xref: /linux/net/ipv4/ip_output.c (revision 1fc31357ad194fb98691f3d122bcd47e59239e83)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/bpf-cgroup.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
83 
84 static int
85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
86 	    unsigned int mtu,
87 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
88 
89 /* Generate a checksum for an outgoing IP datagram. */
90 void ip_send_check(struct iphdr *iph)
91 {
92 	iph->check = 0;
93 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
94 }
95 EXPORT_SYMBOL(ip_send_check);
96 
97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
98 {
99 	struct iphdr *iph = ip_hdr(skb);
100 
101 	iph->tot_len = htons(skb->len);
102 	ip_send_check(iph);
103 
104 	/* if egress device is enslaved to an L3 master device pass the
105 	 * skb to its handler for processing
106 	 */
107 	skb = l3mdev_ip_out(sk, skb);
108 	if (unlikely(!skb))
109 		return 0;
110 
111 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
112 		       net, sk, skb, NULL, skb_dst(skb)->dev,
113 		       dst_output);
114 }
115 
116 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
117 {
118 	int err;
119 
120 	err = __ip_local_out(net, sk, skb);
121 	if (likely(err == 1))
122 		err = dst_output(net, sk, skb);
123 
124 	return err;
125 }
126 EXPORT_SYMBOL_GPL(ip_local_out);
127 
128 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
129 {
130 	int ttl = inet->uc_ttl;
131 
132 	if (ttl < 0)
133 		ttl = ip4_dst_hoplimit(dst);
134 	return ttl;
135 }
136 
137 /*
138  *		Add an ip header to a skbuff and send it out.
139  *
140  */
141 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
142 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
143 {
144 	struct inet_sock *inet = inet_sk(sk);
145 	struct rtable *rt = skb_rtable(skb);
146 	struct net *net = sock_net(sk);
147 	struct iphdr *iph;
148 
149 	/* Build the IP header. */
150 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
151 	skb_reset_network_header(skb);
152 	iph = ip_hdr(skb);
153 	iph->version  = 4;
154 	iph->ihl      = 5;
155 	iph->tos      = inet->tos;
156 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
157 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
158 	iph->saddr    = saddr;
159 	iph->protocol = sk->sk_protocol;
160 	if (ip_dont_fragment(sk, &rt->dst)) {
161 		iph->frag_off = htons(IP_DF);
162 		iph->id = 0;
163 	} else {
164 		iph->frag_off = 0;
165 		__ip_select_ident(net, iph, 1);
166 	}
167 
168 	if (opt && opt->opt.optlen) {
169 		iph->ihl += opt->opt.optlen>>2;
170 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
171 	}
172 
173 	skb->priority = sk->sk_priority;
174 	skb->mark = sk->sk_mark;
175 
176 	/* Send it out. */
177 	return ip_local_out(net, skb->sk, skb);
178 }
179 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
180 
181 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
182 {
183 	struct dst_entry *dst = skb_dst(skb);
184 	struct rtable *rt = (struct rtable *)dst;
185 	struct net_device *dev = dst->dev;
186 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
187 	struct neighbour *neigh;
188 	u32 nexthop;
189 
190 	if (rt->rt_type == RTN_MULTICAST) {
191 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
192 	} else if (rt->rt_type == RTN_BROADCAST)
193 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
194 
195 	/* Be paranoid, rather than too clever. */
196 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
197 		struct sk_buff *skb2;
198 
199 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
200 		if (!skb2) {
201 			kfree_skb(skb);
202 			return -ENOMEM;
203 		}
204 		if (skb->sk)
205 			skb_set_owner_w(skb2, skb->sk);
206 		consume_skb(skb);
207 		skb = skb2;
208 	}
209 
210 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
211 		int res = lwtunnel_xmit(skb);
212 
213 		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
214 			return res;
215 	}
216 
217 	rcu_read_lock_bh();
218 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
219 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
220 	if (unlikely(!neigh))
221 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
222 	if (!IS_ERR(neigh)) {
223 		int res = dst_neigh_output(dst, neigh, skb);
224 
225 		rcu_read_unlock_bh();
226 		return res;
227 	}
228 	rcu_read_unlock_bh();
229 
230 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
231 			    __func__);
232 	kfree_skb(skb);
233 	return -EINVAL;
234 }
235 
236 static int ip_finish_output_gso(struct net *net, struct sock *sk,
237 				struct sk_buff *skb, unsigned int mtu)
238 {
239 	netdev_features_t features;
240 	struct sk_buff *segs;
241 	int ret = 0;
242 
243 	/* common case: seglen is <= mtu
244 	 */
245 	if (skb_gso_validate_mtu(skb, mtu))
246 		return ip_finish_output2(net, sk, skb);
247 
248 	/* Slowpath -  GSO segment length exceeds the egress MTU.
249 	 *
250 	 * This can happen in several cases:
251 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
252 	 *  - Forwarding of an skb that arrived on a virtualization interface
253 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
254 	 *    stack.
255 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
256 	 *    interface with a smaller MTU.
257 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
258 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
259 	 *    insufficent MTU.
260 	 */
261 	features = netif_skb_features(skb);
262 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
263 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
264 	if (IS_ERR_OR_NULL(segs)) {
265 		kfree_skb(skb);
266 		return -ENOMEM;
267 	}
268 
269 	consume_skb(skb);
270 
271 	do {
272 		struct sk_buff *nskb = segs->next;
273 		int err;
274 
275 		segs->next = NULL;
276 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
277 
278 		if (err && ret == 0)
279 			ret = err;
280 		segs = nskb;
281 	} while (segs);
282 
283 	return ret;
284 }
285 
286 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
287 {
288 	unsigned int mtu;
289 	int ret;
290 
291 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
292 	if (ret) {
293 		kfree_skb(skb);
294 		return ret;
295 	}
296 
297 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
298 	/* Policy lookup after SNAT yielded a new policy */
299 	if (skb_dst(skb)->xfrm) {
300 		IPCB(skb)->flags |= IPSKB_REROUTED;
301 		return dst_output(net, sk, skb);
302 	}
303 #endif
304 	mtu = ip_skb_dst_mtu(sk, skb);
305 	if (skb_is_gso(skb))
306 		return ip_finish_output_gso(net, sk, skb, mtu);
307 
308 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
309 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
310 
311 	return ip_finish_output2(net, sk, skb);
312 }
313 
314 static int ip_mc_finish_output(struct net *net, struct sock *sk,
315 			       struct sk_buff *skb)
316 {
317 	int ret;
318 
319 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
320 	if (ret) {
321 		kfree_skb(skb);
322 		return ret;
323 	}
324 
325 	return dev_loopback_xmit(net, sk, skb);
326 }
327 
328 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
329 {
330 	struct rtable *rt = skb_rtable(skb);
331 	struct net_device *dev = rt->dst.dev;
332 
333 	/*
334 	 *	If the indicated interface is up and running, send the packet.
