xref: /linux/net/ipv4/ip_input.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *
17  *
18  * Fixes:
19  *		Alan Cox	:	Commented a couple of minor bits of surplus code
20  *		Alan Cox	:	Undefining IP_FORWARD doesn't include the code
21  *					(just stops a compiler warning).
22  *		Alan Cox	:	Frames with >=MAX_ROUTE record routes, strict routes or loose routes
23  *					are junked rather than corrupting things.
24  *		Alan Cox	:	Frames to bad broadcast subnets are dumped
25  *					We used to process them non broadcast and
26  *					boy could that cause havoc.
27  *		Alan Cox	:	ip_forward sets the free flag on the
28  *					new frame it queues. Still crap because
29  *					it copies the frame but at least it
30  *					doesn't eat memory too.
31  *		Alan Cox	:	Generic queue code and memory fixes.
32  *		Fred Van Kempen :	IP fragment support (borrowed from NET2E)
33  *		Gerhard Koerting:	Forward fragmented frames correctly.
34  *		Gerhard Koerting: 	Fixes to my fix of the above 8-).
35  *		Gerhard Koerting:	IP interface addressing fix.
36  *		Linus Torvalds	:	More robustness checks
37  *		Alan Cox	:	Even more checks: Still not as robust as it ought to be
38  *		Alan Cox	:	Save IP header pointer for later
39  *		Alan Cox	:	ip option setting
40  *		Alan Cox	:	Use ip_tos/ip_ttl settings
41  *		Alan Cox	:	Fragmentation bogosity removed
42  *					(Thanks to Mark.Bush@prg.ox.ac.uk)
43  *		Dmitry Gorodchanin :	Send of a raw packet crash fix.
44  *		Alan Cox	:	Silly ip bug when an overlength
45  *					fragment turns up. Now frees the
46  *					queue.
47  *		Linus Torvalds/ :	Memory leakage on fragmentation
48  *		Alan Cox	:	handling.
49  *		Gerhard Koerting:	Forwarding uses IP priority hints
50  *		Teemu Rantanen	:	Fragment problems.
51  *		Alan Cox	:	General cleanup, comments and reformat
52  *		Alan Cox	:	SNMP statistics
53  *		Alan Cox	:	BSD address rule semantics. Also see
54  *					UDP as there is a nasty checksum issue
55  *					if you do things the wrong way.
56  *		Alan Cox	:	Always defrag, moved IP_FORWARD to the config.in file
57  *		Alan Cox	: 	IP options adjust sk->priority.
58  *		Pedro Roque	:	Fix mtu/length error in ip_forward.
59  *		Alan Cox	:	Avoid ip_chk_addr when possible.
60  *	Richard Underwood	:	IP multicasting.
61  *		Alan Cox	:	Cleaned up multicast handlers.
62  *		Alan Cox	:	RAW sockets demultiplex in the BSD style.
63  *		Gunther Mayer	:	Fix the SNMP reporting typo
64  *		Alan Cox	:	Always in group 224.0.0.1
65  *	Pauline Middelink	:	Fast ip_checksum update when forwarding
66  *					Masquerading support.
67  *		Alan Cox	:	Multicast loopback error for 224.0.0.1
68  *		Alan Cox	:	IP_MULTICAST_LOOP option.
69  *		Alan Cox	:	Use notifiers.
70  *		Bjorn Ekwall	:	Removed ip_csum (from slhc.c too)
71  *		Bjorn Ekwall	:	Moved ip_fast_csum to ip.h (inline!)
72  *		Stefan Becker   :       Send out ICMP HOST REDIRECT
73  *	Arnt Gulbrandsen	:	ip_build_xmit
74  *		Alan Cox	:	Per socket routing cache
75  *		Alan Cox	:	Fixed routing cache, added header cache.
76  *		Alan Cox	:	Loopback didn't work right in original ip_build_xmit - fixed it.
77  *		Alan Cox	:	Only send ICMP_REDIRECT if src/dest are the same net.
78  *		Alan Cox	:	Incoming IP option handling.
79  *		Alan Cox	:	Set saddr on raw output frames as per BSD.
80  *		Alan Cox	:	Stopped broadcast source route explosions.
81  *		Alan Cox	:	Can disable source routing
82  *		Takeshi Sone    :	Masquerading didn't work.
83  *	Dave Bonn,Alan Cox	:	Faster IP forwarding whenever possible.
