1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The Internet Protocol (IP) module. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Donald Becker, <becker@super.org> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Richard Underwood 14 * Stefan Becker, <stefanb@yello.ping.de> 15 * Jorge Cwik, <jorge@laser.satlink.net> 16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 17 * 18 * Fixes: 19 * Alan Cox : Commented a couple of minor bits of surplus code 20 * Alan Cox : Undefining IP_FORWARD doesn't include the code 21 * (just stops a compiler warning). 22 * Alan Cox : Frames with >=MAX_ROUTE record routes, strict routes or loose routes 23 * are junked rather than corrupting things. 24 * Alan Cox : Frames to bad broadcast subnets are dumped 25 * We used to process them non broadcast and 26 * boy could that cause havoc. 27 * Alan Cox : ip_forward sets the free flag on the 28 * new frame it queues. Still crap because 29 * it copies the frame but at least it 30 * doesn't eat memory too. 31 * Alan Cox : Generic queue code and memory fixes. 32 * Fred Van Kempen : IP fragment support (borrowed from NET2E) 33 * Gerhard Koerting: Forward fragmented frames correctly. 34 * Gerhard Koerting: Fixes to my fix of the above 8-). 35 * Gerhard Koerting: IP interface addressing fix. 36 * Linus Torvalds : More robustness checks 37 * Alan Cox : Even more checks: Still not as robust as it ought to be 38 * Alan Cox : Save IP header pointer for later 39 * Alan Cox : ip option setting 40 * Alan Cox : Use ip_tos/ip_ttl settings 41 * Alan Cox : Fragmentation bogosity removed 42 * (Thanks to Mark.Bush@prg.ox.ac.uk) 43 * Dmitry Gorodchanin : Send of a raw packet crash fix. 44 * Alan Cox : Silly ip bug when an overlength 45 * fragment turns up. Now frees the 46 * queue. 47 * Linus Torvalds/ : Memory leakage on fragmentation 48 * Alan Cox : handling. 49 * Gerhard Koerting: Forwarding uses IP priority hints 50 * Teemu Rantanen : Fragment problems. 51 * Alan Cox : General cleanup, comments and reformat 52 * Alan Cox : SNMP statistics 53 * Alan Cox : BSD address rule semantics. Also see 54 * UDP as there is a nasty checksum issue 55 * if you do things the wrong way. 56 * Alan Cox : Always defrag, moved IP_FORWARD to the config.in file 57 * Alan Cox : IP options adjust sk->priority. 58 * Pedro Roque : Fix mtu/length error in ip_forward. 59 * Alan Cox : Avoid ip_chk_addr when possible. 60 * Richard Underwood : IP multicasting. 61 * Alan Cox : Cleaned up multicast handlers. 62 * Alan Cox : RAW sockets demultiplex in the BSD style. 63 * Gunther Mayer : Fix the SNMP reporting typo 64 * Alan Cox : Always in group 224.0.0.1 65 * Pauline Middelink : Fast ip_checksum update when forwarding 66 * Masquerading support. 67 * Alan Cox : Multicast loopback error for 224.0.0.1 68 * Alan Cox : IP_MULTICAST_LOOP option. 69 * Alan Cox : Use notifiers. 70 * Bjorn Ekwall : Removed ip_csum (from slhc.c too) 71 * Bjorn Ekwall : Moved ip_fast_csum to ip.h (inline!) 72 * Stefan Becker : Send out ICMP HOST REDIRECT 73 * Arnt Gulbrandsen : ip_build_xmit 74 * Alan Cox : Per socket routing cache 75 * Alan Cox : Fixed routing cache, added header cache. 76 * Alan Cox : Loopback didn't work right in original ip_build_xmit - fixed it. 77 * Alan Cox : Only send ICMP_REDIRECT if src/dest are the same net. 78 * Alan Cox : Incoming IP option handling. 79 * Alan Cox : Set saddr on raw output frames as per BSD. 80 * Alan Cox : Stopped broadcast source route explosions. 