xref: /linux/net/ipv4/ip_output.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55 
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65 
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/mroute.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
83 
84 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
85 EXPORT_SYMBOL(sysctl_ip_default_ttl);
86 
87 /* Generate a checksum for an outgoing IP datagram. */
88 __inline__ void ip_send_check(struct iphdr *iph)
89 {
90 	iph->check = 0;
91 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
92 }
93 EXPORT_SYMBOL(ip_send_check);
94 
95 int __ip_local_out(struct sk_buff *skb)
96 {
97 	struct iphdr *iph = ip_hdr(skb);
98 
99 	iph->tot_len = htons(skb->len);
100 	ip_send_check(iph);
101 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
102 		       skb_dst(skb)->dev, dst_output);
103 }
104 
105 int ip_local_out(struct sk_buff *skb)
106 {
107 	int err;
108 
109 	err = __ip_local_out(skb);
110 	if (likely(err == 1))
111 		err = dst_output(skb);
112 
113 	return err;
114 }
115 EXPORT_SYMBOL_GPL(ip_local_out);
116 
117 /* dev_loopback_xmit for use with netfilter. */
118 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
119 {
120 	skb_reset_mac_header(newskb);
121 	__skb_pull(newskb, skb_network_offset(newskb));
122 	newskb->pkt_type = PACKET_LOOPBACK;
123 	newskb->ip_summed = CHECKSUM_UNNECESSARY;
124 	WARN_ON(!skb_dst(newskb));
125 	netif_rx_ni(newskb);
126 	return 0;
127 }
128 
129 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
130 {
131 	int ttl = inet->uc_ttl;
132 
133 	if (ttl < 0)
134 		ttl = ip4_dst_hoplimit(dst);
135 	return ttl;
136 }
137 
138 /*
139  *		Add an ip header to a skbuff and send it out.
140  *
141  */
142 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
143 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
144 {
145 	struct inet_sock *inet = inet_sk(sk);
146 	struct rtable *rt = skb_rtable(skb);
147 	struct iphdr *iph;
148 
149 	/* Build the IP header. */
150 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
151 	skb_reset_network_header(skb);
152 	iph = ip_hdr(skb);
153 	iph->version  = 4;
154 	iph->ihl      = 5;
155 	iph->tos      = inet->tos;
156 	if (ip_dont_fragment(sk, &rt->dst))
157 		iph->frag_off = htons(IP_DF);
158 	else
159 		iph->frag_off = 0;
160 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
161 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
162 	iph->saddr    = saddr;
163 	iph->protocol = sk->sk_protocol;
164 	ip_select_ident(iph, &rt->dst, sk);
165 
166 	if (opt && opt->opt.optlen) {
167 		iph->ihl += opt->opt.optlen>>2;
168 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
169 	}
170 
171 	skb->priority = sk->sk_priority;
172 	skb->mark = sk->sk_mark;
173 
174 	/* Send it out. */
175 	return ip_local_out(skb);
176 }
177 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
178 
179 static inline int ip_finish_output2(struct sk_buff *skb)
180 {
181 	struct dst_entry *dst = skb_dst(skb);
182 	struct rtable *rt = (struct rtable *)dst;
183 	struct net_device *dev = dst->dev;
184 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
185 
186 	if (rt->rt_type == RTN_MULTICAST) {
187 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
188 	} else if (rt->rt_type == RTN_BROADCAST)
189 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
190 
191 	/* Be paranoid, rather than too clever. */
192 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
193 		struct sk_buff *skb2;
194 
195 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
196 		if (skb2 == NULL) {
197 			kfree_skb(skb);
198 			return -ENOMEM;
199 		}
200 		if (skb->sk)
201 			skb_set_owner_w(skb2, skb->sk);
202 		kfree_skb(skb);
203 		skb = skb2;
204 	}
205 
206 	if (dst->hh)
207 		return neigh_hh_output(dst->hh, skb);
208 	else if (dst->neighbour)
209 		return dst->neighbour->output(skb);
210 
211 	if (net_ratelimit())
212 		printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
213 	kfree_skb(skb);
214 	return -EINVAL;
215 }
216 
217 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
218 {
219 	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
220 
221 	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
222 	       skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
223 }
224 
225 static int ip_finish_output(struct sk_buff *skb)
226 {
227 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
228 	/* Policy lookup after SNAT yielded a new policy */
229 	if (skb_dst(skb)->xfrm != NULL) {
230 		IPCB(skb)->flags |= IPSKB_REROUTED;
231 		return dst_output(skb);
232 	}
233 #endif
234 	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
235 		return ip_fragment(skb, ip_finish_output2);
236 	else
237 		return ip_finish_output2(skb);
238 }
239 
240 int ip_mc_output(struct sk_buff *skb)
241 {
242 	struct sock *sk = skb->sk;
243 	struct rtable *rt = skb_rtable(skb);
244 	struct net_device *dev = rt->dst.dev;
245 
246 	/*
247 	 *	If the indicated interface is up and running, send the packet.
248 	 */
249 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
250 
251 	skb->dev = dev;
252 	skb->protocol = htons(ETH_P_IP);
253 
254 	/*
255 	 *	Multicasts are looped back for other local users
256 	 */
257 
258 	if (rt->rt_flags&RTCF_MULTICAST) {
259 		if (sk_mc_loop(sk)
260 #ifdef CONFIG_IP_MROUTE
261 		/* Small optimization: do not loopback not local frames,
262 		   which returned after forwarding; they will be  dropped
263 		   by ip_mr_input in any case.
264 		   Note, that local frames are looped back to be delivered
265 		   to local recipients.
