xref: /linux/net/ipv4/ip_input.c (revision d27656d02d85078c63f060fca9c5d99794791a75)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The Internet Protocol (IP) module.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Donald Becker, <becker@super.org>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Richard Underwood
14  *		Stefan Becker, <stefanb@yello.ping.de>
15  *		Jorge Cwik, <jorge@laser.satlink.net>
16  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17  *
18  * Fixes:
19  *		Alan Cox	:	Commented a couple of minor bits of surplus code
20  *		Alan Cox	:	Undefining IP_FORWARD doesn't include the code
21  *					(just stops a compiler warning).
22  *		Alan Cox	:	Frames with >=MAX_ROUTE record routes, strict routes or loose routes
23  *					are junked rather than corrupting things.
24  *		Alan Cox	:	Frames to bad broadcast subnets are dumped
25  *					We used to process them non broadcast and
26  *					boy could that cause havoc.
27  *		Alan Cox	:	ip_forward sets the free flag on the
28  *					new frame it queues. Still crap because
29  *					it copies the frame but at least it
30  *					doesn't eat memory too.
31  *		Alan Cox	:	Generic queue code and memory fixes.
32  *		Fred Van Kempen :	IP fragment support (borrowed from NET2E)
33  *		Gerhard Koerting:	Forward fragmented frames correctly.
34  *		Gerhard Koerting: 	Fixes to my fix of the above 8-).
35  *		Gerhard Koerting:	IP interface addressing fix.
36  *		Linus Torvalds	:	More robustness checks
37  *		Alan Cox	:	Even more checks: Still not as robust as it ought to be
38  *		Alan Cox	:	Save IP header pointer for later
39  *		Alan Cox	:	ip option setting
40  *		Alan Cox	:	Use ip_tos/ip_ttl settings
41  *		Alan Cox	:	Fragmentation bogosity removed
42  *					(Thanks to Mark.Bush@prg.ox.ac.uk)
43  *		Dmitry Gorodchanin :	Send of a raw packet crash fix.
44  *		Alan Cox	:	Silly ip bug when an overlength
45  *					fragment turns up. Now frees the
46  *					queue.
47  *		Linus Torvalds/ :	Memory leakage on fragmentation
48  *		Alan Cox	:	handling.
49  *		Gerhard Koerting:	Forwarding uses IP priority hints
50  *		Teemu Rantanen	:	Fragment problems.
51  *		Alan Cox	:	General cleanup, comments and reformat
52  *		Alan Cox	:	SNMP statistics
53  *		Alan Cox	:	BSD address rule semantics. Also see
54  *					UDP as there is a nasty checksum issue
55  *					if you do things the wrong way.
56  *		Alan Cox	:	Always defrag, moved IP_FORWARD to the config.in file
57  *		Alan Cox	: 	IP options adjust sk->priority.
58  *		Pedro Roque	:	Fix mtu/length error in ip_forward.
59  *		Alan Cox	:	Avoid ip_chk_addr when possible.
60  *	Richard Underwood	:	IP multicasting.
61  *		Alan Cox	:	Cleaned up multicast handlers.
62  *		Alan Cox	:	RAW sockets demultiplex in the BSD style.
63  *		Gunther Mayer	:	Fix the SNMP reporting typo
64  *		Alan Cox	:	Always in group 224.0.0.1
65  *	Pauline Middelink	:	Fast ip_checksum update when forwarding
66  *					Masquerading support.
67  *		Alan Cox	:	Multicast loopback error for 224.0.0.1
68  *		Alan Cox	:	IP_MULTICAST_LOOP option.
69  *		Alan Cox	:	Use notifiers.
70  *		Bjorn Ekwall	:	Removed ip_csum (from slhc.c too)
71  *		Bjorn Ekwall	:	Moved ip_fast_csum to ip.h (inline!)
72  *		Stefan Becker   :       Send out ICMP HOST REDIRECT
73  *	Arnt Gulbrandsen	:	ip_build_xmit
74  *		Alan Cox	:	Per socket routing cache
75  *		Alan Cox	:	Fixed routing cache, added header cache.
