1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The Internet Protocol (IP) output module. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Donald Becker, <becker@super.org> 12 * Alan Cox, <Alan.Cox@linux.org> 13 * Richard Underwood 14 * Stefan Becker, <stefanb@yello.ping.de> 15 * Jorge Cwik, <jorge@laser.satlink.net> 16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 17 * Hirokazu Takahashi, <taka@valinux.co.jp> 18 * 19 * See ip_input.c for original log 20 * 21 * Fixes: 22 * Alan Cox : Missing nonblock feature in ip_build_xmit. 23 * Mike Kilburn : htons() missing in ip_build_xmit. 24 * Bradford Johnson: Fix faulty handling of some frames when 25 * no route is found. 26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 27 * (in case if packet not accepted by 28 * output firewall rules) 29 * Mike McLagan : Routing by source 30 * Alexey Kuznetsov: use new route cache 31 * Andi Kleen: Fix broken PMTU recovery and remove 32 * some redundant tests. 33 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 34 * Andi Kleen : Replace ip_reply with ip_send_reply. 35 * Andi Kleen : Split fast and slow ip_build_xmit path 36 * for decreased register pressure on x86 37 * and more readability. 38 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 39 * silently drop skb instead of failing with -EPERM. 40 * Detlev Wengorz : Copy protocol for fragments. 41 * Hirokazu Takahashi: HW checksumming for outgoing UDP 42 * datagrams. 43 * Hirokazu Takahashi: sendfile() on UDP works now. 44 */ 45 46 #include <linux/uaccess.h> 47 #include <linux/module.h> 48 #include <linux/types.h> 49 #include <linux/kernel.h> 50 #include <linux/mm.h> 51 #include <linux/string.h> 52 #include <linux/errno.h> 53 #include <linux/highmem.h> 54 #include <linux/slab.h> 55 56 #include <linux/socket.h> 57 #include <linux/sockios.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/etherdevice.h> 62 #include <linux/proc_fs.h> 63 #include <linux/stat.h> 64 #include <linux/init.h> 65 66 #include <net/snmp.h> 67 #include <net/ip.h> 68 #include <net/protocol.h> 69 #include <net/route.h> 70 #include <net/xfrm.h> 71 #include <linux/skbuff.h> 72 #include <net/sock.h> 73 #include <net/arp.h> 74 #include <net/icmp.h> 75 #include <net/checksum.h> 76 #include <net/inetpeer.h> 77 #include <net/inet_ecn.h> 78 #include <net/lwtunnel.h> 79 #include <linux/bpf-cgroup.h> 80 #include <linux/igmp.h> 81 #include <linux/netfilter_ipv4.h> 82 #include <linux/netfilter_bridge.h> 83 #include <linux/netlink.h> 84 #include <linux/tcp.h> 85 86 static int 87 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 88 unsigned int mtu, 89 int (*output)(struct net *, struct sock *, struct sk_buff *)); 90 91 /* Generate a checksum for an outgoing IP datagram. */ 92 void ip_send_check(struct iphdr *iph) 93 { 94 iph->check = 0; 95 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 96 } 97 EXPORT_SYMBOL(ip_send_check); 98 99 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 100 { 101 struct iphdr *iph = ip_hdr(skb); 102 103 iph->tot_len = htons(skb->len); 104 ip_send_check(iph); 105 106 /* if egress device is enslaved to an L3 master device pass the 107 * skb to its handler for processing 108 */ 109 skb = l3mdev_ip_out(sk, skb); 110 if (unlikely(!skb)) 111 return 0; 112 113 skb->protocol = htons(ETH_P_IP); 114 115 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 116 net, sk, skb, NULL, skb_dst(skb)->dev, 117 dst_output); 118 } 119 120 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 121 { 122 int err; 123 124 err = __ip_local_out(net, sk, skb); 125 if (likely(err == 1)) 126 err = dst_output(net, sk, skb); 127 128 return err; 129 } 130 EXPORT_SYMBOL_GPL(ip_local_out); 131 132 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 133 { 134 int ttl = inet->uc_ttl; 135 136 if (ttl < 0) 137 ttl = ip4_dst_hoplimit(dst); 138 return ttl; 139 } 140 141 /* 142 * Add an ip header to a skbuff and send it out. 143 * 144 */ 145 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 146 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt, 147 u8 tos) 148 { 149 struct inet_sock *inet = inet_sk(sk); 150 struct rtable *rt = skb_rtable(skb); 151 struct net *net = sock_net(sk); 152 struct iphdr *iph; 153 154 /* Build the IP header. */ 155 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 156 skb_reset_network_header(skb); 157 iph = ip_hdr(skb); 158 iph->version = 4; 159 iph->ihl = 5; 160 iph->tos = tos; 161 iph->ttl = ip_select_ttl(inet, &rt->dst); 162 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 163 iph->saddr = saddr; 164 iph->protocol = sk->sk_protocol; 165 /* Do not bother generating IPID for small packets (eg SYNACK) */ 166 if (skb->len <= IPV4_MIN_MTU || ip_dont_fragment(sk, &rt->dst)) { 167 iph->frag_off = htons(IP_DF); 168 iph->id = 0; 169 } else { 170 iph->frag_off = 0; 171 /* TCP packets here are SYNACK with fat IPv4/TCP options. 172 * Avoid using the hashed IP ident generator. 173 */ 174 if (sk->sk_protocol == IPPROTO_TCP) 175 iph->id = (__force __be16)get_random_u16(); 176 else 177 __ip_select_ident(net, iph, 1); 178 } 179 180 if (opt && opt->opt.optlen) { 181 iph->ihl += opt->opt.optlen>>2; 182 ip_options_build(skb, &opt->opt, daddr, rt); 183 } 184 185 skb->priority = sk->sk_priority; 186 if (!skb->mark) 187 skb->mark = sk->sk_mark; 188 189 /* Send it out. */ 190 return ip_local_out(net, skb->sk, skb); 191 } 192 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 193 194 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 195 { 196 struct dst_entry *dst = skb_dst(skb); 197 struct rtable *rt = (struct rtable *)dst; 198 struct net_device *dev = dst->dev; 199 unsigned int hh_len = LL_RESERVED_SPACE(dev); 200 struct neighbour *neigh; 201 bool is_v6gw = false; 202 203 if (rt->rt_type == RTN_MULTICAST) { 204 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 205 } else if (rt->rt_type == RTN_BROADCAST) 206 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 207 208 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 209 skb = skb_expand_head(skb, hh_len); 210 if (!skb) 211 