81 * Alan Cox : Can disable source routing 82 * Takeshi Sone : Masquerading didn't work. 83 * Dave Bonn,Alan Cox : Faster IP forwarding whenever possible. 84 * Alan Cox : Memory leaks, tramples, misc debugging. 85 * Alan Cox : Fixed multicast (by popular demand 8)) 86 * Alan Cox : Fixed forwarding (by even more popular demand 8)) 87 * Alan Cox : Fixed SNMP statistics [I think] 88 * Gerhard Koerting : IP fragmentation forwarding fix 89 * Alan Cox : Device lock against page fault. 90 * Alan Cox : IP_HDRINCL facility. 91 * Werner Almesberger : Zero fragment bug 92 * Alan Cox : RAW IP frame length bug 93 * Alan Cox : Outgoing firewall on build_xmit 94 * A.N.Kuznetsov : IP_OPTIONS support throughout the kernel 95 * Alan Cox : Multicast routing hooks 96 * Jos Vos : Do accounting *before* call_in_firewall 97 * Willy Konynenberg : Transparent proxying support 98 * 99 * To Fix: 100 * IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient 101 * and could be made very efficient with the addition of some virtual memory hacks to permit 102 * the allocation of a buffer that can then be 'grown' by twiddling page tables. 103 * Output fragmentation wants updating along with the buffer management to use a single 104 * interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet 105 * output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause 106 * fragmentation anyway. 107 */ 108 109 #define pr_fmt(fmt) "IPv4: " fmt 110 111 #include <linux/module.h> 112 #include <linux/types.h> 113 #include <linux/kernel.h> 114 #include <linux/string.h> 115 #include <linux/errno.h> 116 #include <linux/slab.h> 117 118 #include <linux/net.h> 119 #include <linux/socket.h> 120 #include <linux/sockios.h> 121 #include <linux/in.h> 122 #include <linux/inet.h> 123 #include <linux/inetdevice.h> 124 #include <linux/netdevice.h> 125 #include <linux/etherdevice.h> 126 #include <linux/indirect_call_wrapper.h> 127 128 #include <net/snmp.h> 129 #include <net/ip.h> 130 #include <net/protocol.h> 131 #include <net/route.h> 132 #include <linux/skbuff.h> 133 #include <net/sock.h> 134 #include <net/arp.h> 135 #include <net/icmp.h> 136 #include <net/raw.h> 137 #include <net/checksum.h> 138 #include <net/inet_ecn.h> 139 #include <linux/netfilter_ipv4.h> 140 #include <net/xfrm.h> 141 #include <linux/mroute.h> 142 #include <linux/netlink.h> 143 #include <net/dst_metadata.h> 144 145 /* 146 * Process Router Attention IP option (RFC 2113) 147 */ 148 bool ip_call_ra_chain(struct sk_buff *skb) 149 { 150 struct ip_ra_chain *ra; 151 u8 protocol = ip_hdr(skb)->protocol; 152 struct sock *last = NULL; 153 struct net_device *dev = skb->dev; 154 struct net *net = dev_net(dev); 155 156 for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) { 157 struct sock *sk = ra->sk; 158 159 /* If socket is bound to an interface, only report 160 * the packet if it came from that interface. 161 */ 162 if (sk && inet_sk(sk)->inet_num == protocol && 163 (!sk->sk_bound_dev_if || 164 sk->sk_bound_dev_if == dev->ifindex)) { 165 if (ip_is_fragment(ip_hdr(skb))) { 166 if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN)) 167 return true; 168 } 169 if (last) { 170 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 171 if (skb2) 172 raw_rcv(last, skb2); 173 } 174 last = sk; 175 } 176 } 177 178 if (last) { 179 raw_rcv(last, skb); 180 return true; 181 } 182 return false; 183 } 184 185 INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *)); 