1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The Internet Protocol (IP) output module. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Donald Becker, <becker@super.org> 12 * Alan Cox, <Alan.Cox@linux.org> 13 * Richard Underwood 14 * Stefan Becker, <stefanb@yello.ping.de> 15 * Jorge Cwik, <jorge@laser.satlink.net> 16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 17 * Hirokazu Takahashi, <taka@valinux.co.jp> 18 * 19 * See ip_input.c for original log 20 * 21 * Fixes: 22 * Alan Cox : Missing nonblock feature in ip_build_xmit. 23 * Mike Kilburn : htons() missing in ip_build_xmit. 24 * Bradford Johnson: Fix faulty handling of some frames when 25 * no route is found. 26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 27 * (in case if packet not accepted by 28 * output firewall rules) 29 * Mike McLagan : Routing by source 30 * Alexey Kuznetsov: use new route cache 31 * Andi Kleen: Fix broken PMTU recovery and remove 32 * some redundant tests. 33 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 34 * Andi Kleen : Replace ip_reply with ip_send_reply. 35 * Andi Kleen : Split fast and slow ip_build_xmit path 36 * for decreased register pressure on x86 37 * and more readability. 38 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 39 * silently drop skb instead of failing with -EPERM. 40 * Detlev Wengorz : Copy protocol for fragments. 41 * Hirokazu Takahashi: HW checksumming for outgoing UDP 42 * datagrams. 43 * Hirokazu Takahashi: sendfile() on UDP works now. 44 */ 45 46 #include <linux/uaccess.h> 47 #include <linux/module.h> 48 #include <linux/types.h> 49 #include <linux/kernel.h> 50 #include <linux/mm.h> 51 #include <linux/string.h> 52 #include <linux/errno.h> 53 #include <linux/highmem.h> 54 #include <linux/slab.h> 55 56 #include <linux/socket.h> 57 #include <linux/sockios.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/etherdevice.h> 62 #include <linux/proc_fs.h> 63 #include <linux/stat.h> 64 #include <linux/init.h> 65 66 #include <net/snmp.h> 67 #include <net/ip.h> 68 #include <net/protocol.h> 69 #include <net/route.h> 70 #include <net/xfrm.h> 71 #include <linux/skbuff.h> 72 #include <net/sock.h> 73 #include <net/arp.h> 74 #include <net/icmp.h> 75 #include <net/checksum.h> 76 #include <net/gso.h> 77 #include <net/inetpeer.h> 78 #include <net/lwtunnel.h> 79 #include <net/inet_dscp.h> 80 #include <linux/bpf-cgroup.h> 81 #include <linux/igmp.h> 82 #include <linux/netfilter_ipv4.h> 83 #include <linux/netfilter_bridge.h> 84 #include <linux/netlink.h> 85 #include <linux/tcp.h> 86 87 static int 88 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 89 unsigned int mtu, 90 int (*output)(struct net *, struct sock *, struct sk_buff *)); 91 92 /* Generate a checksum for an outgoing IP datagram. */ 93 void ip_send_check(struct iphdr *iph) 94 { 95 iph->check = 0; 96 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 97 } 98 EXPORT_SYMBOL(ip_send_check); 99 100 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 101 { 102 struct iphdr *iph = ip_hdr(skb); 103 104 IP_INC_STATS(net, IPSTATS_MIB_OUTREQUESTS); 105 106 iph_set_totlen(iph, skb->len); 107 ip_send_check(iph); 108 109 /* if egress device is enslaved to an L3 master device pass the 110 * skb to its handler for processing 111 */ 112 skb = l3mdev_ip_out(sk, skb); 113 if (unlikely(!skb)) 114 return 0; 115 116 skb->protocol = htons(ETH_P_IP); 117 118 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 119 net, sk, skb, NULL, skb_dst_dev(skb), 120 dst_output); 121 } 122 123 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 124 { 125 int err; 126 127 err = __ip_local_out(net, sk, skb); 128 if (likely(err == 1)) 129 err = dst_output(net, sk, skb); 130 131 return err; 132 } 133 EXPORT_SYMBOL_GPL(ip_local_out); 134 135 static inline int ip_select_ttl(const struct inet_sock *inet, 136 const struct dst_entry *dst) 137 { 138 int ttl = READ_ONCE(inet->uc_ttl); 139 140 if (ttl < 0) 141 ttl = ip4_dst_hoplimit(dst); 142 return ttl; 143 } 144 145 /* 146 * Add an ip header to a skbuff and send it out. 147 * 148 */ 149 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 150 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt, 151 u8 tos) 152 { 153 const struct inet_sock *inet = inet_sk(sk); 154 struct rtable *rt = skb_rtable(skb); 155 struct net *net = sock_net(sk); 156 struct iphdr *iph; 157 158 /* Build the IP header. */ 159 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 160 skb_reset_network_header(skb); 161 iph = ip_hdr(skb); 162 iph->version = 4; 163 iph->ihl = 5; 164 iph->tos = tos; 165 iph->ttl = ip_select_ttl(inet, &rt->dst); 166 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 167 iph->saddr = saddr; 168 iph->protocol = sk->sk_protocol; 169 /* Do not bother generating IPID for small packets (eg SYNACK) */ 170 if (skb->len <= IPV4_MIN_MTU || ip_dont_fragment(sk, &rt->dst)) { 171 iph->frag_off = htons(IP_DF); 172 iph->id = 0; 173 } else { 174 iph->frag_off = 0; 175 /* TCP packets here are SYNACK with fat IPv4/TCP options. 176 * Avoid using the hashed IP ident generator. 