76  *		Alan Cox	:	Loopback didn't work right in original ip_build_xmit - fixed it.
77  *		Alan Cox	:	Only send ICMP_REDIRECT if src/dest are the same net.
78  *		Alan Cox	:	Incoming IP option handling.
79  *		Alan Cox	:	Set saddr on raw output frames as per BSD.
80  *		Alan Cox	:	Stopped broadcast source route explosions.
81  *		Alan Cox	:	Can disable source routing
82  *		Takeshi Sone    :	Masquerading didn't work.
83  *	Dave Bonn,Alan Cox	:	Faster IP forwarding whenever possible.
84  *		Alan Cox	:	Memory leaks, tramples, misc debugging.
85  *		Alan Cox	:	Fixed multicast (by popular demand 8))
86  *		Alan Cox	:	Fixed forwarding (by even more popular demand 8))
87  *		Alan Cox	:	Fixed SNMP statistics [I think]
88  *	Gerhard Koerting	:	IP fragmentation forwarding fix
89  *		Alan Cox	:	Device lock against page fault.
90  *		Alan Cox	:	IP_HDRINCL facility.
91  *	Werner Almesberger	:	Zero fragment bug
92  *		Alan Cox	:	RAW IP frame length bug
93  *		Alan Cox	:	Outgoing firewall on build_xmit
94  *		A.N.Kuznetsov	:	IP_OPTIONS support throughout the kernel
95  *		Alan Cox	:	Multicast routing hooks
96  *		Jos Vos		:	Do accounting *before* call_in_firewall
97  *	Willy Konynenberg	:	Transparent proxying support
98  *
99  * To Fix:
100  *		IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
101  *		and could be made very efficient with the addition of some virtual memory hacks to permit
102  *		the allocation of a buffer that can then be 'grown' by twiddling page tables.
103  *		Output fragmentation wants updating along with the buffer management to use a single
104  *		interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
105  *		output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
106  *		fragmentation anyway.
107  */
108 
109 #define pr_fmt(fmt) "IPv4: " fmt
110 
111 #include <linux/module.h>
112 #include <linux/types.h>
113 #include <linux/kernel.h>
114 #include <linux/string.h>
115 #include <linux/errno.h>
116 #include <linux/slab.h>
117 
118 #include <linux/net.h>
119 #include <linux/socket.h>
120 #include <linux/sockios.h>
121 #include <linux/in.h>
122 #include <linux/inet.h>
123 #include <linux/inetdevice.h>
124 #include <linux/netdevice.h>
125 #include <linux/etherdevice.h>
126 #include <linux/indirect_call_wrapper.h>
127 
128 #include <net/snmp.h>
129 #include <net/ip.h>
130 #include <net/protocol.h>
131 #include <net/route.h>
132 #include <linux/skbuff.h>
133 #include <net/sock.h>
134 #include <net/arp.h>
135 #include <net/icmp.h>
136 #include <net/raw.h>
137 #include <net/checksum.h>
138 #include <net/inet_ecn.h>
139 #include <linux/netfilter_ipv4.h>
140 #include <net/xfrm.h>
141 #include <linux/mroute.h>
142 #include <linux/netlink.h>
143 #include <net/dst_metadata.h>
144 
145 /*
146  *	Process Router Attention IP option (RFC 2113)
147  */
148 bool ip_call_ra_chain(struct sk_buff *skb)
149 {
150 	struct ip_ra_chain *ra;
151 	u8 protocol = ip_hdr(skb)->protocol;
152 	struct sock *last = NULL;
153 	struct net_device *dev = skb->dev;
154 	struct net *net = dev_net(dev);
155 
156 	for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
157 		struct sock *sk = ra->sk;
158 
159 		/* If socket is bound to an interface, only report
160 		 * the packet if it came  from that interface.