186 INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *)); 187 void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol) 188 { 189 const struct net_protocol *ipprot; 190 int raw, ret; 191 192 resubmit: 193 raw = raw_local_deliver(skb, protocol); 194 195 ipprot = rcu_dereference(inet_protos[protocol]); 196 if (ipprot) { 197 if (!ipprot->no_policy) { 198 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 199 kfree_skb_reason(skb, 200 SKB_DROP_REASON_XFRM_POLICY); 201 return; 202 } 203 nf_reset_ct(skb); 204 } 205 ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv, 206 skb); 207 if (ret < 0) { 208 protocol = -ret; 209 goto resubmit; 210 } 211 __IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS); 212 } else { 213 if (!raw) { 214 if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 215 __IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS); 216 icmp_send(skb, ICMP_DEST_UNREACH, 217 ICMP_PROT_UNREACH, 0); 218 } 219 kfree_skb_reason(skb, SKB_DROP_REASON_IP_NOPROTO); 220 } else { 221 __IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS); 222 consume_skb(skb); 223 } 224 } 225 } 226 227 static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 228 { 229 skb_clear_delivery_time(skb); 230 __skb_pull(skb, skb_network_header_len(skb)); 231 232 rcu_read_lock(); 233 ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol); 234 rcu_read_unlock(); 235 236 return 0; 237 } 238 239 /* 240 * Deliver IP Packets to the higher protocol layers. 241 */ 242 int ip_local_deliver(struct sk_buff *skb) 243 { 244 /* 245 * Reassemble IP fragments. 246 */ 247 struct net *net = dev_net(skb->dev); 248 249 if (ip_is_fragment(ip_hdr(skb))) { 250 if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER)) 251 return 0; 252 } 253 254 return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN, 255 net, NULL, skb, skb->dev, NULL, 256 ip_local_deliver_finish); 257 } 258 EXPORT_SYMBOL(ip_local_deliver); 259 260 static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev) 261 { 262 struct ip_options *opt; 263 const struct iphdr *iph; 264 265 /* It looks as overkill, because not all 266 IP options require packet mangling. 267 But it is the easiest for now, especially taking 268 into account that combination of IP options 269 and running sniffer is extremely rare condition. 270 --ANK (980813) 271 */ 272 if (skb_cow(skb, skb_headroom(skb))) { 273 __IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS); 274 goto drop; 275 } 276 277 iph = ip_hdr(skb); 278 opt = &(IPCB(skb)->opt); 279 opt->optlen = iph->ihl*4 - sizeof(struct iphdr); 280 281 if (ip_options_compile(dev_net(dev), opt, skb)) { 282 __IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS); 283 goto drop; 284 } 285 286 if (unlikely(opt->srr)) { 287 struct in_device *in_dev = __in_dev_get_rcu(dev); 288 289 if (in_dev) { 290 if (!IN_DEV_SOURCE_ROUTE(in_dev)) { 291 if (IN_DEV_LOG_MARTIANS(in_dev)) 292 net_info_ratelimited("source route option %pI4 -> %pI4\n", 293 &iph->saddr, 294 &iph->daddr); 295 goto drop; 296 } 297 } 298 299 if (ip_options_rcv_srr(skb, dev)) 300 goto drop; 301 } 302 303 return false; 304 drop: 305 return true; 306 } 307 308 static bool ip_can_use_hint(const struct sk_buff *skb, const struct iphdr *iph, 309 const struct sk_buff *hint) 310 { 311 return hint && !skb_dst(skb) && ip_hdr(hint)->daddr == iph->daddr && 312 ip_hdr(hint)->tos == iph->tos; 313 } 314 315 int tcp_v4_early_demux(struct sk_buff *skb); 316 int