335 	 */
336 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
337 
338 	skb->dev = dev;
339 	skb->protocol = htons(ETH_P_IP);
340 
341 	/*
342 	 *	Multicasts are looped back for other local users
343 	 */
344 
345 	if (rt->rt_flags&RTCF_MULTICAST) {
346 		if (sk_mc_loop(sk)
347 #ifdef CONFIG_IP_MROUTE
348 		/* Small optimization: do not loopback not local frames,
349 		   which returned after forwarding; they will be  dropped
350 		   by ip_mr_input in any case.
351 		   Note, that local frames are looped back to be delivered
352 		   to local recipients.
353 
354 		   This check is duplicated in ip_mr_input at the moment.
355 		 */
356 		    &&
357 		    ((rt->rt_flags & RTCF_LOCAL) ||
358 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
359 #endif
360 		   ) {
361 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
362 			if (newskb)
363 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
364 					net, sk, newskb, NULL, newskb->dev,
365 					ip_mc_finish_output);
366 		}
367 
368 		/* Multicasts with ttl 0 must not go beyond the host */
369 
370 		if (ip_hdr(skb)->ttl == 0) {
371 			kfree_skb(skb);
372 			return 0;
373 		}
374 	}
375 
376 	if (rt->rt_flags&RTCF_BROADCAST) {
377 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
378 		if (newskb)
379 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
380 				net, sk, newskb, NULL, newskb->dev,
381 				ip_mc_finish_output);
382 	}
383 
384 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
385 			    net, sk, skb, NULL, skb->dev,
386 			    ip_finish_output,
387 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
388 }
389 
390 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
391 {
392 	struct net_device *dev = skb_dst(skb)->dev;
393 
394 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
395 
396 	skb->dev = dev;
397 	skb->protocol = htons(ETH_P_IP);
398 
399 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
400 			    net, sk, skb, NULL, dev,
401 			    ip_finish_output,
402 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
403 }
404 
405 /*
406  * copy saddr and daddr, possibly using 64bit load/stores
407  * Equivalent to :
408  *   iph->saddr = fl4->saddr;
409  *   iph->daddr = fl4->daddr;
410  */
411 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
412 {
413 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
414 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
415 	memcpy(&iph->saddr, &fl4->saddr,
416 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
417 }
418 
419 /* Note: skb->sk can be different from sk, in case of tunnels */
420 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
421 {
422 	struct inet_sock *inet = inet_sk(sk);
423 	struct net *net = sock_net(sk);
424 	struct ip_options_rcu *inet_opt;
425 	struct flowi4 *fl4;
426 	struct rtable *rt;
427 	struct iphdr *iph;
428 	int res;
429 
430 	/* Skip all of this if the packet is already routed,
431 	 * f.e. by something like SCTP.
432 	 */
433 	rcu_read_lock();
434 	inet_opt = rcu_dereference(inet->inet_opt);
435 	fl4 = &fl->u.ip4;
436 	rt = skb_rtable(skb);
437 	if (rt)
438 		goto packet_routed;
439 
440 	/* Make sure we can route this packet. */
441 	rt = (struct rtable *)__sk_dst_check(sk, 0);
442 	if (!rt) {
443 		__be32 daddr;
444 
445 		/* Use correct destination address if we have options. */
446 		daddr = inet->inet_daddr;
447 		if (inet_opt && inet_opt->opt.srr)
448 			daddr = inet_opt->opt.faddr;
449 
450 		/* If this fails, retransmit mechanism of transport layer will
451 		 * keep trying until route appears or the connection times
452 		 * itself out.
453 		 */
454 		rt = ip_route_output_ports(net, fl4, sk,
455 					   daddr, inet->inet_saddr,
456 					   inet->inet_dport,
457 					   inet->inet_sport,
458 					   sk->sk_protocol,
459 					   RT_CONN_FLAGS(sk),
460 					   sk->sk_bound_dev_if);
461 		if (IS_ERR(rt))
462 			goto no_route;
463 		sk_setup_caps(sk, &rt->dst);
464 	}
465 	skb_dst_set_noref(skb, &rt->dst);
466 
467 packet_routed:
468 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
469 		goto no_route;
470 
471 	/* OK, we know where to send it, allocate and build IP header. */
472 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
473 	skb_reset_network_header(skb);
474 	iph = ip_hdr(skb);
475 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
476 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
477 		iph->frag_off = htons(IP_DF);
478 	else
479 		iph->frag_off = 0;
480 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
481 	iph->protocol = sk->sk_protocol;
482 	ip_copy_addrs(iph, fl4);
483 
484 	/* Transport layer set skb->h.foo itself. */
485 
486 	if (inet_opt && inet_opt->opt.optlen) {
487 		iph->ihl += inet_opt->opt.optlen >> 2;
488 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
489 	}
490 
491 	ip_select_ident_segs(net, skb, sk,
492 			     skb_shinfo(skb)->gso_segs ?: 1);
493 
494 	/* TODO : should we use skb->sk here instead of sk ? */
495 	skb->priority = sk->sk_priority;
496 	skb->mark = sk->sk_mark;
497 
498 	res = ip_local_out(net, sk, skb);
499 	rcu_read_unlock();
500 	return res;
501 
502 no_route:
503 	rcu_read_unlock();
504 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
505 	kfree_skb(skb);
506 	return -EHOSTUNREACH;
507 }
508 EXPORT_SYMBOL(ip_queue_xmit);
509 
510 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
511 {
512 	to->pkt_type = from->pkt_type;
513 	to->priority = from->priority;
514 	to->protocol = from->protocol;
515 	skb_dst_drop(to);
516 	skb_dst_copy(to, from);
517 	to->dev = from->dev;
518 	to->mark = from->mark;
519 
520 	/* Copy the flags to each fragment. */
521 	IPCB(to)->flags = IPCB(from)->flags;
522 
523 #ifdef CONFIG_NET_SCHED
524 	to->tc_index = from->tc_index;
525 #endif
526 	nf_copy(to, from);
527 #if IS_ENABLED(CONFIG_IP_VS)
528 	to->ipvs_property = from->ipvs_property;
529 #endif
530 	skb_copy_secmark(to, from);
531 }
532 
533 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
534 		       unsigned int mtu,
535 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
536 {
537 	struct iphdr *iph = ip_hdr(skb);
538 
539 	if ((iph->frag_off & htons(IP_DF)) == 0)
540 		return ip_do_fragment(net, sk, skb, output);
541 
542 	if (unlikely(!skb->ignore_df ||
543 		     (IPCB(skb)->frag_max_size &&
544 		      IPCB(skb)->frag_max_size > mtu))) {
545 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
546 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
547 			  htonl(mtu));
548 		kfree_skb(skb);
549 		return -EMSGSIZE;
550 	}
551 
552 	return ip_do_fragment(net, sk, skb, output);
553 }
554 
555 /*
556  *	This IP datagram is too large to be sent in one piece.  Break it up into
557  *	smaller pieces (each of size equal to IP header plus
558  *	a block of the data of the original IP data part) that will yet fit in a
559  *	single device frame, and queue such a frame for sending.
