1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The Internet Protocol (IP) module. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Donald Becker, <becker@super.org> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Richard Underwood 14 * Stefan Becker, <stefanb@yello.ping.de> 15 * Jorge Cwik, <jorge@laser.satlink.net> 16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 17 * 18 * Fixes: 19 * Alan Cox : Commented a couple of minor bits of surplus code 20 * Alan Cox : Undefining IP_FORWARD doesn't include the code 21 * (just stops a compiler warning). 22 * Alan Cox : Frames with >=MAX_ROUTE record routes, strict routes or loose routes 23 * are junked rather than corrupting things. 24 * Alan Cox : Frames to bad broadcast subnets are dumped 25 * We used to process them non broadcast and 26 * boy could that cause havoc. 27 * Alan Cox : ip_forward sets the free flag on the 28 * new frame it queues. Still crap because 29 * it copies the frame but at least it 30 * doesn't eat memory too. 31 * Alan Cox : Generic queue code and memory fixes. 32 * Fred Van Kempen : IP fragment support (borrowed from NET2E) 33 * Gerhard Koerting: Forward fragmented frames correctly. 34 * Gerhard Koerting: Fixes to my fix of the above 8-). 35 * Gerhard Koerting: IP interface addressing fix. 36 * Linus Torvalds : More robustness checks 37 * Alan Cox : Even more checks: Still not as robust as it ought to be 38 * Alan Cox : Save IP header pointer for later 39 * Alan Cox : ip option setting 40 * Alan Cox : Use ip_tos/ip_ttl settings 41 * Alan Cox : Fragmentation bogosity removed 42 * (Thanks to Mark.Bush@prg.ox.ac.uk) 43 * Dmitry Gorodchanin : Send of a raw packet crash fix. 44 * Alan Cox : Silly ip bug when an overlength 45 * fragment turns up. Now frees the 46 * queue. 47 * Linus Torvalds/ : Memory leakage on fragmentation 48 * Alan Cox : handling. 49 * Gerhard Koerting: Forwarding uses IP priority hints 50 * Teemu Rantanen : Fragment problems. 51 * Alan Cox : General cleanup, comments and reformat 52 * Alan Cox : SNMP statistics 53 * Alan Cox : BSD address rule semantics. Also see 54 * UDP as there is a nasty checksum issue 55 * if you do things the wrong way. 56 * Alan Cox : Always defrag, moved IP_FORWARD to the config.in file 57 * Alan Cox : IP options adjust sk->priority. 58 * Pedro Roque : Fix mtu/length error in ip_forward. 59 * Alan Cox : Avoid ip_chk_addr when possible. 60 * Richard Underwood : IP multicasting. 61 * Alan Cox : Cleaned up multicast handlers. 62 * Alan Cox : RAW sockets demultiplex in the BSD style. 63 * Gunther Mayer : Fix the SNMP reporting typo 64 * Alan Cox : Always in group 224.0.0.1 65 * Pauline Middelink : Fast ip_checksum update when forwarding 66 * Masquerading support. 67 * Alan Cox : Multicast loopback error for 224.0.0.1 68 * Alan Cox : IP_MULTICAST_LOOP option. 69 * Alan Cox : Use notifiers. 70 * Bjorn Ekwall : Removed ip_csum (from slhc.c too) 71 * Bjorn Ekwall : Moved ip_fast_csum to ip.h (inline!) 72 * Stefan Becker : Send out ICMP HOST REDIRECT 73 * Arnt Gulbrandsen : ip_build_xmit 74 * Alan Cox : Per socket routing cache 75 * Alan Cox : Fixed routing cache, added header cache. 76 * Alan Cox : Loopback didn't work right in original ip_build_xmit - fixed it. 77 * Alan Cox : Only send ICMP_REDIRECT if src/dest are the same net. 78 * Alan Cox : Incoming IP option handling. 79 * Alan Cox : Set saddr on raw output frames as per BSD. 80 * Alan Cox : Stopped broadcast source route explosions. 