xref: /linux/net/ipv4/ip_output.c (revision 3839a7460721b87501134697b7b90c45dcc7825d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The Internet Protocol (IP) output module.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Donald Becker, <becker@super.org>
12  *		Alan Cox, <Alan.Cox@linux.org>
13  *		Richard Underwood
14  *		Stefan Becker, <stefanb@yello.ping.de>
15  *		Jorge Cwik, <jorge@laser.satlink.net>
16  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17  *		Hirokazu Takahashi, <taka@valinux.co.jp>
18  *
19  *	See ip_input.c for original log
20  *
21  *	Fixes:
22  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
23  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
24  *		Bradford Johnson:	Fix faulty handling of some frames when
25  *					no route is found.
26  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
27  *					(in case if packet not accepted by
28  *					output firewall rules)
29  *		Mike McLagan	:	Routing by source
30  *		Alexey Kuznetsov:	use new route cache
31  *		Andi Kleen:		Fix broken PMTU recovery and remove
32  *					some redundant tests.
33  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
34  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
35  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
36  *					for decreased register pressure on x86
37  *					and more readibility.
38  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
39  *					silently drop skb instead of failing with -EPERM.
40  *		Detlev Wengorz	:	Copy protocol for fragments.
41  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
42  *					datagrams.
43  *		Hirokazu Takahashi:	sendfile() on UDP works now.
44  */
45 
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55 
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65 
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <net/lwtunnel.h>
78 #include <linux/bpf-cgroup.h>
79 #include <linux/igmp.h>
80 #include <linux/netfilter_ipv4.h>
81 #include <linux/netfilter_bridge.h>
82 #include <linux/netlink.h>
83 #include <linux/tcp.h>
84 
85 static int
86 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
87 	    unsigned int mtu,
88 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
89 
90 /* Generate a checksum for an outgoing IP datagram. */
91 void ip_send_check(struct iphdr *iph)
92 {
93 	iph->check = 0;
94 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95 }
96 EXPORT_SYMBOL(ip_send_check);
97 
98 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
99 {
100 	struct iphdr *iph = ip_hdr(skb);
101 
102 	iph->tot_len = htons(skb->len);
103 	ip_send_check(iph);
104 
105 	/* if egress device is enslaved to an L3 master device pass the
106 	 * skb to its handler for processing
107 	 */
108 	skb = l3mdev_ip_out(sk, skb);
109 	if (unlikely(!skb))
110 		return 0;
111 
112 	skb->protocol = htons(ETH_P_IP);
113 
114 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
115 		       net, sk, skb, NULL, skb_dst(skb)->dev,
116 		       dst_output);
117 }
118 
119 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
120 {
121 	int err;
122 
123 	err = __ip_local_out(net, sk, skb);
124 	if (likely(err == 1))
125 		err = dst_output(net, sk, skb);
126 
127 	return err;
128 }
129 EXPORT_SYMBOL_GPL(ip_local_out);
130 
131 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
132 {
133 	int ttl = inet->uc_ttl;
134 
135 	if (ttl < 0)
136 		ttl = ip4_dst_hoplimit(dst);
137 	return ttl;
138 }
139 
140 /*
141  *		Add an ip header to a skbuff and send it out.
142  *
143  */
144 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
145 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
146 {
147 	struct inet_sock *inet = inet_sk(sk);
148 	struct rtable *rt = skb_rtable(skb);
149 	struct net *net = sock_net(sk);
150 	struct iphdr *iph;
151 
152 	/* Build the IP header. */
153 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
154 	skb_reset_network_header(skb);
155 	iph = ip_hdr(skb);
156 	iph->version  = 4;
157 	iph->ihl      = 5;
158 	iph->tos      = inet->tos;
159 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
160 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
161 	iph->saddr    = saddr;
162 	iph->protocol = sk->sk_protocol;
163 	if (ip_dont_fragment(sk, &rt->dst)) {
164 		iph->frag_off = htons(IP_DF);
165 		iph->id = 0;
166 	} else {
167 		iph->frag_off = 0;
168 		__ip_select_ident(net, iph, 1);
169 	}
170 
171 	if (opt && opt->opt.optlen) {
172 		iph->ihl += opt->opt.optlen>>2;
173 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
174 	}
175 
176 	skb->priority = sk->sk_priority;
177 	if (!skb->mark)
178 		skb->mark = sk->sk_mark;
179 
180 	/* Send it out. */
181 	return ip_local_out(net, skb->sk, skb);
182 }
183 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
184 
185 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
186 {
187 	struct dst_entry *dst = skb_dst(skb);
188 	struct rtable *rt = (struct rtable *)dst;
189 	struct net_device *dev = dst->dev;
190 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
191 	struct neighbour *neigh;
192 	bool is_v6gw = false;
193 
194 	if (rt->rt_type == RTN_MULTICAST) {
195 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
196 	} else if (rt->rt_type == RTN_BROADCAST)
197 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
198 
199 	/* Be paranoid, rather than too clever. */
200 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
201 		struct sk_buff *skb2;
202 
203 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
204 		if (!skb2) {
205 			kfree_skb(skb);
206 			return -ENOMEM;
207 		}
208 		if (skb->sk)
209 			skb_set_owner_w(skb2, skb->sk);
210 		consume_skb(skb);
211 		skb = skb2;
212 	}
213 
214 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
215 		int res = lwtunnel_xmit(skb);
216 
217 		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
218 			return res;
219 	}
220 
221 	rcu_read_lock_bh();
222 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
223 	if (!IS_ERR(neigh)) {
224 		int res;
225 
226 		sock_confirm_neigh(skb, neigh);
227 		/* if crossing protocols, can not use the cached header */
228 		res = neigh_output(neigh, skb, is_v6gw);
229 		rcu_read_unlock_bh();
230 		return res;
231 	}
232 	rcu_read_unlock_bh();
233 
234 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
235 			    __func__);
236 	kfree_skb(skb);
237 	return -EINVAL;
238 }
239 
240 static int ip_finish_output_gso(struct net *net, struct sock *sk,
241 				struct sk_buff *skb, unsigned int mtu)
242 {
243 	struct sk_buff *segs, *nskb;
244 	netdev_features_t features;
245 	int ret = 0;
246 
247 	/* common case: seglen is <= mtu
248 	 */
249 	if (skb_gso_validate_network_len(skb, mtu))
250 		return ip_finish_output2(net, sk, skb);
251 
252 	/* Slowpath -  GSO segment length exceeds the egress MTU.
253 	 *
254 	 * This can happen in several cases:
255 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
256 	 *  - Forwarding of an skb that arrived on a virtualization interface
257 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
258 	 *    stack.
259 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
260 	 *    interface with a smaller MTU.