return -ENOMEM; 212 } 213 214 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 215 int res = lwtunnel_xmit(skb); 216 217 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 218 return res; 219 } 220 221 rcu_read_lock_bh(); 222 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 223 if (!IS_ERR(neigh)) { 224 int res; 225 226 sock_confirm_neigh(skb, neigh); 227 /* if crossing protocols, can not use the cached header */ 228 res = neigh_output(neigh, skb, is_v6gw); 229 rcu_read_unlock_bh(); 230 return res; 231 } 232 rcu_read_unlock_bh(); 233 234 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 235 __func__); 236 kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL); 237 return -EINVAL; 238 } 239 240 static int ip_finish_output_gso(struct net *net, struct sock *sk, 241 struct sk_buff *skb, unsigned int mtu) 242 { 243 struct sk_buff *segs, *nskb; 244 netdev_features_t features; 245 int ret = 0; 246 247 /* common case: seglen is <= mtu 248 */ 249 if (skb_gso_validate_network_len(skb, mtu)) 250 return ip_finish_output2(net, sk, skb); 251 252 /* Slowpath - GSO segment length exceeds the egress MTU. 253 * 254 * This can happen in several cases: 255 * - Forwarding of a TCP GRO skb, when DF flag is not set. 256 * - Forwarding of an skb that arrived on a virtualization interface 257 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 258 * stack. 259 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 260 * interface with a smaller MTU. 261 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 262 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 263 * insufficient MTU. 264 */ 265 features = netif_skb_features(skb); 266 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET); 267 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 268 if (IS_ERR_OR_NULL(segs)) { 269 kfree_skb(skb); 270 return -ENOMEM; 271 } 272 273 consume_skb(skb); 274 275 skb_list_walk_safe(segs, segs, nskb) { 276 int err; 277 278 skb_mark_not_on_list(segs); 279 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 280 281 if (err && ret == 0) 282 ret = err; 283 } 284 285 return ret; 286 } 287 288 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 289 { 290 unsigned int mtu; 291 292 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 293 /* Policy lookup after SNAT yielded a new policy */ 294 if (skb_dst(skb)->xfrm) { 295 IPCB(skb)->flags |= IPSKB_REROUTED; 296 return dst_output(net, sk, skb); 297 } 298 #endif 299 mtu = ip_skb_dst_mtu(sk, skb); 300 if (skb_is_gso(skb)) 301 return ip_finish_output_gso(net, sk, skb, mtu); 302 303 if (skb->len > mtu || IPCB(skb)->frag_max_size) 304 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 305 306 return ip_finish_output2(net, sk, skb); 307 } 308 309 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 310 { 311 int ret; 312 313 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 314 switch (ret) { 315 case NET_XMIT_SUCCESS: 316 return __ip_finish_output(net, sk, skb); 317 case NET_XMIT_CN: 318 return __ip_finish_output(net, sk, skb) ? : ret; 319 default: 320 kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS); 321 return ret; 322 } 323 } 324 325 static int ip_mc_finish_output(struct net *net, struct sock *sk, 326 struct sk_buff *skb) 327 { 328 struct rtable *new_rt; 329 bool do_cn = false; 330 int ret, err; 331 332 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 333 switch (ret) { 334 case NET_XMIT_CN: 335 do_cn = true; 336 fallthrough; 337 case NET_XMIT_SUCCESS: 338 break; 339 default: 340 kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS); 341 return ret; 342 } 343 344 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting 345 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten, 346 * see ipv4_pktinfo_prepare(). 347 */ 348 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb)); 349 if (new_rt) { 350 new_rt->rt_iif = 0; 351 skb_dst_drop(skb); 352 skb_dst_set(skb, &new_rt->dst); 353 } 354 355 err = dev_loopback_xmit(net, sk, skb); 356 return (do_cn && err) ? ret : err; 357 } 358 359 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 360 { 361 struct rtable *rt = skb_rtable(skb); 362 struct net_device *dev = rt->dst.dev; 363 364 /* 365 * If the indicated interface is up and running, send the packet. 366 */ 367 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 368 369 skb->dev = dev; 370 skb->protocol = htons(ETH_P_IP); 371 372 /* 373 * Multicasts are looped back for other local users 374 */ 375 376 if (rt->rt_flags&RTCF_MULTICAST) { 377 if (sk_mc_loop(sk) 378 #ifdef CONFIG_IP_MROUTE 379 /* Small optimization: do not loopback not local frames, 380 which returned after forwarding; they will be dropped 381 by ip_mr_input in any case. 382 Note, that local frames are looped back to be delivered 383 to local recipients. 384 385 This check is duplicated in ip_mr_input at the moment. 386 */ 387 && 388 ((rt->rt_flags & RTCF_LOCAL) || 389 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 390 #endif 391 ) { 392 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 393 if (newskb) 394 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 395 net, sk, newskb, NULL, newskb->dev, 396 ip_mc_finish_output); 397 } 398 399 /* Multicasts with ttl 0 must not go beyond the host */ 400 401 if (ip_hdr(skb)->ttl == 0) { 402 kfree_skb(skb); 403 return 0; 404 } 405 } 406 407 if (rt->rt_flags&RTCF_BROADCAST) { 408 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 409 if (newskb) 410 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 411 net, sk, newskb, NULL, newskb->dev, 412 ip_mc_finish_output); 413 } 414 415 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 416 net, sk, skb, NULL, skb->dev, 417 ip_finish_output, 418 !(IPCB(skb)->flags & IPSKB_REROUTED)); 419 } 420 421 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 422 { 423 struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev; 424 425 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 426 427 skb->dev = dev; 428 skb->protocol = htons(ETH_P_IP); 429 430 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 431 net, sk, skb, indev, dev, 432 ip_finish_output, 433 !