xref: /linux/net/ipv4/ip_input.c (revision 566e8f108fc7847f2a8676ec6a101d37b7dd0fb4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The Internet Protocol (IP) module.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Donald Becker, <becker@super.org>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Richard Underwood
14  *		Stefan Becker, <stefanb@yello.ping.de>
15  *		Jorge Cwik, <jorge@laser.satlink.net>
16  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17  *
18  * Fixes:
19  *		Alan Cox	:	Commented a couple of minor bits of surplus code
20  *		Alan Cox	:	Undefining IP_FORWARD doesn't include the code
21  *					(just stops a compiler warning).
22  *		Alan Cox	:	Frames with >=MAX_ROUTE record routes, strict routes or loose routes
23  *					are junked rather than corrupting things.
24  *		Alan Cox	:	Frames to bad broadcast subnets are dumped
25  *					We used to process them non broadcast and
26  *					boy could that cause havoc.
27  *		Alan Cox	:	ip_forward sets the free flag on the
28  *					new frame it queues. Still crap because
29  *					it copies the frame but at least it
30  *					doesn't eat memory too.
31  *		Alan Cox	:	Generic queue code and memory fixes.
32  *		Fred Van Kempen :	IP fragment support (borrowed from NET2E)
33  *		Gerhard Koerting:	Forward fragmented frames correctly.
34  *		Gerhard Koerting: 	Fixes to my fix of the above 8-).
35  *		Gerhard Koerting:	IP interface addressing fix.
36  *		Linus Torvalds	:	More robustness checks
37  *		Alan Cox	:	Even more checks: Still not as robust as it ought to be
38  *		Alan Cox	:	Save IP header pointer for later
39  *		Alan Cox	:	ip option setting
40  *		Alan Cox	:	Use ip_tos/ip_ttl settings
41  *		Alan Cox	:	Fragmentation bogosity removed
42  *					(Thanks to Mark.Bush@prg.ox.ac.uk)
43  *		Dmitry Gorodchanin :	Send of a raw packet crash fix.
44  *		Alan Cox	:	Silly ip bug when an overlength
45  *					fragment turns up. Now frees the
46  *					queue.
47  *		Linus Torvalds/ :	Memory leakage on fragmentation
48  *		Alan Cox	:	handling.
49  *		Gerhard Koerting:	Forwarding uses IP priority hints
50  *		Teemu Rantanen	:	Fragment problems.
51  *		Alan Cox	:	General cleanup, comments and reformat
52  *		Alan Cox	:	SNMP statistics
53  *		Alan Cox	:	BSD address rule semantics. Also see
54  *					UDP as there is a nasty checksum issue
55  *					if you do things the wrong way.
56  *		Alan Cox	:	Always defrag, moved IP_FORWARD to the config.in file
57  *		Alan Cox	: 	IP options adjust sk->priority.
58  *		Pedro Roque	:	Fix mtu/length error in ip_forward.
59  *		Alan Cox	:	Avoid ip_chk_addr when possible.
60  *	Richard Underwood	:	IP multicasting.
61  *		Alan Cox	:	Cleaned up multicast handlers.
62  *		Alan Cox	:	RAW sockets demultiplex in the BSD style.
63  *		Gunther Mayer	:	Fix the SNMP reporting typo
64  *		Alan Cox	:	Always in group 224.0.0.1
65  *	Pauline Middelink	:	Fast ip_checksum update when forwarding
66  *					Masquerading support.
67  *		Alan Cox	:	Multicast loopback error for 224.0.0.1
68  *		Alan Cox	:	IP_MULTICAST_LOOP option.
69  *		Alan Cox	:	Use notifiers.
70  *		Bjorn Ekwall	:	Removed ip_csum (from slhc.c too)
71  *		Bjorn Ekwall	:	Moved ip_fast_csum to ip.h (inline!)
72  *		Stefan Becker   :       Send out ICMP HOST REDIRECT
73  *	Arnt Gulbrandsen	:	ip_build_xmit
74  *		Alan Cox	:	Per socket routing cache
75  *		Alan Cox	:	Fixed routing cache, added header cache.
