xref: /linux/net/ipv4/ip_output.c (revision 092e0e7e520a1fca03e13c9f2d157432a8657ff2)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55 
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65 
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/mroute.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
83 
84 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
85 
86 /* Generate a checksum for an outgoing IP datagram. */
87 __inline__ void ip_send_check(struct iphdr *iph)
88 {
89 	iph->check = 0;
90 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
91 }
92 EXPORT_SYMBOL(ip_send_check);
93 
94 int __ip_local_out(struct sk_buff *skb)
95 {
96 	struct iphdr *iph = ip_hdr(skb);
97 
98 	iph->tot_len = htons(skb->len);
99 	ip_send_check(iph);
100 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
101 		       skb_dst(skb)->dev, dst_output);
102 }
103 
104 int ip_local_out(struct sk_buff *skb)
105 {
106 	int err;
107 
108 	err = __ip_local_out(skb);
109 	if (likely(err == 1))
110 		err = dst_output(skb);
111 
112 	return err;
113 }
114 EXPORT_SYMBOL_GPL(ip_local_out);
115 
116 /* dev_loopback_xmit for use with netfilter. */
117 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
118 {
119 	skb_reset_mac_header(newskb);
120 	__skb_pull(newskb, skb_network_offset(newskb));
121 	newskb->pkt_type = PACKET_LOOPBACK;
122 	newskb->ip_summed = CHECKSUM_UNNECESSARY;
123 	WARN_ON(!skb_dst(newskb));
124 	netif_rx_ni(newskb);
125 	return 0;
126 }
127 
128 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
129 {
130 	int ttl = inet->uc_ttl;
131 
132 	if (ttl < 0)
133 		ttl = dst_metric(dst, RTAX_HOPLIMIT);
134 	return ttl;
135 }
136 
137 /*
138  *		Add an ip header to a skbuff and send it out.
139  *
140  */
141 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
142 			  __be32 saddr, __be32 daddr, struct ip_options *opt)
143 {
144 	struct inet_sock *inet = inet_sk(sk);
145 	struct rtable *rt = skb_rtable(skb);
146 	struct iphdr *iph;
147 
148 	/* Build the IP header. */
149 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
150 	skb_reset_network_header(skb);
151 	iph = ip_hdr(skb);
152 	iph->version  = 4;
153 	iph->ihl      = 5;
154 	iph->tos      = inet->tos;
155 	if (ip_dont_fragment(sk, &rt->dst))
156 		iph->frag_off = htons(IP_DF);
157 	else
158 		iph->frag_off = 0;
159 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
160 	iph->daddr    = rt->rt_dst;
161 	iph->saddr    = rt->rt_src;
162 	iph->protocol = sk->sk_protocol;
163 	ip_select_ident(iph, &rt->dst, sk);
164 
165 	if (opt && opt->optlen) {
166 		iph->ihl += opt->optlen>>2;
167 		ip_options_build(skb, opt, daddr, rt, 0);
168 	}
169 
170 	skb->priority = sk->sk_priority;
171 	skb->mark = sk->sk_mark;
172 
173 	/* Send it out. */
174 	return ip_local_out(skb);
175 }
176 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
177 
178 static inline int ip_finish_output2(struct sk_buff *skb)
179 {
180 	struct dst_entry *dst = skb_dst(skb);
181 	struct rtable *rt = (struct rtable *)dst;
182 	struct net_device *dev = dst->dev;
183 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
184 
185 	if (rt->rt_type == RTN_MULTICAST) {
186 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
187 	} else if (rt->rt_type == RTN_BROADCAST)
188 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
189 
190 	/* Be paranoid, rather than too clever. */
191 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
192 		struct sk_buff *skb2;
193 
194 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
195 		if (skb2 == NULL) {
196 			kfree_skb(skb);
197 			return -ENOMEM;
198 		}
199 		if (skb->sk)
200 			skb_set_owner_w(skb2, skb->sk);
201 		kfree_skb(skb);
202 		skb = skb2;
203 	}
204 
205 	if (dst->hh)
206 		return neigh_hh_output(dst->hh, skb);
207 	else if (dst->neighbour)
208 		return dst->neighbour->output(skb);
209 
210 	if (net_ratelimit())
211 		printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
212 	kfree_skb(skb);
213 	return -EINVAL;
214 }
215 
216 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
217 {
218 	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
219 
220 	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
221 	       skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
222 }
223 
224 static int ip_finish_output(struct sk_buff *skb)
225 {
226 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
227 	/* Policy lookup after SNAT yielded a new policy */
228 	if (skb_dst(skb)->xfrm != NULL) {
229 		IPCB(skb)->flags |= IPSKB_REROUTED;
230 		return dst_output(skb);
231 	}
232 #endif
233 	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
234 		return ip_fragment(skb, ip_finish_output2);
235 	else
236 		return ip_finish_output2(skb);
237 }
238 
239 int ip_mc_output(struct sk_buff *skb)
240 {
241 	struct sock *sk = skb->sk;
242 	struct rtable *rt = skb_rtable(skb);
243 	struct net_device *dev = rt->dst.dev;
244 
245 	/*
246 	 *	If the indicated interface is up and running, send the packet.
247 	 */
248 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
249 
250 	skb->dev = dev;
251 	skb->protocol = htons(ETH_P_IP);
252 
253 	/*
254 	 *	Multicasts are looped back for other local users
255 	 */
256 
257 	if (rt->rt_flags&RTCF_MULTICAST) {
258 		if (sk_mc_loop(sk)
259 #ifdef CONFIG_IP_MROUTE
260 		/* Small optimization: do not loopback not local frames,
261 		   which returned after forwarding; they will be  dropped
262 		   by ip_mr_input in any case.