177 */ 178 if (sk->sk_protocol == IPPROTO_TCP) 179 iph->id = (__force __be16)get_random_u16(); 180 else 181 __ip_select_ident(net, iph, 1); 182 } 183 184 if (opt && opt->opt.optlen) { 185 iph->ihl += opt->opt.optlen>>2; 186 ip_options_build(skb, &opt->opt, daddr, rt); 187 } 188 189 skb->priority = READ_ONCE(sk->sk_priority); 190 if (!skb->mark) 191 skb->mark = READ_ONCE(sk->sk_mark); 192 193 /* Send it out. */ 194 return ip_local_out(net, skb->sk, skb); 195 } 196 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 197 198 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 199 { 200 struct dst_entry *dst = skb_dst(skb); 201 struct rtable *rt = dst_rtable(dst); 202 struct net_device *dev = dst_dev(dst); 203 unsigned int hh_len = LL_RESERVED_SPACE(dev); 204 struct neighbour *neigh; 205 bool is_v6gw = false; 206 207 if (rt->rt_type == RTN_MULTICAST) { 208 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 209 } else if (rt->rt_type == RTN_BROADCAST) 210 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 211 212 /* OUTOCTETS should be counted after fragment */ 213 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 214 215 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 216 skb = skb_expand_head(skb, hh_len); 217 if (!skb) 218 return -ENOMEM; 219 } 220 221 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 222 int res = lwtunnel_xmit(skb); 223 224 if (res != LWTUNNEL_XMIT_CONTINUE) 225 return res; 226 } 227 228 rcu_read_lock(); 229 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 230 if (!IS_ERR(neigh)) { 231 int res; 232 233 sock_confirm_neigh(skb, neigh); 234 /* if crossing protocols, can not use the cached header */ 235 res = neigh_output(neigh, skb, is_v6gw); 236 rcu_read_unlock(); 237 return res; 238 } 239 rcu_read_unlock(); 240 241 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 242 __func__); 243 kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL); 244 return PTR_ERR(neigh); 245 } 246 247 static int ip_finish_output_gso(struct net *net, struct sock *sk, 248 struct sk_buff *skb, unsigned int mtu) 249 { 250 struct sk_buff *segs, *nskb; 251 netdev_features_t features; 252 int ret = 0; 253 254 /* common case: seglen is <= mtu 255 */ 256 if (skb_gso_validate_network_len(skb, mtu)) 257 return ip_finish_output2(net, sk, skb); 258 259 /* Slowpath - GSO segment length exceeds the egress MTU. 260 * 261 * This can happen in several cases: 262 * - Forwarding of a TCP GRO skb, when DF flag is not set. 263 * - Forwarding of an skb that arrived on a virtualization interface 264 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 265 * stack. 266 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 267 * interface with a smaller MTU. 268 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 269 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 270 * insufficient MTU. 271 */ 272 features = netif_skb_features(skb); 273 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET); 274 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 275 if (IS_ERR_OR_NULL(segs)) { 276 kfree_skb(skb); 277 return -ENOMEM; 278 } 279 280 consume_skb(skb); 281 282 skb_list_walk_safe(segs, segs, nskb) { 283 int err; 284 285 skb_mark_not_on_list(segs); 286 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 287 288 if (err && ret == 0) 289 ret = err; 290 } 291 292 return ret; 293 } 294 295 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 296 { 297 unsigned int mtu; 298 299 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 300 /* Policy lookup after SNAT yielded a new policy */ 301 if (skb_dst(skb)->xfrm) { 302 IPCB(skb)->flags |= IPSKB_REROUTED; 303 return dst_output(net, sk, skb); 304 } 305 #endif 306 mtu = ip_skb_dst_mtu(sk, skb); 307 if (skb_is_gso(skb)) 308 return ip_finish_output_gso(net, sk, skb, mtu); 309 310 if (skb->len > mtu || IPCB(skb)->frag_max_size) 311 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 312 313 return ip_finish_output2(net, sk, skb); 314 } 315 316 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 317 { 318 int ret; 319 320 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 321 switch (ret) { 322 case NET_XMIT_SUCCESS: 323 return __ip_finish_output(net, sk, skb); 324 case NET_XMIT_CN: 325 return __ip_finish_output(net, sk, skb) ? : ret; 326 default: 327 kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS); 328 return ret; 329 } 330 } 331 332 static int ip_mc_finish_output(struct net *net, struct sock *sk, 333 struct sk_buff *skb) 334 { 335 struct rtable *new_rt; 336 bool do_cn = false; 337 int ret, err; 338 339 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 340 switch (ret) { 341 case NET_XMIT_CN: 342 do_cn = true; 343 fallthrough; 344 case NET_XMIT_SUCCESS: 345 break; 346 default: 347 kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS); 348 return ret; 349 } 350 351 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting 352 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten, 353 * see ipv4_pktinfo_prepare(). 354 */ 355 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb)); 356 if (new_rt) { 357 new_rt->rt_iif = 0; 358 skb_dst_drop(skb); 359 skb_dst_set(skb, &new_rt->dst); 360 } 361 362 err = dev_loopback_xmit(net, sk, skb); 363 return (do_cn && err) ? ret : err; 364 } 365 366 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 367 { 368 struct rtable *rt = skb_rtable(skb); 369 struct net_device *dev = rt->dst.dev; 370 371 /* 372 * If the indicated interface is up and running, send the packet. 373 */ 374 skb->dev = dev; 375 skb->protocol = htons(ETH_P_IP); 376 377 /* 378 * Multicasts are looped back for other local users 379 */ 380 381 if (rt->rt_flags&RTCF_MULTICAST) { 382 if (sk_mc_loop(sk) 383 #ifdef CONFIG_IP_MROUTE 384 /* Small optimization: do not loopback not local frames, 385 which returned after forwarding; they will be dropped 386 by ip_mr_input in any case. 387 Note, that local frames are looped back to be delivered 388 to local recipients. 389 390 This check is duplicated in ip_mr_input at the moment. 391 */ 392 && 393 ((rt->rt_flags & RTCF_LOCAL) || 394 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 395 #endif 396 ) { 397 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 398 if (newskb) 399 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 400 net, sk, newskb, NULL, newskb->dev, 401 ip_mc_finish_output); 402 } 403 404 /* Multicasts with ttl 0 must not go beyond the host */ 405 406 if (ip_hdr(skb)->ttl == 0) { 407 kfree_skb(skb); 408 return 0; 409 } 410 } 411 412 if (rt->rt_flags&RTCF_BROADCAST) { 413 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 414 if (newskb) 415 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 416 net, sk, newskb, NULL, newskb->dev, 417 ip_mc_finish_output); 418 } 419 420 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 421 net, sk, skb, NULL, skb->dev, 422 ip_finish_output, 423 !