(IPCB(skb)->flags & IPSKB_REROUTED)); 434 } 435 EXPORT_SYMBOL(ip_output); 436 437 /* 438 * copy saddr and daddr, possibly using 64bit load/stores 439 * Equivalent to : 440 * iph->saddr = fl4->saddr; 441 * iph->daddr = fl4->daddr; 442 */ 443 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 444 { 445 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 446 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 447 448 iph->saddr = fl4->saddr; 449 iph->daddr = fl4->daddr; 450 } 451 452 /* Note: skb->sk can be different from sk, in case of tunnels */ 453 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, 454 __u8 tos) 455 { 456 struct inet_sock *inet = inet_sk(sk); 457 struct net *net = sock_net(sk); 458 struct ip_options_rcu *inet_opt; 459 struct flowi4 *fl4; 460 struct rtable *rt; 461 struct iphdr *iph; 462 int res; 463 464 /* Skip all of this if the packet is already routed, 465 * f.e. by something like SCTP. 466 */ 467 rcu_read_lock(); 468 inet_opt = rcu_dereference(inet->inet_opt); 469 fl4 = &fl->u.ip4; 470 rt = skb_rtable(skb); 471 if (rt) 472 goto packet_routed; 473 474 /* Make sure we can route this packet. */ 475 rt = (struct rtable *)__sk_dst_check(sk, 0); 476 if (!rt) { 477 __be32 daddr; 478 479 /* Use correct destination address if we have options. */ 480 daddr = inet->inet_daddr; 481 if (inet_opt && inet_opt->opt.srr) 482 daddr = inet_opt->opt.faddr; 483 484 /* If this fails, retransmit mechanism of transport layer will 485 * keep trying until route appears or the connection times 486 * itself out. 487 */ 488 rt = ip_route_output_ports(net, fl4, sk, 489 daddr, inet->inet_saddr, 490 inet->inet_dport, 491 inet->inet_sport, 492 sk->sk_protocol, 493 RT_CONN_FLAGS_TOS(sk, tos), 494 sk->sk_bound_dev_if); 495 if (IS_ERR(rt)) 496 goto no_route; 497 sk_setup_caps(sk, &rt->dst); 498 } 499 skb_dst_set_noref(skb, &rt->dst); 500 501 packet_routed: 502 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 503 goto no_route; 504 505 /* OK, we know where to send it, allocate and build IP header. */ 506 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 507 skb_reset_network_header(skb); 508 iph = ip_hdr(skb); 509 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); 510 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 511 iph->frag_off = htons(IP_DF); 512 else 513 iph->frag_off = 0; 514 iph->ttl = ip_select_ttl(inet, &rt->dst); 515 iph->protocol = sk->sk_protocol; 516 ip_copy_addrs(iph, fl4); 517 518 /* Transport layer set skb->h.foo itself. */ 519 520 if (inet_opt && inet_opt->opt.optlen) { 521 iph->ihl += inet_opt->opt.optlen >> 2; 522 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt); 523 } 524 525 ip_select_ident_segs(net, skb, sk, 526 skb_shinfo(skb)->gso_segs ?: 1); 527 528 /* TODO : should we use skb->sk here instead of sk ? */ 529 skb->priority = sk->sk_priority; 530 skb->mark = sk->sk_mark; 531 532 res = ip_local_out(net, sk, skb); 533 rcu_read_unlock(); 534 return res; 535 536 no_route: 537 rcu_read_unlock(); 538 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 539 kfree_skb_reason(skb, SKB_DROP_REASON_IP_OUTNOROUTES); 540 return -EHOSTUNREACH; 541 } 542 EXPORT_SYMBOL(__ip_queue_xmit); 543 544 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 545 { 546 return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos); 547 } 548 EXPORT_SYMBOL(ip_queue_xmit); 549 550 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 551 { 552 to->pkt_type = from->pkt_type; 553 to->priority = from->priority; 554 to->protocol = from->protocol; 555 to->skb_iif = from->skb_iif; 556 skb_dst_drop(to); 557 skb_dst_copy(to, from); 558 to->dev = from->dev; 559 to->mark = from->mark; 560 561 skb_copy_hash(to, from); 562 563 #ifdef CONFIG_NET_SCHED 564 to->tc_index = from->tc_index; 565 #endif 566 nf_copy(to, from); 567 skb_ext_copy(to, from); 568 #if IS_ENABLED(CONFIG_IP_VS) 569 to->ipvs_property = from->ipvs_property; 570 #endif 571 skb_copy_secmark(to, from); 572 } 573 574 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 575 unsigned int mtu, 576 int (*output)(struct net *, struct sock *, struct sk_buff *)) 577 { 578 struct iphdr *iph = ip_hdr(skb); 579 580 if ((iph->frag_off & htons(IP_DF)) == 0) 581 return ip_do_fragment(net, sk, skb, output); 582 583 if (unlikely(!skb->ignore_df || 584 (IPCB(skb)->frag_max_size && 585 IPCB(skb)->frag_max_size > mtu))) { 586 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 587 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 588 htonl(mtu)); 589 kfree_skb(skb); 590 return -EMSGSIZE; 591 } 592 593 return ip_do_fragment(net, sk, skb, output); 594 } 595 596 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph, 597 unsigned int hlen, struct ip_fraglist_iter *iter) 598 { 599 unsigned int first_len = skb_pagelen(skb); 600 601 iter->frag = skb_shinfo(skb)->frag_list; 602 skb_frag_list_init(skb); 603 604 iter->offset = 0; 605 iter->iph = iph; 606 iter->hlen = hlen; 607 608 skb->data_len = first_len - skb_headlen(skb); 609 skb->len = first_len; 610 iph->tot_len = htons(first_len); 611 iph->frag_off = htons(IP_MF); 612 ip_send_check(iph); 613 } 614 EXPORT_SYMBOL(ip_fraglist_init); 615 616 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter) 617 { 618 unsigned int hlen = iter->hlen; 619 struct iphdr *iph = iter->iph; 620 struct sk_buff *frag; 621 622 frag = iter->frag; 623 frag->ip_summed = CHECKSUM_NONE; 624 skb_reset_transport_header(frag); 625 __skb_push(frag, hlen); 626 skb_reset_network_header(frag); 627 memcpy(skb_network_header(frag), iph, hlen); 628 iter->iph = ip_hdr(frag); 629 iph = iter->iph; 630 iph->tot_len = htons(frag->len); 631 ip_copy_metadata(frag, skb); 632 iter->offset += skb->len - hlen; 633 iph->frag_off = htons(iter->offset >> 3); 634 if (frag->next) 635 iph->frag_off |= htons(IP_MF); 636 /* Ready, complete checksum */ 637 ip_send_check(iph); 638 } 639 EXPORT_SYMBOL(ip_fraglist_prepare); 640 641 void ip_frag_init(struct sk_buff *skb, unsigned int hlen, 642 unsigned int ll_rs, unsigned int mtu, bool DF, 643 struct ip_frag_state *state) 644 { 645 struct iphdr *iph = ip_hdr(skb); 646 647 state->DF = DF; 648 state->hlen = hlen; 649 state->ll_rs = ll_rs; 650 state->mtu = mtu; 651 652 state->left = skb->len - hlen; /* Space per frame */ 653 state->ptr = hlen; /* Where to start from */ 654 655 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 656 state->not_last_frag = iph->frag_off & htons(IP_MF); 657 } 658 EXPORT_SYMBOL(ip_frag_init); 659 660 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to, 661 bool first_frag) 662 { 663 /* Copy the flags to each fragment. */ 664 IPCB(to)->flags = IPCB(from)->flags; 665 666 /* ANK: dirty, but effective trick. Upgrade options only if 667 * the segment to be fragmented was THE FIRST (otherwise, 668 * options are already fixed) and make it ONCE 669 * on the initial skb, so that all the following fragments 670 * will inherit fixed options. 