560  */
561 
562 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
563 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
564 {
565 	struct iphdr *iph;
566 	int ptr;
567 	struct sk_buff *skb2;
568 	unsigned int mtu, hlen, left, len, ll_rs;
569 	int offset;
570 	__be16 not_last_frag;
571 	struct rtable *rt = skb_rtable(skb);
572 	int err = 0;
573 
574 	/* for offloaded checksums cleanup checksum before fragmentation */
575 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
576 	    (err = skb_checksum_help(skb)))
577 		goto fail;
578 
579 	/*
580 	 *	Point into the IP datagram header.
581 	 */
582 
583 	iph = ip_hdr(skb);
584 
585 	mtu = ip_skb_dst_mtu(sk, skb);
586 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
587 		mtu = IPCB(skb)->frag_max_size;
588 
589 	/*
590 	 *	Setup starting values.
591 	 */
592 
593 	hlen = iph->ihl * 4;
594 	mtu = mtu - hlen;	/* Size of data space */
595 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
596 
597 	/* When frag_list is given, use it. First, check its validity:
598 	 * some transformers could create wrong frag_list or break existing
599 	 * one, it is not prohibited. In this case fall back to copying.
600 	 *
601 	 * LATER: this step can be merged to real generation of fragments,
602 	 * we can switch to copy when see the first bad fragment.
603 	 */
604 	if (skb_has_frag_list(skb)) {
605 		struct sk_buff *frag, *frag2;
606 		unsigned int first_len = skb_pagelen(skb);
607 
608 		if (first_len - hlen > mtu ||
609 		    ((first_len - hlen) & 7) ||
610 		    ip_is_fragment(iph) ||
611 		    skb_cloned(skb))
612 			goto slow_path;
613 
614 		skb_walk_frags(skb, frag) {
615 			/* Correct geometry. */
616 			if (frag->len > mtu ||
617 			    ((frag->len & 7) && frag->next) ||
618 			    skb_headroom(frag) < hlen)
619 				goto slow_path_clean;
620 
621 			/* Partially cloned skb? */
622 			if (skb_shared(frag))
623 				goto slow_path_clean;
624 
625 			BUG_ON(frag->sk);
626 			if (skb->sk) {
627 				frag->sk = skb->sk;
628 				frag->destructor = sock_wfree;
629 			}
630 			skb->truesize -= frag->truesize;
631 		}
632 
633 		/* Everything is OK. Generate! */
634 
635 		err = 0;
636 		offset = 0;
637 		frag = skb_shinfo(skb)->frag_list;
638 		skb_frag_list_init(skb);
639 		skb->data_len = first_len - skb_headlen(skb);
640 		skb->len = first_len;
641 		iph->tot_len = htons(first_len);
642 		iph->frag_off = htons(IP_MF);
643 		ip_send_check(iph);
644 
645 		for (;;) {
646 			/* Prepare header of the next frame,
647 			 * before previous one went down. */
648 			if (frag) {
649 				frag->ip_summed = CHECKSUM_NONE;
650 				skb_reset_transport_header(frag);
651 				__skb_push(frag, hlen);
652 				skb_reset_network_header(frag);
653 				memcpy(skb_network_header(frag), iph, hlen);
654 				iph = ip_hdr(frag);
655 				iph->tot_len = htons(frag->len);
656 				ip_copy_metadata(frag, skb);
657 				if (offset == 0)
658 					ip_options_fragment(frag);
659 				offset += skb->len - hlen;
660 				iph->frag_off = htons(offset>>3);
661 				if (frag->next)
662 					iph->frag_off |= htons(IP_MF);
663 				/* Ready, complete checksum */
664 				ip_send_check(iph);
665 			}
666 
667 			err = output(net, sk, skb);
668 
669 			if (!err)
670 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
671 			if (err || !frag)
672 				break;
673 
674 			skb = frag;
675 			frag = skb->next;
676 			skb->next = NULL;
677 		}
678 
679 		if (err == 0) {
680 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
681 			return 0;
682 		}
683 
684 		while (frag) {
685 			skb = frag->next;
686 			kfree_skb(frag);
687 			frag = skb;
688 		}
689 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
690 		return err;
691 
692 slow_path_clean:
693 		skb_walk_frags(skb, frag2) {
694 			if (frag2 == frag)
695 				break;
696 			frag2->sk = NULL;
697 			frag2->destructor = NULL;
698 			skb->truesize += frag2->truesize;
699 		}
700 	}
701 
702 slow_path:
703 	iph = ip_hdr(skb);
704 
705 	left = skb->len - hlen;		/* Space per frame */
706 	ptr = hlen;		/* Where to start from */
707 
708 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
709 
710 	/*
711 	 *	Fragment the datagram.