161 		 */
162 		if (sk && inet_sk(sk)->inet_num == protocol &&
163 		    (!sk->sk_bound_dev_if ||
164 		     sk->sk_bound_dev_if == dev->ifindex)) {
165 			if (ip_is_fragment(ip_hdr(skb))) {
166 				if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
167 					return true;
168 			}
169 			if (last) {
170 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
171 				if (skb2)
172 					raw_rcv(last, skb2);
173 			}
174 			last = sk;
175 		}
176 	}
177 
178 	if (last) {
179 		raw_rcv(last, skb);
180 		return true;
181 	}
182 	return false;
183 }
184 
185 INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *));
186 INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *));
187 void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
188 {
189 	const struct net_protocol *ipprot;
190 	int raw, ret;
191 
192 resubmit:
193 	raw = raw_local_deliver(skb, protocol);
194 
195 	ipprot = rcu_dereference(inet_protos[protocol]);
196 	if (ipprot) {
197 		if (!ipprot->no_policy) {
198 			if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
199 				kfree_skb_reason(skb,
200 						 SKB_DROP_REASON_XFRM_POLICY);
201 				return;
202 			}
203 			nf_reset_ct(skb);
204 		}
205 		ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
206 				      skb);
207 		if (ret < 0) {
208 			protocol = -ret;
209 			goto resubmit;
210 		}
211 		__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
212 	} else {
213 		if (!raw) {
214 			if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
215 				__IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
216 				icmp_send(skb, ICMP_DEST_UNREACH,
217 					  ICMP_PROT_UNREACH, 0);
218 			}
219 			kfree_skb_reason(skb, SKB_DROP_REASON_IP_NOPROTO);
220 		} else {
221 			__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
222 			consume_skb(skb);
223 		}
224 	}
225 }
226 
227 static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
228 {
229 	__skb_pull(skb, skb_network_header_len(skb));
230 
231 	rcu_read_lock();
232 	ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
233 	rcu_read_unlock();
234 
235 	return 0;
236 }
237 
238 /*
239  * 	Deliver IP Packets to the higher protocol layers.
240  */
241 int ip_local_deliver(struct sk_buff *skb)
242 {
243 	/*
244 	 *	Reassemble IP fragments.
245 	 */
246 	struct net *net = dev_net(skb->dev);
247 
248 	if (ip_is_fragment(ip_hdr(skb))) {
249 		if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
250 			return 0;
251 	}
252 
253 	return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
254 		       net, NULL, skb, skb->dev, NULL,
255 		       ip_local_deliver_finish);
256 }
257 EXPORT_SYMBOL(ip_local_deliver);
258 
259 static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev)
260 {
261 	struct ip_options *opt;
262 	const struct iphdr *iph;
263 
264 	/* It looks as overkill, because not all
265 	   IP options require packet mangling.
266 	   But it is the easiest for now, especially taking
267 	   into account that combination of IP options
268 	   and running sniffer is extremely rare condition.
269 					      --ANK (980813)
270 	*/
271 	if (skb_cow(skb, skb_headroom(skb))) {
272 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
273 		goto drop;
274 	}
275 
276 	iph = ip_hdr(skb);
277 	opt = &(IPCB(skb)->opt);
278 	opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
279 
280 	if (ip_options_compile(dev_net(dev), opt, skb)) {
281 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
282 		goto drop;
283 	}
284 
285 	if (unlikely(opt->srr)) {
286 		struct in_device *in_dev = __in_dev_get_rcu(dev);
287 
288 		if (in_dev) {
289 			if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
290 				if (IN_DEV_LOG_MARTIANS(in_dev))