671 */ 672 if (first_frag) 673 ip_options_fragment(from); 674 } 675 676 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state) 677 { 678 unsigned int len = state->left; 679 struct sk_buff *skb2; 680 struct iphdr *iph; 681 682 /* IF: it doesn't fit, use 'mtu' - the data space left */ 683 if (len > state->mtu) 684 len = state->mtu; 685 /* IF: we are not sending up to and including the packet end 686 then align the next start on an eight byte boundary */ 687 if (len < state->left) { 688 len &= ~7; 689 } 690 691 /* Allocate buffer */ 692 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC); 693 if (!skb2) 694 return ERR_PTR(-ENOMEM); 695 696 /* 697 * Set up data on packet 698 */ 699 700 ip_copy_metadata(skb2, skb); 701 skb_reserve(skb2, state->ll_rs); 702 skb_put(skb2, len + state->hlen); 703 skb_reset_network_header(skb2); 704 skb2->transport_header = skb2->network_header + state->hlen; 705 706 /* 707 * Charge the memory for the fragment to any owner 708 * it might possess 709 */ 710 711 if (skb->sk) 712 skb_set_owner_w(skb2, skb->sk); 713 714 /* 715 * Copy the packet header into the new buffer. 716 */ 717 718 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen); 719 720 /* 721 * Copy a block of the IP datagram. 722 */ 723 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len)) 724 BUG(); 725 state->left -= len; 726 727 /* 728 * Fill in the new header fields. 729 */ 730 iph = ip_hdr(skb2); 731 iph->frag_off = htons((state->offset >> 3)); 732 if (state->DF) 733 iph->frag_off |= htons(IP_DF); 734 735 /* 736 * Added AC : If we are fragmenting a fragment that's not the 737 * last fragment then keep MF on each bit 738 */ 739 if (state->left > 0 || state->not_last_frag) 740 iph->frag_off |= htons(IP_MF); 741 state->ptr += len; 742 state->offset += len; 743 744 iph->tot_len = htons(len + state->hlen); 745 746 ip_send_check(iph); 747 748 return skb2; 749 } 750 EXPORT_SYMBOL(ip_frag_next); 751 752 /* 753 * This IP datagram is too large to be sent in one piece. Break it up into 754 * smaller pieces (each of size equal to IP header plus 755 * a block of the data of the original IP data part) that will yet fit in a 756 * single device frame, and queue such a frame for sending. 757 */ 758 759 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 760 int (*output)(struct net *, struct sock *, struct sk_buff *)) 761 { 762 struct iphdr *iph; 763 struct sk_buff *skb2; 764 bool mono_delivery_time = skb->mono_delivery_time; 765 struct rtable *rt = skb_rtable(skb); 766 unsigned int mtu, hlen, ll_rs; 767 struct ip_fraglist_iter iter; 768 ktime_t tstamp = skb->tstamp; 769 struct ip_frag_state state; 770 int err = 0; 771 772 /* for offloaded checksums cleanup checksum before fragmentation */ 773 if (skb->ip_summed == CHECKSUM_PARTIAL && 774 (err = skb_checksum_help(skb))) 775 goto fail; 776 777 /* 778 * Point into the IP datagram header. 779 */ 780 781 iph = ip_hdr(skb); 782 783 mtu = ip_skb_dst_mtu(sk, skb); 784 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 785 mtu = IPCB(skb)->frag_max_size; 786 787 /* 788 * Setup starting values. 789 */ 790 791 hlen = iph->ihl * 4; 792 mtu = mtu - hlen; /* Size of data space */ 793 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 794 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 795 796 /* When frag_list is given, use it. First, check its validity: 797 * some transformers could create wrong frag_list or break existing 798 * one, it is not prohibited. In this case fall back to copying. 799 * 800 * LATER: this step can be merged to real generation of fragments, 801 * we can switch to copy when see the first bad fragment. 802 */ 803 if (skb_has_frag_list(skb)) { 804 struct sk_buff *frag, *frag2; 805 unsigned int first_len = skb_pagelen(skb); 806 807 if (first_len - hlen > mtu || 808 ((first_len - hlen) & 7) || 809 ip_is_fragment(iph) || 810 skb_cloned(skb) || 811 skb_headroom(skb) < ll_rs) 812 goto slow_path; 813 814 skb_walk_frags(skb, frag) { 815 /* Correct geometry. */ 816 if (frag->len > mtu || 817 ((frag->len & 7) && frag->next) || 818 skb_headroom(frag) < hlen + ll_rs) 819 goto slow_path_clean; 820 821 /* Partially cloned skb? */ 822 if (skb_shared(frag)) 823 goto slow_path_clean; 824 825 BUG_ON(frag->sk); 826 if (skb->sk) { 827 frag->sk = skb->sk; 828 frag->destructor = sock_wfree; 829 } 830 skb->truesize -= frag->truesize; 831 } 832 833 /* Everything is OK. Generate! */ 834 ip_fraglist_init(skb, iph, hlen, &iter); 835 836 for (;;) { 837 /* Prepare header of the next frame, 838 * before previous one went down. */ 839 if (iter.frag) { 840 bool first_frag = (iter.offset == 0); 841 842 IPCB(iter.frag)->flags = IPCB(skb)->flags; 843 ip_fraglist_prepare(skb, &iter); 844 if (first_frag && IPCB(skb)->opt.optlen) { 845 /* ipcb->opt is not populated for frags 846 * coming from __ip_make_skb(), 847 * ip_options_fragment() needs optlen 848 */ 849 IPCB(iter.frag)->opt.optlen = 850 IPCB(skb)->opt.optlen; 851 ip_options_fragment(iter.frag); 852 ip_send_check(iter.iph); 853 } 854 } 855 856 skb_set_delivery_time(skb, tstamp, mono_delivery_time); 857 err = output(net, sk, skb); 858 859 if (!err) 860 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 861 if (err || !iter.frag) 862 break; 863 864 skb = ip_fraglist_next(&iter); 865 } 866 867 if (err == 0) { 868 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 869 return 0; 870 } 871 872 kfree_skb_list(iter.frag); 873 874 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 875 return err; 876 877 slow_path_clean: 878 skb_walk_frags(skb, frag2) { 879 if (frag2 == frag) 880 break; 881 frag2->sk = NULL; 882 frag2->destructor = NULL; 883 skb->truesize += frag2->truesize; 884 } 885 } 886 887 slow_path: 888 /* 889 * Fragment the datagram. 