(IPCB(skb)->flags & IPSKB_REROUTED)); 424 } 425 426 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 427 { 428 struct net_device *dev, *indev = skb->dev; 429 int ret_val; 430 431 rcu_read_lock(); 432 dev = skb_dst_dev_rcu(skb); 433 skb->dev = dev; 434 skb->protocol = htons(ETH_P_IP); 435 436 ret_val = NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 437 net, sk, skb, indev, dev, 438 ip_finish_output, 439 !(IPCB(skb)->flags & IPSKB_REROUTED)); 440 rcu_read_unlock(); 441 return ret_val; 442 } 443 EXPORT_SYMBOL(ip_output); 444 445 /* 446 * copy saddr and daddr, possibly using 64bit load/stores 447 * Equivalent to : 448 * iph->saddr = fl4->saddr; 449 * iph->daddr = fl4->daddr; 450 */ 451 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 452 { 453 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 454 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 455 456 iph->saddr = fl4->saddr; 457 iph->daddr = fl4->daddr; 458 } 459 460 /* Note: skb->sk can be different from sk, in case of tunnels */ 461 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, 462 __u8 tos) 463 { 464 struct inet_sock *inet = inet_sk(sk); 465 struct net *net = sock_net(sk); 466 struct ip_options_rcu *inet_opt; 467 struct flowi4 *fl4; 468 struct rtable *rt; 469 struct iphdr *iph; 470 int res; 471 472 /* Skip all of this if the packet is already routed, 473 * f.e. by something like SCTP. 474 */ 475 rcu_read_lock(); 476 inet_opt = rcu_dereference(inet->inet_opt); 477 fl4 = &fl->u.ip4; 478 rt = skb_rtable(skb); 479 if (rt) 480 goto packet_routed; 481 482 /* Make sure we can route this packet. */ 483 rt = dst_rtable(__sk_dst_check(sk, 0)); 484 if (!rt) { 485 inet_sk_init_flowi4(inet, fl4); 486 487 /* sctp_v4_xmit() uses its own DSCP value */ 488 fl4->flowi4_tos = tos & INET_DSCP_MASK; 489 490 /* If this fails, retransmit mechanism of transport layer will 491 * keep trying until route appears or the connection times 492 * itself out. 493 */ 494 rt = ip_route_output_flow(net, fl4, sk); 495 if (IS_ERR(rt)) 496 goto no_route; 497 sk_setup_caps(sk, &rt->dst); 498 } 499 skb_dst_set_noref(skb, &rt->dst); 500 501 packet_routed: 502 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 503 goto no_route; 504 505 /* OK, we know where to send it, allocate and build IP header. */ 506 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 507 skb_reset_network_header(skb); 508 iph = ip_hdr(skb); 509 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); 510 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 511 iph->frag_off = htons(IP_DF); 512 else 513 iph->frag_off = 0; 514 iph->ttl = ip_select_ttl(inet, &rt->dst); 515 iph->protocol = sk->sk_protocol; 516 ip_copy_addrs(iph, fl4); 517 518 /* Transport layer set skb->h.foo itself. */ 519 520 if (inet_opt && inet_opt->opt.optlen) { 521 iph->ihl += inet_opt->opt.optlen >> 2; 522 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt); 523 } 524 525 ip_select_ident_segs(net, skb, sk, 526 skb_shinfo(skb)->gso_segs ?: 1); 527 528 /* TODO : should we use skb->sk here instead of sk ? */ 529 skb->priority = READ_ONCE(sk->sk_priority); 530 skb->mark = READ_ONCE(sk->sk_mark); 531 532 res = ip_local_out(net, sk, skb); 533 rcu_read_unlock(); 534 return res; 535 536 no_route: 537 rcu_read_unlock(); 538 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 539 kfree_skb_reason(skb, SKB_DROP_REASON_IP_OUTNOROUTES); 540 return -EHOSTUNREACH; 541 } 542 EXPORT_SYMBOL(__ip_queue_xmit); 543 544 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 545 { 546 return __ip_queue_xmit(sk, skb, fl, READ_ONCE(inet_sk(sk)->tos)); 547 } 548 EXPORT_SYMBOL(ip_queue_xmit); 549 550 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 551 { 552 to->pkt_type = from->pkt_type; 553 to->priority = from->priority; 554 to->protocol = from->protocol; 555 to->skb_iif = from->skb_iif; 556 skb_dst_drop(to); 557 skb_dst_copy(to, from); 558 to->dev = from->dev; 559 to->mark = from->mark; 560 561 skb_copy_hash(to, from); 562 563 #ifdef CONFIG_NET_SCHED 564 to->tc_index = from->tc_index; 565 #endif 566 nf_copy(to, from); 567 skb_ext_copy(to, from); 568 #if IS_ENABLED(CONFIG_IP_VS) 569 to->ipvs_property = from->ipvs_property; 570 #endif 571 skb_copy_secmark(to, from); 572 } 573 574 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 575 unsigned int mtu, 576 int (*output)(struct net *, struct sock *, struct sk_buff *)) 577 { 578 struct iphdr *iph = ip_hdr(skb); 579 580 if ((iph->frag_off & htons(IP_DF)) == 0) 581 return ip_do_fragment(net, sk, skb, output); 582 583 if (unlikely(!skb->ignore_df || 584 (IPCB(skb)->frag_max_size && 585 IPCB(skb)->frag_max_size > mtu))) { 586 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 587 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 588 htonl(mtu)); 589 kfree_skb(skb); 590 return -EMSGSIZE; 591 } 592 593 return ip_do_fragment(net, sk, skb, output); 594 } 595 596 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph, 597 unsigned int hlen, struct ip_fraglist_iter *iter) 598 { 599 unsigned int first_len = skb_pagelen(skb); 600 601 iter->frag = skb_shinfo(skb)->frag_list; 602 skb_frag_list_init(skb); 603 604 iter->offset = 0; 605 iter->iph = iph; 606 iter->hlen = hlen; 607 608 skb->data_len = first_len - skb_headlen(skb); 609 skb->len = first_len; 610 iph->tot_len = htons(first_len); 611 iph->frag_off = htons(IP_MF); 612 ip_send_check(iph); 613 } 614 EXPORT_SYMBOL(ip_fraglist_init); 615 616 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter) 617 { 618 unsigned int hlen = iter->hlen; 619 struct iphdr *iph = iter->iph; 620 struct sk_buff *frag; 621 622 frag = iter->frag; 623 frag->ip_summed = CHECKSUM_NONE; 624 skb_reset_transport_header(frag); 625 __skb_push(frag, hlen); 626 skb_reset_network_header(frag); 627 memcpy(skb_network_header(frag), iph, hlen); 628 iter->iph = ip_hdr(frag); 629 iph = iter->iph; 630 iph->tot_len = htons(frag->len); 631 ip_copy_metadata(frag, skb); 632 iter->offset += skb->len - hlen; 633 iph->frag_off = htons(iter->offset >> 3); 634 if (frag->next) 635 iph->frag_off |= htons(IP_MF); 636 /* Ready, complete checksum */ 637 ip_send_check(iph); 638 } 639 EXPORT_SYMBOL(ip_fraglist_prepare); 640 641 void ip_frag_init(struct sk_buff *skb, unsigned int hlen, 642 unsigned int ll_rs, unsigned int mtu, bool DF, 643 struct ip_frag_state *state) 644 { 645 struct iphdr *iph = ip_hdr(skb); 646 647 state->DF = DF; 648 state->hlen = hlen; 649 state->ll_rs = ll_rs; 650 state->mtu = mtu; 651 652 state->left = skb->len - hlen; /* Space per frame */ 653 state->ptr = hlen; /* Where to start from */ 654 655 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 656 state->not_last_frag = iph->frag_off & htons(IP_MF); 657 } 658 EXPORT_SYMBOL(ip_frag_init); 659 660 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to, 661 bool first_frag) 662 { 663 /* Copy the flags to each fragment. */ 664 IPCB(to)->flags = IPCB(from)->flags; 665 666 /* ANK: dirty, but effective trick. Upgrade options only if 667 * the segment to be fragmented was THE FIRST (otherwise, 668 * options are already fixed) and make it ONCE 669 * on the initial skb, so that all the following fragments 670 * will inherit fixed options. 671 */ 672 if (first_frag) 673 ip_options_fragment(from); 674 } 675 676 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state) 677 { 678 unsigned int len = state->left; 679 struct sk_buff *skb2; 680 struct iphdr *iph; 681 682 /* IF: it doesn't fit, use 'mtu' - the data space left */ 683 if (len > state->mtu) 684 len = state->mtu; 685 /* IF: we are not sending up to and including the packet end 686 then align the next start on an eight byte boundary */ 687 if (len < state->left) { 688 len &= ~7; 689 } 690 691 /* Allocate buffer */ 692 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC); 693 if (!skb2) 694 return ERR_PTR(-ENOMEM); 695 696 /* 697 * Set up data on packet 698 */ 699 700 ip_copy_metadata(skb2, skb); 701 skb_reserve(skb2, state->ll_rs); 702 skb_put(skb2, len + state->hlen); 703 skb_reset_network_header(skb2); 704 skb2->transport_header = skb2->network_header + state->hlen; 705 706 /* 707 * Charge the memory for the fragment to any owner 708 * it might possess 709 */ 710 711 if (skb->sk) 712 skb_set_owner_w(skb2, skb->sk); 713 714 /* 715 * Copy the packet header into the new buffer. 716 */ 717 718 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen); 719 720 /* 721 * Copy a block of the IP datagram. 722 */ 723 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len)) 724 BUG(); 725 state->left -= len; 726 727 /* 728 * Fill in the new header fields. 729 */ 730 iph = ip_hdr(skb2); 731 iph->frag_off = htons((state->offset >> 3)); 732 if (state->DF) 733 iph->frag_off |= htons(IP_DF); 734 735 /* 736 * Added AC : If we are fragmenting a fragment that's not the 737 * last fragment then keep MF on each bit 738 */ 739 if (state->left > 0 || state->not_last_frag) 740 iph->frag_off |= htons(IP_MF); 741 state->ptr += len; 742 state->offset += len; 743 744 iph->tot_len = htons(len + state->hlen); 745 746 ip_send_check(iph); 747 748 return skb2; 749 } 750 EXPORT_SYMBOL(ip_frag_next); 751 752 /* 753 * This IP datagram is too large to be sent in one piece. Break it up into 754 * smaller pieces (each of size equal to IP header plus 755 * a block of the data of the original IP data part) that will yet fit in a 756 * single device frame, and queue such a frame for sending. 757 */ 758 759 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 760 int (*output)(struct net *, struct sock *, struct sk_buff *)) 761 { 762 struct iphdr *iph; 763 struct sk_buff *skb2; 764 u8 tstamp_type = skb->tstamp_type; 765 struct rtable *rt = skb_rtable(skb); 766 unsigned int mtu, hlen, ll_rs; 767 struct ip_fraglist_iter iter; 768 ktime_t tstamp = skb->tstamp; 769 struct ip_frag_state state; 770 int err = 0; 771 772 /* for offloaded checksums cleanup checksum before fragmentation */ 773 if (skb->ip_summed == CHECKSUM_PARTIAL && 774 (err = skb_checksum_help(skb))) 775 goto fail; 776 777 /* 778 * Point into the IP datagram header. 779 */ 780 781 iph = ip_hdr(skb); 782 783 mtu = ip_skb_dst_mtu(sk, skb); 784 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 785 mtu = IPCB(skb)->frag_max_size; 786 787 /* 788 * Setup starting values. 789 */ 790 791 hlen = iph->ihl * 4; 792 mtu = mtu - hlen; /* Size of data space */ 793 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 794 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 795 796 /* When frag_list is given, use it. First, check its validity: 797 * some transformers could create wrong frag_list or break existing 798 * one, it is not prohibited. In this case fall back to copying. 799 * 800 * LATER: this step can be merged to real generation of fragments, 801 * we can switch to copy when see the first bad fragment. 