1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The Internet Protocol (IP) output module. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Donald Becker, <becker@super.org> 11 * Alan Cox, <Alan.Cox@linux.org> 12 * Richard Underwood 13 * Stefan Becker, <stefanb@yello.ping.de> 14 * Jorge Cwik, <jorge@laser.satlink.net> 15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 16 * Hirokazu Takahashi, <taka@valinux.co.jp> 17 * 18 * See ip_input.c for original log 19 * 20 * Fixes: 21 * Alan Cox : Missing nonblock feature in ip_build_xmit. 22 * Mike Kilburn : htons() missing in ip_build_xmit. 23 * Bradford Johnson: Fix faulty handling of some frames when 24 * no route is found. 25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 26 * (in case if packet not accepted by 27 * output firewall rules) 28 * Mike McLagan : Routing by source 29 * Alexey Kuznetsov: use new route cache 30 * Andi Kleen: Fix broken PMTU recovery and remove 31 * some redundant tests. 32 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 33 * Andi Kleen : Replace ip_reply with ip_send_reply. 34 * Andi Kleen : Split fast and slow ip_build_xmit path 35 * for decreased register pressure on x86 36 * and more readibility. 37 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 38 * silently drop skb instead of failing with -EPERM. 39 * Detlev Wengorz : Copy protocol for fragments. 40 * Hirokazu Takahashi: HW checksumming for outgoing UDP 41 * datagrams. 42 * Hirokazu Takahashi: sendfile() on UDP works now. 43 */ 44 45 #include <asm/uaccess.h> 46 #include <linux/module.h> 47 #include <linux/types.h> 48 #include <linux/kernel.h> 49 #include <linux/mm.h> 50 #include <linux/string.h> 51 #include <linux/errno.h> 52 #include <linux/highmem.h> 53 #include <linux/slab.h> 54 55 #include <linux/socket.h> 56 #include <linux/sockios.h> 57 #include <linux/in.h> 58 #include <linux/inet.h> 59 #include <linux/netdevice.h> 60 #include <linux/etherdevice.h> 61 #include <linux/proc_fs.h> 62 #include <linux/stat.h> 63 #include <linux/init.h> 64 65 #include <net/snmp.h> 66 #include <net/ip.h> 67 #include <net/protocol.h> 68 #include <net/route.h> 69 #include <net/xfrm.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <net/arp.h> 73 #include <net/icmp.h> 74 #include <net/checksum.h> 75 #include <net/inetpeer.h> 76 #include <net/lwtunnel.h> 77 #include <linux/bpf-cgroup.h> 78 #include <linux/igmp.h> 79 #include <linux/netfilter_ipv4.h> 80 #include <linux/netfilter_bridge.h> 81 #include <linux/netlink.h> 82 #include <linux/tcp.h> 83 84 static int 85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 86 unsigned int mtu, 87 int (*output)(struct net *, struct sock *, struct sk_buff *)); 88 89 /* Generate a checksum for an outgoing IP datagram. */ 90 void ip_send_check(struct iphdr *iph) 91 { 92 iph->check = 0; 93 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 94 } 95 EXPORT_SYMBOL(ip_send_check); 96 97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 98 { 99 struct iphdr *iph = ip_hdr(skb); 100 101 iph->tot_len = htons(skb->len); 102 ip_send_check(iph); 103 104 /* if egress device is enslaved to an L3 master device pass the 105 * skb to its handler for processing 106 */ 107 skb = l3mdev_ip_out(sk, skb); 108 if (unlikely(!skb)) 109 return 0; 110 111 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 112 net, sk, skb, NULL, skb_dst(skb)->dev, 113 dst_output); 114 } 115 116 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 117 { 118 int err; 119 120 err = __ip_local_out(net, sk, skb); 121 if (likely(err == 1)) 122 err = dst_output(net, sk, skb); 123 124 return err; 125 } 126 EXPORT_SYMBOL_GPL(ip_local_out); 127 128 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 129 { 130 int ttl = inet->uc_ttl; 131 132 if (ttl < 0) 133 ttl = ip4_dst_hoplimit(dst); 134 return ttl; 135 } 136 137 /* 138 * Add an ip header to a skbuff and send it out. 139 * 140 */ 141 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 142 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 143 { 144 struct inet_sock *inet = inet_sk(sk); 145 struct rtable *rt = skb_rtable(skb); 146 struct net *net = sock_net(sk); 147 struct iphdr *iph; 148 149 /* Build the IP header. */ 150 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 151 skb_reset_network_header(skb); 152 iph = ip_hdr(skb); 153 iph->version = 4; 154 iph->ihl = 5; 155 iph->tos = inet->tos; 156 iph->ttl = ip_select_ttl(inet, &rt->dst); 157 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 158 iph->saddr = saddr; 159 iph->protocol = sk->sk_protocol; 160 if (ip_dont_fragment(sk, &rt->dst)) { 161 iph->frag_off = htons(IP_DF); 162 iph->id = 0; 163 } else { 164 iph->frag_off = 0; 165 __ip_select_ident(net, iph, 1); 166 } 167 168 if (opt && opt->opt.optlen) { 169 iph->ihl += opt->opt.optlen>>2; 170 ip_options_build(skb, &opt->opt, daddr, rt, 0); 171 } 172 173 skb->priority = sk->sk_priority; 174 skb->mark = sk->sk_mark; 175 176 /* Send it out. */ 177 return ip_local_out(net, skb->sk, skb); 178 } 179 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 180 181 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 182 { 183 struct dst_entry *dst = skb_dst(skb); 184 struct rtable *rt = (struct rtable *)dst; 185 struct net_device *dev = dst->dev; 186 unsigned int hh_len = LL_RESERVED_SPACE(dev); 187 struct neighbour *neigh; 188 u32 nexthop; 189 190 if (rt->rt_type == RTN_MULTICAST) { 191 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 192 } else if (rt->rt_type == RTN_BROADCAST) 193 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 194 195 /* Be paranoid, rather than