266 
267 		   This check is duplicated in ip_mr_input at the moment.
268 		 */
269 		    &&
270 		    ((rt->rt_flags & RTCF_LOCAL) ||
271 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
272 #endif
273 		   ) {
274 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
275 			if (newskb)
276 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
277 					newskb, NULL, newskb->dev,
278 					ip_dev_loopback_xmit);
279 		}
280 
281 		/* Multicasts with ttl 0 must not go beyond the host */
282 
283 		if (ip_hdr(skb)->ttl == 0) {
284 			kfree_skb(skb);
285 			return 0;
286 		}
287 	}
288 
289 	if (rt->rt_flags&RTCF_BROADCAST) {
290 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
291 		if (newskb)
292 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
293 				NULL, newskb->dev, ip_dev_loopback_xmit);
294 	}
295 
296 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
297 			    skb->dev, ip_finish_output,
298 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
299 }
300 
301 int ip_output(struct sk_buff *skb)
302 {
303 	struct net_device *dev = skb_dst(skb)->dev;
304 
305 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
306 
307 	skb->dev = dev;
308 	skb->protocol = htons(ETH_P_IP);
309 
310 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
311 			    ip_finish_output,
312 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
313 }
314 
315 int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
316 {
317 	struct sock *sk = skb->sk;
318 	struct inet_sock *inet = inet_sk(sk);
319 	struct ip_options_rcu *inet_opt;
320 	struct flowi4 *fl4;
321 	struct rtable *rt;
322 	struct iphdr *iph;
323 	int res;
324 
325 	/* Skip all of this if the packet is already routed,
326 	 * f.e. by something like SCTP.
327 	 */
328 	rcu_read_lock();
329 	inet_opt = rcu_dereference(inet->inet_opt);
330 	fl4 = &fl->u.ip4;
331 	rt = skb_rtable(skb);
332 	if (rt != NULL)
333 		goto packet_routed;
334 
335 	/* Make sure we can route this packet. */
336 	rt = (struct rtable *)__sk_dst_check(sk, 0);
337 	if (rt == NULL) {
338 		__be32 daddr;
339 
340 		/* Use correct destination address if we have options. */
341 		daddr = inet->inet_daddr;
342 		if (inet_opt && inet_opt->opt.srr)
343 			daddr = inet_opt->opt.faddr;
344 
345 		/* If this fails, retransmit mechanism of transport layer will
346 		 * keep trying until route appears or the connection times
347 		 * itself out.
348 		 */
349 		rt = ip_route_output_ports(sock_net(sk), fl4, sk,
350 					   daddr, inet->inet_saddr,
351 					   inet->inet_dport,
352 					   inet->inet_sport,
353 					   sk->sk_protocol,
354 					   RT_CONN_FLAGS(sk),
355 					   sk->sk_bound_dev_if);
356 		if (IS_ERR(rt))
357 			goto no_route;
358 		sk_setup_caps(sk, &rt->dst);
359 	}
360 	skb_dst_set_noref(skb, &rt->dst);
361 
362 packet_routed:
363 	if (inet_opt && inet_opt->opt.is_strictroute && fl4->daddr != rt->rt_gateway)
364 		goto no_route;
365 
366 	/* OK, we know where to send it, allocate and build IP header. */
367 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
368 	skb_reset_network_header(skb);
369 	iph = ip_hdr(skb);
370 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
371 	if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
372 		iph->frag_off = htons(IP_DF);
373 	else
374 		iph->frag_off = 0;
375 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
376 	iph->protocol = sk->sk_protocol;
377 	iph->saddr    = fl4->saddr;
378 	iph->daddr    = fl4->daddr;
379 	/* Transport layer set skb->h.foo itself. */
380 
381 	if (inet_opt && inet_opt->opt.optlen) {
382 		iph->ihl += inet_opt->opt.optlen >> 2;
383 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
384 	}
385 
386 	ip_select_ident_more(iph, &rt->dst, sk,
387 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
388 
389 	skb->priority = sk->sk_priority;
390 	skb->mark = sk->sk_mark;
391 
392 	res = ip_local_out(skb);
393 	rcu_read_unlock();
394 	return res;
395 
396 no_route:
397 	rcu_read_unlock();
398 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
399 	kfree_skb(skb);
400 	return -EHOSTUNREACH;
401 }
402 EXPORT_SYMBOL(ip_queue_xmit);
403 
404 
405 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
406 {
407 	to->pkt_type = from->pkt_type;
408 	to->priority = from->priority;
409 	to->protocol = from->protocol;
410 	skb_dst_drop(to);
411 	skb_dst_copy(to, from);
412 	to->dev = from->dev;
413 	to->mark = from->mark;
414 
415 	/* Copy the flags to each fragment. */
416 	IPCB(to)->flags = IPCB(from)->flags;
417 
418 #ifdef CONFIG_NET_SCHED
419 	to->tc_index = from->tc_index;
420 #endif
421 	nf_copy(to, from);
422 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
423     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
424 	to->nf_trace = from->nf_trace;
425 #endif
426 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
427 	to->ipvs_property = from->ipvs_property;
428 #endif
429 	skb_copy_secmark(to, from);
430 }
431 
432 /*
433  *	This IP datagram is too large to be sent in one piece.  Break it up into
434  *	smaller pieces (each of size equal to IP header plus
435  *	a block of the data of the original IP data part) that will yet fit in a
436  *	single device frame, and queue such a frame for sending.
437  */
438 
439 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
440 {
441 	struct iphdr *iph;
442 	int ptr;
443 	struct net_device *dev;
444 	struct sk_buff *skb2;
445 	unsigned int mtu, hlen, left, len, ll_rs;
446 	int offset;
447 	__be16 not_last_frag;
448 	struct rtable *rt = skb_rtable(skb);
449 	int err = 0;
450 
451 	dev = rt->dst.dev;
452 
453 	/*
454 	 *	Point into the IP datagram header.