81 * Alan Cox : Can disable source routing 82 * Takeshi Sone : Masquerading didn't work. 83 * Dave Bonn,Alan Cox : Faster IP forwarding whenever possible. 84 * Alan Cox : Memory leaks, tramples, misc debugging. 85 * Alan Cox : Fixed multicast (by popular demand 8)) 86 * Alan Cox : Fixed forwarding (by even more popular demand 8)) 87 * Alan Cox : Fixed SNMP statistics [I think] 88 * Gerhard Koerting : IP fragmentation forwarding fix 89 * Alan Cox : Device lock against page fault. 90 * Alan Cox : IP_HDRINCL facility. 91 * Werner Almesberger : Zero fragment bug 92 * Alan Cox : RAW IP frame length bug 93 * Alan Cox : Outgoing firewall on build_xmit 94 * A.N.Kuznetsov : IP_OPTIONS support throughout the kernel 95 * Alan Cox : Multicast routing hooks 96 * Jos Vos : Do accounting *before* call_in_firewall 97 * Willy Konynenberg : Transparent proxying support 98 * 99 * To Fix: 100 * IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient 101 * and could be made very efficient with the addition of some virtual memory hacks to permit 102 * the allocation of a buffer that can then be 'grown' by twiddling page tables. 103 * Output fragmentation wants updating along with the buffer management to use a single 104 * interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet 105 * output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause 106 * fragmentation anyway. 107 */ 108 109 #define pr_fmt(fmt) "IPv4: " fmt 110 111 #include <linux/module.h> 112 #include <linux/types.h> 113 #include <linux/kernel.h> 114 #include <linux/string.h> 115 #include <linux/errno.h> 116 #include <linux/slab.h> 117 118 #include <linux/net.h> 119 #include <linux/socket.h> 120 #include <linux/sockios.h> 121 #include <linux/in.h> 122 #include <linux/inet.h> 123 #include <linux/inetdevice.h> 124 #include <linux/netdevice.h> 125 #include <linux/etherdevice.h> 126 #include <linux/indirect_call_wrapper.h> 127 128 #include <net/snmp.h> 129 #include <net/ip.h> 130 #include <net/protocol.h> 131 #include <net/route.h> 132 #include <linux/skbuff.h> 133 #include <net/sock.h> 134 #include <net/arp.h> 135 #include <net/icmp.h> 136 #include <net/raw.h> 137 #include <net/checksum.h> 138 #include <net/inet_ecn.h> 139 #include <linux/netfilter_ipv4.h> 140 #include <net/xfrm.h> 141 #include <linux/mroute.h> 142 #include <linux/netlink.h> 143 #include <net/dst_metadata.h> 144 145 /* 146 * Process Router Attention IP option (RFC 2113) 147 */ 148 bool ip_call_ra_chain(struct sk_buff *skb) 149 { 150 struct ip_ra_chain *ra; 151 u8 protocol = ip_hdr(skb)->protocol; 152 struct sock *last = NULL; 153 struct net_device *dev = skb->dev; 154 struct net *net = dev_net(dev); 155 156 for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) { 157 struct sock *sk = ra->sk; 158 159 /* If socket is bound to an interface, only report 160 * the packet if it came from that interface. 161 */ 162 if (sk && inet_sk(sk)->inet_num == protocol && 163 (!sk->sk_bound_dev_if || 164 sk->sk_bound_dev_if == dev->ifindex)) { 165 if (ip_is_fragment(ip_hdr(skb))) { 166 if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN)) 167 return true; 168 } 169 if (last) { 170 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 171 if (skb2) 172 raw_rcv(last, skb2); 173 } 174 last = sk; 175 } 176 } 177 178 if (last) { 179 raw_rcv(last, skb); 180 return true; 181 } 182 return false; 183 } 184 185 INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *)); 186 INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *)); 