xref: /linux/net/ipv4/ip_output.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Version:	$Id: ip_output.c,v 1.100 2002/02/01 22:01:03 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Donald Becker, <becker@super.org>
13  *		Alan Cox, <Alan.Cox@linux.org>
14  *		Richard Underwood
15  *		Stefan Becker, <stefanb@yello.ping.de>
16  *		Jorge Cwik, <jorge@laser.satlink.net>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Hirokazu Takahashi, <taka@valinux.co.jp>
19  *
20  *	See ip_input.c for original log
21  *
22  *	Fixes:
23  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
24  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
25  *		Bradford Johnson:	Fix faulty handling of some frames when
26  *					no route is found.
27  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
28  *					(in case if packet not accepted by
29  *					output firewall rules)
30  *		Mike McLagan	:	Routing by source
31  *		Alexey Kuznetsov:	use new route cache
32  *		Andi Kleen:		Fix broken PMTU recovery and remove
33  *					some redundant tests.
34  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
35  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
36  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
37  *					for decreased register pressure on x86
38  *					and more readibility.
39  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
40  *					silently drop skb instead of failing with -EPERM.
41  *		Detlev Wengorz	:	Copy protocol for fragments.
42  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
43  *					datagrams.
44  *		Hirokazu Takahashi:	sendfile() on UDP works now.
45  */
46 
47 #include <asm/uaccess.h>
48 #include <asm/system.h>
49 #include <linux/module.h>
50 #include <linux/types.h>
51 #include <linux/kernel.h>
52 #include <linux/sched.h>
53 #include <linux/mm.h>
54 #include <linux/string.h>
55 #include <linux/errno.h>
56 
57 #include <linux/socket.h>
58 #include <linux/sockios.h>
59 #include <linux/in.h>
60 #include <linux/inet.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/stat.h>
65 #include <linux/init.h>
66 
67 #include <net/snmp.h>
68 #include <net/ip.h>
69 #include <net/protocol.h>
70 #include <net/route.h>
71 #include <net/xfrm.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <net/arp.h>
75 #include <net/icmp.h>
76 #include <net/checksum.h>
77 #include <net/inetpeer.h>
78 #include <net/checksum.h>
79 #include <linux/igmp.h>
80 #include <linux/netfilter_ipv4.h>
81 #include <linux/netfilter_bridge.h>
82 #include <linux/mroute.h>
83 #include <linux/netlink.h>
84 #include <linux/tcp.h>
85 
86 int sysctl_ip_default_ttl = IPDEFTTL;
87 
88 /* Generate a checksum for an outgoing IP datagram. */
89 __inline__ void ip_send_check(struct iphdr *iph)
90 {
91 	iph->check = 0;
92 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
93 }
94 
95 /* dev_loopback_xmit for use with netfilter. */
96 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
97 {
98 	newskb->mac.raw = newskb->data;
99 	__skb_pull(newskb, newskb->nh.raw - newskb->data);
100 	newskb->pkt_type = PACKET_LOOPBACK;
101 	newskb->ip_summed = CHECKSUM_UNNECESSARY;
102 	BUG_TRAP(newskb->dst);
103 	netif_rx(newskb);
104 	return 0;
105 }
106 
107 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
108 {
109 	int ttl = inet->uc_ttl;
110 
111 	if (ttl < 0)
112 		ttl = dst_metric(dst, RTAX_HOPLIMIT);
113 	return ttl;
114 }
115 
116 /*
117  *		Add an ip header to a skbuff and send it out.
118  *
119  */
120 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
121 			  u32 saddr, u32 daddr, struct ip_options *opt)
122 {
123 	struct inet_sock *inet = inet_sk(sk);
124 	struct rtable *rt = (struct rtable *)skb->dst;
125 	struct iphdr *iph;
126 
127 	/* Build the IP header. */
128 	if (opt)
129 		iph=(struct iphdr *)skb_push(skb,sizeof(struct iphdr) + opt->optlen);
130 	else
131 		iph=(struct iphdr *)skb_push(skb,sizeof(struct iphdr));
132 
133 	iph->version  = 4;
134 	iph->ihl      = 5;
135 	iph->tos      = inet->tos;
136 	if (ip_dont_fragment(sk, &rt->u.dst))
137 		iph->frag_off = htons(IP_DF);
138 	else
139 		iph->frag_off = 0;
140 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
141 	iph->daddr    = rt->rt_dst;
142 	iph->saddr    = rt->rt_src;
143 	iph->protocol = sk->sk_protocol;
144 	iph->tot_len  = htons(skb->len);
145 	ip_select_ident(iph, &rt->u.dst, sk);
146 	skb->nh.iph   = iph;
147 
148 	if (opt && opt->optlen) {
149 		iph->ihl += opt->optlen>>2;
150 		ip_options_build(skb, opt, daddr, rt, 0);
151 	}
152 	ip_send_check(iph);
153 
154 	skb->priority = sk->sk_priority;
155 
156 	/* Send it out. */
157 	return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
158 		       dst_output);
159 }
160 
161 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
162 
163 static inline int ip_finish_output2(struct sk_buff *skb)
164 {
165 	struct dst_entry *dst = skb->dst;
166 	struct hh_cache *hh = dst->hh;
167 	struct net_device *dev = dst->dev;
168 	int hh_len = LL_RESERVED_SPACE(dev);
169 
170 	/* Be paranoid, rather than too clever. */
171 	if (unlikely(skb_headroom(skb) < hh_len && dev->hard_header)) {
172 		struct sk_buff *skb2;
173 
174 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
175 		if (skb2 == NULL) {
176 			kfree_skb(skb);
177 			return -ENOMEM;
178 		}
179 		if (skb->sk)
180 			skb_set_owner_w(skb2, skb->sk);
181 		kfree_skb(skb);
182 		skb = skb2;
183 	}
184 
185 	if (hh) {
186 		int hh_alen;
187 
188 		read_lock_bh(&hh->hh_lock);
189 		hh_alen = HH_DATA_ALIGN(hh->hh_len);
190   		memcpy(skb->data - hh_alen, hh->hh_data, hh_alen);
191 		read_unlock_bh(&hh->hh_lock);
192 	        skb_push(skb, hh->hh_len);
193 		return hh->hh_output(skb);
194 	} else if (dst->neighbour)
195 		return dst->neighbour->output(skb);
196 
197 	if (net_ratelimit())
198 		printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
199 	kfree_skb(skb);
200 	return -EINVAL;
201 }
202 
203 static inline int ip_finish_output(struct sk_buff *skb)
204 {
205 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
206 	/* Policy lookup after SNAT yielded a new policy */
207 	if (skb->dst->xfrm != NULL) {
208 		IPCB(skb)->flags |= IPSKB_REROUTED;
209 		return dst_output(skb);
210 	}
211 #endif
212 	if (skb->len > dst_mtu(skb->dst) && !skb_is_gso(skb))
213 		return ip_fragment(skb, ip_finish_output2);
214 	else
215 		return ip_finish_output2(skb);
216 }
217 
218 int ip_mc_output(struct sk_buff *skb)
219 {
220 	struct sock *sk = skb->sk;
221 	struct rtable *rt = (struct rtable*)skb->dst;
222 	struct net_device *dev = rt->u.dst.dev;
223 
224 	/*
225 	 *	If the indicated interface is up and running, send the packet.