712 	 */
713 
714 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
715 	not_last_frag = iph->frag_off & htons(IP_MF);
716 
717 	/*
718 	 *	Keep copying data until we run out.
719 	 */
720 
721 	while (left > 0) {
722 		len = left;
723 		/* IF: it doesn't fit, use 'mtu' - the data space left */
724 		if (len > mtu)
725 			len = mtu;
726 		/* IF: we are not sending up to and including the packet end
727 		   then align the next start on an eight byte boundary */
728 		if (len < left)	{
729 			len &= ~7;
730 		}
731 
732 		/* Allocate buffer */
733 		skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
734 		if (!skb2) {
735 			err = -ENOMEM;
736 			goto fail;
737 		}
738 
739 		/*
740 		 *	Set up data on packet
741 		 */
742 
743 		ip_copy_metadata(skb2, skb);
744 		skb_reserve(skb2, ll_rs);
745 		skb_put(skb2, len + hlen);
746 		skb_reset_network_header(skb2);
747 		skb2->transport_header = skb2->network_header + hlen;
748 
749 		/*
750 		 *	Charge the memory for the fragment to any owner
751 		 *	it might possess
752 		 */
753 
754 		if (skb->sk)
755 			skb_set_owner_w(skb2, skb->sk);
756 
757 		/*
758 		 *	Copy the packet header into the new buffer.
759 		 */
760 
761 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
762 
763 		/*
764 		 *	Copy a block of the IP datagram.
765 		 */
766 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
767 			BUG();
768 		left -= len;
769 
770 		/*
771 		 *	Fill in the new header fields.
772 		 */
773 		iph = ip_hdr(skb2);
774 		iph->frag_off = htons((offset >> 3));
775 
776 		if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
777 			iph->frag_off |= htons(IP_DF);
778 
779 		/* ANK: dirty, but effective trick. Upgrade options only if
780 		 * the segment to be fragmented was THE FIRST (otherwise,
781 		 * options are already fixed) and make it ONCE
782 		 * on the initial skb, so that all the following fragments
783 		 * will inherit fixed options.
784 		 */
785 		if (offset == 0)
786 			ip_options_fragment(skb);
787 
788 		/*
789 		 *	Added AC : If we are fragmenting a fragment that's not the
790 		 *		   last fragment then keep MF on each bit
791 		 */
792 		if (left > 0 || not_last_frag)
793 			iph->frag_off |= htons(IP_MF);
794 		ptr += len;
795 		offset += len;
796 
797 		/*
798 		 *	Put this fragment into the sending queue.
799 		 */
800 		iph->tot_len = htons(len + hlen);
801 
802 		ip_send_check(iph);
803 
804 		err = output(net, sk, skb2);
805 		if (err)
806 			goto fail;
807 
808 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
809 	}
810 	consume_skb(skb);
811 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
812 	return err;
813 
814 fail:
815 	kfree_skb(skb);
816 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
817 	return err;
818 }
819 EXPORT_SYMBOL(ip_do_fragment);
820 
821 int
822 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
823 {
824 	struct msghdr *msg = from;
825 
826 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
827 		if (copy_from_iter(to, len, &msg->msg_iter) != len)
828 			return -EFAULT;
829 	} else {
830 		__wsum csum = 0;
831 		if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
832 			return -EFAULT;
833 		skb->csum = csum_block_add(skb->csum, csum, odd);
834 	}
835 	return 0;
836 }
837 EXPORT_SYMBOL(ip_generic_getfrag);
838 
839 static inline __wsum
840 csum_page(struct page *page, int offset, int copy)
841 {
842 	char *kaddr;
843 	__wsum csum;
844 	kaddr = kmap(page);
845 	csum = csum_partial(kaddr + offset, copy, 0);
846 	kunmap(page);
847 	return csum;
848 }
849 
850 static inline int ip_ufo_append_data(struct sock *sk,
851 			struct sk_buff_head *queue,
852 			int getfrag(void *from, char *to, int offset, int len,
853 			       int odd, struct sk_buff *skb),
854 			void *from, int length, int hh_len, int fragheaderlen,
855 			int transhdrlen, int maxfraglen, unsigned int flags)
856 {
857 	struct sk_buff *skb;
858 	int err;
859 
860 	/* There is support for UDP fragmentation offload by network
861 	 * device, so create one single skb packet containing complete
862 	 * udp datagram
863 	 */
864 	skb = skb_peek_tail(queue);
865 	if (!skb) {
866 		skb = sock_alloc_send_skb(sk,
867 			hh_len + fragheaderlen + transhdrlen + 20,
868 			(flags & MSG_DONTWAIT), &err);
869 
870 		if (!skb)
871 			return err;
872 
873 		/* reserve space for Hardware header */
874 		skb_reserve(skb, hh_len);
875 
876 		/* create space for UDP/IP header */
877 		skb_put(skb, fragheaderlen + transhdrlen);
878 
879 		/* initialize network header pointer */
880 		skb_reset_network_header(skb);
881 
882 		/* initialize protocol header pointer */
883 		skb->transport_header = skb->network_header + fragheaderlen;
884 
885 		skb->csum = 0;
886 
887 		__skb_queue_tail(queue, skb);
888 	} else if (skb_is_gso(skb)) {
889 		goto append;
890 	}
891 
892 	skb->ip_summed = CHECKSUM_PARTIAL;
893 	/* specify the length of each IP datagram fragment */
894 	skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
895 	skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
896 
897 append:
898 	return skb_append_datato_frags(sk, skb, getfrag, from,
899 				       (length - transhdrlen));
900 }
901 
902 static int __ip_append_data(struct sock *sk,
903 			    struct flowi4 *fl4,
904 			    struct sk_buff_head *queue,
905 			    struct inet_cork *cork,
906 			    struct page_frag *pfrag,
907 			    int getfrag(void *from, char *to, int offset,
908 					int len, int odd, struct sk_buff *skb),
909 			    void *from, int length, int transhdrlen,
910 			    unsigned int flags)
911 {
912 	struct inet_sock *inet = inet_sk(sk);
913 	struct sk_buff *skb;
914 
915 	struct ip_options *opt = cork->opt;
916 	int hh_len;
917 	int exthdrlen;
918 	int mtu;
919 	int copy;
920 	int err;
921 	int offset = 0;
922 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
923 	int csummode = CHECKSUM_NONE;
924 	struct rtable *rt = (struct rtable *)cork->dst;
925 	u32 tskey = 0;
926 
927 	skb = skb_peek_tail(queue);
928 
929 	exthdrlen = !skb ? rt->dst.header_len : 0;
930 	mtu = cork->fragsize;
931 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
932 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
933 		tskey = sk->sk_tskey++;
934 
935 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
936 
937 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
938 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
939 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
940 
941 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
942 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
943 			       mtu - (opt ? opt->optlen : 0));
944 		return -EMSGSIZE;
945 	}
946 
947 	/*
948 	 * transhdrlen > 0 means that this is the first fragment and we wish
949 	 * it won't be fragmented in the future.