263 		   Note, that local frames are looped back to be delivered
264 		   to local recipients.
265 
266 		   This check is duplicated in ip_mr_input at the moment.
267 		 */
268 		    &&
269 		    ((rt->rt_flags & RTCF_LOCAL) ||
270 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
271 #endif
272 		   ) {
273 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
274 			if (newskb)
275 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
276 					newskb, NULL, newskb->dev,
277 					ip_dev_loopback_xmit);
278 		}
279 
280 		/* Multicasts with ttl 0 must not go beyond the host */
281 
282 		if (ip_hdr(skb)->ttl == 0) {
283 			kfree_skb(skb);
284 			return 0;
285 		}
286 	}
287 
288 	if (rt->rt_flags&RTCF_BROADCAST) {
289 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
290 		if (newskb)
291 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
292 				NULL, newskb->dev, ip_dev_loopback_xmit);
293 	}
294 
295 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
296 			    skb->dev, ip_finish_output,
297 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
298 }
299 
300 int ip_output(struct sk_buff *skb)
301 {
302 	struct net_device *dev = skb_dst(skb)->dev;
303 
304 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
305 
306 	skb->dev = dev;
307 	skb->protocol = htons(ETH_P_IP);
308 
309 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
310 			    ip_finish_output,
311 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
312 }
313 
314 int ip_queue_xmit(struct sk_buff *skb)
315 {
316 	struct sock *sk = skb->sk;
317 	struct inet_sock *inet = inet_sk(sk);
318 	struct ip_options *opt = inet->opt;
319 	struct rtable *rt;
320 	struct iphdr *iph;
321 	int res;
322 
323 	/* Skip all of this if the packet is already routed,
324 	 * f.e. by something like SCTP.
325 	 */
326 	rcu_read_lock();
327 	rt = skb_rtable(skb);
328 	if (rt != NULL)
329 		goto packet_routed;
330 
331 	/* Make sure we can route this packet. */
332 	rt = (struct rtable *)__sk_dst_check(sk, 0);
333 	if (rt == NULL) {
334 		__be32 daddr;
335 
336 		/* Use correct destination address if we have options. */
337 		daddr = inet->inet_daddr;
338 		if(opt && opt->srr)
339 			daddr = opt->faddr;
340 
341 		{
342 			struct flowi fl = { .oif = sk->sk_bound_dev_if,
343 					    .mark = sk->sk_mark,
344 					    .nl_u = { .ip4_u =
345 						      { .daddr = daddr,
346 							.saddr = inet->inet_saddr,
347 							.tos = RT_CONN_FLAGS(sk) } },
348 					    .proto = sk->sk_protocol,
349 					    .flags = inet_sk_flowi_flags(sk),
350 					    .uli_u = { .ports =
351 						       { .sport = inet->inet_sport,
352 							 .dport = inet->inet_dport } } };
353 
354 			/* If this fails, retransmit mechanism of transport layer will
355 			 * keep trying until route appears or the connection times
356 			 * itself out.
357 			 */
358 			security_sk_classify_flow(sk, &fl);
359 			if (ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 0))
360 				goto no_route;
361 		}
362 		sk_setup_caps(sk, &rt->dst);
363 	}
364 	skb_dst_set_noref(skb, &rt->dst);
365 
366 packet_routed:
367 	if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
368 		goto no_route;
369 
370 	/* OK, we know where to send it, allocate and build IP header. */
371 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
372 	skb_reset_network_header(skb);
373 	iph = ip_hdr(skb);
374 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
375 	if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
376 		iph->frag_off = htons(IP_DF);
377 	else
378 		iph->frag_off = 0;
379 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
380 	iph->protocol = sk->sk_protocol;
381 	iph->saddr    = rt->rt_src;
382 	iph->daddr    = rt->rt_dst;
383 	/* Transport layer set skb->h.foo itself. */
384 
385 	if (opt && opt->optlen) {
386 		iph->ihl += opt->optlen >> 2;
387 		ip_options_build(skb, opt, inet->inet_daddr, rt, 0);
388 	}
389 
390 	ip_select_ident_more(iph, &rt->dst, sk,
391 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
392 
393 	skb->priority = sk->sk_priority;
394 	skb->mark = sk->sk_mark;
395 
396 	res = ip_local_out(skb);
397 	rcu_read_unlock();
398 	return res;
399 
400 no_route:
401 	rcu_read_unlock();
402 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
403 	kfree_skb(skb);
404 	return -EHOSTUNREACH;
405 }
406 EXPORT_SYMBOL(ip_queue_xmit);
407 
408 
409 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
410 {
411 	to->pkt_type = from->pkt_type;
412 	to->priority = from->priority;
413 	to->protocol = from->protocol;
414 	skb_dst_drop(to);
415 	skb_dst_copy(to, from);
416 	to->dev = from->dev;
417 	to->mark = from->mark;
418 
419 	/* Copy the flags to each fragment. */
420 	IPCB(to)->flags = IPCB(from)->flags;
421 
422 #ifdef CONFIG_NET_SCHED
423 	to->tc_index = from->tc_index;
424 #endif
425 	nf_copy(to, from);
426 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
427     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
428 	to->nf_trace = from->nf_trace;
429 #endif
430 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
431 	to->ipvs_property = from->ipvs_property;
432 #endif
433 	skb_copy_secmark(to, from);
434 }
435 
436 /*
437  *	This IP datagram is too large to be sent in one piece.  Break it up into
438  *	smaller pieces (each of size equal to IP header plus
439  *	a block of the data of the original IP data part) that will yet fit in a
440  *	single device frame, and queue such a frame for sending.
