xref: /linux/net/ipv4/ip_output.c (revision 36239c6704b71da7fb8e2a9429e159a84d0c5a3e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55 
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65 
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/mroute.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
83 
84 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
85 
86 /* Generate a checksum for an outgoing IP datagram. */
87 __inline__ void ip_send_check(struct iphdr *iph)
88 {
89 	iph->check = 0;
90 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
91 }
92 
93 int __ip_local_out(struct sk_buff *skb)
94 {
95 	struct iphdr *iph = ip_hdr(skb);
96 
97 	iph->tot_len = htons(skb->len);
98 	ip_send_check(iph);
99 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
100 		       skb_dst(skb)->dev, dst_output);
101 }
102 
103 int ip_local_out(struct sk_buff *skb)
104 {
105 	int err;
106 
107 	err = __ip_local_out(skb);
108 	if (likely(err == 1))
109 		err = dst_output(skb);
110 
111 	return err;
112 }
113 EXPORT_SYMBOL_GPL(ip_local_out);
114 
115 /* dev_loopback_xmit for use with netfilter. */
116 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
117 {
118 	skb_reset_mac_header(newskb);
119 	__skb_pull(newskb, skb_network_offset(newskb));
120 	newskb->pkt_type = PACKET_LOOPBACK;
121 	newskb->ip_summed = CHECKSUM_UNNECESSARY;
122 	WARN_ON(!skb_dst(newskb));
123 	netif_rx_ni(newskb);
124 	return 0;
125 }
126 
127 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
128 {
129 	int ttl = inet->uc_ttl;
130 
131 	if (ttl < 0)
132 		ttl = dst_metric(dst, RTAX_HOPLIMIT);
133 	return ttl;
134 }
135 
136 /*
137  *		Add an ip header to a skbuff and send it out.
138  *
139  */
140 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
141 			  __be32 saddr, __be32 daddr, struct ip_options *opt)
142 {
143 	struct inet_sock *inet = inet_sk(sk);
144 	struct rtable *rt = skb_rtable(skb);
145 	struct iphdr *iph;
146 
147 	/* Build the IP header. */
148 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
149 	skb_reset_network_header(skb);
150 	iph = ip_hdr(skb);
151 	iph->version  = 4;
152 	iph->ihl      = 5;
153 	iph->tos      = inet->tos;
154 	if (ip_dont_fragment(sk, &rt->u.dst))
155 		iph->frag_off = htons(IP_DF);
156 	else
157 		iph->frag_off = 0;
158 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
159 	iph->daddr    = rt->rt_dst;
160 	iph->saddr    = rt->rt_src;
161 	iph->protocol = sk->sk_protocol;
162 	ip_select_ident(iph, &rt->u.dst, sk);
163 
164 	if (opt && opt->optlen) {
165 		iph->ihl += opt->optlen>>2;
166 		ip_options_build(skb, opt, daddr, rt, 0);
167 	}
168 
169 	skb->priority = sk->sk_priority;
170 	skb->mark = sk->sk_mark;
171 
172 	/* Send it out. */
173 	return ip_local_out(skb);
174 }
175 
176 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
177 
178 static inline int ip_finish_output2(struct sk_buff *skb)
179 {
180 	struct dst_entry *dst = skb_dst(skb);
181 	struct rtable *rt = (struct rtable *)dst;
182 	struct net_device *dev = dst->dev;
183 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
184 
185 	if (rt->rt_type == RTN_MULTICAST) {
186 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
187 	} else if (rt->rt_type == RTN_BROADCAST)
188 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
189 
190 	/* Be paranoid, rather than too clever. */
191 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
192 		struct sk_buff *skb2;
193 
194 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
195 		if (skb2 == NULL) {
196 			kfree_skb(skb);
197 			return -ENOMEM;
198 		}
199 		if (skb->sk)
200 			skb_set_owner_w(skb2, skb->sk);
201 		kfree_skb(skb);
202 		skb = skb2;
203 	}
204 
205 	if (dst->hh)
206 		return neigh_hh_output(dst->hh, skb);
207 	else if (dst->neighbour)
208 		return dst->neighbour->output(skb);
209 
210 	if (net_ratelimit())
211 		printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
212 	kfree_skb(skb);
213 	return -EINVAL;
214 }
215 
216 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
217 {
218 	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
219 
220 	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
221 	       skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
222 }
223 
224 static int ip_finish_output(struct sk_buff *skb)
225 {
226 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
227 	/* Policy lookup after SNAT yielded a new policy */
228 	if (skb_dst(skb)->xfrm != NULL) {
229 		IPCB(skb)->flags |= IPSKB_REROUTED;
230 		return dst_output(skb);
231 	}
232 #endif
233 	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
234 		return ip_fragment(skb, ip_finish_output2);
235 	else
236 		return ip_finish_output2(skb);
237 }
238 
239 int ip_mc_output(struct sk_buff *skb)
240 {
241 	struct sock *sk = skb->sk;
242 	struct rtable *rt = skb_rtable(skb);
243 	struct net_device *dev = rt->u.dst.dev;
244 
245 	/*
246 	 *	If the indicated interface is up and running, send the packet.
247 	 */
248 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
249 
250 	skb->dev = dev;
251 	skb->protocol = htons(ETH_P_IP);
252 
253 	/*
254 	 *	Multicasts are looped back for other local users
255 	 */
256 
257 	if (rt->rt_flags&RTCF_MULTICAST) {
258 		if (sk_mc_loop(sk)
259 #ifdef CONFIG_IP_MROUTE
260 		/* Small optimization: do not loopback not local frames,
261 		   which returned after forwarding; they will be  dropped
262 		   by ip_mr_input in any case.