too clever. */ 196 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 197 struct sk_buff *skb2; 198 199 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 200 if (!skb2) { 201 kfree_skb(skb); 202 return -ENOMEM; 203 } 204 if (skb->sk) 205 skb_set_owner_w(skb2, skb->sk); 206 consume_skb(skb); 207 skb = skb2; 208 } 209 210 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 211 int res = lwtunnel_xmit(skb); 212 213 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 214 return res; 215 } 216 217 rcu_read_lock_bh(); 218 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr); 219 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 220 if (unlikely(!neigh)) 221 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 222 if (!IS_ERR(neigh)) { 223 int res = dst_neigh_output(dst, neigh, skb); 224 225 rcu_read_unlock_bh(); 226 return res; 227 } 228 rcu_read_unlock_bh(); 229 230 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 231 __func__); 232 kfree_skb(skb); 233 return -EINVAL; 234 } 235 236 static int ip_finish_output_gso(struct net *net, struct sock *sk, 237 struct sk_buff *skb, unsigned int mtu) 238 { 239 netdev_features_t features; 240 struct sk_buff *segs; 241 int ret = 0; 242 243 /* common case: seglen is <= mtu 244 */ 245 if (skb_gso_validate_mtu(skb, mtu)) 246 return ip_finish_output2(net, sk, skb); 247 248 /* Slowpath - GSO segment length exceeds the egress MTU. 249 * 250 * This can happen in several cases: 251 * - Forwarding of a TCP GRO skb, when DF flag is not set. 252 * - Forwarding of an skb that arrived on a virtualization interface 253 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 254 * stack. 255 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 256 * interface with a smaller MTU. 257 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 258 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 259 * insufficent MTU. 260 */ 261 features = netif_skb_features(skb); 262 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET); 263 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 264 if (IS_ERR_OR_NULL(segs)) { 265 kfree_skb(skb); 266 return -ENOMEM; 267 } 268 269 consume_skb(skb); 270 271 do { 272 struct sk_buff *nskb = segs->next; 273 int err; 274 275 segs->next = NULL; 276 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 277 278 if (err && ret == 0) 279 ret = err; 280 segs = nskb; 281 } while (segs); 282 283 return ret; 284 } 285 286 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 287 { 288 unsigned int mtu; 289 int ret; 290 291 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 292 if (ret) { 293 kfree_skb(skb); 294 return ret; 295 } 296 297 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 298 /* Policy lookup after SNAT yielded a new policy */ 299 if (skb_dst(skb)->xfrm) { 300 IPCB(skb)->flags |= IPSKB_REROUTED; 301 return dst_output(net, sk, skb); 302 } 303 #endif 304 mtu = ip_skb_dst_mtu(sk, skb); 305 if (skb_is_gso(skb)) 306 return ip_finish_output_gso(net, sk, skb, mtu); 307 308 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 309 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 310 311 return ip_finish_output2(net, sk, skb); 312 } 313 314 static int ip_mc_finish_output(struct net *net, struct sock *sk, 315 struct sk_buff *skb) 316 { 317 int ret; 318 319 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 320 if (ret) { 321 kfree_skb(skb); 322 return ret; 323 } 324 325 return dev_loopback_xmit(net, sk, skb); 326 } 327 328 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 329 { 330 struct rtable *rt = skb_rtable(skb); 331 struct net_device *dev = rt->dst.dev; 332 333 /* 334 * If the indicated interface is up and running, send the packet. 335 */ 336 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 337 338 skb->dev = dev; 339 skb->protocol = htons(ETH_P_IP); 340 341 /* 342 * Multicasts are looped back for other local users 343 */ 344 345 if (rt->rt_flags&RTCF_MULTICAST) { 346 if (sk_mc_loop(sk) 347 #ifdef CONFIG_IP_MROUTE 348 /* Small optimization: do not loopback not local frames, 349 which returned after forwarding; they will be dropped 350 by ip_mr_input in any case. 351 Note, that local frames are looped back to be delivered 352 to local recipients. 353 354 This check is duplicated in ip_mr_input at the moment. 355 */ 356 && 357 ((rt->rt_flags & RTCF_LOCAL) || 358 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 359 #endif 360 ) { 361 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 362 if (newskb) 363 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 364 net, sk, newskb, NULL, newskb->dev, 365 ip_mc_finish_output); 366 } 367 368 /* Multicasts with ttl 0 must not go beyond the host */ 369 370 if (ip_hdr(skb)->ttl == 0) { 371 kfree_skb(skb); 372 return 0; 373 } 374 } 375 376 if (rt->rt_flags&RTCF_BROADCAST) { 377 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 378 if (newskb) 379 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 380 net, sk, newskb, NULL, newskb->dev, 381 ip_mc_finish_output); 382 } 383 384 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 385 net, sk, skb, NULL, skb->dev, 386 ip_finish_output, 387 !(IPCB(skb)->flags & IPSKB_REROUTED)); 388 } 389 390 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 391 { 392 struct net_device *dev = skb_dst(skb)->dev; 393 394 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 395 396 skb->dev = dev; 397 skb->protocol = htons(ETH_P_IP); 398 399 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 400 net, sk, skb, NULL, dev, 401 ip_finish_output, 402 !