441  */
442 
443 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
444 {
445 	struct iphdr *iph;
446 	int ptr;
447 	struct net_device *dev;
448 	struct sk_buff *skb2;
449 	unsigned int mtu, hlen, left, len, ll_rs;
450 	int offset;
451 	__be16 not_last_frag;
452 	struct rtable *rt = skb_rtable(skb);
453 	int err = 0;
454 
455 	dev = rt->dst.dev;
456 
457 	/*
458 	 *	Point into the IP datagram header.
459 	 */
460 
461 	iph = ip_hdr(skb);
462 
463 	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
464 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
465 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
466 			  htonl(ip_skb_dst_mtu(skb)));
467 		kfree_skb(skb);
468 		return -EMSGSIZE;
469 	}
470 
471 	/*
472 	 *	Setup starting values.
473 	 */
474 
475 	hlen = iph->ihl * 4;
476 	mtu = dst_mtu(&rt->dst) - hlen;	/* Size of data space */
477 #ifdef CONFIG_BRIDGE_NETFILTER
478 	if (skb->nf_bridge)
479 		mtu -= nf_bridge_mtu_reduction(skb);
480 #endif
481 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
482 
483 	/* When frag_list is given, use it. First, check its validity:
484 	 * some transformers could create wrong frag_list or break existing
485 	 * one, it is not prohibited. In this case fall back to copying.
486 	 *
487 	 * LATER: this step can be merged to real generation of fragments,
488 	 * we can switch to copy when see the first bad fragment.
489 	 */
490 	if (skb_has_frags(skb)) {
491 		struct sk_buff *frag, *frag2;
492 		int first_len = skb_pagelen(skb);
493 
494 		if (first_len - hlen > mtu ||
495 		    ((first_len - hlen) & 7) ||
496 		    (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
497 		    skb_cloned(skb))
498 			goto slow_path;
499 
500 		skb_walk_frags(skb, frag) {
501 			/* Correct geometry. */
502 			if (frag->len > mtu ||
503 			    ((frag->len & 7) && frag->next) ||
504 			    skb_headroom(frag) < hlen)
505 				goto slow_path_clean;
506 
507 			/* Partially cloned skb? */
508 			if (skb_shared(frag))
509 				goto slow_path_clean;
510 
511 			BUG_ON(frag->sk);
512 			if (skb->sk) {
513 				frag->sk = skb->sk;
514 				frag->destructor = sock_wfree;
515 			}
516 			skb->truesize -= frag->truesize;
517 		}
518 
519 		/* Everything is OK. Generate! */
520 
521 		err = 0;
522 		offset = 0;
523 		frag = skb_shinfo(skb)->frag_list;
524 		skb_frag_list_init(skb);
525 		skb->data_len = first_len - skb_headlen(skb);
526 		skb->len = first_len;
527 		iph->tot_len = htons(first_len);
528 		iph->frag_off = htons(IP_MF);
529 		ip_send_check(iph);
530 
531 		for (;;) {
532 			/* Prepare header of the next frame,
533 			 * before previous one went down. */
534 			if (frag) {
535 				frag->ip_summed = CHECKSUM_NONE;
536 				skb_reset_transport_header(frag);
537 				__skb_push(frag, hlen);
538 				skb_reset_network_header(frag);
539 				memcpy(skb_network_header(frag), iph, hlen);
540 				iph = ip_hdr(frag);
541 				iph->tot_len = htons(frag->len);
542 				ip_copy_metadata(frag, skb);
543 				if (offset == 0)
544 					ip_options_fragment(frag);
545 				offset += skb->len - hlen;
546 				iph->frag_off = htons(offset>>3);
547 				if (frag->next != NULL)
548 					iph->frag_off |= htons(IP_MF);
549 				/* Ready, complete checksum */
550 				ip_send_check(iph);
551 			}
552 
553 			err = output(skb);
554 
555 			if (!err)
556 				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
557 			if (err || !frag)
558 				break;
559 
560 			skb = frag;
561 			frag = skb->next;
562 			skb->next = NULL;
563 		}
564 
565 		if (err == 0) {
566 			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
567 			return 0;
568 		}
569 
570 		while (frag) {
571 			skb = frag->next;
572 			kfree_skb(frag);
573 			frag = skb;
574 		}
575 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
576 		return err;
577 
578 slow_path_clean:
579 		skb_walk_frags(skb, frag2) {
580 			if (frag2 == frag)
581 				break;
582 			frag2->sk = NULL;
583 			frag2->destructor = NULL;
584 			skb->truesize += frag2->truesize;
585 		}
586 	}
587 
588 slow_path:
589 	left = skb->len - hlen;		/* Space per frame */
590 	ptr = hlen;		/* Where to start from */
591 
592 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
593 	 * we need to make room for the encapsulating header
594 	 */
595 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
596 
597 	/*
598 	 *	Fragment the datagram.
599 	 */
600 
601 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
602 	not_last_frag = iph->frag_off & htons(IP_MF);
603 
604 	/*
605 	 *	Keep copying data until we run out.
606 	 */
607 
608 	while (left > 0) {
609 		len = left;
610 		/* IF: it doesn't fit, use 'mtu' - the data space left */
611 		if (len > mtu)
612 			len = mtu;
613 		/* IF: we are not sending upto and including the packet end
614 		   then align the next start on an eight byte boundary */
615 		if (len < left)	{
616 			len &= ~7;
617 		}
618 		/*
619 		 *	Allocate buffer.