263 		   Note, that local frames are looped back to be delivered
264 		   to local recipients.
265 
266 		   This check is duplicated in ip_mr_input at the moment.
267 		 */
268 		    &&
269 		    ((rt->rt_flags & RTCF_LOCAL) ||
270 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
271 #endif
272 		   ) {
273 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
274 			if (newskb)
275 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
276 					newskb, NULL, newskb->dev,
277 					ip_dev_loopback_xmit);
278 		}
279 
280 		/* Multicasts with ttl 0 must not go beyond the host */
281 
282 		if (ip_hdr(skb)->ttl == 0) {
283 			kfree_skb(skb);
284 			return 0;
285 		}
286 	}
287 
288 	if (rt->rt_flags&RTCF_BROADCAST) {
289 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
290 		if (newskb)
291 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
292 				NULL, newskb->dev, ip_dev_loopback_xmit);
293 	}
294 
295 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
296 			    skb->dev, ip_finish_output,
297 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
298 }
299 
300 int ip_output(struct sk_buff *skb)
301 {
302 	struct net_device *dev = skb_dst(skb)->dev;
303 
304 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
305 
306 	skb->dev = dev;
307 	skb->protocol = htons(ETH_P_IP);
308 
309 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
310 			    ip_finish_output,
311 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
312 }
313 
314 int ip_queue_xmit(struct sk_buff *skb)
315 {
316 	struct sock *sk = skb->sk;
317 	struct inet_sock *inet = inet_sk(sk);
318 	struct ip_options *opt = inet->opt;
319 	struct rtable *rt;
320 	struct iphdr *iph;
321 	int res;
322 
323 	/* Skip all of this if the packet is already routed,
324 	 * f.e. by something like SCTP.
325 	 */
326 	rcu_read_lock();
327 	rt = skb_rtable(skb);
328 	if (rt != NULL)
329 		goto packet_routed;
330 
331 	/* Make sure we can route this packet. */
332 	rt = (struct rtable *)__sk_dst_check(sk, 0);
333 	if (rt == NULL) {
334 		__be32 daddr;
335 
336 		/* Use correct destination address if we have options. */
337 		daddr = inet->inet_daddr;
338 		if(opt && opt->srr)
339 			daddr = opt->faddr;
340 
341 		{
342 			struct flowi fl = { .oif = sk->sk_bound_dev_if,
343 					    .mark = sk->sk_mark,
344 					    .nl_u = { .ip4_u =
345 						      { .daddr = daddr,
346 							.saddr = inet->inet_saddr,
347 							.tos = RT_CONN_FLAGS(sk) } },
348 					    .proto = sk->sk_protocol,
349 					    .flags = inet_sk_flowi_flags(sk),
350 					    .uli_u = { .ports =
351 						       { .sport = inet->inet_sport,
352 							 .dport = inet->inet_dport } } };
353 
354 			/* If this fails, retransmit mechanism of transport layer will
355 			 * keep trying until route appears or the connection times
356 			 * itself out.
357 			 */
358 			security_sk_classify_flow(sk, &fl);
359 			if (ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 0))
360 				goto no_route;
361 		}
362 		sk_setup_caps(sk, &rt->u.dst);
363 	}
364 	skb_dst_set_noref(skb, &rt->u.dst);
365 
366 packet_routed:
367 	if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
368 		goto no_route;
369 
370 	/* OK, we know where to send it, allocate and build IP header. */
371 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
372 	skb_reset_network_header(skb);
373 	iph = ip_hdr(skb);
374 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
375 	if (ip_dont_fragment(sk, &rt->u.dst) && !skb->local_df)
376 		iph->frag_off = htons(IP_DF);
377 	else
378 		iph->frag_off = 0;
379 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
380 	iph->protocol = sk->sk_protocol;
381 	iph->saddr    = rt->rt_src;
382 	iph->daddr    = rt->rt_dst;
383 	/* Transport layer set skb->h.foo itself. */
384 
385 	if (opt && opt->optlen) {
386 		iph->ihl += opt->optlen >> 2;
387 		ip_options_build(skb, opt, inet->inet_daddr, rt, 0);
388 	}
389 
390 	ip_select_ident_more(iph, &rt->u.dst, sk,
391 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
392 
393 	skb->priority = sk->sk_priority;
394 	skb->mark = sk->sk_mark;
395 
396 	res = ip_local_out(skb);
397 	rcu_read_unlock();
398 	return res;
399 
400 no_route:
401 	rcu_read_unlock();
402 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
403 	kfree_skb(skb);
404 	return -EHOSTUNREACH;
405 }
406 
407 
408 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
409 {
410 	to->pkt_type = from->pkt_type;
411 	to->priority = from->priority;
412 	to->protocol = from->protocol;
413 	skb_dst_drop(to);
414 	skb_dst_set(to, dst_clone(skb_dst(from)));
415 	to->dev = from->dev;
416 	to->mark = from->mark;
417 
418 	/* Copy the flags to each fragment. */
419 	IPCB(to)->flags = IPCB(from)->flags;
420 
421 #ifdef CONFIG_NET_SCHED
422 	to->tc_index = from->tc_index;
423 #endif
424 	nf_copy(to, from);
425 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
426     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
427 	to->nf_trace = from->nf_trace;
428 #endif
429 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
430 	to->ipvs_property = from->ipvs_property;
431 #endif
432 	skb_copy_secmark(to, from);
433 }
434 
435 /*
436  *	This IP datagram is too large to be sent in one piece.  Break it up into
437  *	smaller pieces (each of size equal to IP header plus
438  *	a block of the data of the original IP data part) that will yet fit in a
439  *	single device frame, and queue such a frame for sending.