76  *		Alan Cox	:	Loopback didn't work right in original ip_build_xmit - fixed it.
77  *		Alan Cox	:	Only send ICMP_REDIRECT if src/dest are the same net.
78  *		Alan Cox	:	Incoming IP option handling.
79  *		Alan Cox	:	Set saddr on raw output frames as per BSD.
80  *		Alan Cox	:	Stopped broadcast source route explosions.
81  *		Alan Cox	:	Can disable source routing
82  *		Takeshi Sone    :	Masquerading didn't work.
83  *	Dave Bonn,Alan Cox	:	Faster IP forwarding whenever possible.
84  *		Alan Cox	:	Memory leaks, tramples, misc debugging.
85  *		Alan Cox	:	Fixed multicast (by popular demand 8))
86  *		Alan Cox	:	Fixed forwarding (by even more popular demand 8))
87  *		Alan Cox	:	Fixed SNMP statistics [I think]
88  *	Gerhard Koerting	:	IP fragmentation forwarding fix
89  *		Alan Cox	:	Device lock against page fault.
90  *		Alan Cox	:	IP_HDRINCL facility.
91  *	Werner Almesberger	:	Zero fragment bug
92  *		Alan Cox	:	RAW IP frame length bug
93  *		Alan Cox	:	Outgoing firewall on build_xmit
94  *		A.N.Kuznetsov	:	IP_OPTIONS support throughout the kernel
95  *		Alan Cox	:	Multicast routing hooks
96  *		Jos Vos		:	Do accounting *before* call_in_firewall
97  *	Willy Konynenberg	:	Transparent proxying support
98  *
99  * To Fix:
100  *		IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
101  *		and could be made very efficient with the addition of some virtual memory hacks to permit
102  *		the allocation of a buffer that can then be 'grown' by twiddling page tables.
103  *		Output fragmentation wants updating along with the buffer management to use a single
104  *		interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
105  *		output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
106  *		fragmentation anyway.
107  */
108 
109 #define pr_fmt(fmt) "IPv4: " fmt
110 
111 #include <linux/module.h>
112 #include <linux/types.h>
113 #include <linux/kernel.h>
114 #include <linux/string.h>
115 #include <linux/errno.h>
116 #include <linux/slab.h>
117 
118 #include <linux/net.h>
119 #include <linux/socket.h>
120 #include <linux/sockios.h>
121 #include <linux/in.h>
122 #include <linux/inet.h>
123 #include <linux/inetdevice.h>
124 #include <linux/netdevice.h>
125 #include <linux/etherdevice.h>
126 #include <linux/indirect_call_wrapper.h>
127 
128 #include <net/snmp.h>
129 #include <net/ip.h>
130 #include <net/protocol.h>
131 #include <net/route.h>
132 #include <linux/skbuff.h>
133 #include <net/sock.h>
134 #include <net/arp.h>
135 #include <net/icmp.h>
136 #include <net/raw.h>
137 #include <net/checksum.h>
138 #include <net/inet_ecn.h>
139 #include <linux/netfilter_ipv4.h>
140 #include <net/xfrm.h>
141 #include <linux/mroute.h>
142 #include <linux/netlink.h>
143 #include <net/dst_metadata.h>
144 
145 /*
146  *	Process Router Attention IP option (RFC 2113)
147  */
148 bool ip_call_ra_chain(struct sk_buff *skb)
149 {
150 	struct ip_ra_chain *ra;
151 	u8 protocol = ip_hdr(skb)->protocol;
152 	struct sock *last = NULL;
153 	struct net_device *dev = skb->dev;
154 	struct net *net = dev_net(dev);
155 
156 	for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
157 		struct sock *sk = ra->sk;
158 
159 		/* If socket is bound to an interface, only report
160 		 * the packet if it came  from that interface.