620 		 */
621 
622 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
623 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
624 			err = -ENOMEM;
625 			goto fail;
626 		}
627 
628 		/*
629 		 *	Set up data on packet
630 		 */
631 
632 		ip_copy_metadata(skb2, skb);
633 		skb_reserve(skb2, ll_rs);
634 		skb_put(skb2, len + hlen);
635 		skb_reset_network_header(skb2);
636 		skb2->transport_header = skb2->network_header + hlen;
637 
638 		/*
639 		 *	Charge the memory for the fragment to any owner
640 		 *	it might possess
641 		 */
642 
643 		if (skb->sk)
644 			skb_set_owner_w(skb2, skb->sk);
645 
646 		/*
647 		 *	Copy the packet header into the new buffer.
648 		 */
649 
650 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
651 
652 		/*
653 		 *	Copy a block of the IP datagram.
654 		 */
655 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
656 			BUG();
657 		left -= len;
658 
659 		/*
660 		 *	Fill in the new header fields.
661 		 */
662 		iph = ip_hdr(skb2);
663 		iph->frag_off = htons((offset >> 3));
664 
665 		/* ANK: dirty, but effective trick. Upgrade options only if
666 		 * the segment to be fragmented was THE FIRST (otherwise,
667 		 * options are already fixed) and make it ONCE
668 		 * on the initial skb, so that all the following fragments
669 		 * will inherit fixed options.
670 		 */
671 		if (offset == 0)
672 			ip_options_fragment(skb);
673 
674 		/*
675 		 *	Added AC : If we are fragmenting a fragment that's not the
676 		 *		   last fragment then keep MF on each bit
677 		 */
678 		if (left > 0 || not_last_frag)
679 			iph->frag_off |= htons(IP_MF);
680 		ptr += len;
681 		offset += len;
682 
683 		/*
684 		 *	Put this fragment into the sending queue.
685 		 */
686 		iph->tot_len = htons(len + hlen);
687 
688 		ip_send_check(iph);
689 
690 		err = output(skb2);
691 		if (err)
692 			goto fail;
693 
694 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
695 	}
696 	kfree_skb(skb);
697 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
698 	return err;
699 
700 fail:
701 	kfree_skb(skb);
702 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
703 	return err;
704 }
705 EXPORT_SYMBOL(ip_fragment);
706 
707 int
708 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
709 {
710 	struct iovec *iov = from;
711 
712 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
713 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
714 			return -EFAULT;
715 	} else {
716 		__wsum csum = 0;
717 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
718 			return -EFAULT;
719 		skb->csum = csum_block_add(skb->csum, csum, odd);
720 	}
721 	return 0;
722 }
723 EXPORT_SYMBOL(ip_generic_getfrag);
724 
725 static inline __wsum
726 csum_page(struct page *page, int offset, int copy)
727 {
728 	char *kaddr;
729 	__wsum csum;
730 	kaddr = kmap(page);
731 	csum = csum_partial(kaddr + offset, copy, 0);
732 	kunmap(page);
733 	return csum;
734 }
735 
736 static inline int ip_ufo_append_data(struct sock *sk,
737 			int getfrag(void *from, char *to, int offset, int len,
738 			       int odd, struct sk_buff *skb),
739 			void *from, int length, int hh_len, int fragheaderlen,
740 			int transhdrlen, int mtu, unsigned int flags)
741 {
742 	struct sk_buff *skb;
743 	int err;
744 
745 	/* There is support for UDP fragmentation offload by network
746 	 * device, so create one single skb packet containing complete
747 	 * udp datagram
748 	 */
749 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
750 		skb = sock_alloc_send_skb(sk,
751 			hh_len + fragheaderlen + transhdrlen + 20,
752 			(flags & MSG_DONTWAIT), &err);
753 
754 		if (skb == NULL)
755 			return err;
756 
757 		/* reserve space for Hardware header */
758 		skb_reserve(skb, hh_len);
759 
760 		/* create space for UDP/IP header */
761 		skb_put(skb, fragheaderlen + transhdrlen);
762 
763 		/* initialize network header pointer */
764 		skb_reset_network_header(skb);
765 
766 		/* initialize protocol header pointer */
767 		skb->transport_header = skb->network_header + fragheaderlen;
768 
769 		skb->ip_summed = CHECKSUM_PARTIAL;
770 		skb->csum = 0;
771 		sk->sk_sndmsg_off = 0;
772 
773 		/* specify the length of each IP datagram fragment */
774 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
775 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
776 		__skb_queue_tail(&sk->sk_write_queue, skb);
777 	}
778 
779 	return skb_append_datato_frags(sk, skb, getfrag, from,
780 				       (length - transhdrlen));
781 }
782 
783 /*
784  *	ip_append_data() and ip_append_page() can make one large IP datagram
785  *	from many pieces of data. Each pieces will be holded on the socket
786  *	until ip_push_pending_frames() is called. Each piece can be a page
787  *	or non-page data.
788  *
789  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
790  *	this interface potentially.
791  *
792  *	LATER: length must be adjusted by pad at tail, when it is required.