890 */ 891 892 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU, 893 &state); 894 895 /* 896 * Keep copying data until we run out. 897 */ 898 899 while (state.left > 0) { 900 bool first_frag = (state.offset == 0); 901 902 skb2 = ip_frag_next(skb, &state); 903 if (IS_ERR(skb2)) { 904 err = PTR_ERR(skb2); 905 goto fail; 906 } 907 ip_frag_ipcb(skb, skb2, first_frag); 908 909 /* 910 * Put this fragment into the sending queue. 911 */ 912 skb_set_delivery_time(skb2, tstamp, mono_delivery_time); 913 err = output(net, sk, skb2); 914 if (err) 915 goto fail; 916 917 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 918 } 919 consume_skb(skb); 920 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 921 return err; 922 923 fail: 924 kfree_skb(skb); 925 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 926 return err; 927 } 928 EXPORT_SYMBOL(ip_do_fragment); 929 930 int 931 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 932 { 933 struct msghdr *msg = from; 934 935 if (skb->ip_summed == CHECKSUM_PARTIAL) { 936 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 937 return -EFAULT; 938 } else { 939 __wsum csum = 0; 940 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 941 return -EFAULT; 942 skb->csum = csum_block_add(skb->csum, csum, odd); 943 } 944 return 0; 945 } 946 EXPORT_SYMBOL(ip_generic_getfrag); 947 948 static inline __wsum 949 csum_page(struct page *page, int offset, int copy) 950 { 951 char *kaddr; 952 __wsum csum; 953 kaddr = kmap(page); 954 csum = csum_partial(kaddr + offset, copy, 0); 955 kunmap(page); 956 return csum; 957 } 958 959 static int __ip_append_data(struct sock *sk, 960 struct flowi4 *fl4, 961 struct sk_buff_head *queue, 962 struct inet_cork *cork, 963 struct page_frag *pfrag, 964 int getfrag(void *from, char *to, int offset, 965 int len, int odd, struct sk_buff *skb), 966 void *from, int length, int transhdrlen, 967 unsigned int flags) 968 { 969 struct inet_sock *inet = inet_sk(sk); 970 struct ubuf_info *uarg = NULL; 971 struct sk_buff *skb; 972 struct ip_options *opt = cork->opt; 973 int hh_len; 974 int exthdrlen; 975 int mtu; 976 int copy; 977 int err; 978 int offset = 0; 979 bool zc = false; 980 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 981 int csummode = CHECKSUM_NONE; 982 struct rtable *rt = (struct rtable *)cork->dst; 983 unsigned int wmem_alloc_delta = 0; 984 bool paged, extra_uref = false; 985 u32 tskey = 0; 986 987 skb = skb_peek_tail(queue); 988 989 exthdrlen = !skb ? rt->dst.header_len : 0; 990 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 991 paged = !!cork->gso_size; 992 993 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 994 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 995 tskey = atomic_inc_return(&sk->sk_tskey) - 1; 996 997 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 998 999 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1000 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1001 maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu; 1002 1003 if (cork->length + length > maxnonfragsize - fragheaderlen) { 1004 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1005 mtu - (opt ? opt->optlen : 0)); 1006 return -EMSGSIZE; 1007 } 1008 1009 /* 1010 * transhdrlen > 0 means that this is the first fragment and we wish 1011 * it won't be fragmented in the future. 1012 */ 1013 if (transhdrlen && 1014 length + fragheaderlen <= mtu && 1015 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 1016 (!(flags & MSG_MORE) || cork->gso_size) && 1017 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) 1018 csummode = CHECKSUM_PARTIAL; 1019 1020 if ((flags & MSG_ZEROCOPY) && length) { 1021 struct msghdr *msg = from; 1022 1023 if (getfrag == ip_generic_getfrag && msg->msg_ubuf) { 1024 if (skb_zcopy(skb) && msg->msg_ubuf != skb_zcopy(skb)) 1025 return -EINVAL; 1026 1027 /* Leave uarg NULL if can't zerocopy, callers should 1028 * be able to handle it. 1029 */ 1030 if ((rt->dst.dev->features & NETIF_F_SG) && 1031 csummode == CHECKSUM_PARTIAL) { 1032 paged = true; 1033 zc = true; 1034 uarg = msg->msg_ubuf; 1035 } 1036 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1037 uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb)); 1038 if (!uarg) 1039 return -ENOBUFS; 1040 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */ 1041 if (rt->dst.dev->features & NETIF_F_SG && 1042 csummode == CHECKSUM_PARTIAL) { 1043 paged = true; 1044 zc = true; 1045 } else { 1046 uarg_to_msgzc(uarg)->zerocopy = 0; 1047 skb_zcopy_set(skb, uarg, &extra_uref); 1048 } 1049 } 1050 } 1051 1052 cork->length += length; 1053 1054 /* So, what's going on in the loop below? 1055 * 1056 * We use calculated fragment length to generate chained skb, 1057 * each of segments is IP fragment ready for sending to network after 1058 * adding appropriate IP header. 1059 */ 1060 1061 if (!skb) 1062 goto alloc_new_skb; 1063 1064 while (length > 0) { 1065 /* Check if the remaining data fits into current packet. */ 1066 copy = mtu - skb->len; 1067 if (copy < length) 1068 copy = maxfraglen - skb->len; 1069 if (copy <= 0) { 1070 char *data; 1071 unsigned int datalen; 1072 unsigned int fraglen; 1073 unsigned int fraggap; 1074 unsigned int alloclen, alloc_extra; 1075 unsigned int pagedlen; 1076 struct sk_buff *skb_prev; 1077 alloc_new_skb: 1078 skb_prev = skb; 1079 if (skb_prev) 1080 fraggap = skb_prev->len - maxfraglen; 1081 else 1082 fraggap = 0; 1083 1084 /* 1085 * If remaining data exceeds the mtu, 1086 * we know we need more fragment(s). 