440  */
441 
442 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
443 {
444 	struct iphdr *iph;
445 	int raw = 0;
446 	int ptr;
447 	struct net_device *dev;
448 	struct sk_buff *skb2;
449 	unsigned int mtu, hlen, left, len, ll_rs, pad;
450 	int offset;
451 	__be16 not_last_frag;
452 	struct rtable *rt = skb_rtable(skb);
453 	int err = 0;
454 
455 	dev = rt->u.dst.dev;
456 
457 	/*
458 	 *	Point into the IP datagram header.
459 	 */
460 
461 	iph = ip_hdr(skb);
462 
463 	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
464 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
465 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
466 			  htonl(ip_skb_dst_mtu(skb)));
467 		kfree_skb(skb);
468 		return -EMSGSIZE;
469 	}
470 
471 	/*
472 	 *	Setup starting values.
473 	 */
474 
475 	hlen = iph->ihl * 4;
476 	mtu = dst_mtu(&rt->u.dst) - hlen;	/* Size of data space */
477 #ifdef CONFIG_BRIDGE_NETFILTER
478 	if (skb->nf_bridge)
479 		mtu -= nf_bridge_mtu_reduction(skb);
480 #endif
481 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
482 
483 	/* When frag_list is given, use it. First, check its validity:
484 	 * some transformers could create wrong frag_list or break existing
485 	 * one, it is not prohibited. In this case fall back to copying.
486 	 *
487 	 * LATER: this step can be merged to real generation of fragments,
488 	 * we can switch to copy when see the first bad fragment.
489 	 */
490 	if (skb_has_frags(skb)) {
491 		struct sk_buff *frag;
492 		int first_len = skb_pagelen(skb);
493 		int truesizes = 0;
494 
495 		if (first_len - hlen > mtu ||
496 		    ((first_len - hlen) & 7) ||
497 		    (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
498 		    skb_cloned(skb))
499 			goto slow_path;
500 
501 		skb_walk_frags(skb, frag) {
502 			/* Correct geometry. */
503 			if (frag->len > mtu ||
504 			    ((frag->len & 7) && frag->next) ||
505 			    skb_headroom(frag) < hlen)
506 			    goto slow_path;
507 
508 			/* Partially cloned skb? */
509 			if (skb_shared(frag))
510 				goto slow_path;
511 
512 			BUG_ON(frag->sk);
513 			if (skb->sk) {
514 				frag->sk = skb->sk;
515 				frag->destructor = sock_wfree;
516 			}
517 			truesizes += frag->truesize;
518 		}
519 
520 		/* Everything is OK. Generate! */
521 
522 		err = 0;
523 		offset = 0;
524 		frag = skb_shinfo(skb)->frag_list;
525 		skb_frag_list_init(skb);
526 		skb->data_len = first_len - skb_headlen(skb);
527 		skb->truesize -= truesizes;
528 		skb->len = first_len;
529 		iph->tot_len = htons(first_len);
530 		iph->frag_off = htons(IP_MF);
531 		ip_send_check(iph);
532 
533 		for (;;) {
534 			/* Prepare header of the next frame,
535 			 * before previous one went down. */
536 			if (frag) {
537 				frag->ip_summed = CHECKSUM_NONE;
538 				skb_reset_transport_header(frag);
539 				__skb_push(frag, hlen);
540 				skb_reset_network_header(frag);
541 				memcpy(skb_network_header(frag), iph, hlen);
542 				iph = ip_hdr(frag);
543 				iph->tot_len = htons(frag->len);
544 				ip_copy_metadata(frag, skb);
545 				if (offset == 0)
546 					ip_options_fragment(frag);
547 				offset += skb->len - hlen;
548 				iph->frag_off = htons(offset>>3);
549 				if (frag->next != NULL)
550 					iph->frag_off |= htons(IP_MF);
551 				/* Ready, complete checksum */
552 				ip_send_check(iph);
553 			}
554 
555 			err = output(skb);
556 
557 			if (!err)
558 				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
559 			if (err || !frag)
560 				break;
561 
562 			skb = frag;
563 			frag = skb->next;
564 			skb->next = NULL;
565 		}
566 
567 		if (err == 0) {
568 			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
569 			return 0;
570 		}
571 
572 		while (frag) {
573 			skb = frag->next;
574 			kfree_skb(frag);
575 			frag = skb;
576 		}
577 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
578 		return err;
579 	}
580 
581 slow_path:
582 	left = skb->len - hlen;		/* Space per frame */
583 	ptr = raw + hlen;		/* Where to start from */
584 
585 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
586 	 * we need to make room for the encapsulating header
587 	 */
588 	pad = nf_bridge_pad(skb);
589 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
590 	mtu -= pad;
591 
592 	/*
593 	 *	Fragment the datagram.
594 	 */
595 
596 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
597 	not_last_frag = iph->frag_off & htons(IP_MF);
598 
599 	/*
600 	 *	Keep copying data until we run out.
601 	 */
602 
603 	while (left > 0) {
604 		len = left;
605 		/* IF: it doesn't fit, use 'mtu' - the data space left */
606 		if (len > mtu)
607 			len = mtu;
608 		/* IF: we are not sending upto and including the packet end
609 		   then align the next start on an eight byte boundary */
610 		if (len < left)	{
611 			len &= ~7;
612 		}
613 		/*
614 		 *	Allocate buffer.