802 */ 803 if (skb_has_frag_list(skb)) { 804 struct sk_buff *frag, *frag2; 805 unsigned int first_len = skb_pagelen(skb); 806 807 if (first_len - hlen > mtu || 808 ((first_len - hlen) & 7) || 809 ip_is_fragment(iph) || 810 skb_cloned(skb) || 811 skb_headroom(skb) < ll_rs) 812 goto slow_path; 813 814 skb_walk_frags(skb, frag) { 815 /* Correct geometry. */ 816 if (frag->len > mtu || 817 ((frag->len & 7) && frag->next) || 818 skb_headroom(frag) < hlen + ll_rs) 819 goto slow_path_clean; 820 821 /* Partially cloned skb? */ 822 if (skb_shared(frag)) 823 goto slow_path_clean; 824 825 BUG_ON(frag->sk); 826 if (skb->sk) { 827 frag->sk = skb->sk; 828 frag->destructor = sock_wfree; 829 } 830 skb->truesize -= frag->truesize; 831 } 832 833 /* Everything is OK. Generate! */ 834 ip_fraglist_init(skb, iph, hlen, &iter); 835 836 for (;;) { 837 /* Prepare header of the next frame, 838 * before previous one went down. */ 839 if (iter.frag) { 840 bool first_frag = (iter.offset == 0); 841 842 IPCB(iter.frag)->flags = IPCB(skb)->flags; 843 ip_fraglist_prepare(skb, &iter); 844 if (first_frag && IPCB(skb)->opt.optlen) { 845 /* ipcb->opt is not populated for frags 846 * coming from __ip_make_skb(), 847 * ip_options_fragment() needs optlen 848 */ 849 IPCB(iter.frag)->opt.optlen = 850 IPCB(skb)->opt.optlen; 851 ip_options_fragment(iter.frag); 852 ip_send_check(iter.iph); 853 } 854 } 855 856 skb_set_delivery_time(skb, tstamp, tstamp_type); 857 err = output(net, sk, skb); 858 859 if (!err) 860 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 861 if (err || !iter.frag) 862 break; 863 864 skb = ip_fraglist_next(&iter); 865 } 866 867 if (err == 0) { 868 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 869 return 0; 870 } 871 872 kfree_skb_list(iter.frag); 873 874 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 875 return err; 876 877 slow_path_clean: 878 skb_walk_frags(skb, frag2) { 879 if (frag2 == frag) 880 break; 881 frag2->sk = NULL; 882 frag2->destructor = NULL; 883 skb->truesize += frag2->truesize; 884 } 885 } 886 887 slow_path: 888 /* 889 * Fragment the datagram. 890 */ 891 892 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU, 893 &state); 894 895 /* 896 * Keep copying data until we run out. 897 */ 898 899 while (state.left > 0) { 900 bool first_frag = (state.offset == 0); 901 902 skb2 = ip_frag_next(skb, &state); 903 if (IS_ERR(skb2)) { 904 err = PTR_ERR(skb2); 905 goto fail; 906 } 907 ip_frag_ipcb(skb, skb2, first_frag); 908 909 /* 910 * Put this fragment into the sending queue. 911 */ 912 skb_set_delivery_time(skb2, tstamp, tstamp_type); 913 err = output(net, sk, skb2); 914 if (err) 915 goto fail; 916 917 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 918 } 919 consume_skb(skb); 920 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 921 return err; 922 923 fail: 924 kfree_skb(skb); 925 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 926 return err; 927 } 928 EXPORT_SYMBOL(ip_do_fragment); 929 930 int 931 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 932 { 933 struct msghdr *msg = from; 934 935 if (skb->ip_summed == CHECKSUM_PARTIAL) { 936 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 937 return -EFAULT; 938 } else { 939 __wsum csum = 0; 940 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 941 return -EFAULT; 942 skb->csum = csum_block_add(skb->csum, csum, odd); 943 } 944 return 0; 945 } 946 EXPORT_SYMBOL(ip_generic_getfrag); 947 948 static int __ip_append_data(struct sock *sk, 949 struct flowi4 *fl4, 950 struct sk_buff_head *queue, 951 struct inet_cork *cork, 952 struct page_frag *pfrag, 953 int getfrag(void *from, char *to, int offset, 954 int len, int odd, struct sk_buff *skb), 955 void *from, int length, int transhdrlen, 956 unsigned int flags) 957 { 958 struct inet_sock *inet = inet_sk(sk); 959 struct ubuf_info *uarg = NULL; 960 struct sk_buff *skb; 961 struct ip_options *opt = cork->opt; 962 int hh_len; 963 int exthdrlen; 964 int mtu; 965 int copy; 966 int err; 967 int offset = 0; 968 bool zc = false; 969 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 970 int csummode = CHECKSUM_NONE; 971 struct rtable *rt = dst_rtable(cork->dst); 972 bool paged, hold_tskey = false, extra_uref = false; 973 unsigned int wmem_alloc_delta = 0; 974 u32 tskey = 0; 975 976 skb = skb_peek_tail(queue); 977 978 exthdrlen = !skb ? rt->dst.header_len : 0; 979 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 980 paged = !!cork->gso_size; 981 982 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 983 984 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 985 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 986 maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu; 987 988 if (cork->length + length > maxnonfragsize - fragheaderlen) { 989 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 990 mtu - (opt ? opt->optlen : 0)); 991 return -EMSGSIZE; 992 } 993 994 /* 995 * transhdrlen > 0 means that this is the first fragment and we wish 996 * it won't be fragmented in the future. 997 */ 998 if (transhdrlen && 999 length + fragheaderlen <= mtu && 1000 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 1001 (!(flags & MSG_MORE) || cork->gso_size) && 1002 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) 1003 csummode = CHECKSUM_PARTIAL; 1004 1005 if ((flags & MSG_ZEROCOPY) && length) { 1006 struct msghdr *msg = from; 1007 1008 if (getfrag == ip_generic_getfrag && msg->msg_ubuf) { 1009 if (skb_zcopy(skb) && msg->msg_ubuf != skb_zcopy(skb)) 1010 return -EINVAL; 1011 1012 /* Leave uarg NULL if can't zerocopy, callers should 1013 * be able to handle it. 1014 */ 1015 if ((rt->dst.dev->features & NETIF_F_SG) && 1016 csummode == CHECKSUM_PARTIAL) { 1017 paged = true; 1018 zc = true; 1019 uarg = msg->msg_ubuf; 1020 } 1021 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1022 uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb), 1023 false); 1024 if (!uarg) 1025 return -ENOBUFS; 1026 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */ 1027 if (rt->dst.dev->features & NETIF_F_SG && 1028 csummode == CHECKSUM_PARTIAL) { 1029 paged = true; 1030 zc = true; 1031 } else { 1032 uarg_to_msgzc(uarg)->zerocopy = 0; 1033 skb_zcopy_set(skb, uarg, &extra_uref); 1034 } 1035 } 1036 } else if ((flags & MSG_SPLICE_PAGES) && length) { 1037 if (inet_test_bit(HDRINCL, sk)) 1038 return -EPERM; 1039 if (rt->dst.dev->features & NETIF_F_SG && 1040 getfrag == ip_generic_getfrag) 1041 /* We need an empty buffer to attach stuff to */ 1042 paged = true; 1043 else 1044 flags &= ~MSG_SPLICE_PAGES; 1045 } 1046 1047 cork->length += length; 1048 1049 if (cork->tx_flags & SKBTX_ANY_TSTAMP && 1050 READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 1051 if (cork->flags & IPCORK_TS_OPT_ID) { 1052 tskey = cork->ts_opt_id; 1053 } else { 1054 tskey = atomic_inc_return(&sk->sk_tskey) - 1; 1055 hold_tskey = true; 1056 } 1057 } 1058 1059 /* So, what's going on in the loop below? 