187 void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol) 188 { 189 const struct net_protocol *ipprot; 190 int raw, ret; 191 192 resubmit: 193 raw = raw_local_deliver(skb, protocol); 194 195 ipprot = rcu_dereference(inet_protos[protocol]); 196 if (ipprot) { 197 if (!ipprot->no_policy) { 198 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 199 kfree_skb_reason(skb, 200 SKB_DROP_REASON_XFRM_POLICY); 201 return; 202 } 203 nf_reset_ct(skb); 204 } 205 ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv, 206 skb); 207 if (ret < 0) { 208 protocol = -ret; 209 goto resubmit; 210 } 211 __IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS); 212 } else { 213 if (!raw) { 214 if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 215 __IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS); 216 icmp_send(skb, ICMP_DEST_UNREACH, 217 ICMP_PROT_UNREACH, 0); 218 } 219 kfree_skb_reason(skb, SKB_DROP_REASON_IP_NOPROTO); 220 } else { 221 __IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS); 222 consume_skb(skb); 223 } 224 } 225 } 226 227 static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 228 { 229 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) { 230 __IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS); 231 kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM); 232 return 0; 233 } 234 235 skb_clear_delivery_time(skb); 236 __skb_pull(skb, skb_network_header_len(skb)); 237 238 rcu_read_lock(); 239 ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol); 240 rcu_read_unlock(); 241 242 return 0; 243 } 244 245 /* 246 * Deliver IP Packets to the higher protocol layers. 247 */ 248 int ip_local_deliver(struct sk_buff *skb) 249 { 250 /* 251 * Reassemble IP fragments. 252 */ 253 struct net *net = dev_net(skb->dev); 254 255 if (ip_is_fragment(ip_hdr(skb))) { 256 if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER)) 257 return 0; 258 } 259 260 return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN, 261 net, NULL, skb, skb->dev, NULL, 262 ip_local_deliver_finish); 263 } 264 EXPORT_SYMBOL(ip_local_deliver); 265 266 static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev) 267 { 268 struct ip_options *opt; 269 const struct iphdr *iph; 270 271 /* It looks as overkill, because not all 272 IP options require packet mangling. 273 But it is the easiest for now, especially taking 274 into account that combination of IP options 275 and running sniffer is extremely rare condition. 276 --ANK (980813) 277 */ 278 if (skb_cow(skb, skb_headroom(skb))) { 279 __IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS); 280 goto drop; 281 } 282 283 iph = ip_hdr(skb); 284 opt = &(IPCB(skb)->opt); 285 opt->optlen = iph->ihl*4 - sizeof(struct iphdr); 286 287 if (ip_options_compile(dev_net(dev), opt, skb)) { 288 __IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS); 289 goto drop; 290 } 291 292 if (unlikely(opt->srr)) { 293 struct in_device *in_dev = __in_dev_get_rcu(dev); 294 295 if (in_dev) { 296 if (!IN_DEV_SOURCE_ROUTE(in_dev)) { 297 if (IN_DEV_LOG_MARTIANS(in_dev)) 298 net_info_ratelimited("source route option %pI4 -> %pI4\n", 299 &iph->saddr, 300 &iph->daddr); 301 goto drop; 302 } 303 } 304 305 if (ip_options_rcv_srr(skb, dev)) 306 goto drop; 307 } 308 309 return false; 310 drop: 311 return true; 312 } 313 314 static bool ip_can_use_hint(const struct sk_buff *skb, const struct iphdr *iph, 315 const struct sk_buff *hint) 316 { 317 return hint && !skb_dst(skb) && ip_hdr(hint)->daddr == iph->daddr && 318 ip_hdr(hint)->tos == iph->tos; 319 } 320 321 int tcp_v4_early_demux(struct sk_buff *skb); 322 int udp_v4_early_demux(struct sk_buff *skb); 323 static int ip_rcv_finish_core(struct net *net, 324 struct sk_buff *skb, struct net_device *dev, 325 const struct sk_buff *hint) 326 { 327 const struct iphdr *iph = ip_hdr(skb); 328 int err, drop_reason; 329 struct rtable *rt; 330 331 if (ip_can_use_hint(skb, iph, hint)) { 332 drop_reason = ip_route_use_hint(skb, iph->daddr, iph->saddr, 333 ip4h_dscp(iph), dev, hint); 334 if (unlikely(drop_reason)) 335 goto drop_error; 336 } 337 338 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 339 if (READ_ONCE(net->ipv4.sysctl_ip_early_demux) && 340 !skb_dst(skb) && 341 !skb->sk && 342 !ip_is_fragment(iph)) { 343 switch (iph->protocol) { 344 case IPPROTO_TCP: 345 if (READ_ONCE(net->ipv4.sysctl_tcp_early_demux)) { 346 tcp_v4_early_demux(skb); 347 348 /* must reload iph, skb->head might have changed */ 349 iph = ip_hdr(skb); 350 } 351 break; 352 case IPPROTO_UDP: 353 if (READ_ONCE(net->ipv4.sysctl_udp_early_demux)) { 354 err = udp_v4_early_demux(skb); 355 if (unlikely(err)) 356 goto drop_error; 357 358 /* must reload iph, skb->head might have changed */ 359 iph = ip_hdr(skb); 360 } 361 break; 362 } 363 } 364 365 /* 366 * Initialise the virtual path cache for the packet. It describes 367 * how the packet travels inside Linux networking. 368 */ 369 if (!skb_valid_dst(skb)) { 370 drop_reason = ip_route_input_noref(skb, iph->daddr, iph->saddr, 371 ip4h_dscp(iph), dev); 372 if (unlikely(drop_reason)) 373 goto drop_error; 374 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 375 } else { 376 struct in_device *in_dev = __in_dev_get_rcu(dev); 377 378 if (in_dev && IN_DEV_ORCONF(in_dev, NOPOLICY)) 379 IPCB(skb)->flags |= IPSKB_NOPOLICY; 380 } 381 382 #ifdef CONFIG_IP_ROUTE_CLASSID 383 if (unlikely(skb_dst(skb)->tclassid)) { 384 struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct); 385 u32 idx = skb_dst(skb)->tclassid; 386 st[idx&0xFF].o_packets++; 387 st[idx&0xFF].o_bytes += skb->len; 388 st[(idx>>16)&0xFF].i_packets++; 389 st[(idx>>16)&0xFF].i_bytes += skb->len; 390 } 391 #endif 392 393 if (iph->ihl > 5 && ip_rcv_options(skb, dev)) 394 goto drop; 395 396 rt = skb_rtable(skb); 397 if (rt->rt_type == RTN_MULTICAST) { 398 __IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len); 399 } else if (rt->rt_type == RTN_BROADCAST) { 400 __IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len); 401 } else if (skb->pkt_type == PACKET_BROADCAST || 402 skb->pkt_type == PACKET_MULTICAST) { 403 struct in_device *in_dev = __in_dev_get_rcu(dev); 404 405 /* RFC 1122 3.3.6: 406 * 407 * When a host sends a datagram to a link-layer broadcast 408 * address, the IP destination address MUST be a legal IP 409 * broadcast or IP multicast address. 410 * 411 * A host SHOULD silently discard a datagram that is received 412 * via a link-layer broadcast (see Section 2.4) but does not 413 * specify an IP multicast or broadcast destination address. 