455 	 */
456 
457 	iph = ip_hdr(skb);
458 
459 	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
460 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
461 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
462 			  htonl(ip_skb_dst_mtu(skb)));
463 		kfree_skb(skb);
464 		return -EMSGSIZE;
465 	}
466 
467 	/*
468 	 *	Setup starting values.
469 	 */
470 
471 	hlen = iph->ihl * 4;
472 	mtu = dst_mtu(&rt->dst) - hlen;	/* Size of data space */
473 #ifdef CONFIG_BRIDGE_NETFILTER
474 	if (skb->nf_bridge)
475 		mtu -= nf_bridge_mtu_reduction(skb);
476 #endif
477 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
478 
479 	/* When frag_list is given, use it. First, check its validity:
480 	 * some transformers could create wrong frag_list or break existing
481 	 * one, it is not prohibited. In this case fall back to copying.
482 	 *
483 	 * LATER: this step can be merged to real generation of fragments,
484 	 * we can switch to copy when see the first bad fragment.
485 	 */
486 	if (skb_has_frag_list(skb)) {
487 		struct sk_buff *frag, *frag2;
488 		int first_len = skb_pagelen(skb);
489 
490 		if (first_len - hlen > mtu ||
491 		    ((first_len - hlen) & 7) ||
492 		    (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
493 		    skb_cloned(skb))
494 			goto slow_path;
495 
496 		skb_walk_frags(skb, frag) {
497 			/* Correct geometry. */
498 			if (frag->len > mtu ||
499 			    ((frag->len & 7) && frag->next) ||
500 			    skb_headroom(frag) < hlen)
501 				goto slow_path_clean;
502 
503 			/* Partially cloned skb? */
504 			if (skb_shared(frag))
505 				goto slow_path_clean;
506 
507 			BUG_ON(frag->sk);
508 			if (skb->sk) {
509 				frag->sk = skb->sk;
510 				frag->destructor = sock_wfree;
511 			}
512 			skb->truesize -= frag->truesize;
513 		}
514 
515 		/* Everything is OK. Generate! */
516 
517 		err = 0;
518 		offset = 0;
519 		frag = skb_shinfo(skb)->frag_list;
520 		skb_frag_list_init(skb);
521 		skb->data_len = first_len - skb_headlen(skb);
522 		skb->len = first_len;
523 		iph->tot_len = htons(first_len);
524 		iph->frag_off = htons(IP_MF);
525 		ip_send_check(iph);
526 
527 		for (;;) {
528 			/* Prepare header of the next frame,
529 			 * before previous one went down. */
530 			if (frag) {
531 				frag->ip_summed = CHECKSUM_NONE;
532 				skb_reset_transport_header(frag);
533 				__skb_push(frag, hlen);
534 				skb_reset_network_header(frag);
535 				memcpy(skb_network_header(frag), iph, hlen);
536 				iph = ip_hdr(frag);
537 				iph->tot_len = htons(frag->len);
538 				ip_copy_metadata(frag, skb);
539 				if (offset == 0)
540 					ip_options_fragment(frag);
541 				offset += skb->len - hlen;
542 				iph->frag_off = htons(offset>>3);
543 				if (frag->next != NULL)
544 					iph->frag_off |= htons(IP_MF);
545 				/* Ready, complete checksum */
546 				ip_send_check(iph);
547 			}
548 
549 			err = output(skb);
550 
551 			if (!err)
552 				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
553 			if (err || !frag)
554 				break;
555 
556 			skb = frag;
557 			frag = skb->next;
558 			skb->next = NULL;
559 		}
560 
561 		if (err == 0) {
562 			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
563 			return 0;
564 		}
565 
566 		while (frag) {
567 			skb = frag->next;
568 			kfree_skb(frag);
569 			frag = skb;
570 		}
571 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
572 		return err;
573 
574 slow_path_clean:
575 		skb_walk_frags(skb, frag2) {
576 			if (frag2 == frag)
577 				break;
578 			frag2->sk = NULL;
579 			frag2->destructor = NULL;
580 			skb->truesize += frag2->truesize;
581 		}
582 	}
583 
584 slow_path:
585 	left = skb->len - hlen;		/* Space per frame */
586 	ptr = hlen;		/* Where to start from */
587 
588 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
589 	 * we need to make room for the encapsulating header
590 	 */
591 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
592 
593 	/*
594 	 *	Fragment the datagram.
595 	 */
596 
597 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
598 	not_last_frag = iph->frag_off & htons(IP_MF);
599 
600 	/*
601 	 *	Keep copying data until we run out.
602 	 */
603 
604 	while (left > 0) {
605 		len = left;
606 		/* IF: it doesn't fit, use 'mtu' - the data space left */
607 		if (len > mtu)
608 			len = mtu;
609 		/* IF: we are not sending up to and including the packet end
610 		   then align the next start on an eight byte boundary */
611 		if (len < left)	{
612 			len &= ~7;
613 		}
614 		/*
615 		 *	Allocate buffer.
616 		 */
617 
618 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
619 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
620 			err = -ENOMEM;
621 			goto fail;
622 		}
623 
624 		/*
625 		 *	Set up data on packet
626 		 */
627 
628 		ip_copy_metadata(skb2, skb);
629 		skb_reserve(skb2, ll_rs);
630 		skb_put(skb2, len + hlen);
631 		skb_reset_network_header(skb2);
632 		skb2->transport_header = skb2->network_header + hlen;
633 
634 		/*
635 		 *	Charge the memory for the fragment to any owner
636 		 *	it might possess
637 		 */
638 
639 		if (skb->sk)
640 			skb_set_owner_w(skb2, skb->sk);
641 
642 		/*
643 		 *	Copy the packet header into the new buffer.
644 		 */
645 
646 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
647 
648 		/*
649 		 *	Copy a block of the IP datagram.
650 		 */
651 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
652 			BUG();
653 		left -= len;
654 
655 		/*
656 		 *	Fill in the new header fields.