793  */
794 int ip_append_data(struct sock *sk,
795 		   int getfrag(void *from, char *to, int offset, int len,
796 			       int odd, struct sk_buff *skb),
797 		   void *from, int length, int transhdrlen,
798 		   struct ipcm_cookie *ipc, struct rtable **rtp,
799 		   unsigned int flags)
800 {
801 	struct inet_sock *inet = inet_sk(sk);
802 	struct sk_buff *skb;
803 
804 	struct ip_options *opt = NULL;
805 	int hh_len;
806 	int exthdrlen;
807 	int mtu;
808 	int copy;
809 	int err;
810 	int offset = 0;
811 	unsigned int maxfraglen, fragheaderlen;
812 	int csummode = CHECKSUM_NONE;
813 	struct rtable *rt;
814 
815 	if (flags&MSG_PROBE)
816 		return 0;
817 
818 	if (skb_queue_empty(&sk->sk_write_queue)) {
819 		/*
820 		 * setup for corking.
821 		 */
822 		opt = ipc->opt;
823 		if (opt) {
824 			if (inet->cork.opt == NULL) {
825 				inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
826 				if (unlikely(inet->cork.opt == NULL))
827 					return -ENOBUFS;
828 			}
829 			memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
830 			inet->cork.flags |= IPCORK_OPT;
831 			inet->cork.addr = ipc->addr;
832 		}
833 		rt = *rtp;
834 		if (unlikely(!rt))
835 			return -EFAULT;
836 		/*
837 		 * We steal reference to this route, caller should not release it
838 		 */
839 		*rtp = NULL;
840 		inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
841 					    rt->dst.dev->mtu :
842 					    dst_mtu(rt->dst.path);
843 		inet->cork.dst = &rt->dst;
844 		inet->cork.length = 0;
845 		sk->sk_sndmsg_page = NULL;
846 		sk->sk_sndmsg_off = 0;
847 		if ((exthdrlen = rt->dst.header_len) != 0) {
848 			length += exthdrlen;
849 			transhdrlen += exthdrlen;
850 		}
851 	} else {
852 		rt = (struct rtable *)inet->cork.dst;
853 		if (inet->cork.flags & IPCORK_OPT)
854 			opt = inet->cork.opt;
855 
856 		transhdrlen = 0;
857 		exthdrlen = 0;
858 		mtu = inet->cork.fragsize;
859 	}
860 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
861 
862 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
863 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
864 
865 	if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
866 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport,
867 			       mtu-exthdrlen);
868 		return -EMSGSIZE;
869 	}
870 
871 	/*
872 	 * transhdrlen > 0 means that this is the first fragment and we wish
873 	 * it won't be fragmented in the future.
874 	 */
875 	if (transhdrlen &&
876 	    length + fragheaderlen <= mtu &&
877 	    rt->dst.dev->features & NETIF_F_V4_CSUM &&
878 	    !exthdrlen)
879 		csummode = CHECKSUM_PARTIAL;
880 
881 	skb = skb_peek_tail(&sk->sk_write_queue);
882 
883 	inet->cork.length += length;
884 	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
885 	    (sk->sk_protocol == IPPROTO_UDP) &&
886 	    (rt->dst.dev->features & NETIF_F_UFO)) {
887 		err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
888 					 fragheaderlen, transhdrlen, mtu,
889 					 flags);
890 		if (err)
891 			goto error;
892 		return 0;
893 	}
894 
895 	/* So, what's going on in the loop below?
896 	 *
897 	 * We use calculated fragment length to generate chained skb,
898 	 * each of segments is IP fragment ready for sending to network after
899 	 * adding appropriate IP header.
900 	 */
901 
902 	if (!skb)
903 		goto alloc_new_skb;
904 
905 	while (length > 0) {
906 		/* Check if the remaining data fits into current packet. */
907 		copy = mtu - skb->len;
908 		if (copy < length)
909 			copy = maxfraglen - skb->len;
910 		if (copy <= 0) {
911 			char *data;
912 			unsigned int datalen;
913 			unsigned int fraglen;
914 			unsigned int fraggap;
915 			unsigned int alloclen;
916 			struct sk_buff *skb_prev;
917 alloc_new_skb:
918 			skb_prev = skb;
919 			if (skb_prev)
920 				fraggap = skb_prev->len - maxfraglen;
921 			else
922 				fraggap = 0;
923 
924 			/*
925 			 * If remaining data exceeds the mtu,
926 			 * we know we need more fragment(s).
927 			 */
928 			datalen = length + fraggap;
929 			if (datalen > mtu - fragheaderlen)
930 				datalen = maxfraglen - fragheaderlen;
931 			fraglen = datalen + fragheaderlen;
932 
933 			if ((flags & MSG_MORE) &&
934 			    !(rt->dst.dev->features&NETIF_F_SG))
935 				alloclen = mtu;
936 			else
937 				alloclen = datalen + fragheaderlen;
938 
939 			/* The last fragment gets additional space at tail.
940 			 * Note, with MSG_MORE we overallocate on fragments,
941 			 * because we have no idea what fragment will be
942 			 * the last.
943 			 */
944 			if (datalen == length + fraggap)
945 				alloclen += rt->dst.trailer_len;
946 
947 			if (transhdrlen) {
948 				skb = sock_alloc_send_skb(sk,
949 						alloclen + hh_len + 15,
950 						(flags & MSG_DONTWAIT), &err);
951 			} else {
952 				skb = NULL;
953 				if (atomic_read(&sk->sk_wmem_alloc) <=
954 				    2 * sk->sk_sndbuf)
955 					skb = sock_wmalloc(sk,
956 							   alloclen + hh_len + 15, 1,
957 							   sk->sk_allocation);
958 				if (unlikely(skb == NULL))
959 					err = -ENOBUFS;
960 				else
961 					/* only the initial fragment is
962 					   time stamped */
963 					ipc->shtx.flags = 0;
964 			}
965 			if (skb == NULL)
966 				goto error;
967 
968 			/*
969 			 *	Fill in the control structures
970 			 */
971 			skb->ip_summed = csummode;
972 			skb->csum = 0;
973 			skb_reserve(skb, hh_len);
974 			*skb_tx(skb) = ipc->shtx;
975 
976 			/*
977 			 *	Find where to start putting bytes.