161 		 */
162 		if (sk && inet_sk(sk)->inet_num == protocol &&
163 		    (!sk->sk_bound_dev_if ||
164 		     sk->sk_bound_dev_if == dev->ifindex)) {
165 			if (ip_is_fragment(ip_hdr(skb))) {
166 				if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
167 					return true;
168 			}
169 			if (last) {
170 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
171 				if (skb2)
172 					raw_rcv(last, skb2);
173 			}
174 			last = sk;
175 		}
176 	}
177 
178 	if (last) {
179 		raw_rcv(last, skb);
180 		return true;
181 	}
182 	return false;
183 }
184 
185 INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *));
186 INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *));
187 void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
188 {
189 	const struct net_protocol *ipprot;
190 	int raw, ret;
191 
192 resubmit:
193 	raw = raw_local_deliver(skb, protocol);
194 
195 	ipprot = rcu_dereference(inet_protos[protocol]);
196 	if (ipprot) {
197 		if (!ipprot->no_policy) {
198 			if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
199 				kfree_skb_reason(skb,
200 						 SKB_DROP_REASON_XFRM_POLICY);
201 				return;
202 			}
203 			nf_reset_ct(skb);
204 		}
205 		ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
206 				      skb);
207 		if (ret < 0) {
208 			protocol = -ret;
209 			goto resubmit;
210 		}
211 		__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
212 	} else {
213 		if (!raw) {
214 			if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
215 				__IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
216 				icmp_send(skb, ICMP_DEST_UNREACH,
217 					  ICMP_PROT_UNREACH, 0);
218 			}
219 			kfree_skb_reason(skb, SKB_DROP_REASON_IP_NOPROTO);
220 		} else {
221 			__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
222 			consume_skb(skb);
223 		}
224 	}
225 }
226 
227 static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
228 {
229 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) {
230 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
231 		kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
232 		return 0;
233 	}
234 
235 	skb_clear_delivery_time(skb);
236 	__skb_pull(skb, skb_network_header_len(skb));
237 
238 	rcu_read_lock();
239 	ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
240 	rcu_read_unlock();
241 
242 	return 0;
243 }
244 
245 /*
246  * 	Deliver IP Packets to the higher protocol layers.
247  */
248 int ip_local_deliver(struct sk_buff *skb)
249 {
250 	/*
251 	 *	Reassemble IP fragments.
252 	 */
253 	struct net *net = dev_net(skb->dev);
254 
255 	if (ip_is_fragment(ip_hdr(skb))) {
256 		if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
257 			return 0;
258 	}
259 
260 	return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
261 		       net, NULL, skb, skb->dev, NULL,
262 		       ip_local_deliver_finish);
263 }
264 EXPORT_SYMBOL(ip_local_deliver);
265 
266 static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev)
267 {
268 	struct ip_options *opt;
269 	const struct iphdr *iph;
270 
271 	/* It looks as overkill, because not all
272 	   IP options require packet mangling.
273 	   But it is the easiest for now, especially taking
274 	   into account that combination of IP options
275 	   and running sniffer is extremely rare condition.
276 					      --ANK (980813)
277 	*/
278 	if (skb_cow(skb, skb_headroom(skb))) {
279 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
280 		goto drop;
281 	}
282 
283 	iph = ip_hdr(skb);
284 	opt = &(IPCB(skb)->opt);
285 	opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
286 
287 	if (ip_options_compile(dev_net(dev), opt, skb)) {
288 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
289 		goto drop;
290 	}
291 
292 	if (unlikely(opt->srr)) {
293 		struct in_device *in_dev = __in_dev_get_rcu(dev);
294 
295 		if (in_dev) {
296 			if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
297 				if (IN_DEV_LOG_MARTIANS(in_dev))
298 					net_info_ratelimited("source route option %pI4 -> %pI4\n",