1087 */ 1088 datalen = length + fraggap; 1089 if (datalen > mtu - fragheaderlen) 1090 datalen = maxfraglen - fragheaderlen; 1091 fraglen = datalen + fragheaderlen; 1092 pagedlen = 0; 1093 1094 alloc_extra = hh_len + 15; 1095 alloc_extra += exthdrlen; 1096 1097 /* The last fragment gets additional space at tail. 1098 * Note, with MSG_MORE we overallocate on fragments, 1099 * because we have no idea what fragment will be 1100 * the last. 1101 */ 1102 if (datalen == length + fraggap) 1103 alloc_extra += rt->dst.trailer_len; 1104 1105 if ((flags & MSG_MORE) && 1106 !(rt->dst.dev->features&NETIF_F_SG)) 1107 alloclen = mtu; 1108 else if (!paged && 1109 (fraglen + alloc_extra < SKB_MAX_ALLOC || 1110 !(rt->dst.dev->features & NETIF_F_SG))) 1111 alloclen = fraglen; 1112 else { 1113 alloclen = fragheaderlen + transhdrlen; 1114 pagedlen = datalen - transhdrlen; 1115 } 1116 1117 alloclen += alloc_extra; 1118 1119 if (transhdrlen) { 1120 skb = sock_alloc_send_skb(sk, alloclen, 1121 (flags & MSG_DONTWAIT), &err); 1122 } else { 1123 skb = NULL; 1124 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 1125 2 * sk->sk_sndbuf) 1126 skb = alloc_skb(alloclen, 1127 sk->sk_allocation); 1128 if (unlikely(!skb)) 1129 err = -ENOBUFS; 1130 } 1131 if (!skb) 1132 goto error; 1133 1134 /* 1135 * Fill in the control structures 1136 */ 1137 skb->ip_summed = csummode; 1138 skb->csum = 0; 1139 skb_reserve(skb, hh_len); 1140 1141 /* 1142 * Find where to start putting bytes. 1143 */ 1144 data = skb_put(skb, fraglen + exthdrlen - pagedlen); 1145 skb_set_network_header(skb, exthdrlen); 1146 skb->transport_header = (skb->network_header + 1147 fragheaderlen); 1148 data += fragheaderlen + exthdrlen; 1149 1150 if (fraggap) { 1151 skb->csum = skb_copy_and_csum_bits( 1152 skb_prev, maxfraglen, 1153 data + transhdrlen, fraggap); 1154 skb_prev->csum = csum_sub(skb_prev->csum, 1155 skb->csum); 1156 data += fraggap; 1157 pskb_trim_unique(skb_prev, maxfraglen); 1158 } 1159 1160 copy = datalen - transhdrlen - fraggap - pagedlen; 1161 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1162 err = -EFAULT; 1163 kfree_skb(skb); 1164 goto error; 1165 } 1166 1167 offset += copy; 1168 length -= copy + transhdrlen; 1169 transhdrlen = 0; 1170 exthdrlen = 0; 1171 csummode = CHECKSUM_NONE; 1172 1173 /* only the initial fragment is time stamped */ 1174 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1175 cork->tx_flags = 0; 1176 skb_shinfo(skb)->tskey = tskey; 1177 tskey = 0; 1178 skb_zcopy_set(skb, uarg, &extra_uref); 1179 1180 if ((flags & MSG_CONFIRM) && !skb_prev) 1181 skb_set_dst_pending_confirm(skb, 1); 1182 1183 /* 1184 * Put the packet on the pending queue. 1185 */ 1186 if (!skb->destructor) { 1187 skb->destructor = sock_wfree; 1188 skb->sk = sk; 1189 wmem_alloc_delta += skb->truesize; 1190 } 1191 __skb_queue_tail(queue, skb); 1192 continue; 1193 } 1194 1195 if (copy > length) 1196 copy = length; 1197 1198 if (!(rt->dst.dev->features&NETIF_F_SG) && 1199 skb_tailroom(skb) >= copy) { 1200 unsigned int off; 1201 1202 off = skb->len; 1203 if (getfrag(from, skb_put(skb, copy), 1204 offset, copy, off, skb) < 0) { 1205 __skb_trim(skb, off); 1206 err = -EFAULT; 1207 goto error; 1208 } 1209 } else if (!zc) { 1210 int i = skb_shinfo(skb)->nr_frags; 1211 1212 err = -ENOMEM; 1213 if (!sk_page_frag_refill(sk, pfrag)) 1214 goto error; 1215 1216 skb_zcopy_downgrade_managed(skb); 1217 if (!skb_can_coalesce(skb, i, pfrag->page, 1218 pfrag->offset)) { 1219 err = -EMSGSIZE; 1220 if (i == MAX_SKB_FRAGS) 1221 goto error; 1222 1223 __skb_fill_page_desc(skb, i, pfrag->page, 1224 pfrag->offset, 0); 1225 skb_shinfo(skb)->nr_frags = ++i; 1226 get_page(pfrag->page); 1227 } 1228 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1229 if (getfrag(from, 1230 page_address(pfrag->page) + pfrag->offset, 1231 offset, copy, skb->len, skb) < 0) 1232 goto error_efault; 1233 1234 pfrag->offset += copy; 1235 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1236 skb_len_add(skb, copy); 1237 wmem_alloc_delta += copy; 1238 } else { 1239 err = skb_zerocopy_iter_dgram(skb, from, copy); 1240 if (err < 0) 1241 goto error; 1242 } 1243 offset += copy; 1244 length -= copy; 1245 } 1246 1247 if (wmem_alloc_delta) 1248 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1249 return 0; 1250 1251 error_efault: 1252 err = -EFAULT; 1253 error: 1254 net_zcopy_put_abort(uarg, extra_uref); 1255 cork->length -= length; 1256 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1257 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1258 return err; 1259 } 1260 1261 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1262 struct ipcm_cookie *ipc, struct rtable **rtp) 1263 { 1264 struct ip_options_rcu *opt; 1265 struct rtable *rt; 1266 1267 rt = *rtp; 1268 if (unlikely(!rt)) 1269 return -EFAULT; 1270 1271 /* 1272 * setup for corking. 1273 */ 1274 opt = ipc->opt; 1275 if (opt) { 1276 if (!cork->opt) { 1277 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1278 sk->sk_allocation); 1279 if (unlikely(!cork->opt)) 1280 return -ENOBUFS; 1281 } 1282 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1283 cork->flags |= IPCORK_OPT; 1284 cork->addr = ipc->addr; 1285 } 1286 1287 cork->fragsize = ip_sk_use_pmtu(sk) ? 1288 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu); 1289 1290 if (!inetdev_valid_mtu(cork->fragsize)) 1291 return -ENETUNREACH; 1292 1293 cork->gso_size = ipc->gso_size; 1294 1295 cork->dst = &rt->dst; 1296 /* We stole this route, caller should not release it. */ 1297 *rtp = NULL; 1298 1299 cork->length = 0; 1300 cork->ttl = ipc->ttl; 1301 cork->tos = ipc->tos; 1302 cork->mark = ipc->sockc.mark; 1303 cork->priority = ipc->priority; 1304 cork->transmit_time = ipc->sockc.transmit_time; 1305 cork->tx_flags = 0; 1306 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags); 1307 1308 return 0; 1309 } 1310 1311 /* 1312 * ip_append_data() and ip_append_page() can make one large IP datagram 1313 * from many pieces of data. Each pieces will be holded on the socket 1314 * until ip_push_pending_frames() is called. Each piece can be a page 1315 * or non-page data. 1316 * 1317 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1318 * this interface potentially. 