1 /* 2 * Linux NET3: GRE over IP protocol decoder. 3 * 4 * Authors: Alexey Kuznetsov (kuznet@ms2.inr.ac.ru) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 */ 12 13 #include <linux/capability.h> 14 #include <linux/module.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/slab.h> 18 #include <asm/uaccess.h> 19 #include <linux/skbuff.h> 20 #include <linux/netdevice.h> 21 #include <linux/in.h> 22 #include <linux/tcp.h> 23 #include <linux/udp.h> 24 #include <linux/if_arp.h> 25 #include <linux/mroute.h> 26 #include <linux/init.h> 27 #include <linux/in6.h> 28 #include <linux/inetdevice.h> 29 #include <linux/igmp.h> 30 #include <linux/netfilter_ipv4.h> 31 #include <linux/etherdevice.h> 32 #include <linux/if_ether.h> 33 34 #include <net/sock.h> 35 #include <net/ip.h> 36 #include <net/icmp.h> 37 #include <net/protocol.h> 38 #include <net/ipip.h> 39 #include <net/arp.h> 40 #include <net/checksum.h> 41 #include <net/dsfield.h> 42 #include <net/inet_ecn.h> 43 #include <net/xfrm.h> 44 #include <net/net_namespace.h> 45 #include <net/netns/generic.h> 46 #include <net/rtnetlink.h> 47 #include <net/gre.h> 48 49 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 50 #include <net/ipv6.h> 51 #include <net/ip6_fib.h> 52 #include <net/ip6_route.h> 53 #endif 54 55 /* 56 Problems & solutions 57 -------------------- 58 59 1. The most important issue is detecting local dead loops. 60 They would cause complete host lockup in transmit, which 61 would be "resolved" by stack overflow or, if queueing is enabled, 62 with infinite looping in net_bh. 63 64 We cannot track such dead loops during route installation, 65 it is infeasible task. The most general solutions would be 66 to keep skb->encapsulation counter (sort of local ttl), 67 and silently drop packet when it expires. It is a good 68 solution, but it supposes maintaing new variable in ALL 69 skb, even if no tunneling is used. 70 71 Current solution: xmit_recursion breaks dead loops. This is a percpu 72 counter, since when we enter the first ndo_xmit(), cpu migration is 73 forbidden. We force an exit if this counter reaches RECURSION_LIMIT 74 75 2. Networking dead loops would not kill routers, but would really 76 kill network. IP hop limit plays role of "t->recursion" in this case, 77 if we copy it from packet being encapsulated to upper header. 78 It is very good solution, but it introduces two problems: 79 80 - Routing protocols, using packets with ttl=1 (OSPF, RIP2), 81 do not work over tunnels. 82 - traceroute does not work. I planned to relay ICMP from tunnel, 83 so that this problem would be solved and traceroute output 84 would even more informative. This idea appeared to be wrong: 85 only Linux complies to rfc1812 now (yes, guys, Linux is the only 86 true router now :-)), all routers (at least, in neighbourhood of mine) 87 return only 8 bytes of payload. It is the end. 88 89 Hence, if we want that OSPF worked or traceroute said something reasonable, 90 we should search for another solution. 