udp_v4_early_demux(struct sk_buff *skb); 317 static int ip_rcv_finish_core(struct net *net, struct sock *sk, 318 struct sk_buff *skb, struct net_device *dev, 319 const struct sk_buff *hint) 320 { 321 const struct iphdr *iph = ip_hdr(skb); 322 int err, drop_reason; 323 struct rtable *rt; 324 325 if (ip_can_use_hint(skb, iph, hint)) { 326 drop_reason = ip_route_use_hint(skb, iph->daddr, iph->saddr, 327 ip4h_dscp(iph), dev, hint); 328 if (unlikely(drop_reason)) 329 goto drop_error; 330 } 331 332 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 333 if (READ_ONCE(net->ipv4.sysctl_ip_early_demux) && 334 !skb_dst(skb) && 335 !skb->sk && 336 !ip_is_fragment(iph)) { 337 switch (iph->protocol) { 338 case IPPROTO_TCP: 339 if (READ_ONCE(net->ipv4.sysctl_tcp_early_demux)) { 340 tcp_v4_early_demux(skb); 341 342 /* must reload iph, skb->head might have changed */ 343 iph = ip_hdr(skb); 344 } 345 break; 346 case IPPROTO_UDP: 347 if (READ_ONCE(net->ipv4.sysctl_udp_early_demux)) { 348 err = udp_v4_early_demux(skb); 349 if (unlikely(err)) 350 goto drop_error; 351 352 /* must reload iph, skb->head might have changed */ 353 iph = ip_hdr(skb); 354 } 355 break; 356 } 357 } 358 359 /* 360 * Initialise the virtual path cache for the packet. It describes 361 * how the packet travels inside Linux networking. 362 */ 363 if (!skb_valid_dst(skb)) { 364 drop_reason = ip_route_input_noref(skb, iph->daddr, iph->saddr, 365 ip4h_dscp(iph), dev); 366 if (unlikely(drop_reason)) 367 goto drop_error; 368 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 369 } else { 370 struct in_device *in_dev = __in_dev_get_rcu(dev); 371 372 if (in_dev && IN_DEV_ORCONF(in_dev, NOPOLICY)) 373 IPCB(skb)->flags |= IPSKB_NOPOLICY; 374 } 375 376 #ifdef CONFIG_IP_ROUTE_CLASSID 377 if (unlikely(skb_dst(skb)->tclassid)) { 378 struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct); 379 u32 idx = skb_dst(skb)->tclassid; 380 st[idx&0xFF].o_packets++; 381 st[idx&0xFF].o_bytes += skb->len; 382 st[(idx>>16)&0xFF].i_packets++; 383 st[(idx>>16)&0xFF].i_bytes += skb->len; 384 } 385 #endif 386 387 if (iph->ihl > 5 && ip_rcv_options(skb, dev)) 388 goto drop; 389 390 rt = skb_rtable(skb); 391 if (rt->rt_type == RTN_MULTICAST) { 392 __IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len); 393 } else if (rt->rt_type == RTN_BROADCAST) { 394 __IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len); 395 } else if (skb->pkt_type == PACKET_BROADCAST || 396 skb->pkt_type == PACKET_MULTICAST) { 397 struct in_device *in_dev = __in_dev_get_rcu(dev); 398 399 /* RFC 1122 3.3.6: 400 * 401 * When a host sends a datagram to a link-layer broadcast 402 * address, the IP destination address MUST be a legal IP 403 * broadcast or IP multicast address. 404 * 405 * A host SHOULD silently discard a datagram that is received 406 * via a link-layer broadcast (see Section 2.4) but does not 407 * specify an IP multicast or broadcast destination address. 408 * 409 * This doesn't explicitly say L2 *broadcast*, but broadcast is 410 * in a way a form of multicast and the most common use case for 411 * this is 802.11 protecting against cross-station spoofing (the 412 * so-called "hole-196" attack) so do it for both. 413 */ 414 if (in_dev && 415 IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST)) { 416 drop_reason = SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST; 417 goto drop; 418 } 419 } 420 421 return NET_RX_SUCCESS; 422 423 drop: 424 kfree_skb_reason(skb, drop_reason); 