657 		 */
658 		iph = ip_hdr(skb2);
659 		iph->frag_off = htons((offset >> 3));
660 
661 		/* ANK: dirty, but effective trick. Upgrade options only if
662 		 * the segment to be fragmented was THE FIRST (otherwise,
663 		 * options are already fixed) and make it ONCE
664 		 * on the initial skb, so that all the following fragments
665 		 * will inherit fixed options.
666 		 */
667 		if (offset == 0)
668 			ip_options_fragment(skb);
669 
670 		/*
671 		 *	Added AC : If we are fragmenting a fragment that's not the
672 		 *		   last fragment then keep MF on each bit
673 		 */
674 		if (left > 0 || not_last_frag)
675 			iph->frag_off |= htons(IP_MF);
676 		ptr += len;
677 		offset += len;
678 
679 		/*
680 		 *	Put this fragment into the sending queue.
681 		 */
682 		iph->tot_len = htons(len + hlen);
683 
684 		ip_send_check(iph);
685 
686 		err = output(skb2);
687 		if (err)
688 			goto fail;
689 
690 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
691 	}
692 	kfree_skb(skb);
693 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
694 	return err;
695 
696 fail:
697 	kfree_skb(skb);
698 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
699 	return err;
700 }
701 EXPORT_SYMBOL(ip_fragment);
702 
703 int
704 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
705 {
706 	struct iovec *iov = from;
707 
708 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
709 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
710 			return -EFAULT;
711 	} else {
712 		__wsum csum = 0;
713 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
714 			return -EFAULT;
715 		skb->csum = csum_block_add(skb->csum, csum, odd);
716 	}
717 	return 0;
718 }
719 EXPORT_SYMBOL(ip_generic_getfrag);
720 
721 static inline __wsum
722 csum_page(struct page *page, int offset, int copy)
723 {
724 	char *kaddr;
725 	__wsum csum;
726 	kaddr = kmap(page);
727 	csum = csum_partial(kaddr + offset, copy, 0);
728 	kunmap(page);
729 	return csum;
730 }
731 
732 static inline int ip_ufo_append_data(struct sock *sk,
733 			struct sk_buff_head *queue,
734 			int getfrag(void *from, char *to, int offset, int len,
735 			       int odd, struct sk_buff *skb),
736 			void *from, int length, int hh_len, int fragheaderlen,
737 			int transhdrlen, int mtu, unsigned int flags)
738 {
739 	struct sk_buff *skb;
740 	int err;
741 
742 	/* There is support for UDP fragmentation offload by network
743 	 * device, so create one single skb packet containing complete
744 	 * udp datagram
745 	 */
746 	if ((skb = skb_peek_tail(queue)) == NULL) {
747 		skb = sock_alloc_send_skb(sk,
748 			hh_len + fragheaderlen + transhdrlen + 20,
749 			(flags & MSG_DONTWAIT), &err);
750 
751 		if (skb == NULL)
752 			return err;
753 
754 		/* reserve space for Hardware header */
755 		skb_reserve(skb, hh_len);
756 
757 		/* create space for UDP/IP header */
758 		skb_put(skb, fragheaderlen + transhdrlen);
759 
760 		/* initialize network header pointer */
761 		skb_reset_network_header(skb);
762 
763 		/* initialize protocol header pointer */
764 		skb->transport_header = skb->network_header + fragheaderlen;
765 
766 		skb->ip_summed = CHECKSUM_PARTIAL;
767 		skb->csum = 0;
768 
769 		/* specify the length of each IP datagram fragment */
770 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
771 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
772 		__skb_queue_tail(queue, skb);
773 	}
774 
775 	return skb_append_datato_frags(sk, skb, getfrag, from,
776 				       (length - transhdrlen));
777 }
778 
779 static int __ip_append_data(struct sock *sk,
780 			    struct flowi4 *fl4,
781 			    struct sk_buff_head *queue,
782 			    struct inet_cork *cork,
783 			    int getfrag(void *from, char *to, int offset,
784 					int len, int odd, struct sk_buff *skb),
785 			    void *from, int length, int transhdrlen,
786 			    unsigned int flags)
787 {
788 	struct inet_sock *inet = inet_sk(sk);
789 	struct sk_buff *skb;
790 
791 	struct ip_options *opt = cork->opt;
792 	int hh_len;
793 	int exthdrlen;
794 	int mtu;
795 	int copy;
796 	int err;
797 	int offset = 0;
798 	unsigned int maxfraglen, fragheaderlen;
799 	int csummode = CHECKSUM_NONE;
800 	struct rtable *rt = (struct rtable *)cork->dst;
801 
802 	exthdrlen = transhdrlen ? rt->dst.header_len : 0;
803 	length += exthdrlen;
804 	transhdrlen += exthdrlen;
805 	mtu = cork->fragsize;
806 
807 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
808 
809 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
810 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
811 
812 	if (cork->length + length > 0xFFFF - fragheaderlen) {
813 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
814 			       mtu-exthdrlen);
815 		return -EMSGSIZE;
816 	}
817 
818 	/*
819 	 * transhdrlen > 0 means that this is the first fragment and we wish
820 	 * it won't be fragmented in the future.
821 	 */
822 	if (transhdrlen &&
823 	    length + fragheaderlen <= mtu &&
824 	    rt->dst.dev->features & NETIF_F_V4_CSUM &&
825 	    !exthdrlen)
826 		csummode = CHECKSUM_PARTIAL;
827 
828 	skb = skb_peek_tail(queue);
829 
830 	cork->length += length;
831 	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
832 	    (sk->sk_protocol == IPPROTO_UDP) &&
833 	    (rt->dst.dev->features & NETIF_F_UFO)) {
834 		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
835 					 hh_len, fragheaderlen, transhdrlen,
836 					 mtu, flags);
837 		if (err)
838 			goto error;
839 		return 0;
840 	}
841 
842 	/* So, what's going on in the loop below?