91 92 One of them is to parse packet trying to detect inner encapsulation 93 made by our node. It is difficult or even impossible, especially, 94 taking into account fragmentation. TO be short, tt is not solution at all. 95 96 Current solution: The solution was UNEXPECTEDLY SIMPLE. 97 We force DF flag on tunnels with preconfigured hop limit, 98 that is ALL. :-) Well, it does not remove the problem completely, 99 but exponential growth of network traffic is changed to linear 100 (branches, that exceed pmtu are pruned) and tunnel mtu 101 fastly degrades to value <68, where looping stops. 102 Yes, it is not good if there exists a router in the loop, 103 which does not force DF, even when encapsulating packets have DF set. 104 But it is not our problem! Nobody could accuse us, we made 105 all that we could make. Even if it is your gated who injected 106 fatal route to network, even if it were you who configured 107 fatal static route: you are innocent. :-) 108 109 110 111 3. Really, ipv4/ipip.c, ipv4/ip_gre.c and ipv6/sit.c contain 112 practically identical code. It would be good to glue them 113 together, but it is not very evident, how to make them modular. 114 sit is integral part of IPv6, ipip and gre are naturally modular. 115 We could extract common parts (hash table, ioctl etc) 116 to a separate module (ip_tunnel.c). 117 118 Alexey Kuznetsov. 119 */ 120 121 static struct rtnl_link_ops ipgre_link_ops __read_mostly; 122 static int ipgre_tunnel_init(struct net_device *dev); 123 static void ipgre_tunnel_setup(struct net_device *dev); 124 static int ipgre_tunnel_bind_dev(struct net_device *dev); 125 126 /* Fallback tunnel: no source, no destination, no key, no options */ 127 128 #define HASH_SIZE 16 129 130 static int ipgre_net_id __read_mostly; 131 struct ipgre_net { 132 struct ip_tunnel __rcu *tunnels[4][HASH_SIZE]; 133 134 struct net_device *fb_tunnel_dev; 135 }; 136 137 /* Tunnel hash table */ 138 139 /* 140 4 hash tables: 141 142 3: (remote,local) 143 2: (remote,*) 144 1: (*,local) 145 0: (*,*) 146 147 We require exact key match i.e. if a key is present in packet 148 it will match only tunnel with the same key; if it is not present, 149 it will match only keyless tunnel. 150 151 All keysless packets, if not matched configured keyless tunnels 152 will match fallback tunnel. 153 */ 154 155 #define HASH(addr) (((__force u32)addr^((__force u32)addr>>4))&0xF) 156 157 #define tunnels_r_l tunnels[3] 158 #define tunnels_r tunnels[2] 159 #define tunnels_l tunnels[1] 160 #define tunnels_wc tunnels[0] 161 /* 162 * Locking : hash tables are protected by RCU and RTNL 163 */ 164 165 #define for_each_ip_tunnel_rcu(start) \ 166 for (t = rcu_dereference(start); t; t = rcu_dereference(t->next)) 167 168 /* often modified stats are per cpu, other are shared (netdev->stats) */ 169 struct pcpu_tstats { 170 unsigned long rx_packets; 171 unsigned long rx_bytes; 172 unsigned long tx_packets; 173 unsigned long tx_bytes; 174 }; 175 176 static struct net_device_stats *ipgre_get_stats(struct net_device *dev) 