__u8 ttl;
1337 
1338 	skb = __skb_dequeue(queue);
1339 	if (!skb)
1340 		goto out;
1341 	tail_skb = &(skb_shinfo(skb)->frag_list);
1342 
1343 	/* move skb->data to ip header from ext header */
1344 	if (skb->data < skb_network_header(skb))
1345 		__skb_pull(skb, skb_network_offset(skb));
1346 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1347 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1348 		*tail_skb = tmp_skb;
1349 		tail_skb = &(tmp_skb->next);
1350 		skb->len += tmp_skb->len;
1351 		skb->data_len += tmp_skb->len;
1352 		skb->truesize += tmp_skb->truesize;
1353 		tmp_skb->destructor = NULL;
1354 		tmp_skb->sk = NULL;
1355 	}
1356 
1357 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1358 	 * to fragment the frame generated here. No matter, what transforms
1359 	 * how transforms change size of the packet, it will come out.
1360 	 */
1361 	skb->ignore_df = ip_sk_ignore_df(sk);
1362 
1363 	/* DF bit is set when we want to see DF on outgoing frames.
1364 	 * If ignore_df is set too, we still allow to fragment this frame
1365 	 * locally. */
1366 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1367 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1368 	    (skb->len <= dst_mtu(&rt->dst) &&
1369 	     ip_dont_fragment(sk, &rt->dst)))
1370 		df = htons(IP_DF);
1371 
1372 	if (cork->flags & IPCORK_OPT)
1373 		opt = cork->opt;
1374 
1375 	if (cork->ttl != 0)
1376 		ttl = cork->ttl;
1377 	else if (rt->rt_type == RTN_MULTICAST)
1378 		ttl = inet->mc_ttl;
1379 	else
1380 		ttl = ip_select_ttl(inet, &rt->dst);
1381 
1382 	iph = ip_hdr(skb);
1383 	iph->version = 4;
1384 	iph->ihl = 5;
1385 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1386 	iph->frag_off = df;
1387 	iph->ttl = ttl;
1388 	iph->protocol = sk->sk_protocol;
1389 	ip_copy_addrs(iph, fl4);
1390 	ip_select_ident(net, skb, sk);
1391 
1392 	if (opt) {
1393 		iph->ihl += opt->optlen>>2;
1394 		ip_options_build(skb, opt, cork->addr, rt, 0);
1395 	}
1396 
1397 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1398 	skb->mark = sk->sk_mark;
1399 	/*
1400 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1401 	 * on dst refcount
1402 	 */
1403 	cork->dst = NULL;
1404 	skb_dst_set(skb, &rt->dst);
1405 
1406 	if (iph->protocol == IPPROTO_ICMP)
1407 		icmp_out_count(net, ((struct icmphdr *)
1408 			skb_transport_header(skb))->type);
1409 
1410 	ip_cork_release(cork);
1411 out:
1412 	return skb;
1413 }
1414 
1415 int ip_send_skb(struct net *net, struct sk_buff *skb)
1416 {
1417 	int err;
1418 
1419 	err = ip_local_out(skb);
1420 	if (err) {
1421 		if (err > 0)
1422 			err = net_xmit_errno(err);
1423 		if (err)
1424 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1425 	}
1426 
1427 	return err;
1428 }
1429 
1430 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1431 {
1432 	struct sk_buff *skb;
1433 
1434 	skb = ip_finish_skb(sk, fl4);
1435 	if (!skb)
1436 		return 0;
1437 
1438 	/* Netfilter gets whole the not fragmented skb. */
1439 	return ip_send_skb(sock_net(sk), skb);
1440 }
1441 
1442 /*
1443  *	Throw away all pending data on the socket.