(IPCB(skb)->flags & IPSKB_REROUTED)); 403 } 404 405 /* 406 * copy saddr and daddr, possibly using 64bit load/stores 407 * Equivalent to : 408 * iph->saddr = fl4->saddr; 409 * iph->daddr = fl4->daddr; 410 */ 411 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 412 { 413 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 414 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 415 memcpy(&iph->saddr, &fl4->saddr, 416 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 417 } 418 419 /* Note: skb->sk can be different from sk, in case of tunnels */ 420 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 421 { 422 struct inet_sock *inet = inet_sk(sk); 423 struct net *net = sock_net(sk); 424 struct ip_options_rcu *inet_opt; 425 struct flowi4 *fl4; 426 struct rtable *rt; 427 struct iphdr *iph; 428 int res; 429 430 /* Skip all of this if the packet is already routed, 431 * f.e. by something like SCTP. 432 */ 433 rcu_read_lock(); 434 inet_opt = rcu_dereference(inet->inet_opt); 435 fl4 = &fl->u.ip4; 436 rt = skb_rtable(skb); 437 if (rt) 438 goto packet_routed; 439 440 /* Make sure we can route this packet. */ 441 rt = (struct rtable *)__sk_dst_check(sk, 0); 442 if (!rt) { 443 __be32 daddr; 444 445 /* Use correct destination address if we have options. */ 446 daddr = inet->inet_daddr; 447 if (inet_opt && inet_opt->opt.srr) 448 daddr = inet_opt->opt.faddr; 449 450 /* If this fails, retransmit mechanism of transport layer will 451 * keep trying until route appears or the connection times 452 * itself out. 453 */ 454 rt = ip_route_output_ports(net, fl4, sk, 455 daddr, inet->inet_saddr, 456 inet->inet_dport, 457 inet->inet_sport, 458 sk->sk_protocol, 459 RT_CONN_FLAGS(sk), 460 sk->sk_bound_dev_if); 461 if (IS_ERR(rt)) 462 goto no_route; 463 sk_setup_caps(sk, &rt->dst); 464 } 465 skb_dst_set_noref(skb, &rt->dst); 466 467 packet_routed: 468 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 469 goto no_route; 470 471 /* OK, we know where to send it, allocate and build IP header. */ 472 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 473 skb_reset_network_header(skb); 474 iph = ip_hdr(skb); 475 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff)); 476 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 477 iph->frag_off = htons(IP_DF); 478 else 479 iph->frag_off = 0; 480 iph->ttl = ip_select_ttl(inet, &rt->dst); 481 iph->protocol = sk->sk_protocol; 482 ip_copy_addrs(iph, fl4); 483 484 /* Transport layer set skb->h.foo itself. */ 485 486 if (inet_opt && inet_opt->opt.optlen) { 487 iph->ihl += inet_opt->opt.optlen >> 2; 488 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 489 } 490 491 ip_select_ident_segs(net, skb, sk, 492 skb_shinfo(skb)->gso_segs ?: 1); 493 494 /* TODO : should we use skb->sk here instead of sk ? */ 495 skb->priority = sk->sk_priority; 496 skb->mark = sk->sk_mark; 497 498 res = ip_local_out(net, sk, skb); 499 rcu_read_unlock(); 500 return res; 501 502 no_route: 503 rcu_read_unlock(); 504 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 505 kfree_skb(skb); 506 return -EHOSTUNREACH; 507 } 508 EXPORT_SYMBOL(ip_queue_xmit); 509 510 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 511 { 512 to->pkt_type = from->pkt_type; 513 to->priority = from->priority; 514 to->protocol = from->protocol; 515 skb_dst_drop(to); 516 skb_dst_copy(to, from); 517 to->dev = from->dev; 518 to->mark = from->mark; 519 520 /* Copy the flags to each fragment. */ 521 IPCB(to)->flags = IPCB(from)->flags; 522 523 #ifdef CONFIG_NET_SCHED 524 to->tc_index = from->tc_index; 525 #endif 526 nf_copy(to, from); 527 #if IS_ENABLED(CONFIG_IP_VS) 528 to->ipvs_property = from->ipvs_property; 529 #endif 530 skb_copy_secmark(to, from); 531 } 532 533 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 534 unsigned int mtu, 535 int (*output)(struct net *, struct sock *, struct sk_buff *)) 536 { 537 struct iphdr *iph = ip_hdr(skb); 538 539 if ((iph->frag_off & htons(IP_DF)) == 0) 540 return ip_do_fragment(net, sk, skb, output); 541 542 if (unlikely(!skb->ignore_df || 543 (IPCB(skb)->frag_max_size && 544 IPCB(skb)->frag_max_size > mtu))) { 545 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 546 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 547 htonl(mtu)); 548 kfree_skb(skb); 549 return -EMSGSIZE; 550 } 551 552 return ip_do_fragment(net, sk, skb, output); 553 } 554 555 /* 556 * This IP datagram is too large to be sent in one piece. Break it up into 557 * smaller pieces (each of size equal to IP header plus 558 * a block of the data of the original IP data part) that will yet fit in a 559 * single device frame, and queue such a frame for sending. 560 */ 561 562 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 563 int (*output)(struct net *, struct sock *, struct sk_buff *)) 564 { 565 struct iphdr *iph; 566 int ptr; 567 struct sk_buff *skb2; 568 unsigned int mtu, hlen, left, len, ll_rs; 569 int offset; 570 __be16 not_last_frag; 571 struct rtable *rt = skb_rtable(skb); 572 int err = 0; 573 574 /* for offloaded checksums cleanup checksum before fragmentation */ 575 if (skb->ip_summed == CHECKSUM_PARTIAL && 576 (err = skb_checksum_help(skb))) 577 goto fail; 578 579 /* 580 * Point into the IP datagram header. 581 */ 582 583 iph = ip_hdr(skb); 584 585 mtu = ip_skb_dst_mtu(sk, skb); 586 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 587 mtu = IPCB(skb)->frag_max_size; 588 589 /* 590 * Setup starting values. 591 */ 592 593 hlen = iph->ihl * 4; 594 mtu = mtu - hlen; /* Size of data space */ 595 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 596 597 /* When frag_list is given, use it. First, check its validity: 598 * some transformers could create wrong frag_list or break existing 599 * one, it is not prohibited. In this case fall back to copying. 