226 	 */
227 	IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
228 
229 	skb->dev = dev;
230 	skb->protocol = htons(ETH_P_IP);
231 
232 	/*
233 	 *	Multicasts are looped back for other local users
234 	 */
235 
236 	if (rt->rt_flags&RTCF_MULTICAST) {
237 		if ((!sk || inet_sk(sk)->mc_loop)
238 #ifdef CONFIG_IP_MROUTE
239 		/* Small optimization: do not loopback not local frames,
240 		   which returned after forwarding; they will be  dropped
241 		   by ip_mr_input in any case.
242 		   Note, that local frames are looped back to be delivered
243 		   to local recipients.
244 
245 		   This check is duplicated in ip_mr_input at the moment.
246 		 */
247 		    && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
248 #endif
249 		) {
250 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
251 			if (newskb)
252 				NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
253 					newskb->dev,
254 					ip_dev_loopback_xmit);
255 		}
256 
257 		/* Multicasts with ttl 0 must not go beyond the host */
258 
259 		if (skb->nh.iph->ttl == 0) {
260 			kfree_skb(skb);
261 			return 0;
262 		}
263 	}
264 
265 	if (rt->rt_flags&RTCF_BROADCAST) {
266 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
267 		if (newskb)
268 			NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
269 				newskb->dev, ip_dev_loopback_xmit);
270 	}
271 
272 	return NF_HOOK_COND(PF_INET, NF_IP_POST_ROUTING, skb, NULL, skb->dev,
273 			    ip_finish_output,
274 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
275 }
276 
277 int ip_output(struct sk_buff *skb)
278 {
279 	struct net_device *dev = skb->dst->dev;
280 
281 	IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
282 
283 	skb->dev = dev;
284 	skb->protocol = htons(ETH_P_IP);
285 
286 	return NF_HOOK_COND(PF_INET, NF_IP_POST_ROUTING, skb, NULL, dev,
287 		            ip_finish_output,
288 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
289 }
290 
291 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
292 {
293 	struct sock *sk = skb->sk;
294 	struct inet_sock *inet = inet_sk(sk);
295 	struct ip_options *opt = inet->opt;
296 	struct rtable *rt;
297 	struct iphdr *iph;
298 
299 	/* Skip all of this if the packet is already routed,
300 	 * f.e. by something like SCTP.
301 	 */
302 	rt = (struct rtable *) skb->dst;
303 	if (rt != NULL)
304 		goto packet_routed;
305 
306 	/* Make sure we can route this packet. */
307 	rt = (struct rtable *)__sk_dst_check(sk, 0);
308 	if (rt == NULL) {
309 		u32 daddr;
310 
311 		/* Use correct destination address if we have options. */
312 		daddr = inet->daddr;
313 		if(opt && opt->srr)
314 			daddr = opt->faddr;
315 
316 		{
317 			struct flowi fl = { .oif = sk->sk_bound_dev_if,
318 					    .nl_u = { .ip4_u =
319 						      { .daddr = daddr,
320 							.saddr = inet->saddr,
321 							.tos = RT_CONN_FLAGS(sk) } },
322 					    .proto = sk->sk_protocol,
323 					    .uli_u = { .ports =
324 						       { .sport = inet->sport,
325 							 .dport = inet->dport } } };
326 
327 			/* If this fails, retransmit mechanism of transport layer will
328 			 * keep trying until route appears or the connection times
329 			 * itself out.