978 			 */
979 			data = skb_put(skb, fraglen);
980 			skb_set_network_header(skb, exthdrlen);
981 			skb->transport_header = (skb->network_header +
982 						 fragheaderlen);
983 			data += fragheaderlen;
984 
985 			if (fraggap) {
986 				skb->csum = skb_copy_and_csum_bits(
987 					skb_prev, maxfraglen,
988 					data + transhdrlen, fraggap, 0);
989 				skb_prev->csum = csum_sub(skb_prev->csum,
990 							  skb->csum);
991 				data += fraggap;
992 				pskb_trim_unique(skb_prev, maxfraglen);
993 			}
994 
995 			copy = datalen - transhdrlen - fraggap;
996 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
997 				err = -EFAULT;
998 				kfree_skb(skb);
999 				goto error;
1000 			}
1001 
1002 			offset += copy;
1003 			length -= datalen - fraggap;
1004 			transhdrlen = 0;
1005 			exthdrlen = 0;
1006 			csummode = CHECKSUM_NONE;
1007 
1008 			/*
1009 			 * Put the packet on the pending queue.
1010 			 */
1011 			__skb_queue_tail(&sk->sk_write_queue, skb);
1012 			continue;
1013 		}
1014 
1015 		if (copy > length)
1016 			copy = length;
1017 
1018 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
1019 			unsigned int off;
1020 
1021 			off = skb->len;
1022 			if (getfrag(from, skb_put(skb, copy),
1023 					offset, copy, off, skb) < 0) {
1024 				__skb_trim(skb, off);
1025 				err = -EFAULT;
1026 				goto error;
1027 			}
1028 		} else {
1029 			int i = skb_shinfo(skb)->nr_frags;
1030 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1031 			struct page *page = sk->sk_sndmsg_page;
1032 			int off = sk->sk_sndmsg_off;
1033 			unsigned int left;
1034 
1035 			if (page && (left = PAGE_SIZE - off) > 0) {
1036 				if (copy >= left)
1037 					copy = left;
1038 				if (page != frag->page) {
1039 					if (i == MAX_SKB_FRAGS) {
1040 						err = -EMSGSIZE;
1041 						goto error;
1042 					}
1043 					get_page(page);
1044 					skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1045 					frag = &skb_shinfo(skb)->frags[i];
1046 				}
1047 			} else if (i < MAX_SKB_FRAGS) {
1048 				if (copy > PAGE_SIZE)
1049 					copy = PAGE_SIZE;
1050 				page = alloc_pages(sk->sk_allocation, 0);
1051 				if (page == NULL)  {
1052 					err = -ENOMEM;
1053 					goto error;
1054 				}
1055 				sk->sk_sndmsg_page = page;
1056 				sk->sk_sndmsg_off = 0;
1057 
1058 				skb_fill_page_desc(skb, i, page, 0, 0);
1059 				frag = &skb_shinfo(skb)->frags[i];
1060 			} else {
1061 				err = -EMSGSIZE;
1062 				goto error;
1063 			}
1064 			if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1065 				err = -EFAULT;
1066 				goto error;
1067 			}
1068 			sk->sk_sndmsg_off += copy;
1069 			frag->size += copy;
1070 			skb->len += copy;
1071 			skb->data_len += copy;
1072 			skb->truesize += copy;
1073 			atomic_add(copy, &sk->sk_wmem_alloc);
1074 		}
1075 		offset += copy;
1076 		length -= copy;
1077 	}
1078 
1079 	return 0;
1080 
1081 error:
1082 	inet->cork.length -= length;
1083 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1084 	return err;
1085 }
1086 
1087 ssize_t	ip_append_page(struct sock *sk, struct page *page,
1088 		       int offset, size_t size, int flags)
1089 {
1090 	struct inet_sock *inet = inet_sk(sk);
1091 	struct sk_buff *skb;
1092 	struct rtable *rt;
1093 	struct ip_options *opt = NULL;
1094 	int hh_len;
1095 	int mtu;
1096 	int len;
1097 	int err;
1098 	unsigned int maxfraglen, fragheaderlen, fraggap;
1099 
1100 	if (inet->hdrincl)
1101 		return -EPERM;
1102 
1103 	if (flags&MSG_PROBE)
1104 		return 0;
1105 
1106 	if (skb_queue_empty(&sk->sk_write_queue))
1107 		return -EINVAL;
1108 
1109 	rt = (struct rtable *)inet->cork.dst;
1110 	if (inet->cork.flags & IPCORK_OPT)
1111 		opt = inet->cork.opt;
1112 
1113 	if (!(rt->dst.dev->features&NETIF_F_SG))
1114 		return -EOPNOTSUPP;
1115 
1116 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1117 	mtu = inet->cork.fragsize;
1118 
1119 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1120 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1121 
1122 	if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1123 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport, mtu);
1124 		return -EMSGSIZE;
1125 	}
1126 
1127 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1128 		return -EINVAL;
1129 
1130 	inet->cork.length += size;
1131 	if ((size + skb->len > mtu) &&
1132 	    (sk->sk_protocol == IPPROTO_UDP) &&
1133 	    (rt->dst.dev->features & NETIF_F_UFO)) {
1134 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1135 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1136 	}
1137 
1138 
1139 	while (size > 0) {
1140 		int i;
1141 
1142 		if (skb_is_gso(skb))
1143 			len = size;
1144 		else {
1145 
1146 			/* Check if the remaining data fits into current packet. */
1147 			len = mtu - skb->len;
1148 			if (len < size)
1149 				len = maxfraglen - skb->len;
1150 		}
1151 		if (len <= 0) {
1152 			struct sk_buff *skb_prev;
1153 			int alloclen;
1154 
1155 			skb_prev = skb;
1156 			fraggap = skb_prev->len - maxfraglen;
1157 
1158 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1159 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1160 			if (unlikely(!skb)) {
1161 				err = -ENOBUFS;
1162 				goto error;
1163 			}
1164 
1165 			/*
1166 			 *	Fill in the control structures
1167 			 */
1168 			skb->ip_summed = CHECKSUM_NONE;
1169 			skb->csum = 0;
1170 			skb_reserve(skb, hh_len);
1171 
1172 			/*
1173 			 *	Find where to start putting bytes.