261 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
262 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
263 	 *    insufficent MTU.
264 	 */
265 	features = netif_skb_features(skb);
266 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET);
267 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
268 	if (IS_ERR_OR_NULL(segs)) {
269 		kfree_skb(skb);
270 		return -ENOMEM;
271 	}
272 
273 	consume_skb(skb);
274 
275 	skb_list_walk_safe(segs, segs, nskb) {
276 		int err;
277 
278 		skb_mark_not_on_list(segs);
279 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
280 
281 		if (err && ret == 0)
282 			ret = err;
283 	}
284 
285 	return ret;
286 }
287 
288 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
289 {
290 	unsigned int mtu;
291 
292 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
293 	/* Policy lookup after SNAT yielded a new policy */
294 	if (skb_dst(skb)->xfrm) {
295 		IPCB(skb)->flags |= IPSKB_REROUTED;
296 		return dst_output(net, sk, skb);
297 	}
298 #endif
299 	mtu = ip_skb_dst_mtu(sk, skb);
300 	if (skb_is_gso(skb))
301 		return ip_finish_output_gso(net, sk, skb, mtu);
302 
303 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
304 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
305 
306 	return ip_finish_output2(net, sk, skb);
307 }
308 
309 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
310 {
311 	int ret;
312 
313 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
314 	switch (ret) {
315 	case NET_XMIT_SUCCESS:
316 		return __ip_finish_output(net, sk, skb);
317 	case NET_XMIT_CN:
318 		return __ip_finish_output(net, sk, skb) ? : ret;
319 	default:
320 		kfree_skb(skb);
321 		return ret;
322 	}
323 }
324 
325 static int ip_mc_finish_output(struct net *net, struct sock *sk,
326 			       struct sk_buff *skb)
327 {
328 	struct rtable *new_rt;
329 	bool do_cn = false;
330 	int ret, err;
331 
332 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
333 	switch (ret) {
334 	case NET_XMIT_CN:
335 		do_cn = true;
336 		fallthrough;
337 	case NET_XMIT_SUCCESS:
338 		break;
339 	default:
340 		kfree_skb(skb);
341 		return ret;
342 	}
343 
344 	/* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
345 	 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
346 	 * see ipv4_pktinfo_prepare().
347 	 */
348 	new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
349 	if (new_rt) {
350 		new_rt->rt_iif = 0;
351 		skb_dst_drop(skb);
352 		skb_dst_set(skb, &new_rt->dst);
353 	}
354 
355 	err = dev_loopback_xmit(net, sk, skb);
356 	return (do_cn && err) ? ret : err;
357 }
358 
359 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
360 {
361 	struct rtable *rt = skb_rtable(skb);
362 	struct net_device *dev = rt->dst.dev;
363 
364 	/*
365 	 *	If the indicated interface is up and running, send the packet.
366 	 */
367 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
368 
369 	skb->dev = dev;
370 	skb->protocol = htons(ETH_P_IP);
371 
372 	/*
373 	 *	Multicasts are looped back for other local users
374 	 */
375 
376 	if (rt->rt_flags&RTCF_MULTICAST) {
377 		if (sk_mc_loop(sk)
378 #ifdef CONFIG_IP_MROUTE
379 		/* Small optimization: do not loopback not local frames,
380 		   which returned after forwarding; they will be  dropped
381 		   by ip_mr_input in any case.
382 		   Note, that local frames are looped back to be delivered
383 		   to local recipients.
384 
385 		   This check is duplicated in ip_mr_input at the moment.
386 		 */
387 		    &&
388 		    ((rt->rt_flags & RTCF_LOCAL) ||
389 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
390 #endif
391 		   ) {
392 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
393 			if (newskb)
394 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
395 					net, sk, newskb, NULL, newskb->dev,
396 					ip_mc_finish_output);
397 		}
398 
399 		/* Multicasts with ttl 0 must not go beyond the host */
400 
401 		if (ip_hdr(skb)->ttl == 0) {
402 			kfree_skb(skb);
403 			return 0;
404 		}
405 	}
406 
407 	if (rt->rt_flags&RTCF_BROADCAST) {
408 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
409 		if (newskb)
410 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
411 				net, sk, newskb, NULL, newskb->dev,
412 				ip_mc_finish_output);
413 	}
414 
415 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
416 			    net, sk, skb, NULL, skb->dev,
417 			    ip_finish_output,
418 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
419 }
420 
421 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
422 {
423 	struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev;
424 
425 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
426 
427 	skb->dev = dev;
428 	skb->protocol = htons(ETH_P_IP);
429 
430 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
431 			    net, sk, skb, indev, dev,
432 			    ip_finish_output,
433 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
434 }
435 
436 /*
437  * copy saddr and daddr, possibly using 64bit load/stores
438  * Equivalent to :
439  *   iph->saddr = fl4->saddr;
440  *   iph->daddr = fl4->daddr;
441  */
442 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
443 {
444 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
445 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
446 	memcpy(&iph->saddr, &fl4->saddr,
447 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
448 }
449 
450 /* Note: skb->sk can be different from sk, in case of tunnels */
451 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
452 		    __u8 tos)
453 {
454 	struct inet_sock *inet = inet_sk(sk);
455 	struct net *net = sock_net(sk);
456 	struct ip_options_rcu *inet_opt;
457 	struct flowi4 *fl4;
458 	struct rtable *rt;
459 	struct iphdr *iph;
460 	int res;
461 
462 	/* Skip all of this if the packet is already routed,
463 	 * f.e. by something like SCTP.
464 	 */
465 	rcu_read_lock();
466 	inet_opt = rcu_dereference(inet->inet_opt);
467 	fl4 = &fl->u.ip4;
468 	rt = skb_rtable(skb);
469 	if (rt)
470 		goto packet_routed;
471 
472 	/* Make sure we can route this packet. */
473 	rt = (struct rtable *)__sk_dst_check(sk, 0);
474 	if (!rt) {
475 		__be32 daddr;
476 
477 		/* Use correct destination address if we have options. */
478 		daddr = inet->inet_daddr;
479 		if (inet_opt && inet_opt->opt.srr)
480 			daddr = inet_opt->opt.faddr;
481 
482 		/* If this fails, retransmit mechanism of transport layer will
483 		 * keep trying until route appears or the connection times
484 		 * itself out.