177 { 178 struct pcpu_tstats sum = { 0 }; 179 int i; 180 181 for_each_possible_cpu(i) { 182 const struct pcpu_tstats *tstats = per_cpu_ptr(dev->tstats, i); 183 184 sum.rx_packets += tstats->rx_packets; 185 sum.rx_bytes += tstats->rx_bytes; 186 sum.tx_packets += tstats->tx_packets; 187 sum.tx_bytes += tstats->tx_bytes; 188 } 189 dev->stats.rx_packets = sum.rx_packets; 190 dev->stats.rx_bytes = sum.rx_bytes; 191 dev->stats.tx_packets = sum.tx_packets; 192 dev->stats.tx_bytes = sum.tx_bytes; 193 return &dev->stats; 194 } 195 196 /* Given src, dst and key, find appropriate for input tunnel. */ 197 198 static struct ip_tunnel * ipgre_tunnel_lookup(struct net_device *dev, 199 __be32 remote, __be32 local, 200 __be32 key, __be16 gre_proto) 201 { 202 struct net *net = dev_net(dev); 203 int link = dev->ifindex; 204 unsigned int h0 = HASH(remote); 205 unsigned int h1 = HASH(key); 206 struct ip_tunnel *t, *cand = NULL; 207 struct ipgre_net *ign = net_generic(net, ipgre_net_id); 208 int dev_type = (gre_proto == htons(ETH_P_TEB)) ? 209 ARPHRD_ETHER : ARPHRD_IPGRE; 210 int score, cand_score = 4; 211 212 for_each_ip_tunnel_rcu(ign->tunnels_r_l[h0 ^ h1]) { 213 if (local != t->parms.iph.saddr || 214 remote != t->parms.iph.daddr || 215 key != t->parms.i_key || 216 !(t->dev->flags & IFF_UP)) 217 continue; 218 219 if (t->dev->type != ARPHRD_IPGRE && 220 t->dev->type != dev_type) 221 continue; 222 223 score = 0; 224 if (t->parms.link != link) 225 score |= 1; 226 if (t->dev->type != dev_type) 227 score |= 2; 228 if (score == 0) 229 return t; 230 231 if (score < cand_score) { 232 cand = t; 233 cand_score = score; 234 } 235 } 236 237 for_each_ip_tunnel_rcu(ign->tunnels_r[h0 ^ h1]) { 238 if (remote != t->parms.iph.daddr || 239 key != t->parms.i_key || 240 !(t->dev->flags & IFF_UP)) 241 continue; 242 243 if (t->dev->type != ARPHRD_IPGRE && 244 t->dev->type != dev_type) 245 continue; 246 247 score = 0; 248 if (t->parms.link != link) 249 score |= 1; 250 if (t->dev->type != dev_type) 251 score |= 2; 252 if (score == 0) 253 return t; 254 255 if (score < cand_score) { 256 cand = t; 257 cand_score = score; 258 } 259 } 260 261 for_each_ip_tunnel_rcu(ign->tunnels_l[h1]) { 262 if ((local != t->parms.iph.saddr && 263 (local != t->parms.iph.daddr || 264 !ipv4_is_multicast(local))) || 265 key != t->parms.i_key || 266 !(t->dev->flags & IFF_UP)) 267 continue; 268 269 if (t->dev->type != ARPHRD_IPGRE && 270 t->dev->type != dev_type) 271 continue; 272 273 score = 0; 274 if (t->parms.link != link) 275 score |= 1; 276 if (t->dev->type != dev_type) 277 score |= 2; 278 if (score == 0) 279 return t; 280 281 if (score < cand_score) { 282 cand = t; 283 cand_score = score; 284 } 285 } 286 287 for_each_ip_tunnel_rcu(ign->tunnels_wc[h1]) { 288 if (t->parms.i_key != key || 289 !