1319 * 1320 * LATER: length must be adjusted by pad at tail, when it is required. 1321 */ 1322 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1323 int getfrag(void *from, char *to, int offset, int len, 1324 int odd, struct sk_buff *skb), 1325 void *from, int length, int transhdrlen, 1326 struct ipcm_cookie *ipc, struct rtable **rtp, 1327 unsigned int flags) 1328 { 1329 struct inet_sock *inet = inet_sk(sk); 1330 int err; 1331 1332 if (flags&MSG_PROBE) 1333 return 0; 1334 1335 if (skb_queue_empty(&sk->sk_write_queue)) { 1336 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1337 if (err) 1338 return err; 1339 } else { 1340 transhdrlen = 0; 1341 } 1342 1343 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1344 sk_page_frag(sk), getfrag, 1345 from, length, transhdrlen, flags); 1346 } 1347 1348 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1349 int offset, size_t size, int flags) 1350 { 1351 struct inet_sock *inet = inet_sk(sk); 1352 struct sk_buff *skb; 1353 struct rtable *rt; 1354 struct ip_options *opt = NULL; 1355 struct inet_cork *cork; 1356 int hh_len; 1357 int mtu; 1358 int len; 1359 int err; 1360 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1361 1362 if (inet->hdrincl) 1363 return -EPERM; 1364 1365 if (flags&MSG_PROBE) 1366 return 0; 1367 1368 if (skb_queue_empty(&sk->sk_write_queue)) 1369 return -EINVAL; 1370 1371 cork = &inet->cork.base; 1372 rt = (struct rtable *)cork->dst; 1373 if (cork->flags & IPCORK_OPT) 1374 opt = cork->opt; 1375 1376 if (!(rt->dst.dev->features & NETIF_F_SG)) 1377 return -EOPNOTSUPP; 1378 1379 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1380 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 1381 1382 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1383 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1384 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1385 1386 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1387 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1388 mtu - (opt ? opt->optlen : 0)); 1389 return -EMSGSIZE; 1390 } 1391 1392 skb = skb_peek_tail(&sk->sk_write_queue); 1393 if (!skb) 1394 return -EINVAL; 1395 1396 cork->length += size; 1397 1398 while (size > 0) { 1399 /* Check if the remaining data fits into current packet. */ 1400 len = mtu - skb->len; 1401 if (len < size) 1402 len = maxfraglen - skb->len; 1403 1404 if (len <= 0) { 1405 struct sk_buff *skb_prev; 1406 int alloclen; 1407 1408 skb_prev = skb; 1409 fraggap = skb_prev->len - maxfraglen; 1410 1411 alloclen = fragheaderlen + hh_len + fraggap + 15; 1412 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1413 if (unlikely(!skb)) { 1414 err = -ENOBUFS; 1415 goto error; 1416 } 1417 1418 /* 1419 * Fill in the control structures 1420 */ 1421 skb->ip_summed = CHECKSUM_NONE; 1422 skb->csum = 0; 1423 skb_reserve(skb, hh_len); 1424 1425 /* 1426 * Find where to start putting bytes. 1427 */ 1428 skb_put(skb, fragheaderlen + fraggap); 1429 skb_reset_network_header(skb); 1430 skb->transport_header = (skb->network_header + 1431 fragheaderlen); 1432 if (fraggap) { 1433 skb->csum = skb_copy_and_csum_bits(skb_prev, 1434 maxfraglen, 1435 skb_transport_header(skb), 1436 fraggap); 1437 skb_prev->csum = csum_sub(skb_prev->csum, 1438 skb->csum); 1439 pskb_trim_unique(skb_prev, maxfraglen); 1440 } 1441 1442 /* 1443 * Put the packet on the pending queue. 1444 */ 1445 __skb_queue_tail(&sk->sk_write_queue, skb); 1446 continue; 1447 } 1448 1449 if (len > size) 1450 len = size; 1451 1452 if (skb_append_pagefrags(skb, page, offset, len)) { 1453 err = -EMSGSIZE; 1454 goto error; 1455 } 1456 1457 if (skb->ip_summed == CHECKSUM_NONE) { 1458 __wsum csum; 1459 csum = csum_page(page, offset, len); 1460 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1461 } 1462 1463 skb_len_add(skb, len); 1464 refcount_add(len, &sk->sk_wmem_alloc); 1465 offset += len; 1466 size -= len; 1467 } 1468 return 0; 1469 1470 error: 1471 cork->length -= size; 1472 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1473 return err; 1474 } 1475 1476 static void ip_cork_release(struct inet_cork *cork) 1477 { 1478 cork->flags &= ~IPCORK_OPT; 1479 kfree(cork->opt); 1480 cork->opt = NULL; 1481 dst_release(cork->dst); 1482 cork->dst = NULL; 1483 } 1484 1485 /* 1486 * Combined all pending IP fragments on the socket as one IP datagram 1487 * and push them out. 1488 */ 1489 struct sk_buff *__ip_make_skb(struct sock *sk, 1490 struct flowi4 *fl4, 1491 struct sk_buff_head *queue, 1492 struct inet_cork *cork) 1493 { 1494 struct sk_buff *skb, *tmp_skb; 1495 struct sk_buff **tail_skb; 1496 struct inet_sock *inet = inet_sk(sk); 1497 struct net *net = sock_net(sk); 1498 struct ip_options *opt = NULL; 1499 struct rtable *rt = (struct rtable *)cork->dst; 1500 struct iphdr *iph; 1501 __be16 df = 0; 1502 __u8 ttl; 1503 1504 skb = __skb_dequeue(queue); 1505 if (!skb) 1506 goto out; 1507 tail_skb = &(skb_shinfo(skb)->frag_list); 1508 1509 /* move skb->data to ip header from ext header */ 1510 if (skb->data < skb_network_header(skb)) 1511 __skb_pull(skb, skb_network_offset(skb)); 1512 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1513 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1514 *tail_skb = tmp_skb; 1515 tail_skb = &(tmp_skb->next); 1516 skb->len += tmp_skb->len; 1517 skb->data_len += tmp_skb->len; 1518 skb->truesize += tmp_skb->truesize; 1519 tmp_skb->destructor = NULL; 1520 tmp_skb->sk = NULL; 1521 } 1522 1523 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1524 * to fragment the frame generated here. No matter, what transforms 1525 * how transforms change size of the packet, it will come out. 1526 */ 1527 skb->ignore_df = ip_sk_ignore_df(sk); 1528 1529 /* DF bit is set when we want to see DF on outgoing frames. 