843 	 *
844 	 * We use calculated fragment length to generate chained skb,
845 	 * each of segments is IP fragment ready for sending to network after
846 	 * adding appropriate IP header.
847 	 */
848 
849 	if (!skb)
850 		goto alloc_new_skb;
851 
852 	while (length > 0) {
853 		/* Check if the remaining data fits into current packet. */
854 		copy = mtu - skb->len;
855 		if (copy < length)
856 			copy = maxfraglen - skb->len;
857 		if (copy <= 0) {
858 			char *data;
859 			unsigned int datalen;
860 			unsigned int fraglen;
861 			unsigned int fraggap;
862 			unsigned int alloclen;
863 			struct sk_buff *skb_prev;
864 alloc_new_skb:
865 			skb_prev = skb;
866 			if (skb_prev)
867 				fraggap = skb_prev->len - maxfraglen;
868 			else
869 				fraggap = 0;
870 
871 			/*
872 			 * If remaining data exceeds the mtu,
873 			 * we know we need more fragment(s).
874 			 */
875 			datalen = length + fraggap;
876 			if (datalen > mtu - fragheaderlen)
877 				datalen = maxfraglen - fragheaderlen;
878 			fraglen = datalen + fragheaderlen;
879 
880 			if ((flags & MSG_MORE) &&
881 			    !(rt->dst.dev->features&NETIF_F_SG))
882 				alloclen = mtu;
883 			else
884 				alloclen = fraglen;
885 
886 			/* The last fragment gets additional space at tail.
887 			 * Note, with MSG_MORE we overallocate on fragments,
888 			 * because we have no idea what fragment will be
889 			 * the last.
890 			 */
891 			if (datalen == length + fraggap) {
892 				alloclen += rt->dst.trailer_len;
893 				/* make sure mtu is not reached */
894 				if (datalen > mtu - fragheaderlen - rt->dst.trailer_len)
895 					datalen -= ALIGN(rt->dst.trailer_len, 8);
896 			}
897 			if (transhdrlen) {
898 				skb = sock_alloc_send_skb(sk,
899 						alloclen + hh_len + 15,
900 						(flags & MSG_DONTWAIT), &err);
901 			} else {
902 				skb = NULL;
903 				if (atomic_read(&sk->sk_wmem_alloc) <=
904 				    2 * sk->sk_sndbuf)
905 					skb = sock_wmalloc(sk,
906 							   alloclen + hh_len + 15, 1,
907 							   sk->sk_allocation);
908 				if (unlikely(skb == NULL))
909 					err = -ENOBUFS;
910 				else
911 					/* only the initial fragment is
912 					   time stamped */
913 					cork->tx_flags = 0;
914 			}
915 			if (skb == NULL)
916 				goto error;
917 
918 			/*
919 			 *	Fill in the control structures
920 			 */
921 			skb->ip_summed = csummode;
922 			skb->csum = 0;
923 			skb_reserve(skb, hh_len);
924 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
925 
926 			/*
927 			 *	Find where to start putting bytes.
928 			 */
929 			data = skb_put(skb, fraglen);
930 			skb_set_network_header(skb, exthdrlen);
931 			skb->transport_header = (skb->network_header +
932 						 fragheaderlen);
933 			data += fragheaderlen;
934 
935 			if (fraggap) {
936 				skb->csum = skb_copy_and_csum_bits(
937 					skb_prev, maxfraglen,
938 					data + transhdrlen, fraggap, 0);
939 				skb_prev->csum = csum_sub(skb_prev->csum,
940 							  skb->csum);
941 				data += fraggap;
942 				pskb_trim_unique(skb_prev, maxfraglen);
943 			}
944 
945 			copy = datalen - transhdrlen - fraggap;
946 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
947 				err = -EFAULT;
948 				kfree_skb(skb);
949 				goto error;
950 			}
951 
952 			offset += copy;
953 			length -= datalen - fraggap;
954 			transhdrlen = 0;
955 			exthdrlen = 0;
956 			csummode = CHECKSUM_NONE;
957 
958 			/*
959 			 * Put the packet on the pending queue.
960 			 */
961 			__skb_queue_tail(queue, skb);
962 			continue;
963 		}
964 
965 		if (copy > length)
966 			copy = length;
967 
968 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
969 			unsigned int off;
970 
971 			off = skb->len;
972 			if (getfrag(from, skb_put(skb, copy),
973 					offset, copy, off, skb) < 0) {
974 				__skb_trim(skb, off);
975 				err = -EFAULT;
976 				goto error;
977 			}
978 		} else {
979 			int i = skb_shinfo(skb)->nr_frags;
980 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
981 			struct page *page = cork->page;
982 			int off = cork->off;
983 			unsigned int left;
984 
985 			if (page && (left = PAGE_SIZE - off) > 0) {
986 				if (copy >= left)
987 					copy = left;
988 				if (page != frag->page) {
989 					if (i == MAX_SKB_FRAGS) {
990 						err = -EMSGSIZE;
991 						goto error;
992 					}
993 					get_page(page);
994 					skb_fill_page_desc(skb, i, page, off, 0);
995 					frag = &skb_shinfo(skb)->frags[i];
996 				}
997 			} else if (i < MAX_SKB_FRAGS) {
998 				if (copy > PAGE_SIZE)
999 					copy = PAGE_SIZE;
1000 				page = alloc_pages(sk->sk_allocation, 0);
1001 				if (page == NULL)  {
1002 					err = -ENOMEM;
1003 					goto error;
1004 				}
1005 				cork->page = page;
1006 				cork->off = 0;
1007 
1008 				skb_fill_page_desc(skb, i, page, 0, 0);
1009 				frag = &skb_shinfo(skb)->frags[i];
1010 			} else {
1011 				err = -EMSGSIZE;
1012 				goto error;
1013 			}
1014 			if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1015 				err = -EFAULT;
1016 				goto error;
1017 			}
1018 			cork->off += copy;
1019 			frag->size += copy;
1020 			skb->len += copy;
1021 			skb->data_len += copy;
1022 			skb->truesize += copy;
1023 			atomic_add(copy, &sk->sk_wmem_alloc);
1024 		}
1025 		offset += copy;
1026 		length -= copy;
1027 	}
1028 
1029 	return 0;
1030 
1031 error:
1032 	cork->length -= length;
1033 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1034 	return err;
1035 }
1036 
1037 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1038 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1039 {
1040 	struct inet_sock *inet = inet_sk(sk);
1041 	struct ip_options_rcu *opt;
1042 	struct rtable *rt;
1043 
1044 	/*
1045 	 * setup for corking.