615 		 */
616 
617 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
618 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
619 			err = -ENOMEM;
620 			goto fail;
621 		}
622 
623 		/*
624 		 *	Set up data on packet
625 		 */
626 
627 		ip_copy_metadata(skb2, skb);
628 		skb_reserve(skb2, ll_rs);
629 		skb_put(skb2, len + hlen);
630 		skb_reset_network_header(skb2);
631 		skb2->transport_header = skb2->network_header + hlen;
632 
633 		/*
634 		 *	Charge the memory for the fragment to any owner
635 		 *	it might possess
636 		 */
637 
638 		if (skb->sk)
639 			skb_set_owner_w(skb2, skb->sk);
640 
641 		/*
642 		 *	Copy the packet header into the new buffer.
643 		 */
644 
645 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
646 
647 		/*
648 		 *	Copy a block of the IP datagram.
649 		 */
650 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
651 			BUG();
652 		left -= len;
653 
654 		/*
655 		 *	Fill in the new header fields.
656 		 */
657 		iph = ip_hdr(skb2);
658 		iph->frag_off = htons((offset >> 3));
659 
660 		/* ANK: dirty, but effective trick. Upgrade options only if
661 		 * the segment to be fragmented was THE FIRST (otherwise,
662 		 * options are already fixed) and make it ONCE
663 		 * on the initial skb, so that all the following fragments
664 		 * will inherit fixed options.
665 		 */
666 		if (offset == 0)
667 			ip_options_fragment(skb);
668 
669 		/*
670 		 *	Added AC : If we are fragmenting a fragment that's not the
671 		 *		   last fragment then keep MF on each bit
672 		 */
673 		if (left > 0 || not_last_frag)
674 			iph->frag_off |= htons(IP_MF);
675 		ptr += len;
676 		offset += len;
677 
678 		/*
679 		 *	Put this fragment into the sending queue.
680 		 */
681 		iph->tot_len = htons(len + hlen);
682 
683 		ip_send_check(iph);
684 
685 		err = output(skb2);
686 		if (err)
687 			goto fail;
688 
689 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
690 	}
691 	kfree_skb(skb);
692 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
693 	return err;
694 
695 fail:
696 	kfree_skb(skb);
697 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
698 	return err;
699 }
700 
701 EXPORT_SYMBOL(ip_fragment);
702 
703 int
704 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
705 {
706 	struct iovec *iov = from;
707 
708 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
709 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
710 			return -EFAULT;
711 	} else {
712 		__wsum csum = 0;
713 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
714 			return -EFAULT;
715 		skb->csum = csum_block_add(skb->csum, csum, odd);
716 	}
717 	return 0;
718 }
719 
720 static inline __wsum
721 csum_page(struct page *page, int offset, int copy)
722 {
723 	char *kaddr;
724 	__wsum csum;
725 	kaddr = kmap(page);
726 	csum = csum_partial(kaddr + offset, copy, 0);
727 	kunmap(page);
728 	return csum;
729 }
730 
731 static inline int ip_ufo_append_data(struct sock *sk,
732 			int getfrag(void *from, char *to, int offset, int len,
733 			       int odd, struct sk_buff *skb),
734 			void *from, int length, int hh_len, int fragheaderlen,
735 			int transhdrlen, int mtu, unsigned int flags)
736 {
737 	struct sk_buff *skb;
738 	int err;
739 
740 	/* There is support for UDP fragmentation offload by network
741 	 * device, so create one single skb packet containing complete
742 	 * udp datagram
743 	 */
744 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
745 		skb = sock_alloc_send_skb(sk,
746 			hh_len + fragheaderlen + transhdrlen + 20,
747 			(flags & MSG_DONTWAIT), &err);
748 
749 		if (skb == NULL)
750 			return err;
751 
752 		/* reserve space for Hardware header */
753 		skb_reserve(skb, hh_len);
754 
755 		/* create space for UDP/IP header */
756 		skb_put(skb, fragheaderlen + transhdrlen);
757 
758 		/* initialize network header pointer */
759 		skb_reset_network_header(skb);
760 
761 		/* initialize protocol header pointer */
762 		skb->transport_header = skb->network_header + fragheaderlen;
763 
764 		skb->ip_summed = CHECKSUM_PARTIAL;
765 		skb->csum = 0;
766 		sk->sk_sndmsg_off = 0;
767 
768 		/* specify the length of each IP datagram fragment */
769 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
770 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
771 		__skb_queue_tail(&sk->sk_write_queue, skb);
772 	}
773 
774 	return skb_append_datato_frags(sk, skb, getfrag, from,
775 				       (length - transhdrlen));
776 }
777 
778 /*
779  *	ip_append_data() and ip_append_page() can make one large IP datagram
780  *	from many pieces of data. Each pieces will be holded on the socket
781  *	until ip_push_pending_frames() is called. Each piece can be a page
782  *	or non-page data.
783  *
784  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
785  *	this interface potentially.
786  *
787  *	LATER: length must be adjusted by pad at tail, when it is required.
788  */
789 int ip_append_data(struct sock *sk,
790 		   int getfrag(void *from, char *to, int offset, int len,
791 			       int odd, struct sk_buff *skb),
792 		   void *from, int length, int transhdrlen,
793 		   struct ipcm_cookie *ipc, struct rtable **rtp,
794 		   unsigned int flags)
795 {
796 	struct inet_sock *inet = inet_sk(sk);
797 	struct sk_buff *skb;
798 
799 	struct ip_options *opt = NULL;
800 	int hh_len;
801 	int exthdrlen;
802 	int mtu;
803 	int copy;
804 	int err;
805 	int offset = 0;
806 	unsigned int maxfraglen, fragheaderlen;
807 	int csummode = CHECKSUM_NONE;
808 	struct rtable *rt;
809 
810 	if (flags&MSG_PROBE)
811 		return 0;
812 
813 	if (skb_queue_empty(&sk->sk_write_queue)) {
814 		/*
815 		 * setup for corking.