600 * 601 * LATER: this step can be merged to real generation of fragments, 602 * we can switch to copy when see the first bad fragment. 603 */ 604 if (skb_has_frag_list(skb)) { 605 struct sk_buff *frag, *frag2; 606 unsigned int first_len = skb_pagelen(skb); 607 608 if (first_len - hlen > mtu || 609 ((first_len - hlen) & 7) || 610 ip_is_fragment(iph) || 611 skb_cloned(skb)) 612 goto slow_path; 613 614 skb_walk_frags(skb, frag) { 615 /* Correct geometry. */ 616 if (frag->len > mtu || 617 ((frag->len & 7) && frag->next) || 618 skb_headroom(frag) < hlen) 619 goto slow_path_clean; 620 621 /* Partially cloned skb? */ 622 if (skb_shared(frag)) 623 goto slow_path_clean; 624 625 BUG_ON(frag->sk); 626 if (skb->sk) { 627 frag->sk = skb->sk; 628 frag->destructor = sock_wfree; 629 } 630 skb->truesize -= frag->truesize; 631 } 632 633 /* Everything is OK. Generate! */ 634 635 err = 0; 636 offset = 0; 637 frag = skb_shinfo(skb)->frag_list; 638 skb_frag_list_init(skb); 639 skb->data_len = first_len - skb_headlen(skb); 640 skb->len = first_len; 641 iph->tot_len = htons(first_len); 642 iph->frag_off = htons(IP_MF); 643 ip_send_check(iph); 644 645 for (;;) { 646 /* Prepare header of the next frame, 647 * before previous one went down. */ 648 if (frag) { 649 frag->ip_summed = CHECKSUM_NONE; 650 skb_reset_transport_header(frag); 651 __skb_push(frag, hlen); 652 skb_reset_network_header(frag); 653 memcpy(skb_network_header(frag), iph, hlen); 654 iph = ip_hdr(frag); 655 iph->tot_len = htons(frag->len); 656 ip_copy_metadata(frag, skb); 657 if (offset == 0) 658 ip_options_fragment(frag); 659 offset += skb->len - hlen; 660 iph->frag_off = htons(offset>>3); 661 if (frag->next) 662 iph->frag_off |= htons(IP_MF); 663 /* Ready, complete checksum */ 664 ip_send_check(iph); 665 } 666 667 err = output(net, sk, skb); 668 669 if (!err) 670 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 671 if (err || !frag) 672 break; 673 674 skb = frag; 675 frag = skb->next; 676 skb->next = NULL; 677 } 678 679 if (err == 0) { 680 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 681 return 0; 682 } 683 684 while (frag) { 685 skb = frag->next; 686 kfree_skb(frag); 687 frag = skb; 688 } 689 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 690 return err; 691 692 slow_path_clean: 693 skb_walk_frags(skb, frag2) { 694 if (frag2 == frag) 695 break; 696 frag2->sk = NULL; 697 frag2->destructor = NULL; 698 skb->truesize += frag2->truesize; 699 } 700 } 701 702 slow_path: 703 iph = ip_hdr(skb); 704 705 left = skb->len - hlen; /* Space per frame */ 706 ptr = hlen; /* Where to start from */ 707 708 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 709 710 /* 711 * Fragment the datagram. 712 */ 713 714 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 715 not_last_frag = iph->frag_off & htons(IP_MF); 716 717 /* 718 * Keep copying data until we run out. 719 */ 720 721 while (left > 0) { 722 len = left; 723 /* IF: it doesn't fit, use 'mtu' - the data space left */ 724 if (len > mtu) 725 len = mtu; 726 /* IF: we are not sending up to and including the packet end 727 then align the next start on an eight byte boundary */ 728 if (len < left) { 729 len &= ~7; 730 } 731 732 /* Allocate buffer */ 733 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); 734 if (!skb2) { 735 err = -ENOMEM; 736 goto fail; 737 } 738 739 /* 740 * Set up data on packet 741 */ 742 743 ip_copy_metadata(skb2, skb); 744 skb_reserve(skb2, ll_rs); 745 skb_put(skb2, len + hlen); 746 skb_reset_network_header(skb2); 747 skb2->transport_header = skb2->network_header + hlen; 748 749 /* 750 * Charge the memory for the fragment to any owner 751 * it might possess 752 */ 753 754 if (skb->sk) 755 skb_set_owner_w(skb2, skb->sk); 756 757 /* 758 * Copy the packet header into the new buffer. 759 */ 760 761 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); 762 763 /* 764 * Copy a block of the IP datagram. 765 */ 766 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) 767 BUG(); 768 left -= len; 769 770 /* 771 * Fill in the new header fields. 772 */ 773 iph = ip_hdr(skb2); 774 iph->frag_off = htons((offset >> 3)); 775 776 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) 777 iph->frag_off |= htons(IP_DF); 778 779 /* ANK: dirty, but effective trick. Upgrade options only if 780 * the segment to be fragmented was THE FIRST (otherwise, 781 * options are already fixed) and make it ONCE 782 * on the initial skb, so that all the following fragments 783 * will inherit fixed options. 784 */ 785 if (offset == 0) 786 ip_options_fragment(skb); 787 788 /* 789 * Added AC : If we are fragmenting a fragment that's not the 790 * last fragment then keep MF on each bit 791 */ 792 if (left > 0 || not_last_frag) 793 iph->frag_off |= htons(IP_MF); 794 ptr += len; 795 offset += len; 796 797 /* 798 * Put this fragment into the sending queue. 