330 			 */
331 			if (ip_route_output_flow(&rt, &fl, sk, 0))
332 				goto no_route;
333 		}
334 		sk_setup_caps(sk, &rt->u.dst);
335 	}
336 	skb->dst = dst_clone(&rt->u.dst);
337 
338 packet_routed:
339 	if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
340 		goto no_route;
341 
342 	/* OK, we know where to send it, allocate and build IP header. */
343 	iph = (struct iphdr *) skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
344 	*((__u16 *)iph)	= htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
345 	iph->tot_len = htons(skb->len);
346 	if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
347 		iph->frag_off = htons(IP_DF);
348 	else
349 		iph->frag_off = 0;
350 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
351 	iph->protocol = sk->sk_protocol;
352 	iph->saddr    = rt->rt_src;
353 	iph->daddr    = rt->rt_dst;
354 	skb->nh.iph   = iph;
355 	/* Transport layer set skb->h.foo itself. */
356 
357 	if (opt && opt->optlen) {
358 		iph->ihl += opt->optlen >> 2;
359 		ip_options_build(skb, opt, inet->daddr, rt, 0);
360 	}
361 
362 	ip_select_ident_more(iph, &rt->u.dst, sk,
363 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
364 
365 	/* Add an IP checksum. */
366 	ip_send_check(iph);
367 
368 	skb->priority = sk->sk_priority;
369 
370 	return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
371 		       dst_output);
372 
373 no_route:
374 	IP_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
375 	kfree_skb(skb);
376 	return -EHOSTUNREACH;
377 }
378 
379 
380 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
381 {
382 	to->pkt_type = from->pkt_type;
383 	to->priority = from->priority;
384 	to->protocol = from->protocol;
385 	dst_release(to->dst);
386 	to->dst = dst_clone(from->dst);
387 	to->dev = from->dev;
388 
389 	/* Copy the flags to each fragment. */
390 	IPCB(to)->flags = IPCB(from)->flags;
391 
392 #ifdef CONFIG_NET_SCHED
393 	to->tc_index = from->tc_index;
394 #endif
395 #ifdef CONFIG_NETFILTER
396 	to->nfmark = from->nfmark;
397 	/* Connection association is same as pre-frag packet */
398 	nf_conntrack_put(to->nfct);
399 	to->nfct = from->nfct;
400 	nf_conntrack_get(to->nfct);
401 	to->nfctinfo = from->nfctinfo;
402 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
403 	to->ipvs_property = from->ipvs_property;
404 #endif
405 #ifdef CONFIG_BRIDGE_NETFILTER
406 	nf_bridge_put(to->nf_bridge);
407 	to->nf_bridge = from->nf_bridge;
408 	nf_bridge_get(to->nf_bridge);
409 #endif
410 #endif
411 	skb_copy_secmark(to, from);
412 }
413 
414 /*
415  *	This IP datagram is too large to be sent in one piece.  Break it up into
416  *	smaller pieces (each of size equal to IP header plus
417  *	a block of the data of the original IP data part) that will yet fit in a
418  *	single device frame, and queue such a frame for sending.
419  */
420 
421 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))
422 {
423 	struct iphdr *iph;
424 	int raw = 0;
425 	int ptr;
426 	struct net_device *dev;
427 	struct sk_buff *skb2;
428 	unsigned int mtu, hlen, left, len, ll_rs;
429 	int offset;
430 	__be16 not_last_frag;
431 	struct rtable *rt = (struct rtable*)skb->dst;
432 	int err = 0;
433 
434 	dev = rt->u.dst.dev;
435 
436 	/*
437 	 *	Point into the IP datagram header.
438 	 */
439 
440 	iph = skb->nh.iph;
441 
442 	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
443 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
444 			  htonl(dst_mtu(&rt->u.dst)));
445 		kfree_skb(skb);
446 		return -EMSGSIZE;
447 	}
448 
449 	/*
450 	 *	Setup starting values.
451 	 */
452 
453 	hlen = iph->ihl * 4;
454 	mtu = dst_mtu(&rt->u.dst) - hlen;	/* Size of data space */
455 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
456 
457 	/* When frag_list is given, use it. First, check its validity:
458 	 * some transformers could create wrong frag_list or break existing
459 	 * one, it is not prohibited. In this case fall back to copying.
460 	 *
461 	 * LATER: this step can be merged to real generation of fragments,
462 	 * we can switch to copy when see the first bad fragment.
463 	 */
464 	if (skb_shinfo(skb)->frag_list) {
465 		struct sk_buff *frag;
466 		int first_len = skb_pagelen(skb);
467 
468 		if (first_len - hlen > mtu ||
469 		    ((first_len - hlen) & 7) ||
470 		    (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
471 		    skb_cloned(skb))
472 			goto slow_path;
473 
474 		for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
475 			/* Correct geometry. */
476 			if (frag->len > mtu ||
477 			    ((frag->len & 7) && frag->next) ||
478 			    skb_headroom(frag) < hlen)
479 			    goto slow_path;
480 
481 			/* Partially cloned skb? */
482 			if (skb_shared(frag))
483 				goto slow_path;
484 
485 			BUG_ON(frag->sk);
486 			if (skb->sk) {
487 				sock_hold(skb->sk);
488 				frag->sk = skb->sk;
489 				frag->destructor = sock_wfree;
490 				skb->truesize -= frag->truesize;
491 			}
492 		}
493 
494 		/* Everything is OK. Generate! */
495 
496 		err = 0;
497 		offset = 0;
498 		frag = skb_shinfo(skb)->frag_list;
499 		skb_shinfo(skb)->frag_list = NULL;
500 		skb->data_len = first_len - skb_headlen(skb);
501 		skb->len = first_len;
502 		iph->tot_len = htons(first_len);
503 		iph->frag_off = htons(IP_MF);
504 		ip_send_check(iph);
505 
506 		for (;;) {
507 			/* Prepare header of the next frame,
508 			 * before previous one went down. */
509 			if (frag) {
510 				frag->ip_summed = CHECKSUM_NONE;
511 				frag->h.raw = frag->data;
512 				frag->nh.raw = __skb_push(frag, hlen);
513 				memcpy(frag->nh.raw, iph, hlen);
514 				iph = frag->nh.iph;
515 				iph->tot_len = htons(frag->len);
516 				ip_copy_metadata(frag, skb);
517 				if (offset == 0)
518 					ip_options_fragment(frag);
519 				offset += skb->len - hlen;
520 				iph->frag_off = htons(offset>>3);
521 				if (frag->next != NULL)
522 					iph->frag_off |= htons(IP_MF);
523 				/* Ready, complete checksum */
524 				ip_send_check(iph);
525 			}
526 
527 			err = output(skb);
528 
529 			if (err || !frag)
530 				break;
531 
532 			skb = frag;
533 			frag = skb->next;
534 			skb->next = NULL;
535 		}
536 
537 		if (err == 0) {
538 			IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
539 			return 0;
540 		}
541 
542 		while (frag) {
543 			skb = frag->next;
544 			kfree_skb(frag);
545 			frag = skb;
546 		}
547 		IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
548 		return err;
549 	}
550 
551 slow_path:
552 	left = skb->len - hlen;		/* Space per frame */
553 	ptr = raw + hlen;		/* Where to start from */
554 
555 #ifdef CONFIG_BRIDGE_NETFILTER
556 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
557 	 * we need to make room for the encapsulating header */
558 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, nf_bridge_pad(skb));
559 	mtu -= nf_bridge_pad(skb);
560 #else
561 	ll_rs = LL_RESERVED_SPACE(rt->u.dst.dev);
562 #endif
563 	/*
564 	 *	Fragment the datagram.