485 		 */
486 		rt = ip_route_output_ports(net, fl4, sk,
487 					   daddr, inet->inet_saddr,
488 					   inet->inet_dport,
489 					   inet->inet_sport,
490 					   sk->sk_protocol,
491 					   RT_CONN_FLAGS_TOS(sk, tos),
492 					   sk->sk_bound_dev_if);
493 		if (IS_ERR(rt))
494 			goto no_route;
495 		sk_setup_caps(sk, &rt->dst);
496 	}
497 	skb_dst_set_noref(skb, &rt->dst);
498 
499 packet_routed:
500 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
501 		goto no_route;
502 
503 	/* OK, we know where to send it, allocate and build IP header. */
504 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
505 	skb_reset_network_header(skb);
506 	iph = ip_hdr(skb);
507 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
508 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
509 		iph->frag_off = htons(IP_DF);
510 	else
511 		iph->frag_off = 0;
512 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
513 	iph->protocol = sk->sk_protocol;
514 	ip_copy_addrs(iph, fl4);
515 
516 	/* Transport layer set skb->h.foo itself. */
517 
518 	if (inet_opt && inet_opt->opt.optlen) {
519 		iph->ihl += inet_opt->opt.optlen >> 2;
520 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
521 	}
522 
523 	ip_select_ident_segs(net, skb, sk,
524 			     skb_shinfo(skb)->gso_segs ?: 1);
525 
526 	/* TODO : should we use skb->sk here instead of sk ? */
527 	skb->priority = sk->sk_priority;
528 	skb->mark = sk->sk_mark;
529 
530 	res = ip_local_out(net, sk, skb);
531 	rcu_read_unlock();
532 	return res;
533 
534 no_route:
535 	rcu_read_unlock();
536 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
537 	kfree_skb(skb);
538 	return -EHOSTUNREACH;
539 }
540 EXPORT_SYMBOL(__ip_queue_xmit);
541 
542 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
543 {
544 	to->pkt_type = from->pkt_type;
545 	to->priority = from->priority;
546 	to->protocol = from->protocol;
547 	to->skb_iif = from->skb_iif;
548 	skb_dst_drop(to);
549 	skb_dst_copy(to, from);
550 	to->dev = from->dev;
551 	to->mark = from->mark;
552 
553 	skb_copy_hash(to, from);
554 
555 #ifdef CONFIG_NET_SCHED
556 	to->tc_index = from->tc_index;
557 #endif
558 	nf_copy(to, from);
559 	skb_ext_copy(to, from);
560 #if IS_ENABLED(CONFIG_IP_VS)
561 	to->ipvs_property = from->ipvs_property;
562 #endif
563 	skb_copy_secmark(to, from);
564 }
565 
566 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
567 		       unsigned int mtu,
568 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
569 {
570 	struct iphdr *iph = ip_hdr(skb);
571 
572 	if ((iph->frag_off & htons(IP_DF)) == 0)
573 		return ip_do_fragment(net, sk, skb, output);
574 
575 	if (unlikely(!skb->ignore_df ||
576 		     (IPCB(skb)->frag_max_size &&
577 		      IPCB(skb)->frag_max_size > mtu))) {
578 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
579 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
580 			  htonl(mtu));
581 		kfree_skb(skb);
582 		return -EMSGSIZE;
583 	}
584 
585 	return ip_do_fragment(net, sk, skb, output);
586 }
587 
588 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
589 		      unsigned int hlen, struct ip_fraglist_iter *iter)
590 {
591 	unsigned int first_len = skb_pagelen(skb);
592 
593 	iter->frag = skb_shinfo(skb)->frag_list;
594 	skb_frag_list_init(skb);
595 
596 	iter->offset = 0;
597 	iter->iph = iph;
598 	iter->hlen = hlen;
599 
600 	skb->data_len = first_len - skb_headlen(skb);
601 	skb->len = first_len;
602 	iph->tot_len = htons(first_len);
603 	iph->frag_off = htons(IP_MF);
604 	ip_send_check(iph);
605 }
606 EXPORT_SYMBOL(ip_fraglist_init);
607 
608 static void ip_fraglist_ipcb_prepare(struct sk_buff *skb,
609 				     struct ip_fraglist_iter *iter)
610 {
611 	struct sk_buff *to = iter->frag;
612 
613 	/* Copy the flags to each fragment. */
614 	IPCB(to)->flags = IPCB(skb)->flags;
615 
616 	if (iter->offset == 0)
617 		ip_options_fragment(to);
618 }
619 
620 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
621 {
622 	unsigned int hlen = iter->hlen;
623 	struct iphdr *iph = iter->iph;
624 	struct sk_buff *frag;
625 
626 	frag = iter->frag;
627 	frag->ip_summed = CHECKSUM_NONE;
628 	skb_reset_transport_header(frag);
629 	__skb_push(frag, hlen);
630 	skb_reset_network_header(frag);
631 	memcpy(skb_network_header(frag), iph, hlen);
632 	iter->iph = ip_hdr(frag);
633 	iph = iter->iph;
634 	iph->tot_len = htons(frag->len);
635 	ip_copy_metadata(frag, skb);
636 	iter->offset += skb->len - hlen;
637 	iph->frag_off = htons(iter->offset >> 3);
638 	if (frag->next)
639 		iph->frag_off |= htons(IP_MF);
640 	/* Ready, complete checksum */
641 	ip_send_check(iph);
642 }
643 EXPORT_SYMBOL(ip_fraglist_prepare);
644 
645 void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
646 		  unsigned int ll_rs, unsigned int mtu, bool DF,
647 		  struct ip_frag_state *state)
648 {
649 	struct iphdr *iph = ip_hdr(skb);
650 
651 	state->DF = DF;
652 	state->hlen = hlen;
653 	state->ll_rs = ll_rs;
654 	state->mtu = mtu;
655 
656 	state->left = skb->len - hlen;	/* Space per frame */
657 	state->ptr = hlen;		/* Where to start from */
658 
659 	state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
660 	state->not_last_frag = iph->frag_off & htons(IP_MF);
661 }
662 EXPORT_SYMBOL(ip_frag_init);
663 
664 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
665 			 bool first_frag, struct ip_frag_state *state)
666 {
667 	/* Copy the flags to each fragment. */
668 	IPCB(to)->flags = IPCB(from)->flags;
669 
670 	/* ANK: dirty, but effective trick. Upgrade options only if
671 	 * the segment to be fragmented was THE FIRST (otherwise,
672 	 * options are already fixed) and make it ONCE
673 	 * on the initial skb, so that all the following fragments
674 	 * will inherit fixed options.