799 */ 800 iph->tot_len = htons(len + hlen); 801 802 ip_send_check(iph); 803 804 err = output(net, sk, skb2); 805 if (err) 806 goto fail; 807 808 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 809 } 810 consume_skb(skb); 811 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 812 return err; 813 814 fail: 815 kfree_skb(skb); 816 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 817 return err; 818 } 819 EXPORT_SYMBOL(ip_do_fragment); 820 821 int 822 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 823 { 824 struct msghdr *msg = from; 825 826 if (skb->ip_summed == CHECKSUM_PARTIAL) { 827 if (copy_from_iter(to, len, &msg->msg_iter) != len) 828 return -EFAULT; 829 } else { 830 __wsum csum = 0; 831 if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len) 832 return -EFAULT; 833 skb->csum = csum_block_add(skb->csum, csum, odd); 834 } 835 return 0; 836 } 837 EXPORT_SYMBOL(ip_generic_getfrag); 838 839 static inline __wsum 840 csum_page(struct page *page, int offset, int copy) 841 { 842 char *kaddr; 843 __wsum csum; 844 kaddr = kmap(page); 845 csum = csum_partial(kaddr + offset, copy, 0); 846 kunmap(page); 847 return csum; 848 } 849 850 static inline int ip_ufo_append_data(struct sock *sk, 851 struct sk_buff_head *queue, 852 int getfrag(void *from, char *to, int offset, int len, 853 int odd, struct sk_buff *skb), 854 void *from, int length, int hh_len, int fragheaderlen, 855 int transhdrlen, int maxfraglen, unsigned int flags) 856 { 857 struct sk_buff *skb; 858 int err; 859 860 /* There is support for UDP fragmentation offload by network 861 * device, so create one single skb packet containing complete 862 * udp datagram 863 */ 864 skb = skb_peek_tail(queue); 865 if (!skb) { 866 skb = sock_alloc_send_skb(sk, 867 hh_len + fragheaderlen + transhdrlen + 20, 868 (flags & MSG_DONTWAIT), &err); 869 870 if (!skb) 871 return err; 872 873 /* reserve space for Hardware header */ 874 skb_reserve(skb, hh_len); 875 876 /* create space for UDP/IP header */ 877 skb_put(skb, fragheaderlen + transhdrlen); 878 879 /* initialize network header pointer */ 880 skb_reset_network_header(skb); 881 882 /* initialize protocol header pointer */ 883 skb->transport_header = skb->network_header + fragheaderlen; 884 885 skb->csum = 0; 886 887 __skb_queue_tail(queue, skb); 888 } else if (skb_is_gso(skb)) { 889 goto append; 890 } 891 892 skb->ip_summed = CHECKSUM_PARTIAL; 893 /* specify the length of each IP datagram fragment */ 894 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen; 895 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 896 897 append: 898 return skb_append_datato_frags(sk, skb, getfrag, from, 899 (length - transhdrlen)); 900 } 901 902 static int __ip_append_data(struct sock *sk, 903 struct flowi4 *fl4, 904 struct sk_buff_head *queue, 905 struct inet_cork *cork, 906 struct page_frag *pfrag, 907 int getfrag(void *from, char *to, int offset, 908 int len, int odd, struct sk_buff *skb), 909 void *from, int length, int transhdrlen, 910 unsigned int flags) 911 { 912 struct inet_sock *inet = inet_sk(sk); 913 struct sk_buff *skb; 914 915 struct ip_options *opt = cork->opt; 916 int hh_len; 917 int exthdrlen; 918 int mtu; 919 int copy; 920 int err; 921 int offset = 0; 922 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 923 int csummode = CHECKSUM_NONE; 924 struct rtable *rt = (struct rtable *)cork->dst; 925 u32 tskey = 0; 926 927 skb = skb_peek_tail(queue); 928 929 exthdrlen = !skb ? rt->dst.header_len : 0; 930 mtu = cork->fragsize; 931 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 932 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 933 tskey = sk->sk_tskey++; 934 935 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 936 937 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 938 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 939 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 940 941 if (cork->length + length > maxnonfragsize - fragheaderlen) { 942 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 943 mtu - (opt ? opt->optlen : 0)); 944 return -EMSGSIZE; 945 } 946 947 /* 948 * transhdrlen > 0 means that this is the first fragment and we wish 949 * it won't be fragmented in the future. 950 */ 951 if (transhdrlen && 952 length + fragheaderlen <= mtu && 953 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 954 !(flags & MSG_MORE) && 955 !exthdrlen) 956 csummode = CHECKSUM_PARTIAL; 957 958 cork->length += length; 959 if (((length > mtu) || (skb && skb_is_gso(skb))) && 960 (sk->sk_protocol == IPPROTO_UDP) && 961 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len && 962 (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) { 963 err = ip_ufo_append_data(sk, queue, getfrag, from, length, 964 hh_len, fragheaderlen, transhdrlen, 965 maxfraglen, flags); 966 if (err) 967 goto error; 968 return 0; 969 } 970 971 /* So, what's going on in the loop below? 972 * 973 * We use calculated fragment length to generate chained skb, 974 * each of segments is IP fragment ready for sending to network after 975 * adding appropriate IP header. 976 */ 977 978 if (!skb) 979 goto alloc_new_skb; 980 981 while (length > 0) { 982 /* Check if the remaining data fits into current packet. */ 983 copy = mtu - skb->len; 984 if (copy < length) 985 copy = maxfraglen - skb->len; 986 if (copy <= 0) { 987 char *data; 988 unsigned int datalen; 989 unsigned int fraglen; 990 unsigned int fraggap; 991 unsigned int alloclen; 992 struct sk_buff *skb_prev; 993 alloc_new_skb: 994 skb_prev = skb; 995 if (skb_prev) 996 fraggap = skb_prev->len - maxfraglen; 997 else 998 fraggap = 0; 999 1000 /* 1001 * If remaining data exceeds the mtu, 1002 * we know we need more fragment(s). 1003 */ 1004 datalen = length + fraggap; 1005 if (datalen > mtu - fragheaderlen) 1006 datalen = maxfraglen - fragheaderlen; 1007 fraglen = datalen + fragheaderlen; 1008 1009 if ((flags & MSG_MORE) && 1010 !