950 	 */
951 	if (transhdrlen &&
952 	    length + fragheaderlen <= mtu &&
953 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
954 	    !(flags & MSG_MORE) &&
955 	    !exthdrlen)
956 		csummode = CHECKSUM_PARTIAL;
957 
958 	cork->length += length;
959 	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
960 	    (sk->sk_protocol == IPPROTO_UDP) &&
961 	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
962 	    (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) {
963 		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
964 					 hh_len, fragheaderlen, transhdrlen,
965 					 maxfraglen, flags);
966 		if (err)
967 			goto error;
968 		return 0;
969 	}
970 
971 	/* So, what's going on in the loop below?
972 	 *
973 	 * We use calculated fragment length to generate chained skb,
974 	 * each of segments is IP fragment ready for sending to network after
975 	 * adding appropriate IP header.
976 	 */
977 
978 	if (!skb)
979 		goto alloc_new_skb;
980 
981 	while (length > 0) {
982 		/* Check if the remaining data fits into current packet. */
983 		copy = mtu - skb->len;
984 		if (copy < length)
985 			copy = maxfraglen - skb->len;
986 		if (copy <= 0) {
987 			char *data;
988 			unsigned int datalen;
989 			unsigned int fraglen;
990 			unsigned int fraggap;
991 			unsigned int alloclen;
992 			struct sk_buff *skb_prev;
993 alloc_new_skb:
994 			skb_prev = skb;
995 			if (skb_prev)
996 				fraggap = skb_prev->len - maxfraglen;
997 			else
998 				fraggap = 0;
999 
1000 			/*
1001 			 * If remaining data exceeds the mtu,
1002 			 * we know we need more fragment(s).
1003 			 */
1004 			datalen = length + fraggap;
1005 			if (datalen > mtu - fragheaderlen)
1006 				datalen = maxfraglen - fragheaderlen;
1007 			fraglen = datalen + fragheaderlen;
1008 
1009 			if ((flags & MSG_MORE) &&
1010 			    !(rt->dst.dev->features&NETIF_F_SG))
1011 				alloclen = mtu;
1012 			else
1013 				alloclen = fraglen;
1014 
1015 			alloclen += exthdrlen;
1016 
1017 			/* The last fragment gets additional space at tail.
1018 			 * Note, with MSG_MORE we overallocate on fragments,
1019 			 * because we have no idea what fragment will be
1020 			 * the last.
1021 			 */
1022 			if (datalen == length + fraggap)
1023 				alloclen += rt->dst.trailer_len;
1024 
1025 			if (transhdrlen) {
1026 				skb = sock_alloc_send_skb(sk,
1027 						alloclen + hh_len + 15,
1028 						(flags & MSG_DONTWAIT), &err);
1029 			} else {
1030 				skb = NULL;
1031 				if (atomic_read(&sk->sk_wmem_alloc) <=
1032 				    2 * sk->sk_sndbuf)
1033 					skb = sock_wmalloc(sk,
1034 							   alloclen + hh_len + 15, 1,
1035 							   sk->sk_allocation);
1036 				if (unlikely(!skb))
1037 					err = -ENOBUFS;
1038 			}
1039 			if (!skb)
1040 				goto error;
1041 
1042 			/*
1043 			 *	Fill in the control structures
1044 			 */
1045 			skb->ip_summed = csummode;
1046 			skb->csum = 0;
1047 			skb_reserve(skb, hh_len);
1048 
1049 			/* only the initial fragment is time stamped */
1050 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1051 			cork->tx_flags = 0;
1052 			skb_shinfo(skb)->tskey = tskey;
1053 			tskey = 0;
1054 
1055 			/*
1056 			 *	Find where to start putting bytes.
1057 			 */
1058 			data = skb_put(skb, fraglen + exthdrlen);
1059 			skb_set_network_header(skb, exthdrlen);
1060 			skb->transport_header = (skb->network_header +
1061 						 fragheaderlen);
1062 			data += fragheaderlen + exthdrlen;
1063 
1064 			if (fraggap) {
1065 				skb->csum = skb_copy_and_csum_bits(
1066 					skb_prev, maxfraglen,
1067 					data + transhdrlen, fraggap, 0);
1068 				skb_prev->csum = csum_sub(skb_prev->csum,
1069 							  skb->csum);
1070 				data += fraggap;
1071 				pskb_trim_unique(skb_prev, maxfraglen);
1072 			}
1073 
1074 			copy = datalen - transhdrlen - fraggap;
1075 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1076 				err = -EFAULT;
1077 				kfree_skb(skb);
1078 				goto error;
1079 			}
1080 
1081 			offset += copy;
1082 			length -= datalen - fraggap;
1083 			transhdrlen = 0;
1084 			exthdrlen = 0;
1085 			csummode = CHECKSUM_NONE;
1086 
1087 			/*
1088 			 * Put the packet on the pending queue.