84  *		Alan Cox	:	Memory leaks, tramples, misc debugging.
85  *		Alan Cox	:	Fixed multicast (by popular demand 8))
86  *		Alan Cox	:	Fixed forwarding (by even more popular demand 8))
87  *		Alan Cox	:	Fixed SNMP statistics [I think]
88  *	Gerhard Koerting	:	IP fragmentation forwarding fix
89  *		Alan Cox	:	Device lock against page fault.
90  *		Alan Cox	:	IP_HDRINCL facility.
91  *	Werner Almesberger	:	Zero fragment bug
92  *		Alan Cox	:	RAW IP frame length bug
93  *		Alan Cox	:	Outgoing firewall on build_xmit
94  *		A.N.Kuznetsov	:	IP_OPTIONS support throughout the kernel
95  *		Alan Cox	:	Multicast routing hooks
96  *		Jos Vos		:	Do accounting *before* call_in_firewall
97  *	Willy Konynenberg	:	Transparent proxying support
98  *
99  *
100  *
101  * To Fix:
102  *		IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
103  *		and could be made very efficient with the addition of some virtual memory hacks to permit
104  *		the allocation of a buffer that can then be 'grown' by twiddling page tables.
105  *		Output fragmentation wants updating along with the buffer management to use a single
106  *		interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
107  *		output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
108  *		fragmentation anyway.
109  *
110  *		This program is free software; you can redistribute it and/or
111  *		modify it under the terms of the GNU General Public License
112  *		as published by the Free Software Foundation; either version
113  *		2 of the License, or (at your option) any later version.
114  */
115 
116 #define pr_fmt(fmt) "IPv4: " fmt
117 
118 #include <linux/module.h>
119 #include <linux/types.h>
120 #include <linux/kernel.h>
121 #include <linux/string.h>
122 #include <linux/errno.h>
123 #include <linux/slab.h>
124 
125 #include <linux/net.h>
126 #include <linux/socket.h>
127 #include <linux/sockios.h>
128 #include <linux/in.h>
129 #include <linux/inet.h>
130 #include <linux/inetdevice.h>
131 #include <linux/netdevice.h>
132 #include <linux/etherdevice.h>
133 
134 #include <net/snmp.h>
135 #include <net/ip.h>
136 #include <net/protocol.h>
137 #include <net/route.h>
138 #include <linux/skbuff.h>
139 #include <net/sock.h>
140 #include <net/arp.h>
141 #include <net/icmp.h>
142 #include <net/raw.h>
143 #include <net/checksum.h>
144 #include <net/inet_ecn.h>
145 #include <linux/netfilter_ipv4.h>
146 #include <net/xfrm.h>
147 #include <linux/mroute.h>
148 #include <linux/netlink.h>
149 #include <net/dst_metadata.h>
150 
151 /*
152  *	Process Router Attention IP option (RFC 2113)
153  */
154 bool ip_call_ra_chain(struct sk_buff *skb)
155 {
156 	struct ip_ra_chain *ra;
157 	u8 protocol = ip_hdr(skb)->protocol;
158 	struct sock *last = NULL;
159 	struct net_device *dev = skb->dev;
160 	struct net *net = dev_net(dev);
161 
162 	for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
163 		struct sock *sk = ra->sk;
164 
165 		/* If socket is bound to an interface, only report
166 		 * the packet if it came  from that interface.
167 		 */
168 		if (sk && inet_sk(sk)->inet_num == protocol &&
169 		    (!sk->sk_bound_dev_if ||
170 		     sk->sk_bound_dev_if == dev->ifindex)) {
171 			if (ip_is_fragment(ip_hdr(skb))) {
172 				if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
173 					return true;
174 			}
175 			if (last) {
176 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
177 				if (skb2)
178 					raw_rcv(last, skb2);
179 			}
180 			last = sk;
181 		}
182 	}
183 
184 	if (last) {
185 		raw_rcv(last, skb);
186 		return true;
187 	}
188 	return false;
189 }
190 
191 static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
192 {
193 	__skb_pull(skb, skb_network_header_len(skb));
194 
195 	rcu_read_lock();
196 	{
197 		int protocol = ip_hdr(skb)->protocol;
198 		const struct net_protocol *ipprot;
199 		int raw;
200 
201 	resubmit:
202 		raw = raw_local_deliver(skb, protocol);
203 
204 		ipprot = rcu_dereference(inet_protos[protocol]);
205 		if (ipprot) {
206 			int ret;
207 
208 			if (!ipprot->no_policy) {
209 				if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
210 					kfree_skb(skb);
211 					goto out;
212 				}
213 				nf_reset(skb);
214 			}
215 			ret = ipprot->handler(skb);
216 			if (ret < 0) {
217 				protocol = -ret;
218 				goto resubmit;
219 			}
220 			__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
221 		} else {
222 			if (!raw) {
223 				if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
224 					__IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
225 					icmp_send(skb, ICMP_DEST_UNREACH,
226 						  ICMP_PROT_UNREACH, 0);
227 				}
228 				kfree_skb(skb);
229 			} else {
230 				__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
231 				consume_skb(skb);
232 			}
233 		}
234 	}
235  out:
236 	rcu_read_unlock();
237 
238 	return 0;
239 }
240 
241 /*
242  * 	Deliver IP Packets to the higher protocol layers.