565 	 */
566 
567 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
568 	not_last_frag = iph->frag_off & htons(IP_MF);
569 
570 	/*
571 	 *	Keep copying data until we run out.
572 	 */
573 
574 	while(left > 0)	{
575 		len = left;
576 		/* IF: it doesn't fit, use 'mtu' - the data space left */
577 		if (len > mtu)
578 			len = mtu;
579 		/* IF: we are not sending upto and including the packet end
580 		   then align the next start on an eight byte boundary */
581 		if (len < left)	{
582 			len &= ~7;
583 		}
584 		/*
585 		 *	Allocate buffer.
586 		 */
587 
588 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
589 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
590 			err = -ENOMEM;
591 			goto fail;
592 		}
593 
594 		/*
595 		 *	Set up data on packet
596 		 */
597 
598 		ip_copy_metadata(skb2, skb);
599 		skb_reserve(skb2, ll_rs);
600 		skb_put(skb2, len + hlen);
601 		skb2->nh.raw = skb2->data;
602 		skb2->h.raw = skb2->data + hlen;
603 
604 		/*
605 		 *	Charge the memory for the fragment to any owner
606 		 *	it might possess
607 		 */
608 
609 		if (skb->sk)
610 			skb_set_owner_w(skb2, skb->sk);
611 
612 		/*
613 		 *	Copy the packet header into the new buffer.
614 		 */
615 
616 		memcpy(skb2->nh.raw, skb->data, hlen);
617 
618 		/*
619 		 *	Copy a block of the IP datagram.
620 		 */
621 		if (skb_copy_bits(skb, ptr, skb2->h.raw, len))
622 			BUG();
623 		left -= len;
624 
625 		/*
626 		 *	Fill in the new header fields.
627 		 */
628 		iph = skb2->nh.iph;
629 		iph->frag_off = htons((offset >> 3));
630 
631 		/* ANK: dirty, but effective trick. Upgrade options only if
632 		 * the segment to be fragmented was THE FIRST (otherwise,
633 		 * options are already fixed) and make it ONCE
634 		 * on the initial skb, so that all the following fragments
635 		 * will inherit fixed options.
636 		 */
637 		if (offset == 0)
638 			ip_options_fragment(skb);
639 
640 		/*
641 		 *	Added AC : If we are fragmenting a fragment that's not the
642 		 *		   last fragment then keep MF on each bit
643 		 */
644 		if (left > 0 || not_last_frag)
645 			iph->frag_off |= htons(IP_MF);
646 		ptr += len;
647 		offset += len;
648 
649 		/*
650 		 *	Put this fragment into the sending queue.
651 		 */
652 
653 		IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
654 
655 		iph->tot_len = htons(len + hlen);
656 
657 		ip_send_check(iph);
658 
659 		err = output(skb2);
660 		if (err)
661 			goto fail;
662 	}
663 	kfree_skb(skb);
664 	IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
665 	return err;
666 
667 fail:
668 	kfree_skb(skb);
669 	IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
670 	return err;
671 }
672 
673 EXPORT_SYMBOL(ip_fragment);
674 
675 int
676 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
677 {
678 	struct iovec *iov = from;
679 
680 	if (skb->ip_summed == CHECKSUM_HW) {
681 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
682 			return -EFAULT;
683 	} else {
684 		unsigned int csum = 0;
685 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
686 			return -EFAULT;
687 		skb->csum = csum_block_add(skb->csum, csum, odd);
688 	}
689 	return 0;
690 }
691 
692 static inline unsigned int
693 csum_page(struct page *page, int offset, int copy)
694 {
695 	char *kaddr;
696 	unsigned int csum;
697 	kaddr = kmap(page);
698 	csum = csum_partial(kaddr + offset, copy, 0);
699 	kunmap(page);
700 	return csum;
701 }
702 
703 static inline int ip_ufo_append_data(struct sock *sk,
704 			int getfrag(void *from, char *to, int offset, int len,
705 			       int odd, struct sk_buff *skb),
706 			void *from, int length, int hh_len, int fragheaderlen,
707 			int transhdrlen, int mtu,unsigned int flags)
708 {
709 	struct sk_buff *skb;
710 	int err;
711 
712 	/* There is support for UDP fragmentation offload by network
713 	 * device, so create one single skb packet containing complete
714 	 * udp datagram
715 	 */
716 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
717 		skb = sock_alloc_send_skb(sk,
718 			hh_len + fragheaderlen + transhdrlen + 20,
719 			(flags & MSG_DONTWAIT), &err);
720 
721 		if (skb == NULL)
722 			return err;
723 
724 		/* reserve space for Hardware header */
725 		skb_reserve(skb, hh_len);
726 
727 		/* create space for UDP/IP header */
728 		skb_put(skb,fragheaderlen + transhdrlen);
729 
730 		/* initialize network header pointer */
731 		skb->nh.raw = skb->data;
732 
733 		/* initialize protocol header pointer */
734 		skb->h.raw = skb->data + fragheaderlen;
735 
736 		skb->ip_summed = CHECKSUM_HW;
737 		skb->csum = 0;
738 		sk->sk_sndmsg_off = 0;
739 	}
740 
741 	err = skb_append_datato_frags(sk,skb, getfrag, from,
742 			       (length - transhdrlen));
743 	if (!err) {
744 		/* specify the length of each IP datagram fragment*/
745 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
746 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
747 		__skb_queue_tail(&sk->sk_write_queue, skb);
748 
749 		return 0;
750 	}
751 	/* There is not enough support do UFO ,
752 	 * so follow normal path
753 	 */
754 	kfree_skb(skb);
755 	return err;
756 }
757 
758 /*
759  *	ip_append_data() and ip_append_page() can make one large IP datagram
760  *	from many pieces of data. Each pieces will be holded on the socket
761  *	until ip_push_pending_frames() is called. Each piece can be a page
762  *	or non-page data.