816 		 */
817 		opt = ipc->opt;
818 		if (opt) {
819 			if (inet->cork.opt == NULL) {
820 				inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
821 				if (unlikely(inet->cork.opt == NULL))
822 					return -ENOBUFS;
823 			}
824 			memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
825 			inet->cork.flags |= IPCORK_OPT;
826 			inet->cork.addr = ipc->addr;
827 		}
828 		rt = *rtp;
829 		if (unlikely(!rt))
830 			return -EFAULT;
831 		/*
832 		 * We steal reference to this route, caller should not release it
833 		 */
834 		*rtp = NULL;
835 		inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
836 					    rt->u.dst.dev->mtu :
837 					    dst_mtu(rt->u.dst.path);
838 		inet->cork.dst = &rt->u.dst;
839 		inet->cork.length = 0;
840 		sk->sk_sndmsg_page = NULL;
841 		sk->sk_sndmsg_off = 0;
842 		if ((exthdrlen = rt->u.dst.header_len) != 0) {
843 			length += exthdrlen;
844 			transhdrlen += exthdrlen;
845 		}
846 	} else {
847 		rt = (struct rtable *)inet->cork.dst;
848 		if (inet->cork.flags & IPCORK_OPT)
849 			opt = inet->cork.opt;
850 
851 		transhdrlen = 0;
852 		exthdrlen = 0;
853 		mtu = inet->cork.fragsize;
854 	}
855 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
856 
857 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
858 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
859 
860 	if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
861 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport,
862 			       mtu-exthdrlen);
863 		return -EMSGSIZE;
864 	}
865 
866 	/*
867 	 * transhdrlen > 0 means that this is the first fragment and we wish
868 	 * it won't be fragmented in the future.
869 	 */
870 	if (transhdrlen &&
871 	    length + fragheaderlen <= mtu &&
872 	    rt->u.dst.dev->features & NETIF_F_V4_CSUM &&
873 	    !exthdrlen)
874 		csummode = CHECKSUM_PARTIAL;
875 
876 	skb = skb_peek_tail(&sk->sk_write_queue);
877 
878 	inet->cork.length += length;
879 	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
880 	    (sk->sk_protocol == IPPROTO_UDP) &&
881 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
882 		err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
883 					 fragheaderlen, transhdrlen, mtu,
884 					 flags);
885 		if (err)
886 			goto error;
887 		return 0;
888 	}
889 
890 	/* So, what's going on in the loop below?
891 	 *
892 	 * We use calculated fragment length to generate chained skb,
893 	 * each of segments is IP fragment ready for sending to network after
894 	 * adding appropriate IP header.
895 	 */
896 
897 	if (!skb)
898 		goto alloc_new_skb;
899 
900 	while (length > 0) {
901 		/* Check if the remaining data fits into current packet. */
902 		copy = mtu - skb->len;
903 		if (copy < length)
904 			copy = maxfraglen - skb->len;
905 		if (copy <= 0) {
906 			char *data;
907 			unsigned int datalen;
908 			unsigned int fraglen;
909 			unsigned int fraggap;
910 			unsigned int alloclen;
911 			struct sk_buff *skb_prev;
912 alloc_new_skb:
913 			skb_prev = skb;
914 			if (skb_prev)
915 				fraggap = skb_prev->len - maxfraglen;
916 			else
917 				fraggap = 0;
918 
919 			/*
920 			 * If remaining data exceeds the mtu,
921 			 * we know we need more fragment(s).
922 			 */
923 			datalen = length + fraggap;
924 			if (datalen > mtu - fragheaderlen)
925 				datalen = maxfraglen - fragheaderlen;
926 			fraglen = datalen + fragheaderlen;
927 
928 			if ((flags & MSG_MORE) &&
929 			    !(rt->u.dst.dev->features&NETIF_F_SG))
930 				alloclen = mtu;
931 			else
932 				alloclen = datalen + fragheaderlen;
933 
934 			/* The last fragment gets additional space at tail.
935 			 * Note, with MSG_MORE we overallocate on fragments,
936 			 * because we have no idea what fragment will be
937 			 * the last.
938 			 */
939 			if (datalen == length + fraggap)
940 				alloclen += rt->u.dst.trailer_len;
941 
942 			if (transhdrlen) {
943 				skb = sock_alloc_send_skb(sk,
944 						alloclen + hh_len + 15,
945 						(flags & MSG_DONTWAIT), &err);
946 			} else {
947 				skb = NULL;
948 				if (atomic_read(&sk->sk_wmem_alloc) <=
949 				    2 * sk->sk_sndbuf)
950 					skb = sock_wmalloc(sk,
951 							   alloclen + hh_len + 15, 1,
952 							   sk->sk_allocation);
953 				if (unlikely(skb == NULL))
954 					err = -ENOBUFS;
955 				else
956 					/* only the initial fragment is
957 					   time stamped */
958 					ipc->shtx.flags = 0;
959 			}
960 			if (skb == NULL)
961 				goto error;
962 
963 			/*
964 			 *	Fill in the control structures
965 			 */
966 			skb->ip_summed = csummode;
967 			skb->csum = 0;
968 			skb_reserve(skb, hh_len);
969 			*skb_tx(skb) = ipc->shtx;
970 
971 			/*
972 			 *	Find where to start putting bytes.