243  */
244 int ip_local_deliver(struct sk_buff *skb)
245 {
246 	/*
247 	 *	Reassemble IP fragments.
248 	 */
249 	struct net *net = dev_net(skb->dev);
250 
251 	if (ip_is_fragment(ip_hdr(skb))) {
252 		if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
253 			return 0;
254 	}
255 
256 	return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
257 		       net, NULL, skb, skb->dev, NULL,
258 		       ip_local_deliver_finish);
259 }
260 
261 static inline bool ip_rcv_options(struct sk_buff *skb)
262 {
263 	struct ip_options *opt;
264 	const struct iphdr *iph;
265 	struct net_device *dev = skb->dev;
266 
267 	/* It looks as overkill, because not all
268 	   IP options require packet mangling.
269 	   But it is the easiest for now, especially taking
270 	   into account that combination of IP options
271 	   and running sniffer is extremely rare condition.
272 					      --ANK (980813)
273 	*/
274 	if (skb_cow(skb, skb_headroom(skb))) {
275 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
276 		goto drop;
277 	}
278 
279 	iph = ip_hdr(skb);
280 	opt = &(IPCB(skb)->opt);
281 	opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
282 
283 	if (ip_options_compile(dev_net(dev), opt, skb)) {
284 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
285 		goto drop;
286 	}
287 
288 	if (unlikely(opt->srr)) {
289 		struct in_device *in_dev = __in_dev_get_rcu(dev);
290 
291 		if (in_dev) {
292 			if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
293 				if (IN_DEV_LOG_MARTIANS(in_dev))
294 					net_info_ratelimited("source route option %pI4 -> %pI4\n",
295 							     &iph->saddr,
296 							     &iph->daddr);
297 				goto drop;
298 			}
299 		}
300 
301 		if (ip_options_rcv_srr(skb))
302 			goto drop;
303 	}
304 
305 	return false;
306 drop:
307 	return true;
308 }
309 
310 static int ip_rcv_finish_core(struct net *net, struct sock *sk,
311 			      struct sk_buff *skb)
312 {
313 	const struct iphdr *iph = ip_hdr(skb);
314 	int (*edemux)(struct sk_buff *skb);
315 	struct net_device *dev = skb->dev;
316 	struct rtable *rt;
317 	int err;
318 
319 	if (net->ipv4.sysctl_ip_early_demux &&
320 	    !skb_dst(skb) &&
321 	    !skb->sk &&
322 	    !ip_is_fragment(iph)) {
323 		const struct net_protocol *ipprot;
324 		int protocol = iph->protocol;
325 
326 		ipprot = rcu_dereference(inet_protos[protocol]);
327 		if (ipprot && (edemux = READ_ONCE(ipprot->early_demux))) {
328 			err = edemux(skb);
329 			if (unlikely(err))
330 				goto drop_error;
331 			/* must reload iph, skb->head might have changed */
332 			iph = ip_hdr(skb);
333 		}
334 	}
335 
336 	/*
337 	 *	Initialise the virtual path cache for the packet. It describes
338 	 *	how the packet travels inside Linux networking.