291 					net_info_ratelimited("source route option %pI4 -> %pI4\n",
292 							     &iph->saddr,
293 							     &iph->daddr);
294 				goto drop;
295 			}
296 		}
297 
298 		if (ip_options_rcv_srr(skb, dev))
299 			goto drop;
300 	}
301 
302 	return false;
303 drop:
304 	return true;
305 }
306 
307 static bool ip_can_use_hint(const struct sk_buff *skb, const struct iphdr *iph,
308 			    const struct sk_buff *hint)
309 {
310 	return hint && !skb_dst(skb) && ip_hdr(hint)->daddr == iph->daddr &&
311 	       ip_hdr(hint)->tos == iph->tos;
312 }
313 
314 INDIRECT_CALLABLE_DECLARE(int udp_v4_early_demux(struct sk_buff *));
315 INDIRECT_CALLABLE_DECLARE(int tcp_v4_early_demux(struct sk_buff *));
316 static int ip_rcv_finish_core(struct net *net, struct sock *sk,
317 			      struct sk_buff *skb, struct net_device *dev,
318 			      const struct sk_buff *hint)
319 {
320 	const struct iphdr *iph = ip_hdr(skb);
321 	int (*edemux)(struct sk_buff *skb);
322 	int err, drop_reason;
323 	struct rtable *rt;
324 
325 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
326 
327 	if (ip_can_use_hint(skb, iph, hint)) {
328 		err = ip_route_use_hint(skb, iph->daddr, iph->saddr, iph->tos,
329 					dev, hint);
330 		if (unlikely(err))
331 			goto drop_error;
332 	}
333 
334 	if (net->ipv4.sysctl_ip_early_demux &&
335 	    !skb_dst(skb) &&
336 	    !skb->sk &&
337 	    !ip_is_fragment(iph)) {
338 		const struct net_protocol *ipprot;
339 		int protocol = iph->protocol;
340 
341 		ipprot = rcu_dereference(inet_protos[protocol]);
342 		if (ipprot && (edemux = READ_ONCE(ipprot->early_demux))) {
343 			err = INDIRECT_CALL_2(edemux, tcp_v4_early_demux,
344 					      udp_v4_early_demux, skb);
345 			if (unlikely(err))
346 				goto drop_error;
347 			/* must reload iph, skb->head might have changed */
348 			iph = ip_hdr(skb);
349 		}
350 	}
351 
352 	/*
353 	 *	Initialise the virtual path cache for the packet. It describes
354 	 *	how the packet travels inside Linux networking.
355 	 */
356 	if (!skb_valid_dst(skb)) {
357 		err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
358 					   iph->tos, dev);
359 		if (unlikely(err))
360 			goto drop_error;
361 	}
362 
363 #ifdef CONFIG_IP_ROUTE_CLASSID
364 	if (unlikely(skb_dst(skb)->tclassid)) {
365 		struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
366 		u32 idx = skb_dst(skb)->tclassid;
367 		st[idx&0xFF].o_packets++;
368 		st[idx&0xFF].o_bytes += skb->len;
369 		st[(idx>>16)&0xFF].i_packets++;
370 		st[(idx>>16)&0xFF].i_bytes += skb->len;
371 	}
372 #endif
373 
374 	if (iph->ihl > 5 && ip_rcv_options(skb, dev))
375 		goto drop;
376 
377 	rt = skb_rtable(skb);
378 	if (rt->rt_type == RTN_MULTICAST) {
379 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
380 	} else if (rt->rt_type == RTN_BROADCAST) {
381 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
382 	} else if (skb->pkt_type == PACKET_BROADCAST ||
383 		   skb->pkt_type == PACKET_MULTICAST) {
384 		struct in_device *in_dev = __in_dev_get_rcu(dev);
385 
386 		/* RFC 1122 3.3.6:
387 		 *
388 		 *   When a host sends a datagram to a link-layer broadcast
389 		 *   address, the IP destination address MUST be a legal IP
390 		 *   broadcast or IP multicast address.
391 		 *
392 		 *   A host SHOULD silently discard a datagram that is received
393 		 *   via a link-layer broadcast (see Section 2.4) but does not
394 		 *   specify an IP multicast or broadcast destination address.
395 		 *
396 		 * This doesn't explicitly say L2 *broadcast*, but broadcast is
397 		 * in a way a form of multicast and the most common use case for
398 		 * this is 802.11 protecting against cross-station spoofing (the
399 		 * so-called "hole-196" attack) so do it for both.