973 			 */
974 			data = skb_put(skb, fraglen);
975 			skb_set_network_header(skb, exthdrlen);
976 			skb->transport_header = (skb->network_header +
977 						 fragheaderlen);
978 			data += fragheaderlen;
979 
980 			if (fraggap) {
981 				skb->csum = skb_copy_and_csum_bits(
982 					skb_prev, maxfraglen,
983 					data + transhdrlen, fraggap, 0);
984 				skb_prev->csum = csum_sub(skb_prev->csum,
985 							  skb->csum);
986 				data += fraggap;
987 				pskb_trim_unique(skb_prev, maxfraglen);
988 			}
989 
990 			copy = datalen - transhdrlen - fraggap;
991 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
992 				err = -EFAULT;
993 				kfree_skb(skb);
994 				goto error;
995 			}
996 
997 			offset += copy;
998 			length -= datalen - fraggap;
999 			transhdrlen = 0;
1000 			exthdrlen = 0;
1001 			csummode = CHECKSUM_NONE;
1002 
1003 			/*
1004 			 * Put the packet on the pending queue.
1005 			 */
1006 			__skb_queue_tail(&sk->sk_write_queue, skb);
1007 			continue;
1008 		}
1009 
1010 		if (copy > length)
1011 			copy = length;
1012 
1013 		if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
1014 			unsigned int off;
1015 
1016 			off = skb->len;
1017 			if (getfrag(from, skb_put(skb, copy),
1018 					offset, copy, off, skb) < 0) {
1019 				__skb_trim(skb, off);
1020 				err = -EFAULT;
1021 				goto error;
1022 			}
1023 		} else {
1024 			int i = skb_shinfo(skb)->nr_frags;
1025 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1026 			struct page *page = sk->sk_sndmsg_page;
1027 			int off = sk->sk_sndmsg_off;
1028 			unsigned int left;
1029 
1030 			if (page && (left = PAGE_SIZE - off) > 0) {
1031 				if (copy >= left)
1032 					copy = left;
1033 				if (page != frag->page) {
1034 					if (i == MAX_SKB_FRAGS) {
1035 						err = -EMSGSIZE;
1036 						goto error;
1037 					}
1038 					get_page(page);
1039 					skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1040 					frag = &skb_shinfo(skb)->frags[i];
1041 				}
1042 			} else if (i < MAX_SKB_FRAGS) {
1043 				if (copy > PAGE_SIZE)
1044 					copy = PAGE_SIZE;
1045 				page = alloc_pages(sk->sk_allocation, 0);
1046 				if (page == NULL)  {
1047 					err = -ENOMEM;
1048 					goto error;
1049 				}
1050 				sk->sk_sndmsg_page = page;
1051 				sk->sk_sndmsg_off = 0;
1052 
1053 				skb_fill_page_desc(skb, i, page, 0, 0);
1054 				frag = &skb_shinfo(skb)->frags[i];
1055 			} else {
1056 				err = -EMSGSIZE;
1057 				goto error;
1058 			}
1059 			if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1060 				err = -EFAULT;
1061 				goto error;
1062 			}
1063 			sk->sk_sndmsg_off += copy;
1064 			frag->size += copy;
1065 			skb->len += copy;
1066 			skb->data_len += copy;
1067 			skb->truesize += copy;
1068 			atomic_add(copy, &sk->sk_wmem_alloc);
1069 		}
1070 		offset += copy;
1071 		length -= copy;
1072 	}
1073 
1074 	return 0;
1075 
1076 error:
1077 	inet->cork.length -= length;
1078 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1079 	return err;
1080 }
1081 
1082 ssize_t	ip_append_page(struct sock *sk, struct page *page,
1083 		       int offset, size_t size, int flags)
1084 {
1085 	struct inet_sock *inet = inet_sk(sk);
1086 	struct sk_buff *skb;
1087 	struct rtable *rt;
1088 	struct ip_options *opt = NULL;
1089 	int hh_len;
1090 	int mtu;
1091 	int len;
1092 	int err;
1093 	unsigned int maxfraglen, fragheaderlen, fraggap;
1094 
1095 	if (inet->hdrincl)
1096 		return -EPERM;
1097 
1098 	if (flags&MSG_PROBE)
1099 		return 0;
1100 
1101 	if (skb_queue_empty(&sk->sk_write_queue))
1102 		return -EINVAL;
1103 
1104 	rt = (struct rtable *)inet->cork.dst;
1105 	if (inet->cork.flags & IPCORK_OPT)
1106 		opt = inet->cork.opt;
1107 
1108 	if (!(rt->u.dst.dev->features&NETIF_F_SG))
1109 		return -EOPNOTSUPP;
1110 
1111 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1112 	mtu = inet->cork.fragsize;
1113 
1114 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1115 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1116 
1117 	if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1118 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport, mtu);
1119 		return -EMSGSIZE;
1120 	}
1121 
1122 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1123 		return -EINVAL;
1124 
1125 	inet->cork.length += size;
1126 	if ((size + skb->len > mtu) &&
1127 	    (sk->sk_protocol == IPPROTO_UDP) &&
1128 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
1129 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1130 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1131 	}
1132 
1133 
1134 	while (size > 0) {
1135 		int i;
1136 
1137 		if (skb_is_gso(skb))
1138 			len = size;
1139 		else {
1140 
1141 			/* Check if the remaining data fits into current packet. */
1142 			len = mtu - skb->len;
1143 			if (len < size)
1144 				len = maxfraglen - skb->len;
1145 		}
1146 		if (len <= 0) {
1147 			struct sk_buff *skb_prev;
1148 			int alloclen;
1149 
1150 			skb_prev = skb;
1151 			fraggap = skb_prev->len - maxfraglen;
1152 
1153 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1154 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1155 			if (unlikely(!skb)) {
1156 				err = -ENOBUFS;
1157 				goto error;
1158 			}
1159 
1160 			/*
1161 			 *	Fill in the control structures
1162 			 */
1163 			skb->ip_summed = CHECKSUM_NONE;
1164 			skb->csum = 0;
1165 			skb_reserve(skb, hh_len);
1166 
1167 			/*
1168 			 *	Find where to start putting bytes.