675 	 */
676 	if (first_frag)
677 		ip_options_fragment(from);
678 }
679 
680 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
681 {
682 	unsigned int len = state->left;
683 	struct sk_buff *skb2;
684 	struct iphdr *iph;
685 
686 	len = state->left;
687 	/* IF: it doesn't fit, use 'mtu' - the data space left */
688 	if (len > state->mtu)
689 		len = state->mtu;
690 	/* IF: we are not sending up to and including the packet end
691 	   then align the next start on an eight byte boundary */
692 	if (len < state->left)	{
693 		len &= ~7;
694 	}
695 
696 	/* Allocate buffer */
697 	skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
698 	if (!skb2)
699 		return ERR_PTR(-ENOMEM);
700 
701 	/*
702 	 *	Set up data on packet
703 	 */
704 
705 	ip_copy_metadata(skb2, skb);
706 	skb_reserve(skb2, state->ll_rs);
707 	skb_put(skb2, len + state->hlen);
708 	skb_reset_network_header(skb2);
709 	skb2->transport_header = skb2->network_header + state->hlen;
710 
711 	/*
712 	 *	Charge the memory for the fragment to any owner
713 	 *	it might possess
714 	 */
715 
716 	if (skb->sk)
717 		skb_set_owner_w(skb2, skb->sk);
718 
719 	/*
720 	 *	Copy the packet header into the new buffer.
721 	 */
722 
723 	skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
724 
725 	/*
726 	 *	Copy a block of the IP datagram.
727 	 */
728 	if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
729 		BUG();
730 	state->left -= len;
731 
732 	/*
733 	 *	Fill in the new header fields.
734 	 */
735 	iph = ip_hdr(skb2);
736 	iph->frag_off = htons((state->offset >> 3));
737 	if (state->DF)
738 		iph->frag_off |= htons(IP_DF);
739 
740 	/*
741 	 *	Added AC : If we are fragmenting a fragment that's not the
742 	 *		   last fragment then keep MF on each bit
743 	 */
744 	if (state->left > 0 || state->not_last_frag)
745 		iph->frag_off |= htons(IP_MF);
746 	state->ptr += len;
747 	state->offset += len;
748 
749 	iph->tot_len = htons(len + state->hlen);
750 
751 	ip_send_check(iph);
752 
753 	return skb2;
754 }
755 EXPORT_SYMBOL(ip_frag_next);
756 
757 /*
758  *	This IP datagram is too large to be sent in one piece.  Break it up into
759  *	smaller pieces (each of size equal to IP header plus
760  *	a block of the data of the original IP data part) that will yet fit in a
761  *	single device frame, and queue such a frame for sending.
762  */
763 
764 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
765 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
766 {
767 	struct iphdr *iph;
768 	struct sk_buff *skb2;
769 	struct rtable *rt = skb_rtable(skb);
770 	unsigned int mtu, hlen, ll_rs;
771 	struct ip_fraglist_iter iter;
772 	ktime_t tstamp = skb->tstamp;
773 	struct ip_frag_state state;
774 	int err = 0;
775 
776 	/* for offloaded checksums cleanup checksum before fragmentation */
777 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
778 	    (err = skb_checksum_help(skb)))
779 		goto fail;
780 
781 	/*
782 	 *	Point into the IP datagram header.
783 	 */
784 
785 	iph = ip_hdr(skb);
786 
787 	mtu = ip_skb_dst_mtu(sk, skb);
788 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
789 		mtu = IPCB(skb)->frag_max_size;
790 
791 	/*
792 	 *	Setup starting values.
793 	 */
794 
795 	hlen = iph->ihl * 4;
796 	mtu = mtu - hlen;	/* Size of data space */
797 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
798 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
799 
800 	/* When frag_list is given, use it. First, check its validity:
801 	 * some transformers could create wrong frag_list or break existing
802 	 * one, it is not prohibited. In this case fall back to copying.
803 	 *
804 	 * LATER: this step can be merged to real generation of fragments,
805 	 * we can switch to copy when see the first bad fragment.
806 	 */
807 	if (skb_has_frag_list(skb)) {
808 		struct sk_buff *frag, *frag2;
809 		unsigned int first_len = skb_pagelen(skb);
810 
811 		if (first_len - hlen > mtu ||
812 		    ((first_len - hlen) & 7) ||
813 		    ip_is_fragment(iph) ||
814 		    skb_cloned(skb) ||
815 		    skb_headroom(skb) < ll_rs)
816 			goto slow_path;
817 
818 		skb_walk_frags(skb, frag) {
819 			/* Correct geometry. */
820 			if (frag->len > mtu ||
821 			    ((frag->len & 7) && frag->next) ||
822 			    skb_headroom(frag) < hlen + ll_rs)
823 				goto slow_path_clean;
824 
825 			/* Partially cloned skb? */
826 			if (skb_shared(frag))
827 				goto slow_path_clean;
828 
829 			BUG_ON(frag->sk);
830 			if (skb->sk) {
831 				frag->sk = skb->sk;
832 				frag->destructor = sock_wfree;
833 			}
834 			skb->truesize -= frag->truesize;
835 		}
836 
837 		/* Everything is OK. Generate! */
838 		ip_fraglist_init(skb, iph, hlen, &iter);
839 
840 		for (;;) {
841 			/* Prepare header of the next frame,
842 			 * before previous one went down. */
843 			if (iter.frag) {
844 				ip_fraglist_ipcb_prepare(skb, &iter);
845 				ip_fraglist_prepare(skb, &iter);
846 			}
847 
848 			skb->tstamp = tstamp;
849 			err = output(net, sk, skb);
850 
851 			if (!err)
852 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
853 			if (err || !iter.frag)
854 				break;
855 
856 			skb = ip_fraglist_next(&iter);
857 		}
858 
859 		if (err == 0) {
860 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
861 			return 0;
862 		}
863 
864 		kfree_skb_list(iter.frag);
865 
866 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
867 		return err;
868 
869 slow_path_clean:
870 		skb_walk_frags(skb, frag2) {
871 			if (frag2 == frag)
872 				break;
873 			frag2->sk = NULL;
874 			frag2->destructor = NULL;
875 			skb->truesize += frag2->truesize;
876 		}
877 	}
878 
879 slow_path:
880 	/*
881 	 *	Fragment the datagram.
882 	 */
883 
884 	ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
885 		     &state);
886 
887 	/*
888 	 *	Keep copying data until we run out.
889 	 */
890 
891 	while (state.left > 0) {
892 		bool first_frag = (state.offset == 0);
893 
894 		skb2 = ip_frag_next(skb, &state);
895 		if (IS_ERR(skb2)) {
896 			err = PTR_ERR(skb2);
897 			goto fail;
898 		}
899 		ip_frag_ipcb(skb, skb2, first_frag, &state);
900 
901 		/*
902 		 *	Put this fragment into the sending queue.