1046 	 */
1047 	opt = ipc->opt;
1048 	if (opt) {
1049 		if (cork->opt == NULL) {
1050 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1051 					    sk->sk_allocation);
1052 			if (unlikely(cork->opt == NULL))
1053 				return -ENOBUFS;
1054 		}
1055 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1056 		cork->flags |= IPCORK_OPT;
1057 		cork->addr = ipc->addr;
1058 	}
1059 	rt = *rtp;
1060 	if (unlikely(!rt))
1061 		return -EFAULT;
1062 	/*
1063 	 * We steal reference to this route, caller should not release it
1064 	 */
1065 	*rtp = NULL;
1066 	cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1067 			 rt->dst.dev->mtu : dst_mtu(rt->dst.path);
1068 	cork->dst = &rt->dst;
1069 	cork->length = 0;
1070 	cork->tx_flags = ipc->tx_flags;
1071 	cork->page = NULL;
1072 	cork->off = 0;
1073 
1074 	return 0;
1075 }
1076 
1077 /*
1078  *	ip_append_data() and ip_append_page() can make one large IP datagram
1079  *	from many pieces of data. Each pieces will be holded on the socket
1080  *	until ip_push_pending_frames() is called. Each piece can be a page
1081  *	or non-page data.
1082  *
1083  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1084  *	this interface potentially.
1085  *
1086  *	LATER: length must be adjusted by pad at tail, when it is required.
1087  */
1088 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1089 		   int getfrag(void *from, char *to, int offset, int len,
1090 			       int odd, struct sk_buff *skb),
1091 		   void *from, int length, int transhdrlen,
1092 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1093 		   unsigned int flags)
1094 {
1095 	struct inet_sock *inet = inet_sk(sk);
1096 	int err;
1097 
1098 	if (flags&MSG_PROBE)
1099 		return 0;
1100 
1101 	if (skb_queue_empty(&sk->sk_write_queue)) {
1102 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1103 		if (err)
1104 			return err;
1105 	} else {
1106 		transhdrlen = 0;
1107 	}
1108 
1109 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, getfrag,
1110 				from, length, transhdrlen, flags);
1111 }
1112 
1113 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1114 		       int offset, size_t size, int flags)
1115 {
1116 	struct inet_sock *inet = inet_sk(sk);
1117 	struct sk_buff *skb;
1118 	struct rtable *rt;
1119 	struct ip_options *opt = NULL;
1120 	struct inet_cork *cork;
1121 	int hh_len;
1122 	int mtu;
1123 	int len;
1124 	int err;
1125 	unsigned int maxfraglen, fragheaderlen, fraggap;
1126 
1127 	if (inet->hdrincl)
1128 		return -EPERM;
1129 
1130 	if (flags&MSG_PROBE)
1131 		return 0;
1132 
1133 	if (skb_queue_empty(&sk->sk_write_queue))
1134 		return -EINVAL;
1135 
1136 	cork = &inet->cork.base;
1137 	rt = (struct rtable *)cork->dst;
1138 	if (cork->flags & IPCORK_OPT)
1139 		opt = cork->opt;
1140 
1141 	if (!(rt->dst.dev->features&NETIF_F_SG))
1142 		return -EOPNOTSUPP;
1143 
1144 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1145 	mtu = cork->fragsize;
1146 
1147 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1148 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1149 
1150 	if (cork->length + size > 0xFFFF - fragheaderlen) {
1151 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu);
1152 		return -EMSGSIZE;
1153 	}
1154 
1155 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1156 		return -EINVAL;
1157 
1158 	cork->length += size;
1159 	if ((size + skb->len > mtu) &&
1160 	    (sk->sk_protocol == IPPROTO_UDP) &&
1161 	    (rt->dst.dev->features & NETIF_F_UFO)) {
1162 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1163 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1164 	}
1165 
1166 
1167 	while (size > 0) {
1168 		int i;
1169 
1170 		if (skb_is_gso(skb))
1171 			len = size;
1172 		else {
1173 
1174 			/* Check if the remaining data fits into current packet. */
1175 			len = mtu - skb->len;
1176 			if (len < size)
1177 				len = maxfraglen - skb->len;
1178 		}
1179 		if (len <= 0) {
1180 			struct sk_buff *skb_prev;
1181 			int alloclen;
1182 
1183 			skb_prev = skb;
1184 			fraggap = skb_prev->len - maxfraglen;
1185 
1186 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1187 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1188 			if (unlikely(!skb)) {
1189 				err = -ENOBUFS;
1190 				goto error;
1191 			}
1192 
1193 			/*
1194 			 *	Fill in the control structures
1195 			 */
1196 			skb->ip_summed = CHECKSUM_NONE;
1197 			skb->csum = 0;
1198 			skb_reserve(skb, hh_len);
1199 
1200 			/*
1201 			 *	Find where to start putting bytes.