1169 			 */
1170 			skb_put(skb, fragheaderlen + fraggap);
1171 			skb_reset_network_header(skb);
1172 			skb->transport_header = (skb->network_header +
1173 						 fragheaderlen);
1174 			if (fraggap) {
1175 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1176 								   maxfraglen,
1177 						    skb_transport_header(skb),
1178 								   fraggap, 0);
1179 				skb_prev->csum = csum_sub(skb_prev->csum,
1180 							  skb->csum);
1181 				pskb_trim_unique(skb_prev, maxfraglen);
1182 			}
1183 
1184 			/*
1185 			 * Put the packet on the pending queue.
1186 			 */
1187 			__skb_queue_tail(&sk->sk_write_queue, skb);
1188 			continue;
1189 		}
1190 
1191 		i = skb_shinfo(skb)->nr_frags;
1192 		if (len > size)
1193 			len = size;
1194 		if (skb_can_coalesce(skb, i, page, offset)) {
1195 			skb_shinfo(skb)->frags[i-1].size += len;
1196 		} else if (i < MAX_SKB_FRAGS) {
1197 			get_page(page);
1198 			skb_fill_page_desc(skb, i, page, offset, len);
1199 		} else {
1200 			err = -EMSGSIZE;
1201 			goto error;
1202 		}
1203 
1204 		if (skb->ip_summed == CHECKSUM_NONE) {
1205 			__wsum csum;
1206 			csum = csum_page(page, offset, len);
1207 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1208 		}
1209 
1210 		skb->len += len;
1211 		skb->data_len += len;
1212 		skb->truesize += len;
1213 		atomic_add(len, &sk->sk_wmem_alloc);
1214 		offset += len;
1215 		size -= len;
1216 	}
1217 	return 0;
1218 
1219 error:
1220 	inet->cork.length -= size;
1221 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1222 	return err;
1223 }
1224 
1225 static void ip_cork_release(struct inet_sock *inet)
1226 {
1227 	inet->cork.flags &= ~IPCORK_OPT;
1228 	kfree(inet->cork.opt);
1229 	inet->cork.opt = NULL;
1230 	dst_release(inet->cork.dst);
1231 	inet->cork.dst = NULL;
1232 }
1233 
1234 /*
1235  *	Combined all pending IP fragments on the socket as one IP datagram
1236  *	and push them out.
1237  */
1238 int ip_push_pending_frames(struct sock *sk)
1239 {
1240 	struct sk_buff *skb, *tmp_skb;
1241 	struct sk_buff **tail_skb;
1242 	struct inet_sock *inet = inet_sk(sk);
1243 	struct net *net = sock_net(sk);
1244 	struct ip_options *opt = NULL;
1245 	struct rtable *rt = (struct rtable *)inet->cork.dst;
1246 	struct iphdr *iph;
1247 	__be16 df = 0;
1248 	__u8 ttl;
1249 	int err = 0;
1250 
1251 	if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1252 		goto out;
1253 	tail_skb = &(skb_shinfo(skb)->frag_list);
1254 
1255 	/* move skb->data to ip header from ext header */
1256 	if (skb->data < skb_network_header(skb))
1257 		__skb_pull(skb, skb_network_offset(skb));
1258 	while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1259 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1260 		*tail_skb = tmp_skb;
1261 		tail_skb = &(tmp_skb->next);
1262 		skb->len += tmp_skb->len;
1263 		skb->data_len += tmp_skb->len;
1264 		skb->truesize += tmp_skb->truesize;
1265 		tmp_skb->destructor = NULL;
1266 		tmp_skb->sk = NULL;
1267 	}
1268 
1269 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1270 	 * to fragment the frame generated here. No matter, what transforms
1271 	 * how transforms change size of the packet, it will come out.
1272 	 */
1273 	if (inet->pmtudisc < IP_PMTUDISC_DO)
1274 		skb->local_df = 1;
1275 
1276 	/* DF bit is set when we want to see DF on outgoing frames.