903 		 */
904 		skb2->tstamp = tstamp;
905 		err = output(net, sk, skb2);
906 		if (err)
907 			goto fail;
908 
909 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
910 	}
911 	consume_skb(skb);
912 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
913 	return err;
914 
915 fail:
916 	kfree_skb(skb);
917 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
918 	return err;
919 }
920 EXPORT_SYMBOL(ip_do_fragment);
921 
922 int
923 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
924 {
925 	struct msghdr *msg = from;
926 
927 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
928 		if (!copy_from_iter_full(to, len, &msg->msg_iter))
929 			return -EFAULT;
930 	} else {
931 		__wsum csum = 0;
932 		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
933 			return -EFAULT;
934 		skb->csum = csum_block_add(skb->csum, csum, odd);
935 	}
936 	return 0;
937 }
938 EXPORT_SYMBOL(ip_generic_getfrag);
939 
940 static inline __wsum
941 csum_page(struct page *page, int offset, int copy)
942 {
943 	char *kaddr;
944 	__wsum csum;
945 	kaddr = kmap(page);
946 	csum = csum_partial(kaddr + offset, copy, 0);
947 	kunmap(page);
948 	return csum;
949 }
950 
951 static int __ip_append_data(struct sock *sk,
952 			    struct flowi4 *fl4,
953 			    struct sk_buff_head *queue,
954 			    struct inet_cork *cork,
955 			    struct page_frag *pfrag,
956 			    int getfrag(void *from, char *to, int offset,
957 					int len, int odd, struct sk_buff *skb),
958 			    void *from, int length, int transhdrlen,
959 			    unsigned int flags)
960 {
961 	struct inet_sock *inet = inet_sk(sk);
962 	struct ubuf_info *uarg = NULL;
963 	struct sk_buff *skb;
964 
965 	struct ip_options *opt = cork->opt;
966 	int hh_len;
967 	int exthdrlen;
968 	int mtu;
969 	int copy;
970 	int err;
971 	int offset = 0;
972 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
973 	int csummode = CHECKSUM_NONE;
974 	struct rtable *rt = (struct rtable *)cork->dst;
975 	unsigned int wmem_alloc_delta = 0;
976 	bool paged, extra_uref = false;
977 	u32 tskey = 0;
978 
979 	skb = skb_peek_tail(queue);
980 
981 	exthdrlen = !skb ? rt->dst.header_len : 0;
982 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
983 	paged = !!cork->gso_size;
984 
985 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
986 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
987 		tskey = sk->sk_tskey++;
988 
989 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
990 
991 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
992 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
993 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
994 
995 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
996 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
997 			       mtu - (opt ? opt->optlen : 0));
998 		return -EMSGSIZE;
999 	}
1000 
1001 	/*
1002 	 * transhdrlen > 0 means that this is the first fragment and we wish
1003 	 * it won't be fragmented in the future.
1004 	 */
1005 	if (transhdrlen &&
1006 	    length + fragheaderlen <= mtu &&
1007 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1008 	    (!(flags & MSG_MORE) || cork->gso_size) &&
1009 	    (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1010 		csummode = CHECKSUM_PARTIAL;
1011 
1012 	if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
1013 		uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb));
1014 		if (!uarg)
1015 			return -ENOBUFS;
1016 		extra_uref = !skb_zcopy(skb);	/* only ref on new uarg */
1017 		if (rt->dst.dev->features & NETIF_F_SG &&
1018 		    csummode == CHECKSUM_PARTIAL) {
1019 			paged = true;
1020 		} else {
1021 			uarg->zerocopy = 0;
1022 			skb_zcopy_set(skb, uarg, &extra_uref);
1023 		}
1024 	}
1025 
1026 	cork->length += length;
1027 
1028 	/* So, what's going on in the loop below?
1029 	 *
1030 	 * We use calculated fragment length to generate chained skb,
1031 	 * each of segments is IP fragment ready for sending to network after
1032 	 * adding appropriate IP header.
1033 	 */
1034 
1035 	if (!skb)
1036 		goto alloc_new_skb;
1037 
1038 	while (length > 0) {
1039 		/* Check if the remaining data fits into current packet. */
1040 		copy = mtu - skb->len;
1041 		if (copy < length)
1042 			copy = maxfraglen - skb->len;
1043 		if (copy <= 0) {
1044 			char *data;
1045 			unsigned int datalen;
1046 			unsigned int fraglen;
1047 			unsigned int fraggap;
1048 			unsigned int alloclen;
1049 			unsigned int pagedlen;
1050 			struct sk_buff *skb_prev;
1051 alloc_new_skb:
1052 			skb_prev = skb;
1053 			if (skb_prev)
1054 				fraggap = skb_prev->len - maxfraglen;
1055 			else
1056 				fraggap = 0;
1057 
1058 			/*
1059 			 * If remaining data exceeds the mtu,
1060 			 * we know we need more fragment(s).
1061 			 */
1062 			datalen = length + fraggap;
1063 			if (datalen > mtu - fragheaderlen)
1064 				datalen = maxfraglen - fragheaderlen;
1065 			fraglen = datalen + fragheaderlen;
1066 			pagedlen = 0;
1067 
1068 			if ((flags & MSG_MORE) &&
1069 			    !(rt->dst.dev->features&NETIF_F_SG))
1070 				alloclen = mtu;
1071 			else if (!paged)
1072 				alloclen = fraglen;
1073 			else {
1074 				alloclen = min_t(int, fraglen, MAX_HEADER);
1075 				pagedlen = fraglen - alloclen;
1076 			}
1077 
1078 			alloclen += exthdrlen;
1079 
1080 			/* The last fragment gets additional space at tail.
1081 			 * Note, with MSG_MORE we overallocate on fragments,
1082 			 * because we have no idea what fragment will be
1083 			 * the last.
1084 			 */
1085 			if (datalen == length + fraggap)
1086 				alloclen += rt->dst.trailer_len;
1087 
1088 			if (transhdrlen) {
1089 				skb = sock_alloc_send_skb(sk,
1090 						alloclen + hh_len + 15,
1091 						(flags & MSG_DONTWAIT), &err);
1092 			} else {
1093 				skb = NULL;
1094 				if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1095 				    2 * sk->sk_sndbuf)
1096 					skb = alloc_skb(alloclen + hh_len + 15,
1097 							sk->sk_allocation);
1098 				if (unlikely(!skb))
1099 					err = -ENOBUFS;
1100 			}
1101 			if (!skb)
1102 				goto error;
1103 
1104 			/*
1105 			 *	Fill in the control structures
1106 			 */
1107 			skb->ip_summed = csummode;
1108 			skb->csum = 0;
1109 			skb_reserve(skb, hh_len);
1110 
1111 			/*
1112 			 *	Find where to start putting bytes.