339 	 */
340 	if (!skb_valid_dst(skb)) {
341 		err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
342 					   iph->tos, dev);
343 		if (unlikely(err))
344 			goto drop_error;
345 	}
346 
347 #ifdef CONFIG_IP_ROUTE_CLASSID
348 	if (unlikely(skb_dst(skb)->tclassid)) {
349 		struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
350 		u32 idx = skb_dst(skb)->tclassid;
351 		st[idx&0xFF].o_packets++;
352 		st[idx&0xFF].o_bytes += skb->len;
353 		st[(idx>>16)&0xFF].i_packets++;
354 		st[(idx>>16)&0xFF].i_bytes += skb->len;
355 	}
356 #endif
357 
358 	if (iph->ihl > 5 && ip_rcv_options(skb))
359 		goto drop;
360 
361 	rt = skb_rtable(skb);
362 	if (rt->rt_type == RTN_MULTICAST) {
363 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
364 	} else if (rt->rt_type == RTN_BROADCAST) {
365 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
366 	} else if (skb->pkt_type == PACKET_BROADCAST ||
367 		   skb->pkt_type == PACKET_MULTICAST) {
368 		struct in_device *in_dev = __in_dev_get_rcu(dev);
369 
370 		/* RFC 1122 3.3.6:
371 		 *
372 		 *   When a host sends a datagram to a link-layer broadcast
373 		 *   address, the IP destination address MUST be a legal IP
374 		 *   broadcast or IP multicast address.
375 		 *
376 		 *   A host SHOULD silently discard a datagram that is received
377 		 *   via a link-layer broadcast (see Section 2.4) but does not
378 		 *   specify an IP multicast or broadcast destination address.
379 		 *
380 		 * This doesn't explicitly say L2 *broadcast*, but broadcast is
381 		 * in a way a form of multicast and the most common use case for
382 		 * this is 802.11 protecting against cross-station spoofing (the
383 		 * so-called "hole-196" attack) so do it for both.
384 		 */
385 		if (in_dev &&
386 		    IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST))
387 			goto drop;
388 	}
389 
390 	return NET_RX_SUCCESS;
391 
392 drop:
393 	kfree_skb(skb);
394 	return NET_RX_DROP;
395 
396 drop_error:
397 	if (err == -EXDEV)
398 		__NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
399 	goto drop;
400 }
401 
402 static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
403 {
404 	int ret;
405 
406 	/* if ingress device is enslaved to an L3 master device pass the
407 	 * skb to its handler for processing
408 	 */
409 	skb = l3mdev_ip_rcv(skb);
410 	if (!skb)
411 		return NET_RX_SUCCESS;
412 
413 	ret = ip_rcv_finish_core(net, sk, skb);
414 	if (ret != NET_RX_DROP)
415 		ret = dst_input(skb);
416 	return ret;
417 }
418 
419 /*
420  * 	Main IP Receive routine.
421  */
422 static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
423 {
424 	const struct iphdr *iph;
425 	u32 len;
426 
427 	/* When the interface is in promisc. mode, drop all the crap
428 	 * that it receives, do not try to analyse it.
429 	 */
430 	if (skb->pkt_type == PACKET_OTHERHOST)
431 		goto drop;
432 
433 
434 	__IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
435 
436 	skb = skb_share_check(skb, GFP_ATOMIC);
437 	if (!skb) {
438 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
439 		goto out;
440 	}
441 
442 	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
443 		goto inhdr_error;
444 
445 	iph = ip_hdr(skb);
446 
447 	/*
448 	 *	RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
449 	 *
450 	 *	Is the datagram acceptable?
451 	 *
452 	 *	1.	Length at least the size of an ip header
453 	 *	2.	Version of 4
454 	 *	3.	Checksums correctly. [Speed optimisation for later, skip loopback checksums]
455 	 *	4.	Doesn't have a bogus length
456 	 */
457 
458 	if (iph->ihl < 5 || iph->version != 4)
459 		goto inhdr_error;
460 
461 	BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
462 	BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
463 	BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
464 	__IP_ADD_STATS(net,
465 		       IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
466 		       max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
467 
468 	if (!pskb_may_pull(skb, iph->ihl*4))
469 		goto inhdr_error;
470 
471 	iph = ip_hdr(skb);
472 
473 	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
474 		goto csum_error;
475 
476 	len = ntohs(iph->tot_len);
477 	if (skb->len < len) {
478 		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
479 		goto drop;
480 	} else if (len < (iph->ihl*4))
481 		goto inhdr_error;
482 
483 	/* Our transport medium may have padded the buffer out. Now we know it
484 	 * is IP we can trim to the true length of the frame.
485 	 * Note this now means skb->len holds ntohs(iph->tot_len).