1444  */
1445 static void __ip_flush_pending_frames(struct sock *sk,
1446 				      struct sk_buff_head *queue,
1447 				      struct inet_cork *cork)
1448 {
1449 	struct sk_buff *skb;
1450 
1451 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1452 		kfree_skb(skb);
1453 
1454 	ip_cork_release(cork);
1455 }
1456 
1457 void ip_flush_pending_frames(struct sock *sk)
1458 {
1459 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1460 }
1461 
1462 struct sk_buff *ip_make_skb(struct sock *sk,
1463 			    struct flowi4 *fl4,
1464 			    int getfrag(void *from, char *to, int offset,
1465 					int len, int odd, struct sk_buff *skb),
1466 			    void *from, int length, int transhdrlen,
1467 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1468 			    unsigned int flags)
1469 {
1470 	struct inet_cork cork;
1471 	struct sk_buff_head queue;
1472 	int err;
1473 
1474 	if (flags & MSG_PROBE)
1475 		return NULL;
1476 
1477 	__skb_queue_head_init(&queue);
1478 
1479 	cork.flags = 0;
1480 	cork.addr = 0;
1481 	cork.opt = NULL;
1482 	err = ip_setup_cork(sk, &cork, ipc, rtp);
1483 	if (err)
1484 		return ERR_PTR(err);
1485 
1486 	err = __ip_append_data(sk, fl4, &queue, &cork,
1487 			       &current->task_frag, getfrag,
1488 			       from, length, transhdrlen, flags);
1489 	if (err) {
1490 		__ip_flush_pending_frames(sk, &queue, &cork);
1491 		return ERR_PTR(err);
1492 	}
1493 
1494 	return __ip_make_skb(sk, fl4, &queue, &cork);
1495 }
1496 
1497 /*
1498  *	Fetch data from kernel space and fill in checksum if needed.
1499  */
1500 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1501 			      int len, int odd, struct sk_buff *skb)
1502 {
1503 	__wsum csum;
1504 
1505 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1506 	skb->csum = csum_block_add(skb->csum, csum, odd);
1507 	return 0;
1508 }
1509 
1510 /*
1511  *	Generic function to send a packet as reply to another packet.
1512  *	Used to send some TCP resets/acks so far.
1513  */
1514 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1515 			   const struct ip_options *sopt,
1516 			   __be32 daddr, __be32 saddr,
1517 			   const struct ip_reply_arg *arg,
1518 			   unsigned int len)
1519 {
1520 	struct ip_options_data replyopts;
1521 	struct ipcm_cookie ipc;
1522 	struct flowi4 fl4;
1523 	struct rtable *rt = skb_rtable(skb);
1524 	struct net *net = sock_net(sk);
1525 	struct sk_buff *nskb;
1526 	int err;
1527 
1528 	if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1529 		return;
1530 
1531 	ipc.addr = daddr;
1532 	ipc.opt = NULL;
1533 	ipc.tx_flags = 0;
1534 	ipc.ttl = 0;
1535 	ipc.tos = -1;
1536 
1537 	if (replyopts.opt.opt.optlen) {
1538 		ipc.opt = &replyopts.opt;
1539 
1540 		if (replyopts.opt.opt.srr)
1541 			daddr = replyopts.opt.opt.faddr;
1542 	}
1543 
1544 	flowi4_init_output(&fl4, arg->bound_dev_if,
1545 			   IP4_REPLY_MARK(net, skb->mark),
1546 			   RT_TOS(arg->tos),
1547 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1548 			   ip_reply_arg_flowi_flags(arg),
1549 			   daddr, saddr,
1550 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1551 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1552 	rt = ip_route_output_key(net, &fl4);
1553 	if (IS_ERR(rt))
1554 		return;
1555 
1556 	inet_sk(sk)->tos = arg->tos;
1557 
1558 	sk->sk_priority = skb->priority;
1559 	sk->sk_protocol = ip_hdr(skb)->protocol;
1560 	sk->sk_bound_dev_if = arg->bound_dev_if;
1561 	sk->sk_sndbuf = sysctl_wmem_default;
1562 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1563 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1564 	if (unlikely(err)) {
1565 		ip_flush_pending_frames(sk);
1566 		goto out;
1567 	}
1568 
1569 	nskb = skb_peek(&sk->sk_write_queue);
1570 	if (nskb) {
1571 		if (arg->csumoffset >= 0)
1572 			*((__sum16 *)skb_transport_header(nskb) +
1573 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1574 								arg->csum));
1575 		nskb->ip_summed = CHECKSUM_NONE;
1576 		skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb));
1577 		ip_push_pending_frames(sk, &fl4);
1578 	}
1579 out:
1580 	ip_rt_put(rt);
1581 }
1582 
1583 void __init ip_init(void)
1584 {
1585 	ip_rt_init();
1586 	inet_initpeers();
1587 
1588 #if defined(CONFIG_IP_MULTICAST)
1589 	igmp_mc_init();
1590 #endif
1591 }
1592