763  *
764  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
765  *	this interface potentially.
766  *
767  *	LATER: length must be adjusted by pad at tail, when it is required.
768  */
769 int ip_append_data(struct sock *sk,
770 		   int getfrag(void *from, char *to, int offset, int len,
771 			       int odd, struct sk_buff *skb),
772 		   void *from, int length, int transhdrlen,
773 		   struct ipcm_cookie *ipc, struct rtable *rt,
774 		   unsigned int flags)
775 {
776 	struct inet_sock *inet = inet_sk(sk);
777 	struct sk_buff *skb;
778 
779 	struct ip_options *opt = NULL;
780 	int hh_len;
781 	int exthdrlen;
782 	int mtu;
783 	int copy;
784 	int err;
785 	int offset = 0;
786 	unsigned int maxfraglen, fragheaderlen;
787 	int csummode = CHECKSUM_NONE;
788 
789 	if (flags&MSG_PROBE)
790 		return 0;
791 
792 	if (skb_queue_empty(&sk->sk_write_queue)) {
793 		/*
794 		 * setup for corking.
795 		 */
796 		opt = ipc->opt;
797 		if (opt) {
798 			if (inet->cork.opt == NULL) {
799 				inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
800 				if (unlikely(inet->cork.opt == NULL))
801 					return -ENOBUFS;
802 			}
803 			memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
804 			inet->cork.flags |= IPCORK_OPT;
805 			inet->cork.addr = ipc->addr;
806 		}
807 		dst_hold(&rt->u.dst);
808 		inet->cork.fragsize = mtu = dst_mtu(rt->u.dst.path);
809 		inet->cork.rt = rt;
810 		inet->cork.length = 0;
811 		sk->sk_sndmsg_page = NULL;
812 		sk->sk_sndmsg_off = 0;
813 		if ((exthdrlen = rt->u.dst.header_len) != 0) {
814 			length += exthdrlen;
815 			transhdrlen += exthdrlen;
816 		}
817 	} else {
818 		rt = inet->cork.rt;
819 		if (inet->cork.flags & IPCORK_OPT)
820 			opt = inet->cork.opt;
821 
822 		transhdrlen = 0;
823 		exthdrlen = 0;
824 		mtu = inet->cork.fragsize;
825 	}
826 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
827 
828 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
829 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
830 
831 	if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
832 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
833 		return -EMSGSIZE;
834 	}
835 
836 	/*
837 	 * transhdrlen > 0 means that this is the first fragment and we wish
838 	 * it won't be fragmented in the future.
839 	 */
840 	if (transhdrlen &&
841 	    length + fragheaderlen <= mtu &&
842 	    rt->u.dst.dev->features & NETIF_F_ALL_CSUM &&
843 	    !exthdrlen)
844 		csummode = CHECKSUM_HW;
845 
846 	inet->cork.length += length;
847 	if (((length > mtu) && (sk->sk_protocol == IPPROTO_UDP)) &&
848 			(rt->u.dst.dev->features & NETIF_F_UFO)) {
849 
850 		err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
851 					 fragheaderlen, transhdrlen, mtu,
852 					 flags);
853 		if (err)
854 			goto error;
855 		return 0;
856 	}
857 
858 	/* So, what's going on in the loop below?
859 	 *
860 	 * We use calculated fragment length to generate chained skb,
861 	 * each of segments is IP fragment ready for sending to network after
862 	 * adding appropriate IP header.
863 	 */
864 
865 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
866 		goto alloc_new_skb;
867 
868 	while (length > 0) {
869 		/* Check if the remaining data fits into current packet. */
870 		copy = mtu - skb->len;
871 		if (copy < length)
872 			copy = maxfraglen - skb->len;
873 		if (copy <= 0) {
874 			char *data;
875 			unsigned int datalen;
876 			unsigned int fraglen;
877 			unsigned int fraggap;
878 			unsigned int alloclen;
879 			struct sk_buff *skb_prev;
880 alloc_new_skb:
881 			skb_prev = skb;
882 			if (skb_prev)
883 				fraggap = skb_prev->len - maxfraglen;
884 			else
885 				fraggap = 0;
886 
887 			/*
888 			 * If remaining data exceeds the mtu,
889 			 * we know we need more fragment(s).
890 			 */
891 			datalen = length + fraggap;
892 			if (datalen > mtu - fragheaderlen)
893 				datalen = maxfraglen - fragheaderlen;
894 			fraglen = datalen + fragheaderlen;
895 
896 			if ((flags & MSG_MORE) &&
897 			    !(rt->u.dst.dev->features&NETIF_F_SG))
898 				alloclen = mtu;
899 			else
900 				alloclen = datalen + fragheaderlen;
901 
902 			/* The last fragment gets additional space at tail.