299 							     &iph->saddr,
300 							     &iph->daddr);
301 				goto drop;
302 			}
303 		}
304 
305 		if (ip_options_rcv_srr(skb, dev))
306 			goto drop;
307 	}
308 
309 	return false;
310 drop:
311 	return true;
312 }
313 
314 static bool ip_can_use_hint(const struct sk_buff *skb, const struct iphdr *iph,
315 			    const struct sk_buff *hint)
316 {
317 	return hint && !skb_dst(skb) && ip_hdr(hint)->daddr == iph->daddr &&
318 	       ip_hdr(hint)->tos == iph->tos;
319 }
320 
321 int tcp_v4_early_demux(struct sk_buff *skb);
322 int udp_v4_early_demux(struct sk_buff *skb);
323 static int ip_rcv_finish_core(struct net *net,
324 			      struct sk_buff *skb, struct net_device *dev,
325 			      const struct sk_buff *hint)
326 {
327 	const struct iphdr *iph = ip_hdr(skb);
328 	int err, drop_reason;
329 	struct rtable *rt;
330 
331 	if (ip_can_use_hint(skb, iph, hint)) {
332 		drop_reason = ip_route_use_hint(skb, iph->daddr, iph->saddr,
333 						ip4h_dscp(iph), dev, hint);
334 		if (unlikely(drop_reason))
335 			goto drop_error;
336 	}
337 
338 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
339 	if (READ_ONCE(net->ipv4.sysctl_ip_early_demux) &&
340 	    !skb_dst(skb) &&
341 	    !skb->sk &&
342 	    !ip_is_fragment(iph)) {
343 		switch (iph->protocol) {
344 		case IPPROTO_TCP:
345 			if (READ_ONCE(net->ipv4.sysctl_tcp_early_demux)) {
346 				tcp_v4_early_demux(skb);
347 
348 				/* must reload iph, skb->head might have changed */
349 				iph = ip_hdr(skb);
350 			}
351 			break;
352 		case IPPROTO_UDP:
353 			if (READ_ONCE(net->ipv4.sysctl_udp_early_demux)) {
354 				err = udp_v4_early_demux(skb);
355 				if (unlikely(err))
356 					goto drop_error;
357 
358 				/* must reload iph, skb->head might have changed */
359 				iph = ip_hdr(skb);
360 			}
361 			break;
362 		}
363 	}
364 
365 	/*
366 	 *	Initialise the virtual path cache for the packet. It describes
367 	 *	how the packet travels inside Linux networking.
368 	 */
369 	if (!skb_valid_dst(skb)) {
370 		drop_reason = ip_route_input_noref(skb, iph->daddr, iph->saddr,
371 						   ip4h_dscp(iph), dev);
372 		if (unlikely(drop_reason))
373 			goto drop_error;
374 		drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
375 	} else {
376 		struct in_device *in_dev = __in_dev_get_rcu(dev);
377 
378 		if (in_dev && IN_DEV_ORCONF(in_dev, NOPOLICY))
379 			IPCB(skb)->flags |= IPSKB_NOPOLICY;
380 	}
381 
382 #ifdef CONFIG_IP_ROUTE_CLASSID
383 	if (unlikely(skb_dst(skb)->tclassid)) {
384 		struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
385 		u32 idx = skb_dst(skb)->tclassid;
386 		st[idx&0xFF].o_packets++;
387 		st[idx&0xFF].o_bytes += skb->len;
388 		st[(idx>>16)&0xFF].i_packets++;
389 		st[(idx>>16)&0xFF].i_bytes += skb->len;
390 	}
391 #endif
392 
393 	if (iph->ihl > 5 && ip_rcv_options(skb, dev))
394 		goto drop;
395 
396 	rt = skb_rtable(skb);
397 	if (rt->rt_type == RTN_MULTICAST) {
398 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
399 	} else if (rt->rt_type == RTN_BROADCAST) {
400 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
401 	} else if (skb->pkt_type == PACKET_BROADCAST ||
402 		   skb->pkt_type == PACKET_MULTICAST) {
403 		struct in_device *in_dev = __in_dev_get_rcu(dev);
404 
405 		/* RFC 1122 3.3.6:
406 		 *
407 		 *   When a host sends a datagram to a link-layer broadcast
408 		 *   address, the IP destination address MUST be a legal IP
409 		 *   broadcast or IP multicast address.
410 		 *
411 		 *   A host SHOULD silently discard a datagram that is received
412 		 *   via a link-layer broadcast (see Section 2.4) but does not
413 		 *   specify an IP multicast or broadcast destination address.
414 		 *
415 		 * This doesn't explicitly say L2 *broadcast*, but broadcast is
416 		 * in a way a form of multicast and the most common use case for
417 		 * this is 802.11 protecting against cross-station spoofing (the
418 		 * so-called "hole-196" attack) so do it for both.