1113 			 */
1114 			data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1115 			skb_set_network_header(skb, exthdrlen);
1116 			skb->transport_header = (skb->network_header +
1117 						 fragheaderlen);
1118 			data += fragheaderlen + exthdrlen;
1119 
1120 			if (fraggap) {
1121 				skb->csum = skb_copy_and_csum_bits(
1122 					skb_prev, maxfraglen,
1123 					data + transhdrlen, fraggap, 0);
1124 				skb_prev->csum = csum_sub(skb_prev->csum,
1125 							  skb->csum);
1126 				data += fraggap;
1127 				pskb_trim_unique(skb_prev, maxfraglen);
1128 			}
1129 
1130 			copy = datalen - transhdrlen - fraggap - pagedlen;
1131 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1132 				err = -EFAULT;
1133 				kfree_skb(skb);
1134 				goto error;
1135 			}
1136 
1137 			offset += copy;
1138 			length -= copy + transhdrlen;
1139 			transhdrlen = 0;
1140 			exthdrlen = 0;
1141 			csummode = CHECKSUM_NONE;
1142 
1143 			/* only the initial fragment is time stamped */
1144 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1145 			cork->tx_flags = 0;
1146 			skb_shinfo(skb)->tskey = tskey;
1147 			tskey = 0;
1148 			skb_zcopy_set(skb, uarg, &extra_uref);
1149 
1150 			if ((flags & MSG_CONFIRM) && !skb_prev)
1151 				skb_set_dst_pending_confirm(skb, 1);
1152 
1153 			/*
1154 			 * Put the packet on the pending queue.
1155 			 */
1156 			if (!skb->destructor) {
1157 				skb->destructor = sock_wfree;
1158 				skb->sk = sk;
1159 				wmem_alloc_delta += skb->truesize;
1160 			}
1161 			__skb_queue_tail(queue, skb);
1162 			continue;
1163 		}
1164 
1165 		if (copy > length)
1166 			copy = length;
1167 
1168 		if (!(rt->dst.dev->features&NETIF_F_SG) &&
1169 		    skb_tailroom(skb) >= copy) {
1170 			unsigned int off;
1171 
1172 			off = skb->len;
1173 			if (getfrag(from, skb_put(skb, copy),
1174 					offset, copy, off, skb) < 0) {
1175 				__skb_trim(skb, off);
1176 				err = -EFAULT;
1177 				goto error;
1178 			}
1179 		} else if (!uarg || !uarg->zerocopy) {
1180 			int i = skb_shinfo(skb)->nr_frags;
1181 
1182 			err = -ENOMEM;
1183 			if (!sk_page_frag_refill(sk, pfrag))
1184 				goto error;
1185 
1186 			if (!skb_can_coalesce(skb, i, pfrag->page,
1187 					      pfrag->offset)) {
1188 				err = -EMSGSIZE;
1189 				if (i == MAX_SKB_FRAGS)
1190 					goto error;
1191 
1192 				__skb_fill_page_desc(skb, i, pfrag->page,
1193 						     pfrag->offset, 0);
1194 				skb_shinfo(skb)->nr_frags = ++i;
1195 				get_page(pfrag->page);
1196 			}
1197 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1198 			if (getfrag(from,
1199 				    page_address(pfrag->page) + pfrag->offset,
1200 				    offset, copy, skb->len, skb) < 0)
1201 				goto error_efault;
1202 
1203 			pfrag->offset += copy;
1204 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1205 			skb->len += copy;
1206 			skb->data_len += copy;
1207 			skb->truesize += copy;
1208 			wmem_alloc_delta += copy;
1209 		} else {
1210 			err = skb_zerocopy_iter_dgram(skb, from, copy);
1211 			if (err < 0)
1212 				goto error;
1213 		}
1214 		offset += copy;
1215 		length -= copy;
1216 	}
1217 
1218 	if (wmem_alloc_delta)
1219 		refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1220 	return 0;
1221 
1222 error_efault:
1223 	err = -EFAULT;
1224 error:
1225 	if (uarg)
1226 		sock_zerocopy_put_abort(uarg, extra_uref);
1227 	cork->length -= length;
1228 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1229 	refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1230 	return err;
1231 }
1232 
1233 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1234 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1235 {
1236 	struct ip_options_rcu *opt;
1237 	struct rtable *rt;
1238 
1239 	rt = *rtp;
1240 	if (unlikely(!rt))
1241 		return -EFAULT;
1242 
1243 	/*
1244 	 * setup for corking.
1245 	 */
1246 	opt = ipc->opt;
1247 	if (opt) {
1248 		if (!cork->opt) {
1249 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1250 					    sk->sk_allocation);
1251 			if (unlikely(!cork->opt))
1252 				return -ENOBUFS;
1253 		}
1254 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1255 		cork->flags |= IPCORK_OPT;
1256 		cork->addr = ipc->addr;
1257 	}
1258 
1259 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1260 			 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu);
1261 
1262 	if (!inetdev_valid_mtu(cork->fragsize))
1263 		return -ENETUNREACH;
1264 
1265 	cork->gso_size = ipc->gso_size;
1266 
1267 	cork->dst = &rt->dst;
1268 	/* We stole this route, caller should not release it. */
1269 	*rtp = NULL;
1270 
1271 	cork->length = 0;
1272 	cork->ttl = ipc->ttl;
1273 	cork->tos = ipc->tos;
1274 	cork->mark = ipc->sockc.mark;
1275 	cork->priority = ipc->priority;
1276 	cork->transmit_time = ipc->sockc.transmit_time;
1277 	cork->tx_flags = 0;
1278 	sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1279 
1280 	return 0;
1281 }
1282 
1283 /*
1284  *	ip_append_data() and ip_append_page() can make one large IP datagram
1285  *	from many pieces of data. Each pieces will be holded on the socket
1286  *	until ip_push_pending_frames() is called. Each piece can be a page
1287  *	or non-page data.
1288  *
1289  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1290  *	this interface potentially.
1291  *
1292  *	LATER: length must be adjusted by pad at tail, when it is required.