1174 			 */
1175 			skb_put(skb, fragheaderlen + fraggap);
1176 			skb_reset_network_header(skb);
1177 			skb->transport_header = (skb->network_header +
1178 						 fragheaderlen);
1179 			if (fraggap) {
1180 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1181 								   maxfraglen,
1182 						    skb_transport_header(skb),
1183 								   fraggap, 0);
1184 				skb_prev->csum = csum_sub(skb_prev->csum,
1185 							  skb->csum);
1186 				pskb_trim_unique(skb_prev, maxfraglen);
1187 			}
1188 
1189 			/*
1190 			 * Put the packet on the pending queue.
1191 			 */
1192 			__skb_queue_tail(&sk->sk_write_queue, skb);
1193 			continue;
1194 		}
1195 
1196 		i = skb_shinfo(skb)->nr_frags;
1197 		if (len > size)
1198 			len = size;
1199 		if (skb_can_coalesce(skb, i, page, offset)) {
1200 			skb_shinfo(skb)->frags[i-1].size += len;
1201 		} else if (i < MAX_SKB_FRAGS) {
1202 			get_page(page);
1203 			skb_fill_page_desc(skb, i, page, offset, len);
1204 		} else {
1205 			err = -EMSGSIZE;
1206 			goto error;
1207 		}
1208 
1209 		if (skb->ip_summed == CHECKSUM_NONE) {
1210 			__wsum csum;
1211 			csum = csum_page(page, offset, len);
1212 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1213 		}
1214 
1215 		skb->len += len;
1216 		skb->data_len += len;
1217 		skb->truesize += len;
1218 		atomic_add(len, &sk->sk_wmem_alloc);
1219 		offset += len;
1220 		size -= len;
1221 	}
1222 	return 0;
1223 
1224 error:
1225 	inet->cork.length -= size;
1226 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1227 	return err;
1228 }
1229 
1230 static void ip_cork_release(struct inet_sock *inet)
1231 {
1232 	inet->cork.flags &= ~IPCORK_OPT;
1233 	kfree(inet->cork.opt);
1234 	inet->cork.opt = NULL;
1235 	dst_release(inet->cork.dst);
1236 	inet->cork.dst = NULL;
1237 }
1238 
1239 /*
1240  *	Combined all pending IP fragments on the socket as one IP datagram
1241  *	and push them out.
1242  */
1243 int ip_push_pending_frames(struct sock *sk)
1244 {
1245 	struct sk_buff *skb, *tmp_skb;
1246 	struct sk_buff **tail_skb;
1247 	struct inet_sock *inet = inet_sk(sk);
1248 	struct net *net = sock_net(sk);
1249 	struct ip_options *opt = NULL;
1250 	struct rtable *rt = (struct rtable *)inet->cork.dst;
1251 	struct iphdr *iph;
1252 	__be16 df = 0;
1253 	__u8 ttl;
1254 	int err = 0;
1255 
1256 	if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1257 		goto out;
1258 	tail_skb = &(skb_shinfo(skb)->frag_list);
1259 
1260 	/* move skb->data to ip header from ext header */
1261 	if (skb->data < skb_network_header(skb))
1262 		__skb_pull(skb, skb_network_offset(skb));
1263 	while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1264 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1265 		*tail_skb = tmp_skb;
1266 		tail_skb = &(tmp_skb->next);
1267 		skb->len += tmp_skb->len;
1268 		skb->data_len += tmp_skb->len;
1269 		skb->truesize += tmp_skb->truesize;
1270 		tmp_skb->destructor = NULL;
1271 		tmp_skb->sk = NULL;
1272 	}
1273 
1274 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1275 	 * to fragment the frame generated here. No matter, what transforms
1276 	 * how transforms change size of the packet, it will come out.
1277 	 */
1278 	if (inet->pmtudisc < IP_PMTUDISC_DO)
1279 		skb->local_df = 1;
1280 
1281 	/* DF bit is set when we want to see DF on outgoing frames.