1530 * If ignore_df is set too, we still allow to fragment this frame 1531 * locally. */ 1532 if (inet->pmtudisc == IP_PMTUDISC_DO || 1533 inet->pmtudisc == IP_PMTUDISC_PROBE || 1534 (skb->len <= dst_mtu(&rt->dst) && 1535 ip_dont_fragment(sk, &rt->dst))) 1536 df = htons(IP_DF); 1537 1538 if (cork->flags & IPCORK_OPT) 1539 opt = cork->opt; 1540 1541 if (cork->ttl != 0) 1542 ttl = cork->ttl; 1543 else if (rt->rt_type == RTN_MULTICAST) 1544 ttl = inet->mc_ttl; 1545 else 1546 ttl = ip_select_ttl(inet, &rt->dst); 1547 1548 iph = ip_hdr(skb); 1549 iph->version = 4; 1550 iph->ihl = 5; 1551 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1552 iph->frag_off = df; 1553 iph->ttl = ttl; 1554 iph->protocol = sk->sk_protocol; 1555 ip_copy_addrs(iph, fl4); 1556 ip_select_ident(net, skb, sk); 1557 1558 if (opt) { 1559 iph->ihl += opt->optlen >> 2; 1560 ip_options_build(skb, opt, cork->addr, rt); 1561 } 1562 1563 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1564 skb->mark = cork->mark; 1565 skb->tstamp = cork->transmit_time; 1566 /* 1567 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1568 * on dst refcount 1569 */ 1570 cork->dst = NULL; 1571 skb_dst_set(skb, &rt->dst); 1572 1573 if (iph->protocol == IPPROTO_ICMP) 1574 icmp_out_count(net, ((struct icmphdr *) 1575 skb_transport_header(skb))->type); 1576 1577 ip_cork_release(cork); 1578 out: 1579 return skb; 1580 } 1581 1582 int ip_send_skb(struct net *net, struct sk_buff *skb) 1583 { 1584 int err; 1585 1586 err = ip_local_out(net, skb->sk, skb); 1587 if (err) { 1588 if (err > 0) 1589 err = net_xmit_errno(err); 1590 if (err) 1591 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1592 } 1593 1594 return err; 1595 } 1596 1597 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1598 { 1599 struct sk_buff *skb; 1600 1601 skb = ip_finish_skb(sk, fl4); 1602 if (!skb) 1603 return 0; 1604 1605 /* Netfilter gets whole the not fragmented skb. */ 1606 return ip_send_skb(sock_net(sk), skb); 1607 } 1608 1609 /* 1610 * Throw away all pending data on the socket. 1611 */ 1612 static void __ip_flush_pending_frames(struct sock *sk, 1613 struct sk_buff_head *queue, 1614 struct inet_cork *cork) 1615 { 1616 struct sk_buff *skb; 1617 1618 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1619 kfree_skb(skb); 1620 1621 ip_cork_release(cork); 1622 } 1623 1624 void ip_flush_pending_frames(struct sock *sk) 1625 { 1626 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1627 } 1628 1629 struct sk_buff *ip_make_skb(struct sock *sk, 1630 struct flowi4 *fl4, 1631 int getfrag(void *from, char *to, int offset, 1632 int len, int odd, struct sk_buff *skb), 1633 void *from, int length, int transhdrlen, 1634 struct ipcm_cookie *ipc, struct rtable **rtp, 1635 struct inet_cork *cork, unsigned int flags) 1636 { 1637 struct sk_buff_head queue; 1638 int err; 1639 1640 if (flags & MSG_PROBE) 1641 return NULL; 1642 1643 __skb_queue_head_init(&queue); 1644 1645 cork->flags = 0; 1646 cork->addr = 0; 1647 cork->opt = NULL; 1648 err = ip_setup_cork(sk, cork, ipc, rtp); 1649 if (err) 1650 return ERR_PTR(err); 1651 1652 err = __ip_append_data(sk, fl4, &queue, cork, 1653 ¤t->task_frag, getfrag, 1654 from, length, transhdrlen, flags); 1655 if (err) { 1656 __ip_flush_pending_frames(sk, &queue, cork); 1657 return ERR_PTR(err); 1658 } 1659 1660 return __ip_make_skb(sk, fl4, &queue, cork); 1661 } 1662 1663 /* 1664 * Fetch data from kernel space and fill in checksum if needed. 1665 */ 1666 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1667 int len, int odd, struct sk_buff *skb) 1668 { 1669 __wsum csum; 1670 1671 csum = csum_partial_copy_nocheck(dptr+offset, to, len); 1672 skb->csum = csum_block_add(skb->csum, csum, odd); 1673 return 0; 1674 } 1675 1676 /* 1677 * Generic function to send a packet as reply to another packet. 1678 * Used to send some TCP resets/acks so far. 1679 */ 1680 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1681 const struct ip_options *sopt, 1682 __be32 daddr, __be32 saddr, 1683 const struct ip_reply_arg *arg, 1684 unsigned int len, u64 transmit_time) 1685 { 1686 struct ip_options_data replyopts; 1687 struct ipcm_cookie ipc; 1688 struct flowi4 fl4; 1689 struct rtable *rt = skb_rtable(skb); 1690 struct net *net = sock_net(sk); 1691 struct sk_buff *nskb; 1692 int err; 1693 int oif; 1694 1695 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) 1696 return; 1697 1698 ipcm_init(&ipc); 1699 ipc.addr = daddr; 1700 ipc.sockc.transmit_time = transmit_time; 1701 1702 if (replyopts.opt.opt.optlen) { 1703 ipc.opt = &replyopts.opt; 1704 1705 if (replyopts.opt.opt.srr) 1706 daddr = replyopts.opt.opt.faddr; 1707 } 1708 1709 oif = arg->bound_dev_if; 1710 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1711 oif = skb->skb_iif; 1712 1713 flowi4_init_output(&fl4, oif, 1714 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, 1715 RT_TOS(arg->tos), 1716 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1717 ip_reply_arg_flowi_flags(arg), 1718 daddr, saddr, 1719 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1720 arg->uid); 1721 security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4)); 1722 rt = ip_route_output_flow(net, &fl4, sk); 1723 if (IS_ERR(rt)) 1724 return; 1725 1726 inet_sk(sk)->tos = arg->tos & ~INET_ECN_MASK; 1727 1728 sk->sk_protocol = ip_hdr(skb)->protocol; 1729 sk->sk_bound_dev_if = arg->bound_dev_if; 1730 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); 1731 ipc.sockc.mark = fl4.flowi4_mark; 1732 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1733 len, 0, &ipc, &rt, MSG_DONTWAIT); 1734 if (unlikely(err)) { 1735 ip_flush_pending_frames(sk); 1736 goto out; 1737 } 1738 1739 nskb = skb_peek(&sk->sk_write_queue); 1740 if (nskb) { 1741 if (arg->csumoffset >= 0) 1742 *((__sum16 *)skb_transport_header(nskb) + 1743 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1744 arg->csum)); 1745 nskb->ip_summed = CHECKSUM_NONE; 1746 nskb->mono_delivery_time = !!transmit_time; 1747 ip_push_pending_frames(sk, &fl4); 1748 } 1749 out: 1750 ip_rt_put(rt); 1751 } 1752 1753 void __init ip_init(void) 1754 { 1755 ip_rt_init(); 1756 inet_initpeers(); 1757 1758 #if defined(CONFIG_IP_MULTICAST) 1759 igmp_mc_init(); 1760 #endif 1761 } 1762