903 			 * Note, with MSG_MORE we overallocate on fragments,
904 			 * because we have no idea what fragment will be
905 			 * the last.
906 			 */
907 			if (datalen == length + fraggap)
908 				alloclen += rt->u.dst.trailer_len;
909 
910 			if (transhdrlen) {
911 				skb = sock_alloc_send_skb(sk,
912 						alloclen + hh_len + 15,
913 						(flags & MSG_DONTWAIT), &err);
914 			} else {
915 				skb = NULL;
916 				if (atomic_read(&sk->sk_wmem_alloc) <=
917 				    2 * sk->sk_sndbuf)
918 					skb = sock_wmalloc(sk,
919 							   alloclen + hh_len + 15, 1,
920 							   sk->sk_allocation);
921 				if (unlikely(skb == NULL))
922 					err = -ENOBUFS;
923 			}
924 			if (skb == NULL)
925 				goto error;
926 
927 			/*
928 			 *	Fill in the control structures
929 			 */
930 			skb->ip_summed = csummode;
931 			skb->csum = 0;
932 			skb_reserve(skb, hh_len);
933 
934 			/*
935 			 *	Find where to start putting bytes.
936 			 */
937 			data = skb_put(skb, fraglen);
938 			skb->nh.raw = data + exthdrlen;
939 			data += fragheaderlen;
940 			skb->h.raw = data + exthdrlen;
941 
942 			if (fraggap) {
943 				skb->csum = skb_copy_and_csum_bits(
944 					skb_prev, maxfraglen,
945 					data + transhdrlen, fraggap, 0);
946 				skb_prev->csum = csum_sub(skb_prev->csum,
947 							  skb->csum);
948 				data += fraggap;
949 				skb_trim(skb_prev, maxfraglen);
950 			}
951 
952 			copy = datalen - transhdrlen - fraggap;
953 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
954 				err = -EFAULT;
955 				kfree_skb(skb);
956 				goto error;
957 			}
958 
959 			offset += copy;
960 			length -= datalen - fraggap;
961 			transhdrlen = 0;
962 			exthdrlen = 0;
963 			csummode = CHECKSUM_NONE;
964 
965 			/*
966 			 * Put the packet on the pending queue.
967 			 */
968 			__skb_queue_tail(&sk->sk_write_queue, skb);
969 			continue;
970 		}
971 
972 		if (copy > length)
973 			copy = length;
974 
975 		if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
976 			unsigned int off;
977 
978 			off = skb->len;
979 			if (getfrag(from, skb_put(skb, copy),
980 					offset, copy, off, skb) < 0) {
981 				__skb_trim(skb, off);
982 				err = -EFAULT;
983 				goto error;
984 			}
985 		} else {
986 			int i = skb_shinfo(skb)->nr_frags;
987 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
988 			struct page *page = sk->sk_sndmsg_page;
989 			int off = sk->sk_sndmsg_off;
990 			unsigned int left;
991 
992 			if (page && (left = PAGE_SIZE - off) > 0) {
993 				if (copy >= left)
994 					copy = left;
995 				if (page != frag->page) {
996 					if (i == MAX_SKB_FRAGS) {
997 						err = -EMSGSIZE;
998 						goto error;
999 					}
1000 					get_page(page);
1001 	 				skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1002 					frag = &skb_shinfo(skb)->frags[i];
1003 				}
1004 			} else if (i < MAX_SKB_FRAGS) {
1005 				if (copy > PAGE_SIZE)
1006 					copy = PAGE_SIZE;
1007 				page = alloc_pages(sk->sk_allocation, 0);
1008 				if (page == NULL)  {
1009 					err = -ENOMEM;
1010 					goto error;
1011 				}
1012 				sk->sk_sndmsg_page = page;
1013 				sk->sk_sndmsg_off = 0;
1014 
1015 				skb_fill_page_desc(skb, i, page, 0, 0);
1016 				frag = &skb_shinfo(skb)->frags[i];
1017 				skb->truesize += PAGE_SIZE;
1018 				atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1019 			} else {
1020 				err = -EMSGSIZE;
1021 				goto error;
1022 			}
1023 			if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1024 				err = -EFAULT;
1025 				goto error;
1026 			}
1027 			sk->sk_sndmsg_off += copy;
1028 			frag->size += copy;
1029 			skb->len += copy;
1030 			skb->data_len += copy;
1031 		}
1032 		offset += copy;
1033 		length -= copy;
1034 	}
1035 
1036 	return 0;
1037 
1038 error:
1039 	inet->cork.length -= length;
1040 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1041 	return err;
1042 }
1043 
1044 ssize_t	ip_append_page(struct sock *sk, struct page *page,
1045 		       int offset, size_t size, int flags)
1046 {
1047 	struct inet_sock *inet = inet_sk(sk);
1048 	struct sk_buff *skb;
1049 	struct rtable *rt;
1050 	struct ip_options *opt = NULL;
1051 	int hh_len;
1052 	int mtu;
1053 	int len;
1054 	int err;
1055 	unsigned int maxfraglen, fragheaderlen, fraggap;
1056 
1057 	if (inet->hdrincl)
1058 		return -EPERM;
1059 
1060 	if (flags&MSG_PROBE)
1061 		return 0;
1062 
1063 	if (skb_queue_empty(&sk->sk_write_queue))
1064 		return -EINVAL;
1065 
1066 	rt = inet->cork.rt;
1067 	if (inet->cork.flags & IPCORK_OPT)
1068 		opt = inet->cork.opt;
1069 
1070 	if (!(rt->u.dst.dev->features&NETIF_F_SG))
1071 		return -EOPNOTSUPP;
1072 
1073 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1074 	mtu = inet->cork.fragsize;
1075 
1076 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1077 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1078 
1079 	if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1080 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1081 		return -EMSGSIZE;
1082 	}
1083 
1084 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1085 		return -EINVAL;
1086 
1087 	inet->cork.length += size;
1088 	if ((sk->sk_protocol == IPPROTO_UDP) &&
1089 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
1090 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1091 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1092 	}
1093 
1094 
1095 	while (size > 0) {
1096 		int i;
1097 
1098 		if (skb_is_gso(skb))
1099 			len = size;
1100 		else {
1101 
1102 			/* Check if the remaining data fits into current packet. */
1103 			len = mtu - skb->len;
1104 			if (len < size)
1105 				len = maxfraglen - skb->len;
1106 		}
1107 		if (len <= 0) {
1108 			struct sk_buff *skb_prev;
1109 			char *data;
1110 			struct iphdr *iph;
1111 			int alloclen;
1112 
1113 			skb_prev = skb;
1114 			fraggap = skb_prev->len - maxfraglen;
1115 
1116 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1117 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1118 			if (unlikely(!skb)) {
1119 				err = -ENOBUFS;
1120 				goto error;
1121 			}
1122 
1123 			/*
1124 			 *	Fill in the control structures
1125 			 */
1126 			skb->ip_summed = CHECKSUM_NONE;
1127 			skb->csum = 0;
1128 			skb_reserve(skb, hh_len);
1129 
1130 			/*
1131 			 *	Find where to start putting bytes.