1202 			 */
1203 			skb_put(skb, fragheaderlen + fraggap);
1204 			skb_reset_network_header(skb);
1205 			skb->transport_header = (skb->network_header +
1206 						 fragheaderlen);
1207 			if (fraggap) {
1208 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1209 								   maxfraglen,
1210 						    skb_transport_header(skb),
1211 								   fraggap, 0);
1212 				skb_prev->csum = csum_sub(skb_prev->csum,
1213 							  skb->csum);
1214 				pskb_trim_unique(skb_prev, maxfraglen);
1215 			}
1216 
1217 			/*
1218 			 * Put the packet on the pending queue.
1219 			 */
1220 			__skb_queue_tail(&sk->sk_write_queue, skb);
1221 			continue;
1222 		}
1223 
1224 		i = skb_shinfo(skb)->nr_frags;
1225 		if (len > size)
1226 			len = size;
1227 		if (skb_can_coalesce(skb, i, page, offset)) {
1228 			skb_shinfo(skb)->frags[i-1].size += len;
1229 		} else if (i < MAX_SKB_FRAGS) {
1230 			get_page(page);
1231 			skb_fill_page_desc(skb, i, page, offset, len);
1232 		} else {
1233 			err = -EMSGSIZE;
1234 			goto error;
1235 		}
1236 
1237 		if (skb->ip_summed == CHECKSUM_NONE) {
1238 			__wsum csum;
1239 			csum = csum_page(page, offset, len);
1240 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1241 		}
1242 
1243 		skb->len += len;
1244 		skb->data_len += len;
1245 		skb->truesize += len;
1246 		atomic_add(len, &sk->sk_wmem_alloc);
1247 		offset += len;
1248 		size -= len;
1249 	}
1250 	return 0;
1251 
1252 error:
1253 	cork->length -= size;
1254 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1255 	return err;
1256 }
1257 
1258 static void ip_cork_release(struct inet_cork *cork)
1259 {
1260 	cork->flags &= ~IPCORK_OPT;
1261 	kfree(cork->opt);
1262 	cork->opt = NULL;
1263 	dst_release(cork->dst);
1264 	cork->dst = NULL;
1265 }
1266 
1267 /*
1268  *	Combined all pending IP fragments on the socket as one IP datagram
1269  *	and push them out.
1270  */
1271 struct sk_buff *__ip_make_skb(struct sock *sk,
1272 			      struct flowi4 *fl4,
1273 			      struct sk_buff_head *queue,
1274 			      struct inet_cork *cork)
1275 {
1276 	struct sk_buff *skb, *tmp_skb;
1277 	struct sk_buff **tail_skb;
1278 	struct inet_sock *inet = inet_sk(sk);
1279 	struct net *net = sock_net(sk);
1280 	struct ip_options *opt = NULL;
1281 	struct rtable *rt = (struct rtable *)cork->dst;
1282 	struct iphdr *iph;
1283 	__be16 df = 0;
1284 	__u8 ttl;
1285 
1286 	if ((skb = __skb_dequeue(queue)) == NULL)
1287 		goto out;
1288 	tail_skb = &(skb_shinfo(skb)->frag_list);
1289 
1290 	/* move skb->data to ip header from ext header */
1291 	if (skb->data < skb_network_header(skb))
1292 		__skb_pull(skb, skb_network_offset(skb));
1293 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1294 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1295 		*tail_skb = tmp_skb;
1296 		tail_skb = &(tmp_skb->next);
1297 		skb->len += tmp_skb->len;
1298 		skb->data_len += tmp_skb->len;
1299 		skb->truesize += tmp_skb->truesize;
1300 		tmp_skb->destructor = NULL;
1301 		tmp_skb->sk = NULL;
1302 	}
1303 
1304 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1305 	 * to fragment the frame generated here. No matter, what transforms
1306 	 * how transforms change size of the packet, it will come out.
1307 	 */
1308 	if (inet->pmtudisc < IP_PMTUDISC_DO)
1309 		skb->local_df = 1;
1310 
1311 	/* DF bit is set when we want to see DF on outgoing frames.
1312 	 * If local_df is set too, we still allow to fragment this frame
1313 	 * locally. */
1314 	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1315 	    (skb->len <= dst_mtu(&rt->dst) &&
1316 	     ip_dont_fragment(sk, &rt->dst)))
1317 		df = htons(IP_DF);
1318 
1319 	if (cork->flags & IPCORK_OPT)
1320 		opt = cork->opt;
1321 
1322 	if (rt->rt_type == RTN_MULTICAST)
1323 		ttl = inet->mc_ttl;
1324 	else
1325 		ttl = ip_select_ttl(inet, &rt->dst);
1326 
1327 	iph = (struct iphdr *)skb->data;
1328 	iph->version = 4;
1329 	iph->ihl = 5;
1330 	iph->tos = inet->tos;
1331 	iph->frag_off = df;
1332 	ip_select_ident(iph, &rt->dst, sk);
1333 	iph->ttl = ttl;
1334 	iph->protocol = sk->sk_protocol;
1335 	iph->saddr = fl4->saddr;
1336 	iph->daddr = fl4->daddr;
1337 
1338 	if (opt) {
1339 		iph->ihl += opt->optlen>>2;
1340 		ip_options_build(skb, opt, cork->addr, rt, 0);
1341 	}
1342 
1343 	skb->priority = sk->sk_priority;
1344 	skb->mark = sk->sk_mark;
1345 	/*
1346 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1347 	 * on dst refcount
1348 	 */
1349 	cork->dst = NULL;
1350 	skb_dst_set(skb, &rt->dst);
1351 
1352 	if (iph->protocol == IPPROTO_ICMP)
1353 		icmp_out_count(net, ((struct icmphdr *)
1354 			skb_transport_header(skb))->type);
1355 
1356 	ip_cork_release(cork);
1357 out:
1358 	return skb;
1359 }
1360 
1361 int ip_send_skb(struct sk_buff *skb)
1362 {
1363 	struct net *net = sock_net(skb->sk);
1364 	int err;
1365 
1366 	err = ip_local_out(skb);
1367 	if (err) {
1368 		if (err > 0)
1369 			err = net_xmit_errno(err);
1370 		if (err)
1371 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1372 	}
1373 
1374 	return err;
1375 }
1376 
1377 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1378 {
1379 	struct sk_buff *skb;
1380 
1381 	skb = ip_finish_skb(sk, fl4);
1382 	if (!skb)
1383 		return 0;
1384 
1385 	/* Netfilter gets whole the not fragmented skb. */
1386 	return ip_send_skb(skb);
1387 }
1388 
1389 /*
1390  *	Throw away all pending data on the socket.