1089 			 */
1090 			__skb_queue_tail(queue, skb);
1091 			continue;
1092 		}
1093 
1094 		if (copy > length)
1095 			copy = length;
1096 
1097 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
1098 			unsigned int off;
1099 
1100 			off = skb->len;
1101 			if (getfrag(from, skb_put(skb, copy),
1102 					offset, copy, off, skb) < 0) {
1103 				__skb_trim(skb, off);
1104 				err = -EFAULT;
1105 				goto error;
1106 			}
1107 		} else {
1108 			int i = skb_shinfo(skb)->nr_frags;
1109 
1110 			err = -ENOMEM;
1111 			if (!sk_page_frag_refill(sk, pfrag))
1112 				goto error;
1113 
1114 			if (!skb_can_coalesce(skb, i, pfrag->page,
1115 					      pfrag->offset)) {
1116 				err = -EMSGSIZE;
1117 				if (i == MAX_SKB_FRAGS)
1118 					goto error;
1119 
1120 				__skb_fill_page_desc(skb, i, pfrag->page,
1121 						     pfrag->offset, 0);
1122 				skb_shinfo(skb)->nr_frags = ++i;
1123 				get_page(pfrag->page);
1124 			}
1125 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1126 			if (getfrag(from,
1127 				    page_address(pfrag->page) + pfrag->offset,
1128 				    offset, copy, skb->len, skb) < 0)
1129 				goto error_efault;
1130 
1131 			pfrag->offset += copy;
1132 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1133 			skb->len += copy;
1134 			skb->data_len += copy;
1135 			skb->truesize += copy;
1136 			atomic_add(copy, &sk->sk_wmem_alloc);
1137 		}
1138 		offset += copy;
1139 		length -= copy;
1140 	}
1141 
1142 	return 0;
1143 
1144 error_efault:
1145 	err = -EFAULT;
1146 error:
1147 	cork->length -= length;
1148 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1149 	return err;
1150 }
1151 
1152 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1153 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1154 {
1155 	struct ip_options_rcu *opt;
1156 	struct rtable *rt;
1157 
1158 	/*
1159 	 * setup for corking.
1160 	 */
1161 	opt = ipc->opt;
1162 	if (opt) {
1163 		if (!cork->opt) {
1164 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1165 					    sk->sk_allocation);
1166 			if (unlikely(!cork->opt))
1167 				return -ENOBUFS;
1168 		}
1169 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1170 		cork->flags |= IPCORK_OPT;
1171 		cork->addr = ipc->addr;
1172 	}
1173 	rt = *rtp;
1174 	if (unlikely(!rt))
1175 		return -EFAULT;
1176 	/*
1177 	 * We steal reference to this route, caller should not release it
1178 	 */
1179 	*rtp = NULL;
1180 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1181 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1182 	cork->dst = &rt->dst;
1183 	cork->length = 0;
1184 	cork->ttl = ipc->ttl;
1185 	cork->tos = ipc->tos;
1186 	cork->priority = ipc->priority;
1187 	cork->tx_flags = ipc->tx_flags;
1188 
1189 	return 0;
1190 }
1191 
1192 /*
1193  *	ip_append_data() and ip_append_page() can make one large IP datagram
1194  *	from many pieces of data. Each pieces will be holded on the socket
1195  *	until ip_push_pending_frames() is called. Each piece can be a page
1196  *	or non-page data.
1197  *
1198  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1199  *	this interface potentially.
1200  *
1201  *	LATER: length must be adjusted by pad at tail, when it is required.
1202  */
1203 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1204 		   int getfrag(void *from, char *to, int offset, int len,
1205 			       int odd, struct sk_buff *skb),
1206 		   void *from, int length, int transhdrlen,
1207 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1208 		   unsigned int flags)
1209 {
1210 	struct inet_sock *inet = inet_sk(sk);
1211 	int err;
1212 
1213 	if (flags&MSG_PROBE)
1214 		return 0;
1215 
1216 	if (skb_queue_empty(&sk->sk_write_queue)) {
1217 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1218 		if (err)
1219 			return err;
1220 	} else {
1221 		transhdrlen = 0;
1222 	}
1223 
1224 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1225 				sk_page_frag(sk), getfrag,
1226 				from, length, transhdrlen, flags);
1227 }
1228 
1229 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1230 		       int offset, size_t size, int flags)
1231 {
1232 	struct inet_sock *inet = inet_sk(sk);
1233 	struct sk_buff *skb;
1234 	struct rtable *rt;
1235 	struct ip_options *opt = NULL;
1236 	struct inet_cork *cork;
1237 	int hh_len;
1238 	int mtu;
1239 	int len;
1240 	int err;
1241 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1242 
1243 	if (inet->hdrincl)
1244 		return -EPERM;
1245 
1246 	if (flags&MSG_PROBE)
1247 		return 0;
1248 
1249 	if (skb_queue_empty(&sk->sk_write_queue))
1250 		return -EINVAL;
1251 
1252 	cork = &inet->cork.base;
1253 	rt = (struct rtable *)cork->dst;
1254 	if (cork->flags & IPCORK_OPT)
1255 		opt = cork->opt;
1256 
1257 	if (!(rt->dst.dev->features&NETIF_F_SG))
1258 		return -EOPNOTSUPP;
1259 
1260 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1261 	mtu = cork->fragsize;
1262 
1263 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1264 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1265 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1266 
1267 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1268 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1269 			       mtu - (opt ? opt->optlen : 0));
1270 		return -EMSGSIZE;
1271 	}
1272 
1273 	skb = skb_peek_tail(&sk->sk_write_queue);
1274 	if (!skb)
1275 		return -EINVAL;
1276 
1277 	if ((size + skb->len > mtu) &&
1278 	    (sk->sk_protocol == IPPROTO_UDP) &&
1279 	    (rt->dst.dev->features & NETIF_F_UFO)) {
1280 		if (skb->ip_summed != CHECKSUM_PARTIAL)
1281 			return -EOPNOTSUPP;
1282 
1283 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1284 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1285 	}
1286 	cork->length += size;
1287 
1288 	while (size > 0) {
1289 		if (skb_is_gso(skb)) {
1290 			len = size;
1291 		} else {
1292 
1293 			/* Check if the remaining data fits into current packet. */
1294 			len = mtu - skb->len;
1295 			if (len < size)
1296 				len = maxfraglen - skb->len;
1297 		}
1298 		if (len <= 0) {
1299 			struct sk_buff *skb_prev;
1300 			int alloclen;
1301 
1302 			skb_prev = skb;
1303 			fraggap = skb_prev->len - maxfraglen;
1304 
1305 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1306 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1307 			if (unlikely(!skb)) {
1308 				err = -ENOBUFS;
1309 				goto error;
1310 			}
1311 
1312 			/*
1313 			 *	Fill in the control structures
1314 			 */
1315 			skb->ip_summed = CHECKSUM_NONE;
1316 			skb->csum = 0;
1317 			skb_reserve(skb, hh_len);
1318 
1319 			/*
1320 			 *	Find where to start putting bytes.