1132 			 */
1133 			data = skb_put(skb, fragheaderlen + fraggap);
1134 			skb->nh.iph = iph = (struct iphdr *)data;
1135 			data += fragheaderlen;
1136 			skb->h.raw = data;
1137 
1138 			if (fraggap) {
1139 				skb->csum = skb_copy_and_csum_bits(
1140 					skb_prev, maxfraglen,
1141 					data, fraggap, 0);
1142 				skb_prev->csum = csum_sub(skb_prev->csum,
1143 							  skb->csum);
1144 				skb_trim(skb_prev, maxfraglen);
1145 			}
1146 
1147 			/*
1148 			 * Put the packet on the pending queue.
1149 			 */
1150 			__skb_queue_tail(&sk->sk_write_queue, skb);
1151 			continue;
1152 		}
1153 
1154 		i = skb_shinfo(skb)->nr_frags;
1155 		if (len > size)
1156 			len = size;
1157 		if (skb_can_coalesce(skb, i, page, offset)) {
1158 			skb_shinfo(skb)->frags[i-1].size += len;
1159 		} else if (i < MAX_SKB_FRAGS) {
1160 			get_page(page);
1161 			skb_fill_page_desc(skb, i, page, offset, len);
1162 		} else {
1163 			err = -EMSGSIZE;
1164 			goto error;
1165 		}
1166 
1167 		if (skb->ip_summed == CHECKSUM_NONE) {
1168 			unsigned int csum;
1169 			csum = csum_page(page, offset, len);
1170 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1171 		}
1172 
1173 		skb->len += len;
1174 		skb->data_len += len;
1175 		offset += len;
1176 		size -= len;
1177 	}
1178 	return 0;
1179 
1180 error:
1181 	inet->cork.length -= size;
1182 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1183 	return err;
1184 }
1185 
1186 /*
1187  *	Combined all pending IP fragments on the socket as one IP datagram
1188  *	and push them out.
1189  */
1190 int ip_push_pending_frames(struct sock *sk)
1191 {
1192 	struct sk_buff *skb, *tmp_skb;
1193 	struct sk_buff **tail_skb;
1194 	struct inet_sock *inet = inet_sk(sk);
1195 	struct ip_options *opt = NULL;
1196 	struct rtable *rt = inet->cork.rt;
1197 	struct iphdr *iph;
1198 	__be16 df = 0;
1199 	__u8 ttl;
1200 	int err = 0;
1201 
1202 	if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1203 		goto out;
1204 	tail_skb = &(skb_shinfo(skb)->frag_list);
1205 
1206 	/* move skb->data to ip header from ext header */
1207 	if (skb->data < skb->nh.raw)
1208 		__skb_pull(skb, skb->nh.raw - skb->data);
1209 	while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1210 		__skb_pull(tmp_skb, skb->h.raw - skb->nh.raw);
1211 		*tail_skb = tmp_skb;
1212 		tail_skb = &(tmp_skb->next);
1213 		skb->len += tmp_skb->len;
1214 		skb->data_len += tmp_skb->len;
1215 		skb->truesize += tmp_skb->truesize;
1216 		__sock_put(tmp_skb->sk);
1217 		tmp_skb->destructor = NULL;
1218 		tmp_skb->sk = NULL;
1219 	}
1220 
1221 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1222 	 * to fragment the frame generated here. No matter, what transforms
1223 	 * how transforms change size of the packet, it will come out.
1224 	 */
1225 	if (inet->pmtudisc != IP_PMTUDISC_DO)
1226 		skb->local_df = 1;
1227 
1228 	/* DF bit is set when we want to see DF on outgoing frames.