(rt->dst.dev->features&NETIF_F_SG)) 1011 alloclen = mtu; 1012 else 1013 alloclen = fraglen; 1014 1015 alloclen += exthdrlen; 1016 1017 /* The last fragment gets additional space at tail. 1018 * Note, with MSG_MORE we overallocate on fragments, 1019 * because we have no idea what fragment will be 1020 * the last. 1021 */ 1022 if (datalen == length + fraggap) 1023 alloclen += rt->dst.trailer_len; 1024 1025 if (transhdrlen) { 1026 skb = sock_alloc_send_skb(sk, 1027 alloclen + hh_len + 15, 1028 (flags & MSG_DONTWAIT), &err); 1029 } else { 1030 skb = NULL; 1031 if (atomic_read(&sk->sk_wmem_alloc) <= 1032 2 * sk->sk_sndbuf) 1033 skb = sock_wmalloc(sk, 1034 alloclen + hh_len + 15, 1, 1035 sk->sk_allocation); 1036 if (unlikely(!skb)) 1037 err = -ENOBUFS; 1038 } 1039 if (!skb) 1040 goto error; 1041 1042 /* 1043 * Fill in the control structures 1044 */ 1045 skb->ip_summed = csummode; 1046 skb->csum = 0; 1047 skb_reserve(skb, hh_len); 1048 1049 /* only the initial fragment is time stamped */ 1050 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1051 cork->tx_flags = 0; 1052 skb_shinfo(skb)->tskey = tskey; 1053 tskey = 0; 1054 1055 /* 1056 * Find where to start putting bytes. 1057 */ 1058 data = skb_put(skb, fraglen + exthdrlen); 1059 skb_set_network_header(skb, exthdrlen); 1060 skb->transport_header = (skb->network_header + 1061 fragheaderlen); 1062 data += fragheaderlen + exthdrlen; 1063 1064 if (fraggap) { 1065 skb->csum = skb_copy_and_csum_bits( 1066 skb_prev, maxfraglen, 1067 data + transhdrlen, fraggap, 0); 1068 skb_prev->csum = csum_sub(skb_prev->csum, 1069 skb->csum); 1070 data += fraggap; 1071 pskb_trim_unique(skb_prev, maxfraglen); 1072 } 1073 1074 copy = datalen - transhdrlen - fraggap; 1075 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1076 err = -EFAULT; 1077 kfree_skb(skb); 1078 goto error; 1079 } 1080 1081 offset += copy; 1082 length -= datalen - fraggap; 1083 transhdrlen = 0; 1084 exthdrlen = 0; 1085 csummode = CHECKSUM_NONE; 1086 1087 /* 1088 * Put the packet on the pending queue. 1089 */ 1090 __skb_queue_tail(queue, skb); 1091 continue; 1092 } 1093 1094 if (copy > length) 1095 copy = length; 1096 1097 if (!(rt->dst.dev->features&NETIF_F_SG)) { 1098 unsigned int off; 1099 1100 off = skb->len; 1101 if (getfrag(from, skb_put(skb, copy), 1102 offset, copy, off, skb) < 0) { 1103 __skb_trim(skb, off); 1104 err = -EFAULT; 1105 goto error; 1106 } 1107 } else { 1108 int i = skb_shinfo(skb)->nr_frags; 1109 1110 err = -ENOMEM; 1111 if (!sk_page_frag_refill(sk, pfrag)) 1112 goto error; 1113 1114 if (!skb_can_coalesce(skb, i, pfrag->page, 1115 pfrag->offset)) { 1116 err = -EMSGSIZE; 1117 if (i == MAX_SKB_FRAGS) 1118 goto error; 1119 1120 __skb_fill_page_desc(skb, i, pfrag->page, 1121 pfrag->offset, 0); 1122 skb_shinfo(skb)->nr_frags = ++i; 1123 get_page(pfrag->page); 1124 } 1125 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1126 if (getfrag(from, 1127 page_address(pfrag->page) + pfrag->offset, 1128 offset, copy, skb->len, skb) < 0) 1129 goto error_efault; 1130 1131 pfrag->offset += copy; 1132 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1133 skb->len += copy; 1134 skb->data_len += copy; 1135 skb->truesize += copy; 1136 atomic_add(copy, &sk->sk_wmem_alloc); 1137 } 1138 offset += copy; 1139 length -= copy; 1140 } 1141 1142 return 0; 1143 1144 error_efault: 1145 err = -EFAULT; 1146 error: 1147 cork->length -= length; 1148 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1149 return err; 1150 } 1151 1152 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1153 struct ipcm_cookie *ipc, struct rtable **rtp) 1154 { 1155 struct ip_options_rcu *opt; 1156 struct rtable *rt; 1157 1158 /* 1159 * setup for corking. 1160 */ 1161 opt = ipc->opt; 1162 if (opt) { 1163 if (!cork->opt) { 1164 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1165 sk->sk_allocation); 1166 if (unlikely(!cork->opt)) 1167 return -ENOBUFS; 1168 } 1169 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1170 cork->flags |= IPCORK_OPT; 1171 cork->addr = ipc->addr; 1172 } 1173 rt = *rtp; 1174 if (unlikely(!rt)) 1175 return -EFAULT; 1176 /* 1177 * We steal reference to this route, caller should not release it 1178 */ 1179 *rtp = NULL; 1180 cork->fragsize = ip_sk_use_pmtu(sk) ? 1181 dst_mtu(&rt->dst) : rt->dst.dev->mtu; 1182 cork->dst = &rt->dst; 1183 cork->length = 0; 1184 cork->ttl = ipc->ttl; 1185 cork->tos = ipc->tos; 1186 cork->priority = ipc->priority; 1187 cork->tx_flags = ipc->tx_flags; 1188 1189 return 0; 1190 } 1191 1192 /* 1193 * ip_append_data() and ip_append_page() can make one large IP datagram 1194 * from many pieces of data. Each pieces will be holded on the socket 1195 * until ip_push_pending_frames() is called. Each piece can be a page 1196 * or non-page data. 1197 * 1198 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1199 * this interface potentially. 1200 * 1201 * LATER: length must be adjusted by pad at tail, when it is required. 1202 */ 1203 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1204 int getfrag(void *from, char *to, int offset, int len, 1205 int odd, struct sk_buff *skb), 1206 void *from, int length, int transhdrlen, 1207 struct ipcm_cookie *ipc, struct rtable **rtp, 1208 unsigned int flags) 1209 { 1210 struct inet_sock *inet = inet_sk(sk); 1211 int err; 1212 1213 if (flags&MSG_PROBE) 1214 return 0; 1215 1216 if (skb_queue_empty(&sk->sk_write_queue)) { 1217 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1218 if (err) 1219 return err; 1220 } else { 1221 transhdrlen = 0; 1222 } 1223 1224 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1225 sk_page_frag(sk), getfrag, 1226 from, length, transhdrlen, flags); 1227 } 1228 1229 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1230 int offset, size_t size, int flags) 1231 { 1232 struct inet_sock *inet = inet_sk(sk); 1233 struct sk_buff *skb; 1234 struct rtable *rt; 1235 struct ip_options *opt = NULL; 1236 struct inet_cork *cork; 1237 int hh_len; 1238 int mtu; 1239 int len; 1240 int err; 1241 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1242 1243 if (inet->hdrincl) 1244 return -EPERM; 1245 1246 if (flags&MSG_PROBE) 1247 return 0; 1248 1249 if (skb_queue_empty(&sk->sk_write_queue)) 1250 return -EINVAL; 1251 1252 cork = &inet->cork.base; 1253 rt = (struct rtable *)cork->dst; 1254 if (cork->flags & IPCORK_OPT) 1255 opt = cork->opt; 1256 1257 if (!