400 		 */
401 		if (in_dev &&
402 		    IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST)) {
403 			drop_reason = SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST;
404 			goto drop;
405 		}
406 	}
407 
408 	return NET_RX_SUCCESS;
409 
410 drop:
411 	kfree_skb_reason(skb, drop_reason);
412 	return NET_RX_DROP;
413 
414 drop_error:
415 	if (err == -EXDEV) {
416 		drop_reason = SKB_DROP_REASON_IP_RPFILTER;
417 		__NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
418 	}
419 	goto drop;
420 }
421 
422 static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
423 {
424 	struct net_device *dev = skb->dev;
425 	int ret;
426 
427 	/* if ingress device is enslaved to an L3 master device pass the
428 	 * skb to its handler for processing
429 	 */
430 	skb = l3mdev_ip_rcv(skb);
431 	if (!skb)
432 		return NET_RX_SUCCESS;
433 
434 	ret = ip_rcv_finish_core(net, sk, skb, dev, NULL);
435 	if (ret != NET_RX_DROP)
436 		ret = dst_input(skb);
437 	return ret;
438 }
439 
440 /*
441  * 	Main IP Receive routine.
442  */
443 static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
444 {
445 	const struct iphdr *iph;
446 	int drop_reason;
447 	u32 len;
448 
449 	/* When the interface is in promisc. mode, drop all the crap
450 	 * that it receives, do not try to analyse it.
451 	 */
452 	if (skb->pkt_type == PACKET_OTHERHOST) {
453 		drop_reason = SKB_DROP_REASON_OTHERHOST;
454 		goto drop;
455 	}
456 
457 	__IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
458 
459 	skb = skb_share_check(skb, GFP_ATOMIC);
460 	if (!skb) {
461 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
462 		goto out;
463 	}
464 
465 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
466 	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
467 		goto inhdr_error;
468 
469 	iph = ip_hdr(skb);
470 
471 	/*
472 	 *	RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
473 	 *
474 	 *	Is the datagram acceptable?
475 	 *
476 	 *	1.	Length at least the size of an ip header
477 	 *	2.	Version of 4
478 	 *	3.	Checksums correctly. [Speed optimisation for later, skip loopback checksums]
479 	 *	4.	Doesn't have a bogus length
480 	 */
481 
482 	if (iph->ihl < 5 || iph->version != 4)
483 		goto inhdr_error;
484 
485 	BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
486 	BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
487 	BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
488 	__IP_ADD_STATS(net,
489 		       IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
490 		       max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
491 
492 	if (!pskb_may_pull(skb, iph->ihl*4))
493 		goto inhdr_error;
494 
495 	iph = ip_hdr(skb);
496 
497 	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
498 		goto csum_error;
499 
500 	len = ntohs(iph->tot_len);
501 	if (skb->len < len) {
502 		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
503 		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
504 		goto drop;
505 	} else if (len < (iph->ihl*4))
506 		goto inhdr_error;
507 
508 	/* Our transport medium may have padded the buffer out. Now we know it
509 	 * is IP we can trim to the true length of the frame.
510 	 * Note this now means skb->len holds ntohs(iph->tot_len).