1277 	 * If local_df is set too, we still allow to fragment this frame
1278 	 * locally. */
1279 	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1280 	    (skb->len <= dst_mtu(&rt->u.dst) &&
1281 	     ip_dont_fragment(sk, &rt->u.dst)))
1282 		df = htons(IP_DF);
1283 
1284 	if (inet->cork.flags & IPCORK_OPT)
1285 		opt = inet->cork.opt;
1286 
1287 	if (rt->rt_type == RTN_MULTICAST)
1288 		ttl = inet->mc_ttl;
1289 	else
1290 		ttl = ip_select_ttl(inet, &rt->u.dst);
1291 
1292 	iph = (struct iphdr *)skb->data;
1293 	iph->version = 4;
1294 	iph->ihl = 5;
1295 	if (opt) {
1296 		iph->ihl += opt->optlen>>2;
1297 		ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1298 	}
1299 	iph->tos = inet->tos;
1300 	iph->frag_off = df;
1301 	ip_select_ident(iph, &rt->u.dst, sk);
1302 	iph->ttl = ttl;
1303 	iph->protocol = sk->sk_protocol;
1304 	iph->saddr = rt->rt_src;
1305 	iph->daddr = rt->rt_dst;
1306 
1307 	skb->priority = sk->sk_priority;
1308 	skb->mark = sk->sk_mark;
1309 	/*
1310 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1311 	 * on dst refcount
1312 	 */
1313 	inet->cork.dst = NULL;
1314 	skb_dst_set(skb, &rt->u.dst);
1315 
1316 	if (iph->protocol == IPPROTO_ICMP)
1317 		icmp_out_count(net, ((struct icmphdr *)
1318 			skb_transport_header(skb))->type);
1319 
1320 	/* Netfilter gets whole the not fragmented skb. */
1321 	err = ip_local_out(skb);
1322 	if (err) {
1323 		if (err > 0)
1324 			err = net_xmit_errno(err);
1325 		if (err)
1326 			goto error;
1327 	}
1328 
1329 out:
1330 	ip_cork_release(inet);
1331 	return err;
1332 
1333 error:
1334 	IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1335 	goto out;
1336 }
1337 
1338 /*
1339  *	Throw away all pending data on the socket.
1340  */
1341 void ip_flush_pending_frames(struct sock *sk)
1342 {
1343 	struct sk_buff *skb;
1344 
1345 	while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1346 		kfree_skb(skb);
1347 
1348 	ip_cork_release(inet_sk(sk));
1349 }
1350 
1351 
1352 /*
1353  *	Fetch data from kernel space and fill in checksum if needed.
1354  */
1355 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1356 			      int len, int odd, struct sk_buff *skb)
1357 {
1358 	__wsum csum;
1359 
1360 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1361 	skb->csum = csum_block_add(skb->csum, csum, odd);
1362 	return 0;
1363 }
1364 
1365 /*
1366  *	Generic function to send a packet as reply to another packet.
1367  *	Used to send TCP resets so far. ICMP should use this function too.
1368  *
1369  *	Should run single threaded per socket because it uses the sock
1370  *     	structure to pass arguments.
1371  */
1372 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1373 		   unsigned int len)
1374 {
1375 	struct inet_sock *inet = inet_sk(sk);
1376 	struct {
1377 		struct ip_options	opt;
1378 		char			data[40];
1379 	} replyopts;
1380 	struct ipcm_cookie ipc;
1381 	__be32 daddr;
1382 	struct rtable *rt = skb_rtable(skb);
1383 
1384 	if (ip_options_echo(&replyopts.opt, skb))
1385 		return;
1386 
1387 	daddr = ipc.addr = rt->rt_src;
1388 	ipc.opt = NULL;
1389 	ipc.shtx.flags = 0;
1390 
1391 	if (replyopts.opt.optlen) {
1392 		ipc.opt = &replyopts.opt;
1393 
1394 		if (ipc.opt->srr)
1395 			daddr = replyopts.opt.faddr;
1396 	}
1397 
1398 	{
1399 		struct flowi fl = { .oif = arg->bound_dev_if,
1400 				    .nl_u = { .ip4_u =
1401 					      { .daddr = daddr,
1402 						.saddr = rt->rt_spec_dst,
1403 						.tos = RT_TOS(ip_hdr(skb)->tos) } },
1404 				    /* Not quite clean, but right. */
1405 				    .uli_u = { .ports =
1406 					       { .sport = tcp_hdr(skb)->dest,
1407 						 .dport = tcp_hdr(skb)->source } },
1408 				    .proto = sk->sk_protocol,
1409 				    .flags = ip_reply_arg_flowi_flags(arg) };
1410 		security_skb_classify_flow(skb, &fl);
1411 		if (ip_route_output_key(sock_net(sk), &rt, &fl))
1412 			return;
1413 	}
1414 
1415 	/* And let IP do all the hard work.
1416 
1417 	   This chunk is not reenterable, hence spinlock.
1418 	   Note that it uses the fact, that this function is called
1419 	   with locally disabled BH and that sk cannot be already spinlocked.
1420 	 */
1421 	bh_lock_sock(sk);
1422 	inet->tos = ip_hdr(skb)->tos;
1423 	sk->sk_priority = skb->priority;
1424 	sk->sk_protocol = ip_hdr(skb)->protocol;
1425 	sk->sk_bound_dev_if = arg->bound_dev_if;
1426 	ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1427 		       &ipc, &rt, MSG_DONTWAIT);
1428 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1429 		if (arg->csumoffset >= 0)
1430 			*((__sum16 *)skb_transport_header(skb) +
1431 			  arg->csumoffset) = csum_fold(csum_add(skb->csum,
1432 								arg->csum));
1433 		skb->ip_summed = CHECKSUM_NONE;
1434 		ip_push_pending_frames(sk);
1435 	}
1436 
1437 	bh_unlock_sock(sk);
1438 
1439 	ip_rt_put(rt);
1440 }
1441 
1442 void __init ip_init(void)
1443 {
1444 	ip_rt_init();
1445 	inet_initpeers();
1446 
1447 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1448 	igmp_mc_proc_init();
1449 #endif
1450 }
1451 
1452 EXPORT_SYMBOL(ip_generic_getfrag);
1453 EXPORT_SYMBOL(ip_queue_xmit);
1454 EXPORT_SYMBOL(ip_send_check);
1455