1321 			 */
1322 			skb_put(skb, fragheaderlen + fraggap);
1323 			skb_reset_network_header(skb);
1324 			skb->transport_header = (skb->network_header +
1325 						 fragheaderlen);
1326 			if (fraggap) {
1327 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1328 								   maxfraglen,
1329 						    skb_transport_header(skb),
1330 								   fraggap, 0);
1331 				skb_prev->csum = csum_sub(skb_prev->csum,
1332 							  skb->csum);
1333 				pskb_trim_unique(skb_prev, maxfraglen);
1334 			}
1335 
1336 			/*
1337 			 * Put the packet on the pending queue.
1338 			 */
1339 			__skb_queue_tail(&sk->sk_write_queue, skb);
1340 			continue;
1341 		}
1342 
1343 		if (len > size)
1344 			len = size;
1345 
1346 		if (skb_append_pagefrags(skb, page, offset, len)) {
1347 			err = -EMSGSIZE;
1348 			goto error;
1349 		}
1350 
1351 		if (skb->ip_summed == CHECKSUM_NONE) {
1352 			__wsum csum;
1353 			csum = csum_page(page, offset, len);
1354 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1355 		}
1356 
1357 		skb->len += len;
1358 		skb->data_len += len;
1359 		skb->truesize += len;
1360 		atomic_add(len, &sk->sk_wmem_alloc);
1361 		offset += len;
1362 		size -= len;
1363 	}
1364 	return 0;
1365 
1366 error:
1367 	cork->length -= size;
1368 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1369 	return err;
1370 }
1371 
1372 static void ip_cork_release(struct inet_cork *cork)
1373 {
1374 	cork->flags &= ~IPCORK_OPT;
1375 	kfree(cork->opt);
1376 	cork->opt = NULL;
1377 	dst_release(cork->dst);
1378 	cork->dst = NULL;
1379 }
1380 
1381 /*
1382  *	Combined all pending IP fragments on the socket as one IP datagram
1383  *	and push them out.
1384  */
1385 struct sk_buff *__ip_make_skb(struct sock *sk,
1386 			      struct flowi4 *fl4,
1387 			      struct sk_buff_head *queue,
1388 			      struct inet_cork *cork)
1389 {
1390 	struct sk_buff *skb, *tmp_skb;
1391 	struct sk_buff **tail_skb;
1392 	struct inet_sock *inet = inet_sk(sk);
1393 	struct net *net = sock_net(sk);
1394 	struct ip_options *opt = NULL;
1395 	struct rtable *rt = (struct rtable *)cork->dst;
1396 	struct iphdr *iph;
1397 	__be16 df = 0;
1398 	__u8 ttl;
1399 
1400 	skb = __skb_dequeue(queue);
1401 	if (!skb)
1402 		goto out;
1403 	tail_skb = &(skb_shinfo(skb)->frag_list);
1404 
1405 	/* move skb->data to ip header from ext header */
1406 	if (skb->data < skb_network_header(skb))
1407 		__skb_pull(skb, skb_network_offset(skb));
1408 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1409 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1410 		*tail_skb = tmp_skb;
1411 		tail_skb = &(tmp_skb->next);
1412 		skb->len += tmp_skb->len;
1413 		skb->data_len += tmp_skb->len;
1414 		skb->truesize += tmp_skb->truesize;
1415 		tmp_skb->destructor = NULL;
1416 		tmp_skb->sk = NULL;
1417 	}
1418 
1419 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1420 	 * to fragment the frame generated here. No matter, what transforms
1421 	 * how transforms change size of the packet, it will come out.
1422 	 */
1423 	skb->ignore_df = ip_sk_ignore_df(sk);
1424 
1425 	/* DF bit is set when we want to see DF on outgoing frames.
1426 	 * If ignore_df is set too, we still allow to fragment this frame
1427 	 * locally. */
1428 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1429 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1430 	    (skb->len <= dst_mtu(&rt->dst) &&
1431 	     ip_dont_fragment(sk, &rt->dst)))
1432 		df = htons(IP_DF);
1433 
1434 	if (cork->flags & IPCORK_OPT)
1435 		opt = cork->opt;
1436 
1437 	if (cork->ttl != 0)
1438 		ttl = cork->ttl;
1439 	else if (rt->rt_type == RTN_MULTICAST)
1440 		ttl = inet->mc_ttl;
1441 	else
1442 		ttl = ip_select_ttl(inet, &rt->dst);
1443 
1444 	iph = ip_hdr(skb);
1445 	iph->version = 4;
1446 	iph->ihl = 5;
1447 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1448 	iph->frag_off = df;
1449 	iph->ttl = ttl;
1450 	iph->protocol = sk->sk_protocol;
1451 	ip_copy_addrs(iph, fl4);
1452 	ip_select_ident(net, skb, sk);
1453 
1454 	if (opt) {
1455 		iph->ihl += opt->optlen>>2;
1456 		ip_options_build(skb, opt, cork->addr, rt, 0);
1457 	}
1458 
1459 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1460 	skb->mark = sk->sk_mark;
1461 	/*
1462 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1463 	 * on dst refcount
1464 	 */
1465 	cork->dst = NULL;
1466 	skb_dst_set(skb, &rt->dst);
1467 
1468 	if (iph->protocol == IPPROTO_ICMP)
1469 		icmp_out_count(net, ((struct icmphdr *)
1470 			skb_transport_header(skb))->type);
1471 
1472 	ip_cork_release(cork);
1473 out:
1474 	return skb;
1475 }
1476 
1477 int ip_send_skb(struct net *net, struct sk_buff *skb)
1478 {
1479 	int err;
1480 
1481 	err = ip_local_out(net, skb->sk, skb);
1482 	if (err) {
1483 		if (err > 0)
1484 			err = net_xmit_errno(err);
1485 		if (err)
1486 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1487 	}
1488 
1489 	return err;
1490 }
1491 
1492 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1493 {
1494 	struct sk_buff *skb;
1495 
1496 	skb = ip_finish_skb(sk, fl4);
1497 	if (!skb)
1498 		return 0;
1499 
1500 	/* Netfilter gets whole the not fragmented skb. */
1501 	return ip_send_skb(sock_net(sk), skb);
1502 }
1503 
1504 /*
1505  *	Throw away all pending data on the socket.