(rt->dst.dev->features&NETIF_F_SG)) 1258 return -EOPNOTSUPP; 1259 1260 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1261 mtu = cork->fragsize; 1262 1263 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1264 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1265 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1266 1267 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1268 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1269 mtu - (opt ? opt->optlen : 0)); 1270 return -EMSGSIZE; 1271 } 1272 1273 skb = skb_peek_tail(&sk->sk_write_queue); 1274 if (!skb) 1275 return -EINVAL; 1276 1277 if ((size + skb->len > mtu) && 1278 (sk->sk_protocol == IPPROTO_UDP) && 1279 (rt->dst.dev->features & NETIF_F_UFO)) { 1280 if (skb->ip_summed != CHECKSUM_PARTIAL) 1281 return -EOPNOTSUPP; 1282 1283 skb_shinfo(skb)->gso_size = mtu - fragheaderlen; 1284 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 1285 } 1286 cork->length += size; 1287 1288 while (size > 0) { 1289 if (skb_is_gso(skb)) { 1290 len = size; 1291 } else { 1292 1293 /* Check if the remaining data fits into current packet. */ 1294 len = mtu - skb->len; 1295 if (len < size) 1296 len = maxfraglen - skb->len; 1297 } 1298 if (len <= 0) { 1299 struct sk_buff *skb_prev; 1300 int alloclen; 1301 1302 skb_prev = skb; 1303 fraggap = skb_prev->len - maxfraglen; 1304 1305 alloclen = fragheaderlen + hh_len + fraggap + 15; 1306 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1307 if (unlikely(!skb)) { 1308 err = -ENOBUFS; 1309 goto error; 1310 } 1311 1312 /* 1313 * Fill in the control structures 1314 */ 1315 skb->ip_summed = CHECKSUM_NONE; 1316 skb->csum = 0; 1317 skb_reserve(skb, hh_len); 1318 1319 /* 1320 * Find where to start putting bytes. 1321 */ 1322 skb_put(skb, fragheaderlen + fraggap); 1323 skb_reset_network_header(skb); 1324 skb->transport_header = (skb->network_header + 1325 fragheaderlen); 1326 if (fraggap) { 1327 skb->csum = skb_copy_and_csum_bits(skb_prev, 1328 maxfraglen, 1329 skb_transport_header(skb), 1330 fraggap, 0); 1331 skb_prev->csum = csum_sub(skb_prev->csum, 1332 skb->csum); 1333 pskb_trim_unique(skb_prev, maxfraglen); 1334 } 1335 1336 /* 1337 * Put the packet on the pending queue. 1338 */ 1339 __skb_queue_tail(&sk->sk_write_queue, skb); 1340 continue; 1341 } 1342 1343 if (len > size) 1344 len = size; 1345 1346 if (skb_append_pagefrags(skb, page, offset, len)) { 1347 err = -EMSGSIZE; 1348 goto error; 1349 } 1350 1351 if (skb->ip_summed == CHECKSUM_NONE) { 1352 __wsum csum; 1353 csum = csum_page(page, offset, len); 1354 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1355 } 1356 1357 skb->len += len; 1358 skb->data_len += len; 1359 skb->truesize += len; 1360 atomic_add(len, &sk->sk_wmem_alloc); 1361 offset += len; 1362 size -= len; 1363 } 1364 return 0; 1365 1366 error: 1367 cork->length -= size; 1368 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1369 return err; 1370 } 1371 1372 static void ip_cork_release(struct inet_cork *cork) 1373 { 1374 cork->flags &= ~IPCORK_OPT; 1375 kfree(cork->opt); 1376 cork->opt = NULL; 1377 dst_release(cork->dst); 1378 cork->dst = NULL; 1379 } 1380 1381 /* 1382 * Combined all pending IP fragments on the socket as one IP datagram 1383 * and push them out. 1384 */ 1385 struct sk_buff *__ip_make_skb(struct sock *sk, 1386 struct flowi4 *fl4, 1387 struct sk_buff_head *queue, 1388 struct inet_cork *cork) 1389 { 1390 struct sk_buff *skb, *tmp_skb; 1391 struct sk_buff **tail_skb; 1392 struct inet_sock *inet = inet_sk(sk); 1393 struct net *net = sock_net(sk); 1394 struct ip_options *opt = NULL; 1395 struct rtable *rt = (struct rtable *)cork->dst; 1396 struct iphdr *iph; 1397 __be16 df = 0; 1398 __u8 ttl; 1399 1400 skb = __skb_dequeue(queue); 1401 if (!skb) 1402 goto out; 1403 tail_skb = &(skb_shinfo(skb)->frag_list); 1404 1405 /* move skb->data to ip header from ext header */ 1406 if (skb->data < skb_network_header(skb)) 1407 __skb_pull(skb, skb_network_offset(skb)); 1408 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1409 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1410 *tail_skb = tmp_skb; 1411 tail_skb = &(tmp_skb->next); 1412 skb->len += tmp_skb->len; 1413 skb->data_len += tmp_skb->len; 1414 skb->truesize += tmp_skb->truesize; 1415 tmp_skb->destructor = NULL; 1416 tmp_skb->sk = NULL; 1417 } 1418 1419 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1420 * to fragment the frame generated here. No matter, what transforms 1421 * how transforms change size of the packet, it will come out. 1422 */ 1423 skb->ignore_df = ip_sk_ignore_df(sk); 1424 1425 /* DF bit is set when we want to see DF on outgoing frames. 