(t->dev->flags & IFF_UP)) 290 continue; 291 292 if (t->dev->type != ARPHRD_IPGRE && 293 t->dev->type != dev_type) 294 continue; 295 296 score = 0; 297 if (t->parms.link != link) 298 score |= 1; 299 if (t->dev->type != dev_type) 300 score |= 2; 301 if (score == 0) 302 return t; 303 304 if (score < cand_score) { 305 cand = t; 306 cand_score = score; 307 } 308 } 309 310 if (cand != NULL) 311 return cand; 312 313 dev = ign->fb_tunnel_dev; 314 if (dev->flags & IFF_UP) 315 return netdev_priv(dev); 316 317 return NULL; 318 } 319 320 static struct ip_tunnel __rcu **__ipgre_bucket(struct ipgre_net *ign, 321 struct ip_tunnel_parm *parms) 322 { 323 __be32 remote = parms->iph.daddr; 324 __be32 local = parms->iph.saddr; 325 __be32 key = parms->i_key; 326 unsigned int h = HASH(key); 327 int prio = 0; 328 329 if (local) 330 prio |= 1; 331 if (remote && !ipv4_is_multicast(remote)) { 332 prio |= 2; 333 h ^= HASH(remote); 334 } 335 336 return &ign->tunnels[prio][h]; 337 } 338 339 static inline struct ip_tunnel __rcu **ipgre_bucket(struct ipgre_net *ign, 340 struct ip_tunnel *t) 341 { 342 return __ipgre_bucket(ign, &t->parms); 343 } 344 345 static void ipgre_tunnel_link(struct ipgre_net *ign, struct ip_tunnel *t) 346 { 347 struct ip_tunnel __rcu **tp = ipgre_bucket(ign, t); 348 349 rcu_assign_pointer(t->next, rtnl_dereference(*tp)); 350 rcu_assign_pointer(*tp, t); 351 } 352 353 static void ipgre_tunnel_unlink(struct ipgre_net *ign, struct ip_tunnel *t) 354 { 355 struct ip_tunnel __rcu **tp; 356 struct ip_tunnel *iter; 357 358 for (tp = ipgre_bucket(ign, t); 359 (iter = rtnl_dereference(*tp)) != NULL; 360 tp = &iter->next) { 361 if (t == iter) { 362 rcu_assign_pointer(*tp, t->next); 363 break; 364 } 365 } 366 } 367 368 static struct ip_tunnel *ipgre_tunnel_find(struct net *net, 369 struct ip_tunnel_parm *parms, 370 int type) 371 { 372 __be32 remote = parms->iph.daddr; 373 __be32 local = parms->iph.saddr; 374 __be32 key = parms->i_key; 375 int link = parms->link; 376 struct ip_tunnel *t; 377 struct ip_tunnel __rcu **tp; 378 struct ipgre_net *ign = net_generic(net, ipgre_net_id); 379 380 for (tp = __ipgre_bucket(ign, parms); 381 (t = rtnl_dereference(*tp)) != NULL; 382 tp = &t->next) 383 if (local == t->parms.iph.saddr && 384 remote == t->parms.iph.daddr && 385 key == t->parms.i_key && 386 link == t->parms.link && 387 type == t->dev->type) 388 break; 389 390 return t; 391 } 392 393 static struct ip_tunnel *ipgre_tunnel_locate(struct net *net, 394 struct ip_tunnel_parm *parms, int create) 395 { 396 struct ip_tunnel *t, *nt; 397 struct net_device *dev; 398 char name[IFNAMSIZ]; 399 struct ipgre_net *ign = net_generic(net, ipgre_net_id); 400 401 t = ipgre_tunnel_find(net, parms, ARPHRD_IPGRE); 402 if (t || !create) 403 return t; 404 405 if (parms->name[0]) 406 strlcpy(name, parms->name, IFNAMSIZ); 407 else 408 strcpy(name, "gre%d"); 409 410 dev = alloc_netdev(sizeof(*t), name, ipgre_tunnel_setup); 411 if (!dev) 412 return NULL; 413 414 dev_net_set(dev, net); 415 416 if (strchr(name, '%')) { 417 if (dev_alloc_name(dev, name) < 0) 418 goto failed_free; 419 } 420 421 nt = netdev_priv(dev); 422 nt->parms = *parms; 423 dev->rtnl_link_ops = &ipgre_link_ops; 424 425 dev->mtu = ipgre_tunnel_bind_dev(dev); 426 427 if (register_netdevice(dev) < 0) 428 goto failed_free; 429 430 dev_hold(dev); 431 ipgre_tunnel_link(ign, nt); 432 return nt; 433 434 failed_free: 435 free_netdev(dev); 436 return NULL; 437 } 438 439 static void ipgre_tunnel_uninit(struct net_device *dev) 440 { 441 struct net *net = dev_net(dev); 442 struct ipgre_net *ign = net_generic(net, ipgre_net_id); 443 444 ipgre_tunnel_unlink(ign, netdev_priv(dev)); 445 dev_put(dev); 446 } 447 448 449 static void ipgre_err(struct sk_buff *skb, u32 info) 450 { 451 452 /* All the routers (except for Linux) return only 453 8 bytes of packet payload. It means, that precise relaying of 454 ICMP in the real Internet is absolutely infeasible. 455 456 Moreover, Cisco "wise men" put GRE key to the third word 457 in GRE header. It makes impossible maintaining even soft state for keyed 458 GRE tunnels with enabled checksum. Tell them "thank you". 459 460 Well, I wonder, rfc1812 was written by Cisco employee, 461 what the hell these idiots break standrads established 462 by themself??? 463 */ 464 465 struct iphdr *iph = (struct iphdr *)skb->data; 466 __be16 *p = (__be16*)(skb->data+(iph->ihl<<2)); 467 int grehlen = (iph->ihl<<2) + 4; 468 const int type = icmp_hdr(skb)->type; 469 const int code = icmp_hdr(skb)->code; 470 struct ip_tunnel *t; 471 __be16 flags; 472 473 flags = p[0]; 474 if (flags&(GRE_CSUM|GRE_KEY|GRE_SEQ|GRE_ROUTING|GRE_VERSION)) { 475 if (flags&(GRE_VERSION|GRE_ROUTING)) 476 return; 477 if (flags&GRE_KEY) { 478 grehlen += 4; 479 if (flags&GRE_CSUM) 480 grehlen += 4; 481 } 482 } 483 484 /* If only 8 bytes returned, keyed message will be dropped here */ 485 if (skb_headlen(skb) < grehlen) 486 return; 487 488 switch (type) { 489 default: 490 case ICMP_PARAMETERPROB: 491 return; 492 493 case ICMP_DEST_UNREACH: 494 switch (code) { 495 case ICMP_SR_FAILED: 496 case ICMP_PORT_UNREACH: 497 /* Impossible event. */ 498 return; 499 case ICMP_FRAG_NEEDED: 500 /* Soft state for pmtu is maintained by IP core. */ 501 return; 502 default: 503 /* All others are translated to HOST_UNREACH. 504 rfc2003 contains "deep thoughts" about NET_UNREACH, 505 I believe they are just ether pollution. --ANK 506 */ 507 break; 508 } 509 break; 510 case ICMP_TIME_EXCEEDED: 511 if (code != ICMP_EXC_TTL) 512 return; 513 break; 514 } 515 516 rcu_read_lock(); 517 t = ipgre_tunnel_lookup(skb->dev, iph->daddr, iph->saddr, 518 flags & GRE_KEY ? 519 *(((__be32 *)p) + (grehlen / 4) - 1) : 0, 520 p[1]); 521 if (t == NULL || t->parms.iph.daddr == 0 || 522 ipv4_is_multicast(t->parms.iph.daddr)) 523 goto out; 524 525 if (t->parms.iph.ttl == 0 && type == ICMP_TIME_EXCEEDED) 526 goto out; 527 528 if (time_before(jiffies, t->err_time + IPTUNNEL_ERR_TIMEO)) 529 t->err_count++; 530 else 531 t->err_count = 1; 532 t->err_time = jiffies; 533 out: 534 rcu_read_unlock(); 535 } 536 537 static inline void ipgre_ecn_decapsulate(struct iphdr *iph, struct sk_buff *skb) 538 { 539 if (INET_ECN_is_ce(iph->tos)) { 540 if (skb->protocol == htons(ETH_P_IP)) { 541 IP_ECN_set_ce(ip_hdr(skb)); 