1391  */
1392 static void __ip_flush_pending_frames(struct sock *sk,
1393 				      struct sk_buff_head *queue,
1394 				      struct inet_cork *cork)
1395 {
1396 	struct sk_buff *skb;
1397 
1398 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1399 		kfree_skb(skb);
1400 
1401 	ip_cork_release(cork);
1402 }
1403 
1404 void ip_flush_pending_frames(struct sock *sk)
1405 {
1406 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1407 }
1408 
1409 struct sk_buff *ip_make_skb(struct sock *sk,
1410 			    struct flowi4 *fl4,
1411 			    int getfrag(void *from, char *to, int offset,
1412 					int len, int odd, struct sk_buff *skb),
1413 			    void *from, int length, int transhdrlen,
1414 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1415 			    unsigned int flags)
1416 {
1417 	struct inet_cork cork;
1418 	struct sk_buff_head queue;
1419 	int err;
1420 
1421 	if (flags & MSG_PROBE)
1422 		return NULL;
1423 
1424 	__skb_queue_head_init(&queue);
1425 
1426 	cork.flags = 0;
1427 	cork.addr = 0;
1428 	cork.opt = NULL;
1429 	err = ip_setup_cork(sk, &cork, ipc, rtp);
1430 	if (err)
1431 		return ERR_PTR(err);
1432 
1433 	err = __ip_append_data(sk, fl4, &queue, &cork, getfrag,
1434 			       from, length, transhdrlen, flags);
1435 	if (err) {
1436 		__ip_flush_pending_frames(sk, &queue, &cork);
1437 		return ERR_PTR(err);
1438 	}
1439 
1440 	return __ip_make_skb(sk, fl4, &queue, &cork);
1441 }
1442 
1443 /*
1444  *	Fetch data from kernel space and fill in checksum if needed.
1445  */
1446 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1447 			      int len, int odd, struct sk_buff *skb)
1448 {
1449 	__wsum csum;
1450 
1451 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1452 	skb->csum = csum_block_add(skb->csum, csum, odd);
1453 	return 0;
1454 }
1455 
1456 /*
1457  *	Generic function to send a packet as reply to another packet.
1458  *	Used to send TCP resets so far. ICMP should use this function too.
1459  *
1460  *	Should run single threaded per socket because it uses the sock
1461  *     	structure to pass arguments.
1462  */
1463 void ip_send_reply(struct sock *sk, struct sk_buff *skb, __be32 daddr,
1464 		   struct ip_reply_arg *arg, unsigned int len)
1465 {
1466 	struct inet_sock *inet = inet_sk(sk);
1467 	struct ip_options_data replyopts;
1468 	struct ipcm_cookie ipc;
1469 	struct flowi4 fl4;
1470 	struct rtable *rt = skb_rtable(skb);
1471 
1472 	if (ip_options_echo(&replyopts.opt.opt, skb))
1473 		return;
1474 
1475 	ipc.addr = daddr;
1476 	ipc.opt = NULL;
1477 	ipc.tx_flags = 0;
1478 
1479 	if (replyopts.opt.opt.optlen) {
1480 		ipc.opt = &replyopts.opt;
1481 
1482 		if (replyopts.opt.opt.srr)
1483 			daddr = replyopts.opt.opt.faddr;
1484 	}
1485 
1486 	flowi4_init_output(&fl4, arg->bound_dev_if, 0,
1487 			   RT_TOS(ip_hdr(skb)->tos),
1488 			   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1489 			   ip_reply_arg_flowi_flags(arg),
1490 			   daddr, rt->rt_spec_dst,
1491 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1492 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1493 	rt = ip_route_output_key(sock_net(sk), &fl4);
1494 	if (IS_ERR(rt))
1495 		return;
1496 
1497 	/* And let IP do all the hard work.
1498 
1499 	   This chunk is not reenterable, hence spinlock.
1500 	   Note that it uses the fact, that this function is called
1501 	   with locally disabled BH and that sk cannot be already spinlocked.
1502 	 */
1503 	bh_lock_sock(sk);
1504 	inet->tos = ip_hdr(skb)->tos;
1505 	sk->sk_priority = skb->priority;
1506 	sk->sk_protocol = ip_hdr(skb)->protocol;
1507 	sk->sk_bound_dev_if = arg->bound_dev_if;
1508 	ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1509 		       &ipc, &rt, MSG_DONTWAIT);
1510 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1511 		if (arg->csumoffset >= 0)
1512 			*((__sum16 *)skb_transport_header(skb) +
1513 			  arg->csumoffset) = csum_fold(csum_add(skb->csum,
1514 								arg->csum));
1515 		skb->ip_summed = CHECKSUM_NONE;
1516 		ip_push_pending_frames(sk, &fl4);
1517 	}
1518 
1519 	bh_unlock_sock(sk);
1520 
1521 	ip_rt_put(rt);
1522 }
1523 
1524 void __init ip_init(void)
1525 {
1526 	ip_rt_init();
1527 	inet_initpeers();
1528 
1529 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1530 	igmp_mc_proc_init();
1531 #endif
1532 }
1533