1506  */
1507 static void __ip_flush_pending_frames(struct sock *sk,
1508 				      struct sk_buff_head *queue,
1509 				      struct inet_cork *cork)
1510 {
1511 	struct sk_buff *skb;
1512 
1513 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1514 		kfree_skb(skb);
1515 
1516 	ip_cork_release(cork);
1517 }
1518 
1519 void ip_flush_pending_frames(struct sock *sk)
1520 {
1521 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1522 }
1523 
1524 struct sk_buff *ip_make_skb(struct sock *sk,
1525 			    struct flowi4 *fl4,
1526 			    int getfrag(void *from, char *to, int offset,
1527 					int len, int odd, struct sk_buff *skb),
1528 			    void *from, int length, int transhdrlen,
1529 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1530 			    unsigned int flags)
1531 {
1532 	struct inet_cork cork;
1533 	struct sk_buff_head queue;
1534 	int err;
1535 
1536 	if (flags & MSG_PROBE)
1537 		return NULL;
1538 
1539 	__skb_queue_head_init(&queue);
1540 
1541 	cork.flags = 0;
1542 	cork.addr = 0;
1543 	cork.opt = NULL;
1544 	err = ip_setup_cork(sk, &cork, ipc, rtp);
1545 	if (err)
1546 		return ERR_PTR(err);
1547 
1548 	err = __ip_append_data(sk, fl4, &queue, &cork,
1549 			       &current->task_frag, getfrag,
1550 			       from, length, transhdrlen, flags);
1551 	if (err) {
1552 		__ip_flush_pending_frames(sk, &queue, &cork);
1553 		return ERR_PTR(err);
1554 	}
1555 
1556 	return __ip_make_skb(sk, fl4, &queue, &cork);
1557 }
1558 
1559 /*
1560  *	Fetch data from kernel space and fill in checksum if needed.
1561  */
1562 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1563 			      int len, int odd, struct sk_buff *skb)
1564 {
1565 	__wsum csum;
1566 
1567 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1568 	skb->csum = csum_block_add(skb->csum, csum, odd);
1569 	return 0;
1570 }
1571 
1572 /*
1573  *	Generic function to send a packet as reply to another packet.
1574  *	Used to send some TCP resets/acks so far.
1575  */
1576 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1577 			   const struct ip_options *sopt,
1578 			   __be32 daddr, __be32 saddr,
1579 			   const struct ip_reply_arg *arg,
1580 			   unsigned int len)
1581 {
1582 	struct ip_options_data replyopts;
1583 	struct ipcm_cookie ipc;
1584 	struct flowi4 fl4;
1585 	struct rtable *rt = skb_rtable(skb);
1586 	struct net *net = sock_net(sk);
1587 	struct sk_buff *nskb;
1588 	int err;
1589 	int oif;
1590 
1591 	if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1592 		return;
1593 
1594 	ipc.addr = daddr;
1595 	ipc.opt = NULL;
1596 	ipc.tx_flags = 0;
1597 	ipc.ttl = 0;
1598 	ipc.tos = -1;
1599 
1600 	if (replyopts.opt.opt.optlen) {
1601 		ipc.opt = &replyopts.opt;
1602 
1603 		if (replyopts.opt.opt.srr)
1604 			daddr = replyopts.opt.opt.faddr;
1605 	}
1606 
1607 	oif = arg->bound_dev_if;
1608 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1609 		oif = skb->skb_iif;
1610 
1611 	flowi4_init_output(&fl4, oif,
1612 			   IP4_REPLY_MARK(net, skb->mark),
1613 			   RT_TOS(arg->tos),
1614 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1615 			   ip_reply_arg_flowi_flags(arg),
1616 			   daddr, saddr,
1617 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1618 			   arg->uid);
1619 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1620 	rt = ip_route_output_key(net, &fl4);
1621 	if (IS_ERR(rt))
1622 		return;
1623 
1624 	inet_sk(sk)->tos = arg->tos;
1625 
1626 	sk->sk_priority = skb->priority;
1627 	sk->sk_protocol = ip_hdr(skb)->protocol;
1628 	sk->sk_bound_dev_if = arg->bound_dev_if;
1629 	sk->sk_sndbuf = sysctl_wmem_default;
1630 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1631 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1632 	if (unlikely(err)) {
1633 		ip_flush_pending_frames(sk);
1634 		goto out;
1635 	}
1636 
1637 	nskb = skb_peek(&sk->sk_write_queue);
1638 	if (nskb) {
1639 		if (arg->csumoffset >= 0)
1640 			*((__sum16 *)skb_transport_header(nskb) +
1641 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1642 								arg->csum));
1643 		nskb->ip_summed = CHECKSUM_NONE;
1644 		ip_push_pending_frames(sk, &fl4);
1645 	}
1646 out:
1647 	ip_rt_put(rt);
1648 }
1649 
1650 void __init ip_init(void)
1651 {
1652 	ip_rt_init();
1653 	inet_initpeers();
1654 
1655 #if defined(CONFIG_IP_MULTICAST)
1656 	igmp_mc_init();
1657 #endif
1658 }
1659