1060 * 1061 * We use calculated fragment length to generate chained skb, 1062 * each of segments is IP fragment ready for sending to network after 1063 * adding appropriate IP header. 1064 */ 1065 1066 if (!skb) 1067 goto alloc_new_skb; 1068 1069 while (length > 0) { 1070 /* Check if the remaining data fits into current packet. */ 1071 copy = mtu - skb->len; 1072 if (copy < length) 1073 copy = maxfraglen - skb->len; 1074 if (copy <= 0) { 1075 char *data; 1076 unsigned int datalen; 1077 unsigned int fraglen; 1078 unsigned int fraggap; 1079 unsigned int alloclen, alloc_extra; 1080 unsigned int pagedlen; 1081 struct sk_buff *skb_prev; 1082 alloc_new_skb: 1083 skb_prev = skb; 1084 if (skb_prev) 1085 fraggap = skb_prev->len - maxfraglen; 1086 else 1087 fraggap = 0; 1088 1089 /* 1090 * If remaining data exceeds the mtu, 1091 * we know we need more fragment(s). 1092 */ 1093 datalen = length + fraggap; 1094 if (datalen > mtu - fragheaderlen) 1095 datalen = maxfraglen - fragheaderlen; 1096 fraglen = datalen + fragheaderlen; 1097 pagedlen = 0; 1098 1099 alloc_extra = hh_len + 15; 1100 alloc_extra += exthdrlen; 1101 1102 /* The last fragment gets additional space at tail. 1103 * Note, with MSG_MORE we overallocate on fragments, 1104 * because we have no idea what fragment will be 1105 * the last. 1106 */ 1107 if (datalen == length + fraggap) 1108 alloc_extra += rt->dst.trailer_len; 1109 1110 if ((flags & MSG_MORE) && 1111 !(rt->dst.dev->features&NETIF_F_SG)) 1112 alloclen = mtu; 1113 else if (!paged && 1114 (fraglen + alloc_extra < SKB_MAX_ALLOC || 1115 !(rt->dst.dev->features & NETIF_F_SG))) 1116 alloclen = fraglen; 1117 else { 1118 alloclen = fragheaderlen + transhdrlen; 1119 pagedlen = datalen - transhdrlen; 1120 } 1121 1122 alloclen += alloc_extra; 1123 1124 if (transhdrlen) { 1125 skb = sock_alloc_send_skb(sk, alloclen, 1126 (flags & MSG_DONTWAIT), &err); 1127 } else { 1128 skb = NULL; 1129 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 1130 2 * sk->sk_sndbuf) 1131 skb = alloc_skb(alloclen, 1132 sk->sk_allocation); 1133 if (unlikely(!skb)) 1134 err = -ENOBUFS; 1135 } 1136 if (!skb) 1137 goto error; 1138 1139 /* 1140 * Fill in the control structures 1141 */ 1142 skb->ip_summed = csummode; 1143 skb->csum = 0; 1144 skb_reserve(skb, hh_len); 1145 1146 /* 1147 * Find where to start putting bytes. 1148 */ 1149 data = skb_put(skb, fraglen + exthdrlen - pagedlen); 1150 skb_set_network_header(skb, exthdrlen); 1151 skb->transport_header = (skb->network_header + 1152 fragheaderlen); 1153 data += fragheaderlen + exthdrlen; 1154 1155 if (fraggap) { 1156 skb->csum = skb_copy_and_csum_bits( 1157 skb_prev, maxfraglen, 1158 data + transhdrlen, fraggap); 1159 skb_prev->csum = csum_sub(skb_prev->csum, 1160 skb->csum); 1161 data += fraggap; 1162 pskb_trim_unique(skb_prev, maxfraglen); 1163 } 1164 1165 copy = datalen - transhdrlen - fraggap - pagedlen; 1166 /* [!] NOTE: copy will be negative if pagedlen>0 1167 * because then the equation reduces to -fraggap. 1168 */ 1169 if (copy > 0 && 1170 INDIRECT_CALL_1(getfrag, ip_generic_getfrag, 1171 from, data + transhdrlen, offset, 1172 copy, fraggap, skb) < 0) { 1173 err = -EFAULT; 1174 kfree_skb(skb); 1175 goto error; 1176 } else if (flags & MSG_SPLICE_PAGES) { 1177 copy = 0; 1178 } 1179 1180 offset += copy; 1181 length -= copy + transhdrlen; 1182 transhdrlen = 0; 1183 exthdrlen = 0; 1184 csummode = CHECKSUM_NONE; 1185 1186 /* only the initial fragment is time stamped */ 1187 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1188 cork->tx_flags = 0; 1189 skb_shinfo(skb)->tskey = tskey; 1190 tskey = 0; 1191 skb_zcopy_set(skb, uarg, &extra_uref); 1192 1193 if ((flags & MSG_CONFIRM) && !skb_prev) 1194 skb_set_dst_pending_confirm(skb, 1); 1195 1196 /* 1197 * Put the packet on the pending queue. 1198 */ 1199 if (!skb->destructor) { 1200 skb->destructor = sock_wfree; 1201 skb->sk = sk; 1202 wmem_alloc_delta += skb->truesize; 1203 } 1204 __skb_queue_tail(queue, skb); 1205 continue; 1206 } 1207 1208 if (copy > length) 1209 copy = length; 1210 1211 if (!(rt->dst.dev->features&NETIF_F_SG) && 1212 skb_tailroom(skb) >= copy) { 1213 unsigned int off; 1214 1215 off = skb->len; 1216 if (INDIRECT_CALL_1(getfrag, ip_generic_getfrag, 1217 from, skb_put(skb, copy), 1218 offset, copy, off, skb) < 0) { 1219 __skb_trim(skb, off); 1220 err = -EFAULT; 1221 goto error; 1222 } 1223 } else if (flags & MSG_SPLICE_PAGES) { 1224 struct msghdr *msg = from; 1225 1226 err = -EIO; 1227 if (WARN_ON_ONCE(copy > msg->msg_iter.count)) 1228 goto error; 1229 1230 err = skb_splice_from_iter(skb, &msg->msg_iter, copy); 1231 if (err < 0) 1232 goto error; 1233 copy = err; 1234 wmem_alloc_delta += copy; 1235 } else if (!zc) { 1236 int i = skb_shinfo(skb)->nr_frags; 1237 1238 err = -ENOMEM; 1239 if (!sk_page_frag_refill(sk, pfrag)) 1240 goto error; 1241 1242 skb_zcopy_downgrade_managed(skb); 1243 if (!skb_can_coalesce(skb, i, pfrag->page, 1244 pfrag->offset)) { 1245 err = -EMSGSIZE; 1246 if (i == MAX_SKB_FRAGS) 1247 goto error; 1248 1249 __skb_fill_page_desc(skb, i, pfrag->page, 1250 pfrag->offset, 0); 1251 skb_shinfo(skb)->nr_frags = ++i; 1252 get_page(pfrag->page); 1253 } 1254 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1255 if (INDIRECT_CALL_1(getfrag, ip_generic_getfrag, 1256 from, 1257 page_address(pfrag->page) + pfrag->offset, 1258 offset, copy, skb->len, skb) < 0) 1259 goto error_efault; 1260 1261 pfrag->offset += copy; 1262 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1263 skb_len_add(skb, copy); 1264 wmem_alloc_delta += copy; 1265 } else { 1266 err = skb_zerocopy_iter_dgram(skb, from, copy); 1267 if (err < 0) 1268 goto error; 1269 } 1270 offset += copy; 1271 length -= copy; 1272 } 1273 1274 if (wmem_alloc_delta) 1275 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1276 return 0; 1277 1278 error_efault: 1279 err = -EFAULT; 1280 error: 1281 net_zcopy_put_abort(uarg, extra_uref); 1282 cork->length -= length; 1283 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1284 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1285 if (hold_tskey) 1286 atomic_dec(&sk->sk_tskey); 1287 return err; 1288 } 1289 1290 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1291 struct ipcm_cookie *ipc, struct rtable **rtp) 1292 { 1293 struct ip_options_rcu *opt; 1294 struct rtable *rt; 1295 1296 rt = *rtp; 1297 if (unlikely(!rt)) 1298 return -EFAULT; 1299 1300 cork->fragsize = ip_sk_use_pmtu(sk) ? 