486 	 */
487 	if (pskb_trim_rcsum(skb, len)) {
488 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
489 		goto drop;
490 	}
491 
492 	skb->transport_header = skb->network_header + iph->ihl*4;
493 
494 	/* Remove any debris in the socket control block */
495 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
496 	IPCB(skb)->iif = skb->skb_iif;
497 
498 	/* Must drop socket now because of tproxy. */
499 	skb_orphan(skb);
500 
501 	return skb;
502 
503 csum_error:
504 	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
505 inhdr_error:
506 	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
507 drop:
508 	kfree_skb(skb);
509 out:
510 	return NULL;
511 }
512 
513 /*
514  * IP receive entry point
515  */
516 int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
517 	   struct net_device *orig_dev)
518 {
519 	struct net *net = dev_net(dev);
520 
521 	skb = ip_rcv_core(skb, net);
522 	if (skb == NULL)
523 		return NET_RX_DROP;
524 	return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
525 		       net, NULL, skb, dev, NULL,
526 		       ip_rcv_finish);
527 }
528 
529 static void ip_sublist_rcv_finish(struct list_head *head)
530 {
531 	struct sk_buff *skb, *next;
532 
533 	list_for_each_entry_safe(skb, next, head, list) {
534 		list_del(&skb->list);
535 		/* Handle ip{6}_forward case, as sch_direct_xmit have
536 		 * another kind of SKB-list usage (see validate_xmit_skb_list)
537 		 */
538 		skb->next = NULL;
539 		dst_input(skb);
540 	}
541 }
542 
543 static void ip_list_rcv_finish(struct net *net, struct sock *sk,
544 			       struct list_head *head)
545 {
546 	struct dst_entry *curr_dst = NULL;
547 	struct sk_buff *skb, *next;
548 	struct list_head sublist;
549 
550 	INIT_LIST_HEAD(&sublist);
551 	list_for_each_entry_safe(skb, next, head, list) {
552 		struct dst_entry *dst;
553 
554 		list_del(&skb->list);
555 		/* if ingress device is enslaved to an L3 master device pass the
556 		 * skb to its handler for processing
557 		 */
558 		skb = l3mdev_ip_rcv(skb);
559 		if (!skb)
560 			continue;
561 		if (ip_rcv_finish_core(net, sk, skb) == NET_RX_DROP)
562 			continue;
563 
564 		dst = skb_dst(skb);
565 		if (curr_dst != dst) {
566 			/* dispatch old sublist */
567 			if (!list_empty(&sublist))
568 				ip_sublist_rcv_finish(&sublist);
569 			/* start new sublist */
570 			INIT_LIST_HEAD(&sublist);
571 			curr_dst = dst;
572 		}
573 		list_add_tail(&skb->list, &sublist);
574 	}
575 	/* dispatch final sublist */
576 	ip_sublist_rcv_finish(&sublist);
577 }
578 
579 static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
580 			   struct net *net)
581 {
582 	NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
583 		     head, dev, NULL, ip_rcv_finish);
584 	ip_list_rcv_finish(net, NULL, head);
585 }
586 
587 /* Receive a list of IP packets */
588 void ip_list_rcv(struct list_head *head, struct packet_type *pt,
589 		 struct net_device *orig_dev)
590 {
591 	struct net_device *curr_dev = NULL;
592 	struct net *curr_net = NULL;
593 	struct sk_buff *skb, *next;
594 	struct list_head sublist;
595 
596 	INIT_LIST_HEAD(&sublist);
597 	list_for_each_entry_safe(skb, next, head, list) {
598 		struct net_device *dev = skb->dev;
599 		struct net *net = dev_net(dev);
600 
601 		list_del(&skb->list);
602 		skb = ip_rcv_core(skb, net);
603 		if (skb == NULL)
604 			continue;
605 
606 		if (curr_dev != dev || curr_net != net) {
607 			/* dispatch old sublist */
608 			if (!list_empty(&sublist))
609 				ip_sublist_rcv(&sublist, curr_dev, curr_net);
610 			/* start new sublist */
611 			INIT_LIST_HEAD(&sublist);
612 			curr_dev = dev;
613 			curr_net = net;
614 		}
615 		list_add_tail(&skb->list, &sublist);
616 	}
617 	/* dispatch final sublist */
618 	ip_sublist_rcv(&sublist, curr_dev, curr_net);
619 }
620