542 } else if (skb->protocol == htons(ETH_P_IPV6)) { 543 IP6_ECN_set_ce(ipv6_hdr(skb)); 544 } 545 } 546 } 547 548 static inline u8 549 ipgre_ecn_encapsulate(u8 tos, struct iphdr *old_iph, struct sk_buff *skb) 550 { 551 u8 inner = 0; 552 if (skb->protocol == htons(ETH_P_IP)) 553 inner = old_iph->tos; 554 else if (skb->protocol == htons(ETH_P_IPV6)) 555 inner = ipv6_get_dsfield((struct ipv6hdr *)old_iph); 556 return INET_ECN_encapsulate(tos, inner); 557 } 558 559 static int ipgre_rcv(struct sk_buff *skb) 560 { 561 struct iphdr *iph; 562 u8 *h; 563 __be16 flags; 564 __sum16 csum = 0; 565 __be32 key = 0; 566 u32 seqno = 0; 567 struct ip_tunnel *tunnel; 568 int offset = 4; 569 __be16 gre_proto; 570 571 if (!pskb_may_pull(skb, 16)) 572 goto drop_nolock; 573 574 iph = ip_hdr(skb); 575 h = skb->data; 576 flags = *(__be16*)h; 577 578 if (flags&(GRE_CSUM|GRE_KEY|GRE_ROUTING|GRE_SEQ|GRE_VERSION)) { 579 /* - Version must be 0. 580 - We do not support routing headers. 581 */ 582 if (flags&(GRE_VERSION|GRE_ROUTING)) 583 goto drop_nolock; 584 585 if (flags&GRE_CSUM) { 586 switch (skb->ip_summed) { 587 case CHECKSUM_COMPLETE: 588 csum = csum_fold(skb->csum); 589 if (!csum) 590 break; 591 /* fall through */ 592 case CHECKSUM_NONE: 593 skb->csum = 0; 594 csum = __skb_checksum_complete(skb); 595 skb->ip_summed = CHECKSUM_COMPLETE; 596 } 597 offset += 4; 598 } 599 if (flags&GRE_KEY) { 600 key = *(__be32*)(h + offset); 601 offset += 4; 602 } 603 if (flags&GRE_SEQ) { 604 seqno = ntohl(*(__be32*)(h + offset)); 605 offset += 4; 606 } 607 } 608 609 gre_proto = *(__be16 *)(h + 2); 610 611 rcu_read_lock(); 612 if ((tunnel = ipgre_tunnel_lookup(skb->dev, 613 iph->saddr, iph->daddr, key, 614 gre_proto))) { 615 struct pcpu_tstats *tstats; 616 617 secpath_reset(skb); 618 619 skb->protocol = gre_proto; 620 /* WCCP version 1 and 2 protocol decoding. 621 * - Change protocol to IP 622 * - When dealing with WCCPv2, Skip extra 4 bytes in GRE header 623 */ 624 if (flags == 0 && gre_proto == htons(ETH_P_WCCP)) { 625 skb->protocol = htons(ETH_P_IP); 626 if ((*(h + offset) & 0xF0) != 0x40) 627 offset += 4; 628 } 629 630 skb->mac_header = skb->network_header; 631 __pskb_pull(skb, offset); 632 skb_postpull_rcsum(skb, skb_transport_header(skb), offset); 633 skb->pkt_type = PACKET_HOST; 634 #ifdef CONFIG_NET_IPGRE_BROADCAST 635 if (ipv4_is_multicast(iph->daddr)) { 636 /* Looped back packet, drop it! */ 637 if (rt_is_output_route(skb_rtable(skb))) 638 goto drop; 639 tunnel->dev->stats.multicast++; 640 skb->pkt_type = PACKET_BROADCAST; 641 } 642 #endif 643 644 if (((flags&GRE_CSUM) && csum) || 645 (!(flags&GRE_CSUM) && tunnel->parms.i_flags&GRE_CSUM)) { 646 tunnel->dev->stats.rx_crc_errors++; 647 tunnel->dev->stats.rx_errors++; 648 goto drop; 649 } 650 if (tunnel->parms.i_flags&GRE_SEQ) { 651 if (!