414 * 415 * This doesn't explicitly say L2 *broadcast*, but broadcast is 416 * in a way a form of multicast and the most common use case for 417 * this is 802.11 protecting against cross-station spoofing (the 418 * so-called "hole-196" attack) so do it for both. 419 */ 420 if (in_dev && 421 IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST)) { 422 drop_reason = SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST; 423 goto drop; 424 } 425 } 426 427 return NET_RX_SUCCESS; 428 429 drop: 430 kfree_skb_reason(skb, drop_reason); 431 return NET_RX_DROP; 432 433 drop_error: 434 if (drop_reason == SKB_DROP_REASON_IP_RPFILTER) 435 __NET_INC_STATS(net, LINUX_MIB_IPRPFILTER); 436 goto drop; 437 } 438 439 static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 440 { 441 struct net_device *dev = skb->dev; 442 int ret; 443 444 /* if ingress device is enslaved to an L3 master device pass the 445 * skb to its handler for processing 446 */ 447 skb = l3mdev_ip_rcv(skb); 448 if (!skb) 449 return NET_RX_SUCCESS; 450 451 ret = ip_rcv_finish_core(net, skb, dev, NULL); 452 if (ret != NET_RX_DROP) 453 ret = dst_input(skb); 454 return ret; 455 } 456 457 /* 458 * Main IP Receive routine. 459 */ 460 static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net) 461 { 462 const struct iphdr *iph; 463 int drop_reason; 464 u32 len; 465 466 /* When the interface is in promisc. mode, drop all the crap 467 * that it receives, do not try to analyse it. 468 */ 469 if (skb->pkt_type == PACKET_OTHERHOST) { 470 dev_core_stats_rx_otherhost_dropped_inc(skb->dev); 471 drop_reason = SKB_DROP_REASON_OTHERHOST; 472 goto drop; 473 } 474 475 __IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len); 476 477 skb = skb_share_check(skb, GFP_ATOMIC); 478 if (!skb) { 479 __IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS); 480 goto out; 481 } 482 483 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 484 if (!pskb_may_pull(skb, sizeof(struct iphdr))) 485 goto inhdr_error; 486 487 iph = ip_hdr(skb); 488 489 /* 490 * RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum. 491 * 492 * Is the datagram acceptable? 493 * 494 * 1. Length at least the size of an ip header 495 * 2. Version of 4 496 * 3. Checksums correctly. [Speed optimisation for later, skip loopback checksums] 497 * 4. Doesn't have a bogus length 498 */ 499 500 if (iph->ihl < 5 || iph->version != 4) 501 goto inhdr_error; 502 503 BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1); 504 BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0); 505 BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE); 506 __IP_ADD_STATS(net, 507 IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK), 508 max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs)); 509 510 if (!pskb_may_pull(skb, iph->ihl*4)) 511 goto inhdr_error; 512 513 iph = ip_hdr(skb); 514 515 if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl))) 516 goto csum_error; 517 518 len = iph_totlen(skb, iph); 519 if (skb->len < len) { 520 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 521 __IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS); 522 goto drop; 523 } else if (len < (iph->ihl*4)) 524 goto inhdr_error; 525 526 /* Our transport medium may have padded the buffer out. Now we know it 527 * is IP we can trim to the true length of the frame. 528 * Note this now means skb->len holds ntohs(iph->tot_len). 529 */ 530 if (pskb_trim_rcsum(skb, len)) { 531 __IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS); 532 goto drop; 533 } 534 535 iph = ip_hdr(skb); 536 skb->transport_header = skb->network_header + iph->ihl*4; 537 538 /* Remove any debris in the socket control block */ 539 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 540 IPCB(skb)->iif = skb->skb_iif; 541 542 /* Must drop socket now because of tproxy. */ 543 if (!skb_sk_is_prefetched(skb)) 544 skb_orphan(skb); 545 546 return skb; 547 548 csum_error: 549 drop_reason = SKB_DROP_REASON_IP_CSUM; 550 __IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS); 551 inhdr_error: 552 if (drop_reason == SKB_DROP_REASON_NOT_SPECIFIED) 553 drop_reason = SKB_DROP_REASON_IP_INHDR; 554 __IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS); 555 drop: 556 kfree_skb_reason(skb, drop_reason); 557 out: 558 return NULL; 559 } 560 561 /* 562 * IP receive entry point 563 */ 564 int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, 565 struct net_device *orig_dev) 566 { 567 struct net *net = dev_net(dev); 568 569 skb = ip_rcv_core(skb, net); 570 if (skb == NULL) 571 return NET_RX_DROP; 572 573 return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, 574 net, NULL, skb, dev, NULL, 575 ip_rcv_finish); 576 } 577 578 static void ip_sublist_rcv_finish(struct list_head *head) 579 { 580 struct sk_buff *skb, *next; 581 582 list_for_each_entry_safe(skb, next, head, list) { 583 skb_list_del_init(skb); 584 dst_input(skb); 585 } 586 } 587 588 static struct sk_buff *ip_extract_route_hint(const struct net *net, 589 struct sk_buff *skb, int rt_type) 590 { 591 if (fib4_has_custom_rules(net) || rt_type == RTN_BROADCAST || 592 IPCB(skb)->flags & IPSKB_MULTIPATH) 593 return NULL; 594 595 return skb; 596 } 597 598 static void ip_list_rcv_finish(struct net *net, struct list_head *head) 599 { 600 struct sk_buff *skb, *next, *hint = NULL; 601 struct dst_entry *curr_dst = NULL; 602 LIST_HEAD(sublist); 603 604 list_for_each_entry_safe(skb, next, head, list) { 605 struct net_device *dev = skb->dev; 606 struct dst_entry *dst; 607 608 skb_list_del_init(skb); 609 /* if ingress device is enslaved to an L3 master device pass the 610 * skb to its handler for processing 611 */ 612 skb = l3mdev_ip_rcv(skb); 613 if (!skb) 614 continue; 615 if (ip_rcv_finish_core(net, skb, dev, hint) == NET_RX_DROP) 616 continue; 617 618 dst = skb_dst(skb); 619 if (curr_dst != dst) { 620 hint = ip_extract_route_hint(net, skb, 621 dst_rtable(dst)->rt_type); 622 623 /* dispatch old sublist */ 624 if (!list_empty(&sublist)) 625 ip_sublist_rcv_finish(&sublist); 626 /* start new sublist */ 627 INIT_LIST_HEAD(&sublist); 628 curr_dst = dst; 629 } 630 list_add_tail(&skb->list, &sublist); 631 } 632 /* dispatch final sublist */ 633 ip_sublist_rcv_finish(&sublist); 634 } 635 636 static void ip_sublist_rcv(struct list_head *head, struct net_device *dev, 637 struct net *net) 638 { 639 NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL, 640 head, dev, NULL, ip_rcv_finish); 641 ip_list_rcv_finish(net, head); 642 } 643 644 /* Receive a list of IP packets */ 645 void ip_list_rcv(struct list_head *head, struct packet_type *pt, 646 struct net_device *orig_dev) 647 { 648 struct net_device *curr_dev = NULL; 649 struct net *curr_net = NULL; 650 struct sk_buff *skb, *next; 651 LIST_HEAD(sublist); 652 653 list_for_each_entry_safe(skb, next, head, list) { 654 struct net_device *dev = skb->dev; 655 struct net *net = dev_net(dev); 656 657 skb_list_del_init(skb); 658 skb = ip_rcv_core(skb, net); 659 if (skb == NULL) 660 continue; 661 662 if (curr_dev != dev || curr_net != net) { 663 /* dispatch old sublist */ 664 if (!list_empty(&sublist)) 665 ip_sublist_rcv(&sublist, curr_dev, curr_net); 666 /* start new sublist */ 667 INIT_LIST_HEAD(&sublist); 668 curr_dev = dev; 669 curr_net = net; 670 } 671 list_add_tail(&skb->list, &sublist); 672 } 673 /* dispatch final sublist */ 674 if (!list_empty(&sublist)) 675 ip_sublist_rcv(&sublist, curr_dev, curr_net); 676 } 677