1301 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu); 1302 1303 if (!inetdev_valid_mtu(cork->fragsize)) 1304 return -ENETUNREACH; 1305 1306 /* 1307 * setup for corking. 1308 */ 1309 opt = ipc->opt; 1310 if (opt) { 1311 if (!cork->opt) { 1312 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1313 sk->sk_allocation); 1314 if (unlikely(!cork->opt)) 1315 return -ENOBUFS; 1316 } 1317 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1318 cork->flags |= IPCORK_OPT; 1319 cork->addr = ipc->addr; 1320 } 1321 1322 cork->gso_size = ipc->gso_size; 1323 1324 cork->dst = &rt->dst; 1325 /* We stole this route, caller should not release it. */ 1326 *rtp = NULL; 1327 1328 cork->length = 0; 1329 cork->ttl = ipc->ttl; 1330 cork->tos = ipc->tos; 1331 cork->mark = ipc->sockc.mark; 1332 cork->priority = ipc->sockc.priority; 1333 cork->transmit_time = ipc->sockc.transmit_time; 1334 cork->tx_flags = 0; 1335 sock_tx_timestamp(sk, &ipc->sockc, &cork->tx_flags); 1336 if (ipc->sockc.tsflags & SOCKCM_FLAG_TS_OPT_ID) { 1337 cork->flags |= IPCORK_TS_OPT_ID; 1338 cork->ts_opt_id = ipc->sockc.ts_opt_id; 1339 } 1340 1341 return 0; 1342 } 1343 1344 /* 1345 * ip_append_data() can make one large IP datagram from many pieces of 1346 * data. Each piece will be held on the socket until 1347 * ip_push_pending_frames() is called. Each piece can be a page or 1348 * non-page data. 1349 * 1350 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1351 * this interface potentially. 1352 * 1353 * LATER: length must be adjusted by pad at tail, when it is required. 1354 */ 1355 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1356 int getfrag(void *from, char *to, int offset, int len, 1357 int odd, struct sk_buff *skb), 1358 void *from, int length, int transhdrlen, 1359 struct ipcm_cookie *ipc, struct rtable **rtp, 1360 unsigned int flags) 1361 { 1362 struct inet_sock *inet = inet_sk(sk); 1363 int err; 1364 1365 if (flags&MSG_PROBE) 1366 return 0; 1367 1368 if (skb_queue_empty(&sk->sk_write_queue)) { 1369 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1370 if (err) 1371 return err; 1372 } else { 1373 transhdrlen = 0; 1374 } 1375 1376 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1377 sk_page_frag(sk), getfrag, 1378 from, length, transhdrlen, flags); 1379 } 1380 1381 static void ip_cork_release(struct inet_cork *cork) 1382 { 1383 cork->flags &= ~IPCORK_OPT; 1384 kfree(cork->opt); 1385 cork->opt = NULL; 1386 dst_release(cork->dst); 1387 cork->dst = NULL; 1388 } 1389 1390 /* 1391 * Combined all pending IP fragments on the socket as one IP datagram 1392 * and push them out. 1393 */ 1394 struct sk_buff *__ip_make_skb(struct sock *sk, 1395 struct flowi4 *fl4, 1396 struct sk_buff_head *queue, 1397 struct inet_cork *cork) 1398 { 1399 struct sk_buff *skb, *tmp_skb; 1400 struct sk_buff **tail_skb; 1401 struct inet_sock *inet = inet_sk(sk); 1402 struct net *net = sock_net(sk); 1403 struct ip_options *opt = NULL; 1404 struct rtable *rt = dst_rtable(cork->dst); 1405 struct iphdr *iph; 1406 u8 pmtudisc, ttl; 1407 __be16 df = 0; 1408 1409 skb = __skb_dequeue(queue); 1410 if (!skb) 1411 goto out; 1412 tail_skb = &(skb_shinfo(skb)->frag_list); 1413 1414 /* move skb->data to ip header from ext header */ 1415 if (skb->data < skb_network_header(skb)) 1416 __skb_pull(skb, skb_network_offset(skb)); 1417 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1418 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1419 *tail_skb = tmp_skb; 1420 tail_skb = &(tmp_skb->next); 1421 skb->len += tmp_skb->len; 1422 skb->data_len += tmp_skb->len; 1423 skb->truesize += tmp_skb->truesize; 1424 tmp_skb->destructor = NULL; 1425 tmp_skb->sk = NULL; 1426 } 1427 1428 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1429 * to fragment the frame generated here. No matter, what transforms 1430 * how transforms change size of the packet, it will come out. 1431 */ 1432 skb->ignore_df = ip_sk_ignore_df(sk); 1433 1434 /* DF bit is set when we want to see DF on outgoing frames. 1435 * If ignore_df is set too, we still allow to fragment this frame 1436 * locally. */ 1437 pmtudisc = READ_ONCE(inet->pmtudisc); 1438 if (pmtudisc == IP_PMTUDISC_DO || 1439 pmtudisc == IP_PMTUDISC_PROBE || 1440 (skb->len <= dst_mtu(&rt->dst) && 1441 ip_dont_fragment(sk, &rt->dst))) 1442 df = htons(IP_DF); 1443 1444 if (cork->flags & IPCORK_OPT) 1445 opt = cork->opt; 1446 1447 if (cork->ttl != 0) 1448 ttl = cork->ttl; 1449 else if (rt->rt_type == RTN_MULTICAST) 1450 ttl = READ_ONCE(inet->mc_ttl); 1451 else 1452 ttl = ip_select_ttl(inet, &rt->dst); 1453 1454 iph = ip_hdr(skb); 1455 iph->version = 4; 1456 iph->ihl = 5; 1457 iph->tos = (cork->tos != -1) ? cork->tos : READ_ONCE(inet->tos); 1458 iph->frag_off = df; 1459 iph->ttl = ttl; 1460 iph->protocol = sk->sk_protocol; 1461 ip_copy_addrs(iph, fl4); 1462 ip_select_ident(net, skb, sk); 1463 1464 if (opt) { 1465 iph->ihl += opt->optlen >> 2; 1466 ip_options_build(skb, opt, cork->addr, rt); 1467 } 1468 1469 skb->priority = cork->priority; 1470 skb->mark = cork->mark; 1471 if (sk_is_tcp(sk)) 1472 skb_set_delivery_time(skb, cork->transmit_time, SKB_CLOCK_MONOTONIC); 1473 else 1474 skb_set_delivery_type_by_clockid(skb, cork->transmit_time, sk->sk_clockid); 1475 /* 1476 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1477 * on dst refcount 1478 */ 1479 cork->dst = NULL; 1480 skb_dst_set(skb, &rt->dst); 1481 1482 if (iph->protocol == IPPROTO_ICMP) { 1483 u8 icmp_type; 1484 1485 /* For such sockets, transhdrlen is zero when do ip_append_data(), 1486 * so icmphdr does not in skb linear region and can not get icmp_type 1487 * by icmp_hdr(skb)->type. 1488 */ 1489 if (sk->sk_type == SOCK_RAW && 1490 !