(flags&GRE_SEQ) || 652 (tunnel->i_seqno && (s32)(seqno - tunnel->i_seqno) < 0)) { 653 tunnel->dev->stats.rx_fifo_errors++; 654 tunnel->dev->stats.rx_errors++; 655 goto drop; 656 } 657 tunnel->i_seqno = seqno + 1; 658 } 659 660 /* Warning: All skb pointers will be invalidated! */ 661 if (tunnel->dev->type == ARPHRD_ETHER) { 662 if (!pskb_may_pull(skb, ETH_HLEN)) { 663 tunnel->dev->stats.rx_length_errors++; 664 tunnel->dev->stats.rx_errors++; 665 goto drop; 666 } 667 668 iph = ip_hdr(skb); 669 skb->protocol = eth_type_trans(skb, tunnel->dev); 670 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 671 } 672 673 tstats = this_cpu_ptr(tunnel->dev->tstats); 674 tstats->rx_packets++; 675 tstats->rx_bytes += skb->len; 676 677 __skb_tunnel_rx(skb, tunnel->dev); 678 679 skb_reset_network_header(skb); 680 ipgre_ecn_decapsulate(iph, skb); 681 682 netif_rx(skb); 683 684 rcu_read_unlock(); 685 return 0; 686 } 687 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 688 689 drop: 690 rcu_read_unlock(); 691 drop_nolock: 692 kfree_skb(skb); 693 return 0; 694 } 695 696 static netdev_tx_t ipgre_tunnel_xmit(struct sk_buff *skb, struct net_device *dev) 697 { 698 struct ip_tunnel *tunnel = netdev_priv(dev); 699 struct pcpu_tstats *tstats; 700 struct iphdr *old_iph = ip_hdr(skb); 701 struct iphdr *tiph; 702 u8 tos; 703 __be16 df; 704 struct rtable *rt; /* Route to the other host */ 705 struct net_device *tdev; /* Device to other host */ 706 struct iphdr *iph; /* Our new IP header */ 707 unsigned int max_headroom; /* The extra header space needed */ 708 int gre_hlen; 709 __be32 dst; 710 int mtu; 711 712 if (dev->type == ARPHRD_ETHER) 713 IPCB(skb)->flags = 0; 714 715 if (dev->header_ops && dev->type == ARPHRD_IPGRE) { 716 gre_hlen = 0; 717 tiph = (struct iphdr *)skb->data; 718 } else { 719 gre_hlen = tunnel->hlen; 720 tiph = &tunnel->parms.iph; 721 } 722 723 if ((dst = tiph->daddr) == 0) { 724 /* NBMA tunnel */ 725 726 if (skb_dst(skb) == NULL) { 727 dev->stats.tx_fifo_errors++; 728 goto tx_error; 729 } 730 731 if (skb->protocol == htons(ETH_P_IP)) { 732 rt = skb_rtable(skb); 733 if ((dst = rt->rt_gateway) == 0) 734 goto tx_error_icmp; 735 } 736 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 737 else if (skb->protocol == htons(ETH_P_IPV6)) { 738 struct in6_addr *addr6; 739 int addr_type; 740 struct neighbour *neigh = skb_dst(skb)->neighbour; 741 742 if (neigh == NULL) 743 goto tx_error; 744 745 addr6 = (struct in6_addr *)&neigh->primary_key; 746 addr_type = ipv6_addr_type(addr6); 747 748 if (addr_type == IPV6_ADDR_ANY) { 749 addr6 = &ipv6_hdr(skb)->daddr; 750 addr_type = ipv6_addr_type(addr6); 751 } 752 753 if ((addr_type & IPV6_ADDR_COMPATv4) == 0) 754 goto tx_error_icmp; 755 756 dst = addr6->s6_addr32[3]; 757 } 758 #endif 759 else 760 goto tx_error; 761 } 762 763 tos = tiph->tos; 764 if (tos == 1) { 765 tos = 0; 766 if (skb->protocol == htons(ETH_P_IP)) 767 tos = old_iph->tos; 768 else if (skb->protocol == htons(ETH_P_IPV6)) 769 tos = ipv6_get_dsfield((struct ipv6hdr *)old_iph); 770 } 771 772 { 773 struct flowi fl = { 774 .oif = tunnel->parms.link, 775 .fl4_dst = dst, 776 .fl4_src = tiph->saddr, 777 .fl4_tos = RT_TOS(tos), 778 .proto = IPPROTO_GRE, 779 .fl_gre_key = tunnel->parms.o_key 