1293  */
1294 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1295 		   int getfrag(void *from, char *to, int offset, int len,
1296 			       int odd, struct sk_buff *skb),
1297 		   void *from, int length, int transhdrlen,
1298 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1299 		   unsigned int flags)
1300 {
1301 	struct inet_sock *inet = inet_sk(sk);
1302 	int err;
1303 
1304 	if (flags&MSG_PROBE)
1305 		return 0;
1306 
1307 	if (skb_queue_empty(&sk->sk_write_queue)) {
1308 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1309 		if (err)
1310 			return err;
1311 	} else {
1312 		transhdrlen = 0;
1313 	}
1314 
1315 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1316 				sk_page_frag(sk), getfrag,
1317 				from, length, transhdrlen, flags);
1318 }
1319 
1320 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1321 		       int offset, size_t size, int flags)
1322 {
1323 	struct inet_sock *inet = inet_sk(sk);
1324 	struct sk_buff *skb;
1325 	struct rtable *rt;
1326 	struct ip_options *opt = NULL;
1327 	struct inet_cork *cork;
1328 	int hh_len;
1329 	int mtu;
1330 	int len;
1331 	int err;
1332 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1333 
1334 	if (inet->hdrincl)
1335 		return -EPERM;
1336 
1337 	if (flags&MSG_PROBE)
1338 		return 0;
1339 
1340 	if (skb_queue_empty(&sk->sk_write_queue))
1341 		return -EINVAL;
1342 
1343 	cork = &inet->cork.base;
1344 	rt = (struct rtable *)cork->dst;
1345 	if (cork->flags & IPCORK_OPT)
1346 		opt = cork->opt;
1347 
1348 	if (!(rt->dst.dev->features&NETIF_F_SG))
1349 		return -EOPNOTSUPP;
1350 
1351 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1352 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1353 
1354 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1355 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1356 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1357 
1358 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1359 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1360 			       mtu - (opt ? opt->optlen : 0));
1361 		return -EMSGSIZE;
1362 	}
1363 
1364 	skb = skb_peek_tail(&sk->sk_write_queue);
1365 	if (!skb)
1366 		return -EINVAL;
1367 
1368 	cork->length += size;
1369 
1370 	while (size > 0) {
1371 		/* Check if the remaining data fits into current packet. */
1372 		len = mtu - skb->len;
1373 		if (len < size)
1374 			len = maxfraglen - skb->len;
1375 
1376 		if (len <= 0) {
1377 			struct sk_buff *skb_prev;
1378 			int alloclen;
1379 
1380 			skb_prev = skb;
1381 			fraggap = skb_prev->len - maxfraglen;
1382 
1383 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1384 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1385 			if (unlikely(!skb)) {
1386 				err = -ENOBUFS;
1387 				goto error;
1388 			}
1389 
1390 			/*
1391 			 *	Fill in the control structures
1392 			 */
1393 			skb->ip_summed = CHECKSUM_NONE;
1394 			skb->csum = 0;
1395 			skb_reserve(skb, hh_len);
1396 
1397 			/*
1398 			 *	Find where to start putting bytes.
1399 			 */
1400 			skb_put(skb, fragheaderlen + fraggap);
1401 			skb_reset_network_header(skb);
1402 			skb->transport_header = (skb->network_header +
1403 						 fragheaderlen);
1404 			if (fraggap) {
1405 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1406 								   maxfraglen,
1407 						    skb_transport_header(skb),
1408 								   fraggap, 0);
1409 				skb_prev->csum = csum_sub(skb_prev->csum,
1410 							  skb->csum);
1411 				pskb_trim_unique(skb_prev, maxfraglen);
1412 			}
1413 
1414 			/*
1415 			 * Put the packet on the pending queue.
1416 			 */
1417 			__skb_queue_tail(&sk->sk_write_queue, skb);
1418 			continue;
1419 		}
1420 
1421 		if (len > size)
1422 			len = size;
1423 
1424 		if (skb_append_pagefrags(skb, page, offset, len)) {
1425 			err = -EMSGSIZE;
1426 			goto error;
1427 		}
1428 
1429 		if (skb->ip_summed == CHECKSUM_NONE) {
1430 			__wsum csum;
1431 			csum = csum_page(page, offset, len);
1432 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1433 		}
1434 
1435 		skb->len += len;
1436 		skb->data_len += len;
1437 		skb->truesize += len;
1438 		refcount_add(len, &sk->sk_wmem_alloc);
1439 		offset += len;
1440 		size -= len;
1441 	}
1442 	return 0;
1443 
1444 error:
1445 	cork->length -= size;
1446 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1447 	return err;
1448 }
1449 
1450 static void ip_cork_release(struct inet_cork *cork)
1451 {
1452 	cork->flags &= ~IPCORK_OPT;
1453 	kfree(cork->opt);
1454 	cork->opt = NULL;
1455 	dst_release(cork->dst);
1456 	cork->dst = NULL;
1457 }
1458 
1459 /*
1460  *	Combined all pending IP fragments on the socket as one IP datagram
1461  *	and push them out.
1462  */
1463 struct sk_buff *__ip_make_skb(struct sock *sk,
1464 			      struct flowi4 *fl4,
1465 			      struct sk_buff_head *queue,
1466 			      struct inet_cork *cork)
1467 {
1468 	struct sk_buff *skb, *tmp_skb;
1469 	struct sk_buff **tail_skb;
1470 	struct inet_sock *inet = inet_sk(sk);
1471 	struct net *net = sock_net(sk);
1472 	struct ip_options *opt = NULL;
1473 	struct rtable *rt = (struct rtable *)cork->dst;
1474 	struct iphdr *iph;
1475 	__be16 df = 0;
1476 	__u8 ttl;
1477 
1478 	skb = __skb_dequeue(queue);
1479 	if (!skb)
1480 		goto out;
1481 	tail_skb = &(skb_shinfo(skb)->frag_list);
1482 
1483 	/* move skb->data to ip header from ext header */
1484 	if (skb->data < skb_network_header(skb))
1485 		__skb_pull(skb, skb_network_offset(skb));
1486 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1487 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1488 		*tail_skb = tmp_skb;
1489 		tail_skb = &(tmp_skb->next);
1490 		skb->len += tmp_skb->len;
1491 		skb->data_len += tmp_skb->len;
1492 		skb->truesize += tmp_skb->truesize;
1493 		tmp_skb->destructor = NULL;
1494 		tmp_skb->sk = NULL;
1495 	}
1496 
1497 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1498 	 * to fragment the frame generated here. No matter, what transforms
1499 	 * how transforms change size of the packet, it will come out.
1500 	 */
1501 	skb->ignore_df = ip_sk_ignore_df(sk);
1502 
1503 	/* DF bit is set when we want to see DF on outgoing frames.