(fl4->flowi4_flags & FLOWI_FLAG_KNOWN_NH)) 1491 icmp_type = fl4->fl4_icmp_type; 1492 else 1493 icmp_type = icmp_hdr(skb)->type; 1494 icmp_out_count(net, icmp_type); 1495 } 1496 1497 ip_cork_release(cork); 1498 out: 1499 return skb; 1500 } 1501 1502 int ip_send_skb(struct net *net, struct sk_buff *skb) 1503 { 1504 int err; 1505 1506 err = ip_local_out(net, skb->sk, skb); 1507 if (err) { 1508 if (err > 0) 1509 err = net_xmit_errno(err); 1510 if (err) 1511 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1512 } 1513 1514 return err; 1515 } 1516 1517 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1518 { 1519 struct sk_buff *skb; 1520 1521 skb = ip_finish_skb(sk, fl4); 1522 if (!skb) 1523 return 0; 1524 1525 /* Netfilter gets whole the not fragmented skb. */ 1526 return ip_send_skb(sock_net(sk), skb); 1527 } 1528 1529 /* 1530 * Throw away all pending data on the socket. 1531 */ 1532 static void __ip_flush_pending_frames(struct sock *sk, 1533 struct sk_buff_head *queue, 1534 struct inet_cork *cork) 1535 { 1536 struct sk_buff *skb; 1537 1538 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1539 kfree_skb(skb); 1540 1541 ip_cork_release(cork); 1542 } 1543 1544 void ip_flush_pending_frames(struct sock *sk) 1545 { 1546 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1547 } 1548 1549 struct sk_buff *ip_make_skb(struct sock *sk, 1550 struct flowi4 *fl4, 1551 int getfrag(void *from, char *to, int offset, 1552 int len, int odd, struct sk_buff *skb), 1553 void *from, int length, int transhdrlen, 1554 struct ipcm_cookie *ipc, struct rtable **rtp, 1555 struct inet_cork *cork, unsigned int flags) 1556 { 1557 struct sk_buff_head queue; 1558 int err; 1559 1560 if (flags & MSG_PROBE) 1561 return NULL; 1562 1563 __skb_queue_head_init(&queue); 1564 1565 cork->flags = 0; 1566 cork->addr = 0; 1567 cork->opt = NULL; 1568 err = ip_setup_cork(sk, cork, ipc, rtp); 1569 if (err) 1570 return ERR_PTR(err); 1571 1572 err = __ip_append_data(sk, fl4, &queue, cork, 1573 ¤t->task_frag, getfrag, 1574 from, length, transhdrlen, flags); 1575 if (err) { 1576 __ip_flush_pending_frames(sk, &queue, cork); 1577 return ERR_PTR(err); 1578 } 1579 1580 return __ip_make_skb(sk, fl4, &queue, cork); 1581 } 1582 1583 /* 1584 * Fetch data from kernel space and fill in checksum if needed. 1585 */ 1586 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1587 int len, int odd, struct sk_buff *skb) 1588 { 1589 __wsum csum; 1590 1591 csum = csum_partial_copy_nocheck(dptr+offset, to, len); 1592 skb->csum = csum_block_add(skb->csum, csum, odd); 1593 return 0; 1594 } 1595 1596 /* 1597 * Generic function to send a packet as reply to another packet. 1598 * Used to send some TCP resets/acks so far. 1599 */ 1600 void ip_send_unicast_reply(struct sock *sk, const struct sock *orig_sk, 1601 struct sk_buff *skb, 1602 const struct ip_options *sopt, 1603 __be32 daddr, __be32 saddr, 1604 const struct ip_reply_arg *arg, 1605 unsigned int len, u64 transmit_time, u32 txhash) 1606 { 1607 struct ip_options_data replyopts; 1608 struct ipcm_cookie ipc; 1609 struct flowi4 fl4; 1610 struct rtable *rt = skb_rtable(skb); 1611 struct net *net = sock_net(sk); 1612 struct sk_buff *nskb; 1613 int err; 1614 int oif; 1615 1616 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) 1617 return; 1618 1619 ipcm_init(&ipc); 1620 ipc.addr = daddr; 1621 ipc.sockc.transmit_time = transmit_time; 1622 1623 if (replyopts.opt.opt.optlen) { 1624 ipc.opt = &replyopts.opt; 1625 1626 if (replyopts.opt.opt.srr) 1627 daddr = replyopts.opt.opt.faddr; 1628 } 1629 1630 oif = arg->bound_dev_if; 1631 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1632 oif = skb->skb_iif; 1633 1634 flowi4_init_output(&fl4, oif, 1635 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, 1636 arg->tos & INET_DSCP_MASK, 1637 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1638 ip_reply_arg_flowi_flags(arg), 1639 daddr, saddr, 1640 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1641 arg->uid); 1642 security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4)); 1643 rt = ip_route_output_flow(net, &fl4, sk); 1644 if (IS_ERR(rt)) 1645 return; 1646 1647 inet_sk(sk)->tos = arg->tos; 1648 1649 sk->sk_protocol = ip_hdr(skb)->protocol; 1650 sk->sk_bound_dev_if = arg->bound_dev_if; 1651 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); 1652 ipc.sockc.mark = fl4.flowi4_mark; 1653 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1654 len, 0, &ipc, &rt, MSG_DONTWAIT); 1655 if (unlikely(err)) { 1656 ip_flush_pending_frames(sk); 1657 goto out; 1658 } 1659 1660 nskb = skb_peek(&sk->sk_write_queue); 1661 if (nskb) { 1662 if (arg->csumoffset >= 0) 1663 *((__sum16 *)skb_transport_header(nskb) + 1664 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1665 arg->csum)); 1666 nskb->ip_summed = CHECKSUM_NONE; 1667 if (orig_sk) 1668 skb_set_owner_edemux(nskb, (struct sock *)orig_sk); 1669 if (transmit_time) 1670 nskb->tstamp_type = SKB_CLOCK_MONOTONIC; 1671 if (txhash) 1672 skb_set_hash(nskb, txhash, PKT_HASH_TYPE_L4); 1673 ip_push_pending_frames(sk, &fl4); 1674 } 1675 out: 1676 ip_rt_put(rt); 1677 } 1678 1679 void __init ip_init(void) 1680 { 1681 ip_rt_init(); 1682 inet_initpeers(); 1683 1684 #if defined(CONFIG_IP_MULTICAST) 1685 igmp_mc_init(); 1686 #endif 1687 } 1688