511 	 */
512 	if (pskb_trim_rcsum(skb, len)) {
513 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
514 		goto drop;
515 	}
516 
517 	iph = ip_hdr(skb);
518 	skb->transport_header = skb->network_header + iph->ihl*4;
519 
520 	/* Remove any debris in the socket control block */
521 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
522 	IPCB(skb)->iif = skb->skb_iif;
523 
524 	/* Must drop socket now because of tproxy. */
525 	if (!skb_sk_is_prefetched(skb))
526 		skb_orphan(skb);
527 
528 	return skb;
529 
530 csum_error:
531 	drop_reason = SKB_DROP_REASON_IP_CSUM;
532 	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
533 inhdr_error:
534 	if (drop_reason == SKB_DROP_REASON_NOT_SPECIFIED)
535 		drop_reason = SKB_DROP_REASON_IP_INHDR;
536 	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
537 drop:
538 	kfree_skb_reason(skb, drop_reason);
539 out:
540 	return NULL;
541 }
542 
543 /*
544  * IP receive entry point
545  */
546 int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
547 	   struct net_device *orig_dev)
548 {
549 	struct net *net = dev_net(dev);
550 
551 	skb = ip_rcv_core(skb, net);
552 	if (skb == NULL)
553 		return NET_RX_DROP;
554 
555 	return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
556 		       net, NULL, skb, dev, NULL,
557 		       ip_rcv_finish);
558 }
559 
560 static void ip_sublist_rcv_finish(struct list_head *head)
561 {
562 	struct sk_buff *skb, *next;
563 
564 	list_for_each_entry_safe(skb, next, head, list) {
565 		skb_list_del_init(skb);
566 		dst_input(skb);
567 	}
568 }
569 
570 static struct sk_buff *ip_extract_route_hint(const struct net *net,
571 					     struct sk_buff *skb, int rt_type)
572 {
573 	if (fib4_has_custom_rules(net) || rt_type == RTN_BROADCAST)
574 		return NULL;
575 
576 	return skb;
577 }
578 
579 static void ip_list_rcv_finish(struct net *net, struct sock *sk,
580 			       struct list_head *head)
581 {
582 	struct sk_buff *skb, *next, *hint = NULL;
583 	struct dst_entry *curr_dst = NULL;
584 	struct list_head sublist;
585 
586 	INIT_LIST_HEAD(&sublist);
587 	list_for_each_entry_safe(skb, next, head, list) {
588 		struct net_device *dev = skb->dev;
589 		struct dst_entry *dst;
590 
591 		skb_list_del_init(skb);
592 		/* if ingress device is enslaved to an L3 master device pass the
593 		 * skb to its handler for processing
594 		 */
595 		skb = l3mdev_ip_rcv(skb);
596 		if (!skb)
597 			continue;
598 		if (ip_rcv_finish_core(net, sk, skb, dev, hint) == NET_RX_DROP)
599 			continue;
600 
601 		dst = skb_dst(skb);
602 		if (curr_dst != dst) {
603 			hint = ip_extract_route_hint(net, skb,
604 					       ((struct rtable *)dst)->rt_type);
605 
606 			/* dispatch old sublist */
607 			if (!list_empty(&sublist))
608 				ip_sublist_rcv_finish(&sublist);
609 			/* start new sublist */
610 			INIT_LIST_HEAD(&sublist);
611 			curr_dst = dst;
612 		}
613 		list_add_tail(&skb->list, &sublist);
614 	}
615 	/* dispatch final sublist */
616 	ip_sublist_rcv_finish(&sublist);
617 }
618 
619 static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
620 			   struct net *net)
621 {
622 	NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
623 		     head, dev, NULL, ip_rcv_finish);
624 	ip_list_rcv_finish(net, NULL, head);
625 }
626 
627 /* Receive a list of IP packets */
628 void ip_list_rcv(struct list_head *head, struct packet_type *pt,
629 		 struct net_device *orig_dev)
630 {
631 	struct net_device *curr_dev = NULL;
632 	struct net *curr_net = NULL;
633 	struct sk_buff *skb, *next;
634 	struct list_head sublist;
635 
636 	INIT_LIST_HEAD(&sublist);
637 	list_for_each_entry_safe(skb, next, head, list) {
638 		struct net_device *dev = skb->dev;
639 		struct net *net = dev_net(dev);
640 
641 		skb_list_del_init(skb);
642 		skb = ip_rcv_core(skb, net);
643 		if (skb == NULL)
644 			continue;
645 
646 		if (curr_dev != dev || curr_net != net) {
647 			/* dispatch old sublist */
648 			if (!list_empty(&sublist))
649 				ip_sublist_rcv(&sublist, curr_dev, curr_net);
650 			/* start new sublist */
651 			INIT_LIST_HEAD(&sublist);
652 			curr_dev = dev;
653 			curr_net = net;
654 		}
655 		list_add_tail(&skb->list, &sublist);
656 	}
657 	/* dispatch final sublist */
658 	if (!list_empty(&sublist))
659 		ip_sublist_rcv(&sublist, curr_dev, curr_net);
660 }
661