1229 	 * If local_df is set too, we still allow to fragment this frame
1230 	 * locally. */
1231 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1232 	    (skb->len <= dst_mtu(&rt->u.dst) &&
1233 	     ip_dont_fragment(sk, &rt->u.dst)))
1234 		df = htons(IP_DF);
1235 
1236 	if (inet->cork.flags & IPCORK_OPT)
1237 		opt = inet->cork.opt;
1238 
1239 	if (rt->rt_type == RTN_MULTICAST)
1240 		ttl = inet->mc_ttl;
1241 	else
1242 		ttl = ip_select_ttl(inet, &rt->u.dst);
1243 
1244 	iph = (struct iphdr *)skb->data;
1245 	iph->version = 4;
1246 	iph->ihl = 5;
1247 	if (opt) {
1248 		iph->ihl += opt->optlen>>2;
1249 		ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1250 	}
1251 	iph->tos = inet->tos;
1252 	iph->tot_len = htons(skb->len);
1253 	iph->frag_off = df;
1254 	ip_select_ident(iph, &rt->u.dst, sk);
1255 	iph->ttl = ttl;
1256 	iph->protocol = sk->sk_protocol;
1257 	iph->saddr = rt->rt_src;
1258 	iph->daddr = rt->rt_dst;
1259 	ip_send_check(iph);
1260 
1261 	skb->priority = sk->sk_priority;
1262 	skb->dst = dst_clone(&rt->u.dst);
1263 
1264 	/* Netfilter gets whole the not fragmented skb. */
1265 	err = NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL,
1266 		      skb->dst->dev, dst_output);
1267 	if (err) {
1268 		if (err > 0)
1269 			err = inet->recverr ? net_xmit_errno(err) : 0;
1270 		if (err)
1271 			goto error;
1272 	}
1273 
1274 out:
1275 	inet->cork.flags &= ~IPCORK_OPT;
1276 	kfree(inet->cork.opt);
1277 	inet->cork.opt = NULL;
1278 	if (inet->cork.rt) {
1279 		ip_rt_put(inet->cork.rt);
1280 		inet->cork.rt = NULL;
1281 	}
1282 	return err;
1283 
1284 error:
1285 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1286 	goto out;
1287 }
1288 
1289 /*
1290  *	Throw away all pending data on the socket.
1291  */
1292 void ip_flush_pending_frames(struct sock *sk)
1293 {
1294 	struct inet_sock *inet = inet_sk(sk);
1295 	struct sk_buff *skb;
1296 
1297 	while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1298 		kfree_skb(skb);
1299 
1300 	inet->cork.flags &= ~IPCORK_OPT;
1301 	kfree(inet->cork.opt);
1302 	inet->cork.opt = NULL;
1303 	if (inet->cork.rt) {
1304 		ip_rt_put(inet->cork.rt);
1305 		inet->cork.rt = NULL;
1306 	}
1307 }
1308 
1309 
1310 /*
1311  *	Fetch data from kernel space and fill in checksum if needed.
1312  */
1313 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1314 			      int len, int odd, struct sk_buff *skb)
1315 {
1316 	unsigned int csum;
1317 
1318 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1319 	skb->csum = csum_block_add(skb->csum, csum, odd);
1320 	return 0;
1321 }
1322 
1323 /*
1324  *	Generic function to send a packet as reply to another packet.
1325  *	Used to send TCP resets so far. ICMP should use this function too.
1326  *
1327  *	Should run single threaded per socket because it uses the sock
1328  *     	structure to pass arguments.
1329  *
1330  *	LATER: switch from ip_build_xmit to ip_append_*
1331  */
1332 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1333 		   unsigned int len)
1334 {
1335 	struct inet_sock *inet = inet_sk(sk);
1336 	struct {
1337 		struct ip_options	opt;
1338 		char			data[40];
1339 	} replyopts;
1340 	struct ipcm_cookie ipc;
1341 	u32 daddr;
1342 	struct rtable *rt = (struct rtable*)skb->dst;
1343 
1344 	if (ip_options_echo(&replyopts.opt, skb))
1345 		return;
1346 
1347 	daddr = ipc.addr = rt->rt_src;
1348 	ipc.opt = NULL;
1349 
1350 	if (replyopts.opt.optlen) {
1351 		ipc.opt = &replyopts.opt;
1352 
1353 		if (ipc.opt->srr)
1354 			daddr = replyopts.opt.faddr;
1355 	}
1356 
1357 	{
1358 		struct flowi fl = { .nl_u = { .ip4_u =
1359 					      { .daddr = daddr,
1360 						.saddr = rt->rt_spec_dst,
1361 						.tos = RT_TOS(skb->nh.iph->tos) } },
1362 				    /* Not quite clean, but right. */
1363 				    .uli_u = { .ports =
1364 					       { .sport = skb->h.th->dest,
1365 					         .dport = skb->h.th->source } },
1366 				    .proto = sk->sk_protocol };
1367 		if (ip_route_output_key(&rt, &fl))
1368 			return;
1369 	}
1370 
1371 	/* And let IP do all the hard work.
1372 
1373 	   This chunk is not reenterable, hence spinlock.
1374 	   Note that it uses the fact, that this function is called
1375 	   with locally disabled BH and that sk cannot be already spinlocked.
1376 	 */
1377 	bh_lock_sock(sk);
1378 	inet->tos = skb->nh.iph->tos;
1379 	sk->sk_priority = skb->priority;
1380 	sk->sk_protocol = skb->nh.iph->protocol;
1381 	ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1382 		       &ipc, rt, MSG_DONTWAIT);
1383 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1384 		if (arg->csumoffset >= 0)
1385 			*((u16 *)skb->h.raw + arg->csumoffset) = csum_fold(csum_add(skb->csum, arg->csum));
1386 		skb->ip_summed = CHECKSUM_NONE;
1387 		ip_push_pending_frames(sk);
1388 	}
1389 
1390 	bh_unlock_sock(sk);
1391 
1392 	ip_rt_put(rt);
1393 }
1394 
1395 void __init ip_init(void)
1396 {
1397 	ip_rt_init();
1398 	inet_initpeers();
1399 
1400 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1401 	igmp_mc_proc_init();
1402 #endif
1403 }
1404 
1405 EXPORT_SYMBOL(ip_generic_getfrag);
1406 EXPORT_SYMBOL(ip_queue_xmit);
1407 EXPORT_SYMBOL(ip_send_check);
1408