1426 * If ignore_df is set too, we still allow to fragment this frame 1427 * locally. */ 1428 if (inet->pmtudisc == IP_PMTUDISC_DO || 1429 inet->pmtudisc == IP_PMTUDISC_PROBE || 1430 (skb->len <= dst_mtu(&rt->dst) && 1431 ip_dont_fragment(sk, &rt->dst))) 1432 df = htons(IP_DF); 1433 1434 if (cork->flags & IPCORK_OPT) 1435 opt = cork->opt; 1436 1437 if (cork->ttl != 0) 1438 ttl = cork->ttl; 1439 else if (rt->rt_type == RTN_MULTICAST) 1440 ttl = inet->mc_ttl; 1441 else 1442 ttl = ip_select_ttl(inet, &rt->dst); 1443 1444 iph = ip_hdr(skb); 1445 iph->version = 4; 1446 iph->ihl = 5; 1447 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1448 iph->frag_off = df; 1449 iph->ttl = ttl; 1450 iph->protocol = sk->sk_protocol; 1451 ip_copy_addrs(iph, fl4); 1452 ip_select_ident(net, skb, sk); 1453 1454 if (opt) { 1455 iph->ihl += opt->optlen>>2; 1456 ip_options_build(skb, opt, cork->addr, rt, 0); 1457 } 1458 1459 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1460 skb->mark = sk->sk_mark; 1461 /* 1462 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1463 * on dst refcount 1464 */ 1465 cork->dst = NULL; 1466 skb_dst_set(skb, &rt->dst); 1467 1468 if (iph->protocol == IPPROTO_ICMP) 1469 icmp_out_count(net, ((struct icmphdr *) 1470 skb_transport_header(skb))->type); 1471 1472 ip_cork_release(cork); 1473 out: 1474 return skb; 1475 } 1476 1477 int ip_send_skb(struct net *net, struct sk_buff *skb) 1478 { 1479 int err; 1480 1481 err = ip_local_out(net, skb->sk, skb); 1482 if (err) { 1483 if (err > 0) 1484 err = net_xmit_errno(err); 1485 if (err) 1486 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1487 } 1488 1489 return err; 1490 } 1491 1492 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1493 { 1494 struct sk_buff *skb; 1495 1496 skb = ip_finish_skb(sk, fl4); 1497 if (!skb) 1498 return 0; 1499 1500 /* Netfilter gets whole the not fragmented skb. */ 1501 return ip_send_skb(sock_net(sk), skb); 1502 } 1503 1504 /* 1505 * Throw away all pending data on the socket. 1506 */ 1507 static void __ip_flush_pending_frames(struct sock *sk, 1508 struct sk_buff_head *queue, 1509 struct inet_cork *cork) 1510 { 1511 struct sk_buff *skb; 1512 1513 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1514 kfree_skb(skb); 1515 1516 ip_cork_release(cork); 1517 } 1518 1519 void ip_flush_pending_frames(struct sock *sk) 1520 { 1521 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1522 } 1523 1524 struct sk_buff *ip_make_skb(struct sock *sk, 1525 struct flowi4 *fl4, 1526 int getfrag(void *from, char *to, int offset, 1527 int len, int odd, struct sk_buff *skb), 1528 void *from, int length, int transhdrlen, 1529 struct ipcm_cookie *ipc, struct rtable **rtp, 1530 unsigned int flags) 1531 { 1532 struct inet_cork cork; 1533 struct sk_buff_head queue; 1534 int err; 1535 1536 if (flags & MSG_PROBE) 1537 return NULL; 1538 1539 __skb_queue_head_init(&queue); 1540 1541 cork.flags = 0; 1542 cork.addr = 0; 1543 cork.opt = NULL; 1544 err = ip_setup_cork(sk, &cork, ipc, rtp); 1545 if (err) 1546 return ERR_PTR(err); 1547 1548 err = __ip_append_data(sk, fl4, &queue, &cork, 1549 ¤t->task_frag, getfrag, 1550 from, length, transhdrlen, flags); 1551 if (err) { 1552 __ip_flush_pending_frames(sk, &queue, &cork); 1553 return ERR_PTR(err); 1554 } 1555 1556 return __ip_make_skb(sk, fl4, &queue, &cork); 1557 } 1558 1559 /* 1560 * Fetch data from kernel space and fill in checksum if needed. 1561 */ 1562 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1563 int len, int odd, struct sk_buff *skb) 1564 { 1565 __wsum csum; 1566 1567 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); 1568 skb->csum = csum_block_add(skb->csum, csum, odd); 1569 return 0; 1570 } 1571 1572 /* 1573 * Generic function to send a packet as reply to another packet. 1574 * Used to send some TCP resets/acks so far. 1575 */ 1576 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1577 const struct ip_options *sopt, 1578 __be32 daddr, __be32 saddr, 1579 const struct ip_reply_arg *arg, 1580 unsigned int len) 1581 { 1582 struct ip_options_data replyopts; 1583 struct ipcm_cookie ipc; 1584 struct flowi4 fl4; 1585 struct rtable *rt = skb_rtable(skb); 1586 struct net *net = sock_net(sk); 1587 struct sk_buff *nskb; 1588 int err; 1589 int oif; 1590 1591 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt)) 1592 return; 1593 1594 ipc.addr = daddr; 1595 ipc.opt = NULL; 1596 ipc.tx_flags = 0; 1597 ipc.ttl = 0; 1598 ipc.tos = -1; 1599 1600 if (replyopts.opt.opt.optlen) { 1601 ipc.opt = &replyopts.opt; 1602 1603 if (replyopts.opt.opt.srr) 1604 daddr = replyopts.opt.opt.faddr; 1605 } 1606 1607 oif = arg->bound_dev_if; 1608 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1609 oif = skb->skb_iif; 1610 1611 flowi4_init_output(&fl4, oif, 1612 IP4_REPLY_MARK(net, skb->mark), 1613 RT_TOS(arg->tos), 1614 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1615 ip_reply_arg_flowi_flags(arg), 1616 daddr, saddr, 1617 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1618 arg->uid); 1619 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1620 rt = ip_route_output_key(net, &fl4); 1621 if (IS_ERR(rt)) 1622 return; 1623 1624 inet_sk(sk)->tos = arg->tos; 1625 1626 sk->sk_priority = skb->priority; 1627 sk->sk_protocol = ip_hdr(skb)->protocol; 1628 sk->sk_bound_dev_if = arg->bound_dev_if; 1629 sk->sk_sndbuf = sysctl_wmem_default; 1630 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1631 len, 0, &ipc, &rt, MSG_DONTWAIT); 1632 if (unlikely(err)) { 1633 ip_flush_pending_frames(sk); 1634 goto out; 1635 } 1636 1637 nskb = skb_peek(&sk->sk_write_queue); 1638 if (nskb) { 1639 if (arg->csumoffset >= 0) 1640 *((__sum16 *)skb_transport_header(nskb) + 1641 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1642 arg->csum)); 1643 nskb->ip_summed = CHECKSUM_NONE; 1644 ip_push_pending_frames(sk, &fl4); 1645 } 1646 out: 1647 ip_rt_put(rt); 1648 } 1649 1650 void __init ip_init(void) 1651 { 1652 ip_rt_init(); 1653 inet_initpeers(); 1654 1655 #if defined(CONFIG_IP_MULTICAST) 1656 igmp_mc_init(); 1657 #endif 1658 } 1659