419 		 */
420 		if (in_dev &&
421 		    IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST)) {
422 			drop_reason = SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST;
423 			goto drop;
424 		}
425 	}
426 
427 	return NET_RX_SUCCESS;
428 
429 drop:
430 	kfree_skb_reason(skb, drop_reason);
431 	return NET_RX_DROP;
432 
433 drop_error:
434 	if (drop_reason == SKB_DROP_REASON_IP_RPFILTER)
435 		__NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
436 	goto drop;
437 }
438 
439 static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
440 {
441 	struct net_device *dev = skb->dev;
442 	int ret;
443 
444 	/* if ingress device is enslaved to an L3 master device pass the
445 	 * skb to its handler for processing
446 	 */
447 	skb = l3mdev_ip_rcv(skb);
448 	if (!skb)
449 		return NET_RX_SUCCESS;
450 
451 	ret = ip_rcv_finish_core(net, skb, dev, NULL);
452 	if (ret != NET_RX_DROP)
453 		ret = dst_input(skb);
454 	return ret;
455 }
456 
457 /*
458  * 	Main IP Receive routine.
459  */
460 static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
461 {
462 	const struct iphdr *iph;
463 	int drop_reason;
464 	u32 len;
465 
466 	/* When the interface is in promisc. mode, drop all the crap
467 	 * that it receives, do not try to analyse it.
468 	 */
469 	if (skb->pkt_type == PACKET_OTHERHOST) {
470 		dev_core_stats_rx_otherhost_dropped_inc(skb->dev);
471 		drop_reason = SKB_DROP_REASON_OTHERHOST;
472 		goto drop;
473 	}
474 
475 	__IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
476 
477 	skb = skb_share_check(skb, GFP_ATOMIC);
478 	if (!skb) {
479 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
480 		goto out;
481 	}
482 
483 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
484 	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
485 		goto inhdr_error;
486 
487 	iph = ip_hdr(skb);
488 
489 	/*
490 	 *	RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
491 	 *
492 	 *	Is the datagram acceptable?
493 	 *
494 	 *	1.	Length at least the size of an ip header
495 	 *	2.	Version of 4
496 	 *	3.	Checksums correctly. [Speed optimisation for later, skip loopback checksums]
497 	 *	4.	Doesn't have a bogus length
498 	 */
499 
500 	if (iph->ihl < 5 || iph->version != 4)
501 		goto inhdr_error;
502 
503 	BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
504 	BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
505 	BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
506 	__IP_ADD_STATS(net,
507 		       IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
508 		       max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
509 
510 	if (!pskb_may_pull(skb, iph->ihl*4))
511 		goto inhdr_error;
512 
513 	iph = ip_hdr(skb);
514 
515 	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
516 		goto csum_error;
517 
518 	len = iph_totlen(skb, iph);
519 	if (skb->len < len) {
520 		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
521 		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
522 		goto drop;
523 	} else if (len < (iph->ihl*4))
524 		goto inhdr_error;
525 
526 	/* Our transport medium may have padded the buffer out. Now we know it
527 	 * is IP we can trim to the true length of the frame.
528 	 * Note this now means skb->len holds ntohs(iph->tot_len).