425 return NET_RX_DROP; 426 427 drop_error: 428 if (drop_reason == SKB_DROP_REASON_IP_RPFILTER) 429 __NET_INC_STATS(net, LINUX_MIB_IPRPFILTER); 430 goto drop; 431 } 432 433 static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 434 { 435 struct net_device *dev = skb->dev; 436 int ret; 437 438 /* if ingress device is enslaved to an L3 master device pass the 439 * skb to its handler for processing 440 */ 441 skb = l3mdev_ip_rcv(skb); 442 if (!skb) 443 return NET_RX_SUCCESS; 444 445 ret = ip_rcv_finish_core(net, sk, skb, dev, NULL); 446 if (ret != NET_RX_DROP) 447 ret = dst_input(skb); 448 return ret; 449 } 450 451 /* 452 * Main IP Receive routine. 453 */ 454 static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net) 455 { 456 const struct iphdr *iph; 457 int drop_reason; 458 u32 len; 459 460 /* When the interface is in promisc. mode, drop all the crap 461 * that it receives, do not try to analyse it. 462 */ 463 if (skb->pkt_type == PACKET_OTHERHOST) { 464 dev_core_stats_rx_otherhost_dropped_inc(skb->dev); 465 drop_reason = SKB_DROP_REASON_OTHERHOST; 466 goto drop; 467 } 468 469 __IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len); 470 471 skb = skb_share_check(skb, GFP_ATOMIC); 472 if (!skb) { 473 __IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS); 474 goto out; 475 } 476 477 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 478 if (!pskb_may_pull(skb, sizeof(struct iphdr))) 479 goto inhdr_error; 480 481 iph = ip_hdr(skb); 482 483 /* 484 * RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum. 485 * 486 * Is the datagram acceptable? 487 * 488 * 1. Length at least the size of an ip header 489 * 2. Version of 4 490 * 3. Checksums correctly. [Speed optimisation for later, skip loopback checksums] 491 * 4. Doesn't have a bogus length 492 */ 493 494 if (iph->ihl < 5 || iph->version != 4) 495 goto inhdr_error; 496 497 BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1); 498 BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0); 499 BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE); 500 __IP_ADD_STATS(net, 501 IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK), 502 max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs)); 503 504 if (!pskb_may_pull(skb, iph->ihl*4)) 505 goto inhdr_error; 506 507 iph = ip_hdr(skb); 508 509 if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl))) 510 goto csum_error; 511 512 len = iph_totlen(skb, iph); 513 if (skb->len < len) { 514 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 515 __IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS); 516 goto drop; 517 } else if (len < (iph->ihl*4)) 518 goto inhdr_error; 519 520 /* Our transport medium may have padded the buffer out. Now we know it 521 * is IP we can trim to the true length of the frame. 522 * Note this now means skb->len holds ntohs(iph->tot_len). 523 */ 524 if (pskb_trim_rcsum(skb, len)) { 525 __IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS); 526 goto drop; 527 } 528 529 iph = ip_hdr(skb); 530 skb->transport_header = skb->network_header + iph->ihl*4; 531 532 /* Remove any debris in the socket control block */ 533 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 534 IPCB(skb)->iif = skb->skb_iif; 535 536 /* Must drop socket now because of tproxy. */ 537 if (!skb_sk_is_prefetched(skb)) 538 skb_orphan(skb); 539 540 return skb; 541 542 csum_error: 543 drop_reason = SKB_DROP_REASON_IP_CSUM; 544 __IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS); 545 inhdr_error: 546 if (drop_reason == SKB_DROP_REASON_NOT_SPECIFIED) 547 drop_reason = SKB_DROP_REASON_IP_INHDR; 548 __IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS); 549 drop: 550 kfree_skb_reason(skb, drop_reason); 551 out: 552 return NULL; 553 } 554 555 /* 556 * IP receive entry point 557 */ 558 int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, 559 struct net_device *orig_dev) 560 { 561 struct net *net = dev_net(dev); 562 563 skb = ip_rcv_core(skb, net); 564 if (skb == NULL) 565 return NET_RX_DROP; 566 567 return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, 568 net, NULL, skb, dev, NULL, 569 ip_rcv_finish); 570 } 571 572 static void ip_sublist_rcv_finish(struct list_head *head) 573 { 574 struct sk_buff *skb, *next; 575 576 list_for_each_entry_safe(skb, next, head, list) { 577 skb_list_del_init(skb); 578 dst_input(skb); 579 } 580 } 581 582 static struct sk_buff *ip_extract_route_hint(const struct net *net, 583 struct sk_buff *skb, int rt_type) 584 { 585 if (fib4_has_custom_rules(net) || rt_type == RTN_BROADCAST || 586 IPCB(skb)->flags & IPSKB_MULTIPATH) 587 return NULL; 588 589 return skb; 590 } 591 592 static void ip_list_rcv_finish(struct net *net, struct sock *sk, 593 struct list_head *head) 594 { 595 struct sk_buff *skb, *next, *hint = NULL; 596 struct dst_entry *curr_dst = NULL; 597 LIST_HEAD(sublist); 598 599 list_for_each_entry_safe(skb, next, head, list) { 600 struct net_device *dev = skb->dev; 601 struct dst_entry *dst; 602 603 skb_list_del_init(skb); 604 /* if ingress device is enslaved to an L3 master device pass the 605 * skb to its handler for processing 606 */ 607 skb = l3mdev_ip_rcv(skb); 608 if (!skb) 609 continue; 610 if (ip_rcv_finish_core(net, sk, skb, dev, hint) == NET_RX_DROP) 611 continue; 612 613 dst = skb_dst(skb); 614 if (curr_dst != dst) { 615 hint = ip_extract_route_hint(net, skb, 616 dst_rtable(dst)->rt_type); 617 618 /* dispatch old sublist */ 619 if (!list_empty(&sublist)) 620 ip_sublist_rcv_finish(&sublist); 621 /* start new sublist */ 622 INIT_LIST_HEAD(&sublist); 623 curr_dst = dst; 624 } 625 list_add_tail(&skb->list, &sublist); 626 } 627 /* dispatch final sublist */ 628 ip_sublist_rcv_finish(&sublist); 629 } 630 631 static void ip_sublist_rcv(struct list_head *head, struct net_device *dev, 632 struct net *net) 633 { 634 NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL, 635 head, dev, NULL, ip_rcv_finish); 636 ip_list_rcv_finish(net, NULL, head); 637 } 638 639 /* Receive a list of IP packets */ 640 void ip_list_rcv(struct list_head *head, struct packet_type *pt, 641 struct net_device *orig_dev) 642 { 643 struct net_device *curr_dev = NULL; 644 struct net *curr_net = NULL; 645 struct sk_buff *skb, *next; 646 LIST_HEAD(sublist); 647 648 list_for_each_entry_safe(skb, next, head, list) { 649 struct net_device *dev = skb->dev; 650 struct net *net = dev_net(dev); 651 652 skb_list_del_init(skb); 653 skb = ip_rcv_core(skb, net); 654 if (skb == NULL) 655 continue; 656 657 if (curr_dev != dev || curr_net != net) { 658 /* dispatch old sublist */ 659 if (!list_empty(&sublist)) 660 ip_sublist_rcv(&sublist, curr_dev, curr_net); 661 /* start new sublist */ 662 INIT_LIST_HEAD(&sublist); 663 curr_dev = dev; 664 curr_net = net; 665 } 666 list_add_tail(&skb->list, &sublist); 667 } 668 /* dispatch final sublist */ 669 if (!list_empty(&sublist)) 670 ip_sublist_rcv(&sublist, curr_dev, curr_net); 671 } 672