1282 	 * If local_df is set too, we still allow to fragment this frame
1283 	 * locally. */
1284 	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1285 	    (skb->len <= dst_mtu(&rt->dst) &&
1286 	     ip_dont_fragment(sk, &rt->dst)))
1287 		df = htons(IP_DF);
1288 
1289 	if (inet->cork.flags & IPCORK_OPT)
1290 		opt = inet->cork.opt;
1291 
1292 	if (rt->rt_type == RTN_MULTICAST)
1293 		ttl = inet->mc_ttl;
1294 	else
1295 		ttl = ip_select_ttl(inet, &rt->dst);
1296 
1297 	iph = (struct iphdr *)skb->data;
1298 	iph->version = 4;
1299 	iph->ihl = 5;
1300 	if (opt) {
1301 		iph->ihl += opt->optlen>>2;
1302 		ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1303 	}
1304 	iph->tos = inet->tos;
1305 	iph->frag_off = df;
1306 	ip_select_ident(iph, &rt->dst, sk);
1307 	iph->ttl = ttl;
1308 	iph->protocol = sk->sk_protocol;
1309 	iph->saddr = rt->rt_src;
1310 	iph->daddr = rt->rt_dst;
1311 
1312 	skb->priority = sk->sk_priority;
1313 	skb->mark = sk->sk_mark;
1314 	/*
1315 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1316 	 * on dst refcount
1317 	 */
1318 	inet->cork.dst = NULL;
1319 	skb_dst_set(skb, &rt->dst);
1320 
1321 	if (iph->protocol == IPPROTO_ICMP)
1322 		icmp_out_count(net, ((struct icmphdr *)
1323 			skb_transport_header(skb))->type);
1324 
1325 	/* Netfilter gets whole the not fragmented skb. */
1326 	err = ip_local_out(skb);
1327 	if (err) {
1328 		if (err > 0)
1329 			err = net_xmit_errno(err);
1330 		if (err)
1331 			goto error;
1332 	}
1333 
1334 out:
1335 	ip_cork_release(inet);
1336 	return err;
1337 
1338 error:
1339 	IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1340 	goto out;
1341 }
1342 
1343 /*
1344  *	Throw away all pending data on the socket.
1345  */
1346 void ip_flush_pending_frames(struct sock *sk)
1347 {
1348 	struct sk_buff *skb;
1349 
1350 	while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1351 		kfree_skb(skb);
1352 
1353 	ip_cork_release(inet_sk(sk));
1354 }
1355 
1356 
1357 /*
1358  *	Fetch data from kernel space and fill in checksum if needed.
1359  */
1360 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1361 			      int len, int odd, struct sk_buff *skb)
1362 {
1363 	__wsum csum;
1364 
1365 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1366 	skb->csum = csum_block_add(skb->csum, csum, odd);
1367 	return 0;
1368 }
1369 
1370 /*
1371  *	Generic function to send a packet as reply to another packet.
1372  *	Used to send TCP resets so far. ICMP should use this function too.
1373  *
1374  *	Should run single threaded per socket because it uses the sock
1375  *     	structure to pass arguments.
1376  */
1377 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1378 		   unsigned int len)
1379 {
1380 	struct inet_sock *inet = inet_sk(sk);
1381 	struct {
1382 		struct ip_options	opt;
1383 		char			data[40];
1384 	} replyopts;
1385 	struct ipcm_cookie ipc;
1386 	__be32 daddr;
1387 	struct rtable *rt = skb_rtable(skb);
1388 
1389 	if (ip_options_echo(&replyopts.opt, skb))
1390 		return;
1391 
1392 	daddr = ipc.addr = rt->rt_src;
1393 	ipc.opt = NULL;
1394 	ipc.shtx.flags = 0;
1395 
1396 	if (replyopts.opt.optlen) {
1397 		ipc.opt = &replyopts.opt;
1398 
1399 		if (ipc.opt->srr)
1400 			daddr = replyopts.opt.faddr;
1401 	}
1402 
1403 	{
1404 		struct flowi fl = { .oif = arg->bound_dev_if,
1405 				    .nl_u = { .ip4_u =
1406 					      { .daddr = daddr,
1407 						.saddr = rt->rt_spec_dst,
1408 						.tos = RT_TOS(ip_hdr(skb)->tos) } },
1409 				    /* Not quite clean, but right. */
1410 				    .uli_u = { .ports =
1411 					       { .sport = tcp_hdr(skb)->dest,
1412 						 .dport = tcp_hdr(skb)->source } },
1413 				    .proto = sk->sk_protocol,
1414 				    .flags = ip_reply_arg_flowi_flags(arg) };
1415 		security_skb_classify_flow(skb, &fl);
1416 		if (ip_route_output_key(sock_net(sk), &rt, &fl))
1417 			return;
1418 	}
1419 
1420 	/* And let IP do all the hard work.
1421 
1422 	   This chunk is not reenterable, hence spinlock.
1423 	   Note that it uses the fact, that this function is called
1424 	   with locally disabled BH and that sk cannot be already spinlocked.
1425 	 */
1426 	bh_lock_sock(sk);
1427 	inet->tos = ip_hdr(skb)->tos;
1428 	sk->sk_priority = skb->priority;
1429 	sk->sk_protocol = ip_hdr(skb)->protocol;
1430 	sk->sk_bound_dev_if = arg->bound_dev_if;
1431 	ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1432 		       &ipc, &rt, MSG_DONTWAIT);
1433 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1434 		if (arg->csumoffset >= 0)
1435 			*((__sum16 *)skb_transport_header(skb) +
1436 			  arg->csumoffset) = csum_fold(csum_add(skb->csum,
1437 								arg->csum));
1438 		skb->ip_summed = CHECKSUM_NONE;
1439 		ip_push_pending_frames(sk);
1440 	}
1441 
1442 	bh_unlock_sock(sk);
1443 
1444 	ip_rt_put(rt);
1445 }
1446 
1447 void __init ip_init(void)
1448 {
1449 	ip_rt_init();
1450 	inet_initpeers();
1451 
1452 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1453 	igmp_mc_proc_init();
1454 #endif
1455 }
1456