1504 	 * If ignore_df is set too, we still allow to fragment this frame
1505 	 * locally. */
1506 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1507 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1508 	    (skb->len <= dst_mtu(&rt->dst) &&
1509 	     ip_dont_fragment(sk, &rt->dst)))
1510 		df = htons(IP_DF);
1511 
1512 	if (cork->flags & IPCORK_OPT)
1513 		opt = cork->opt;
1514 
1515 	if (cork->ttl != 0)
1516 		ttl = cork->ttl;
1517 	else if (rt->rt_type == RTN_MULTICAST)
1518 		ttl = inet->mc_ttl;
1519 	else
1520 		ttl = ip_select_ttl(inet, &rt->dst);
1521 
1522 	iph = ip_hdr(skb);
1523 	iph->version = 4;
1524 	iph->ihl = 5;
1525 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1526 	iph->frag_off = df;
1527 	iph->ttl = ttl;
1528 	iph->protocol = sk->sk_protocol;
1529 	ip_copy_addrs(iph, fl4);
1530 	ip_select_ident(net, skb, sk);
1531 
1532 	if (opt) {
1533 		iph->ihl += opt->optlen>>2;
1534 		ip_options_build(skb, opt, cork->addr, rt, 0);
1535 	}
1536 
1537 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1538 	skb->mark = cork->mark;
1539 	skb->tstamp = cork->transmit_time;
1540 	/*
1541 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1542 	 * on dst refcount
1543 	 */
1544 	cork->dst = NULL;
1545 	skb_dst_set(skb, &rt->dst);
1546 
1547 	if (iph->protocol == IPPROTO_ICMP)
1548 		icmp_out_count(net, ((struct icmphdr *)
1549 			skb_transport_header(skb))->type);
1550 
1551 	ip_cork_release(cork);
1552 out:
1553 	return skb;
1554 }
1555 
1556 int ip_send_skb(struct net *net, struct sk_buff *skb)
1557 {
1558 	int err;
1559 
1560 	err = ip_local_out(net, skb->sk, skb);
1561 	if (err) {
1562 		if (err > 0)
1563 			err = net_xmit_errno(err);
1564 		if (err)
1565 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1566 	}
1567 
1568 	return err;
1569 }
1570 
1571 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1572 {
1573 	struct sk_buff *skb;
1574 
1575 	skb = ip_finish_skb(sk, fl4);
1576 	if (!skb)
1577 		return 0;
1578 
1579 	/* Netfilter gets whole the not fragmented skb. */
1580 	return ip_send_skb(sock_net(sk), skb);
1581 }
1582 
1583 /*
1584  *	Throw away all pending data on the socket.
1585  */
1586 static void __ip_flush_pending_frames(struct sock *sk,
1587 				      struct sk_buff_head *queue,
1588 				      struct inet_cork *cork)
1589 {
1590 	struct sk_buff *skb;
1591 
1592 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1593 		kfree_skb(skb);
1594 
1595 	ip_cork_release(cork);
1596 }
1597 
1598 void ip_flush_pending_frames(struct sock *sk)
1599 {
1600 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1601 }
1602 
1603 struct sk_buff *ip_make_skb(struct sock *sk,
1604 			    struct flowi4 *fl4,
1605 			    int getfrag(void *from, char *to, int offset,
1606 					int len, int odd, struct sk_buff *skb),
1607 			    void *from, int length, int transhdrlen,
1608 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1609 			    struct inet_cork *cork, unsigned int flags)
1610 {
1611 	struct sk_buff_head queue;
1612 	int err;
1613 
1614 	if (flags & MSG_PROBE)
1615 		return NULL;
1616 
1617 	__skb_queue_head_init(&queue);
1618 
1619 	cork->flags = 0;
1620 	cork->addr = 0;
1621 	cork->opt = NULL;
1622 	err = ip_setup_cork(sk, cork, ipc, rtp);
1623 	if (err)
1624 		return ERR_PTR(err);
1625 
1626 	err = __ip_append_data(sk, fl4, &queue, cork,
1627 			       &current->task_frag, getfrag,
1628 			       from, length, transhdrlen, flags);
1629 	if (err) {
1630 		__ip_flush_pending_frames(sk, &queue, cork);
1631 		return ERR_PTR(err);
1632 	}
1633 
1634 	return __ip_make_skb(sk, fl4, &queue, cork);
1635 }
1636 
1637 /*
1638  *	Fetch data from kernel space and fill in checksum if needed.
1639  */
1640 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1641 			      int len, int odd, struct sk_buff *skb)
1642 {
1643 	__wsum csum;
1644 
1645 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1646 	skb->csum = csum_block_add(skb->csum, csum, odd);
1647 	return 0;
1648 }
1649 
1650 /*
1651  *	Generic function to send a packet as reply to another packet.
1652  *	Used to send some TCP resets/acks so far.
1653  */
1654 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1655 			   const struct ip_options *sopt,
1656 			   __be32 daddr, __be32 saddr,
1657 			   const struct ip_reply_arg *arg,
1658 			   unsigned int len, u64 transmit_time)
1659 {
1660 	struct ip_options_data replyopts;
1661 	struct ipcm_cookie ipc;
1662 	struct flowi4 fl4;
1663 	struct rtable *rt = skb_rtable(skb);
1664 	struct net *net = sock_net(sk);
1665 	struct sk_buff *nskb;
1666 	int err;
1667 	int oif;
1668 
1669 	if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1670 		return;
1671 
1672 	ipcm_init(&ipc);
1673 	ipc.addr = daddr;
1674 	ipc.sockc.transmit_time = transmit_time;
1675 
1676 	if (replyopts.opt.opt.optlen) {
1677 		ipc.opt = &replyopts.opt;
1678 
1679 		if (replyopts.opt.opt.srr)
1680 			daddr = replyopts.opt.opt.faddr;
1681 	}
1682 
1683 	oif = arg->bound_dev_if;
1684 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1685 		oif = skb->skb_iif;
1686 
1687 	flowi4_init_output(&fl4, oif,
1688 			   IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1689 			   RT_TOS(arg->tos),
1690 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1691 			   ip_reply_arg_flowi_flags(arg),
1692 			   daddr, saddr,
1693 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1694 			   arg->uid);
1695 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1696 	rt = ip_route_output_key(net, &fl4);
1697 	if (IS_ERR(rt))
1698 		return;
1699 
1700 	inet_sk(sk)->tos = arg->tos;
1701 
1702 	sk->sk_protocol = ip_hdr(skb)->protocol;
1703 	sk->sk_bound_dev_if = arg->bound_dev_if;
1704 	sk->sk_sndbuf = sysctl_wmem_default;
1705 	sk->sk_mark = fl4.flowi4_mark;
1706 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1707 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1708 	if (unlikely(err)) {
1709 		ip_flush_pending_frames(sk);
1710 		goto out;
1711 	}
1712 
1713 	nskb = skb_peek(&sk->sk_write_queue);
1714 	if (nskb) {
1715 		if (arg->csumoffset >= 0)
1716 			*((__sum16 *)skb_transport_header(nskb) +
1717 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1718 								arg->csum));
1719 		nskb->ip_summed = CHECKSUM_NONE;
1720 		ip_push_pending_frames(sk, &fl4);
1721 	}
1722 out:
1723 	ip_rt_put(rt);
1724 }
1725 
1726 void __init ip_init(void)
1727 {
1728 	ip_rt_init();
1729 	inet_initpeers();
1730 
1731 #if defined(CONFIG_IP_MULTICAST)
1732 	igmp_mc_init();
1733 #endif
1734 }
1735