529 	 */
530 	if (pskb_trim_rcsum(skb, len)) {
531 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
532 		goto drop;
533 	}
534 
535 	iph = ip_hdr(skb);
536 	skb->transport_header = skb->network_header + iph->ihl*4;
537 
538 	/* Remove any debris in the socket control block */
539 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
540 	IPCB(skb)->iif = skb->skb_iif;
541 
542 	/* Must drop socket now because of tproxy. */
543 	if (!skb_sk_is_prefetched(skb))
544 		skb_orphan(skb);
545 
546 	return skb;
547 
548 csum_error:
549 	drop_reason = SKB_DROP_REASON_IP_CSUM;
550 	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
551 inhdr_error:
552 	if (drop_reason == SKB_DROP_REASON_NOT_SPECIFIED)
553 		drop_reason = SKB_DROP_REASON_IP_INHDR;
554 	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
555 drop:
556 	kfree_skb_reason(skb, drop_reason);
557 out:
558 	return NULL;
559 }
560 
561 /*
562  * IP receive entry point
563  */
564 int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
565 	   struct net_device *orig_dev)
566 {
567 	struct net *net = dev_net(dev);
568 
569 	skb = ip_rcv_core(skb, net);
570 	if (skb == NULL)
571 		return NET_RX_DROP;
572 
573 	return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
574 		       net, NULL, skb, dev, NULL,
575 		       ip_rcv_finish);
576 }
577 
578 static void ip_sublist_rcv_finish(struct list_head *head)
579 {
580 	struct sk_buff *skb, *next;
581 
582 	list_for_each_entry_safe(skb, next, head, list) {
583 		skb_list_del_init(skb);
584 		dst_input(skb);
585 	}
586 }
587 
588 static struct sk_buff *ip_extract_route_hint(const struct net *net,
589 					     struct sk_buff *skb, int rt_type)
590 {
591 	if (fib4_has_custom_rules(net) || rt_type == RTN_BROADCAST ||
592 	    IPCB(skb)->flags & IPSKB_MULTIPATH)
593 		return NULL;
594 
595 	return skb;
596 }
597 
598 static void ip_list_rcv_finish(struct net *net, struct list_head *head)
599 {
600 	struct sk_buff *skb, *next, *hint = NULL;
601 	struct dst_entry *curr_dst = NULL;
602 	LIST_HEAD(sublist);
603 
604 	list_for_each_entry_safe(skb, next, head, list) {
605 		struct net_device *dev = skb->dev;
606 		struct dst_entry *dst;
607 
608 		skb_list_del_init(skb);
609 		/* if ingress device is enslaved to an L3 master device pass the
610 		 * skb to its handler for processing
611 		 */
612 		skb = l3mdev_ip_rcv(skb);
613 		if (!skb)
614 			continue;
615 		if (ip_rcv_finish_core(net, skb, dev, hint) == NET_RX_DROP)
616 			continue;
617 
618 		dst = skb_dst(skb);
619 		if (curr_dst != dst) {
620 			hint = ip_extract_route_hint(net, skb,
621 						     dst_rtable(dst)->rt_type);
622 
623 			/* dispatch old sublist */
624 			if (!list_empty(&sublist))
625 				ip_sublist_rcv_finish(&sublist);
626 			/* start new sublist */
627 			INIT_LIST_HEAD(&sublist);
628 			curr_dst = dst;
629 		}
630 		list_add_tail(&skb->list, &sublist);
631 	}
632 	/* dispatch final sublist */
633 	ip_sublist_rcv_finish(&sublist);
634 }
635 
636 static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
637 			   struct net *net)
638 {
639 	NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
640 		     head, dev, NULL, ip_rcv_finish);
641 	ip_list_rcv_finish(net, head);
642 }
643 
644 /* Receive a list of IP packets */
645 void ip_list_rcv(struct list_head *head, struct packet_type *pt,
646 		 struct net_device *orig_dev)
647 {
648 	struct net_device *curr_dev = NULL;
649 	struct net *curr_net = NULL;
650 	struct sk_buff *skb, *next;
651 	LIST_HEAD(sublist);
652 
653 	list_for_each_entry_safe(skb, next, head, list) {
654 		struct net_device *dev = skb->dev;
655 		struct net *net = dev_net(dev);
656 
657 		skb_list_del_init(skb);
658 		skb = ip_rcv_core(skb, net);
659 		if (skb == NULL)
660 			continue;
661 
662 		if (curr_dev != dev || curr_net != net) {
663 			/* dispatch old sublist */
664 			if (!list_empty(&sublist))
665 				ip_sublist_rcv(&sublist, curr_dev, curr_net);
666 			/* start new sublist */
667 			INIT_LIST_HEAD(&sublist);
668 			curr_dev = dev;
669 			curr_net = net;
670 		}
671 		list_add_tail(&skb->list, &sublist);
672 	}
673 	/* dispatch final sublist */
674 	if (!list_empty(&sublist))
675 		ip_sublist_rcv(&sublist, curr_dev, curr_net);
676 }
677