780 }; 781 if (ip_route_output_key(dev_net(dev), &rt, &fl)) { 782 dev->stats.tx_carrier_errors++; 783 goto tx_error; 784 } 785 } 786 tdev = rt->dst.dev; 787 788 if (tdev == dev) { 789 ip_rt_put(rt); 790 dev->stats.collisions++; 791 goto tx_error; 792 } 793 794 df = tiph->frag_off; 795 if (df) 796 mtu = dst_mtu(&rt->dst) - dev->hard_header_len - tunnel->hlen; 797 else 798 mtu = skb_dst(skb) ? dst_mtu(skb_dst(skb)) : dev->mtu; 799 800 if (skb_dst(skb)) 801 skb_dst(skb)->ops->update_pmtu(skb_dst(skb), mtu); 802 803 if (skb->protocol == htons(ETH_P_IP)) { 804 df |= (old_iph->frag_off&htons(IP_DF)); 805 806 if ((old_iph->frag_off&htons(IP_DF)) && 807 mtu < ntohs(old_iph->tot_len)) { 808 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, htonl(mtu)); 809 ip_rt_put(rt); 810 goto tx_error; 811 } 812 } 813 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 814 else if (skb->protocol == htons(ETH_P_IPV6)) { 815 struct rt6_info *rt6 = (struct rt6_info *)skb_dst(skb); 816 817 if (rt6 && mtu < dst_mtu(skb_dst(skb)) && mtu >= IPV6_MIN_MTU) { 818 if ((tunnel->parms.iph.daddr && 819 !ipv4_is_multicast(tunnel->parms.iph.daddr)) || 820 rt6->rt6i_dst.plen == 128) { 821 rt6->rt6i_flags |= RTF_MODIFIED; 822 dst_metric_set(skb_dst(skb), RTAX_MTU, mtu); 823 } 824 } 825 826 if (mtu >= IPV6_MIN_MTU && mtu < skb->len - tunnel->hlen + gre_hlen) { 827 icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); 828 ip_rt_put(rt); 829 goto tx_error; 830 } 831 } 832 #endif 833 834 if (tunnel->err_count > 0) { 835 if (time_before(jiffies, 836 tunnel->err_time + IPTUNNEL_ERR_TIMEO)) { 837 tunnel->err_count--; 838 839 dst_link_failure(skb); 840 } else 841 tunnel->err_count = 0; 842 } 843 844 max_headroom = LL_RESERVED_SPACE(tdev) + gre_hlen + rt->dst.header_len; 845 846 if (skb_headroom(skb) < max_headroom || skb_shared(skb)|| 847 (skb_cloned(skb) && !skb_clone_writable(skb, 0))) { 848 struct sk_buff *new_skb = skb_realloc_headroom(skb, max_headroom); 849 if (max_headroom > dev->needed_headroom) 850 dev->needed_headroom = max_headroom; 851 if (!new_skb) { 852 ip_rt_put(rt); 853 dev->stats.tx_dropped++; 854 dev_kfree_skb(skb); 855 return NETDEV_TX_OK; 856 } 857 if (skb->sk) 858 skb_set_owner_w(new_skb, skb->sk); 859 dev_kfree_skb(skb); 860 skb = new_skb; 861 old_iph = ip_hdr(skb); 862 } 863 864 skb_reset_transport_header(skb); 865 skb_push(skb, gre_hlen); 866 skb_reset_network_header(skb); 867 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 868 IPCB(skb)->flags &= ~(IPSKB_XFRM_TUNNEL_SIZE | IPSKB_XFRM_TRANSFORMED | 869 IPSKB_REROUTED); 870 skb_dst_drop(skb); 871 skb_dst_set(skb, &rt->dst); 872 873 /* 874 * Push down and install the IPIP header. 875 */ 876 877 iph = ip_hdr(skb); 878 iph->version = 4; 879 iph->ihl = sizeof(struct iphdr) >> 2; 880 iph->frag_off = df; 881 iph->protocol = IPPROTO_GRE; 882 iph->tos = ipgre_ecn_encapsulate(tos, old_iph, skb); 883 iph->daddr = rt->rt_dst; 884 iph->saddr = rt->rt_src; 885 886 if ((iph->ttl = tiph->ttl) == 0) { 887 if (skb->protocol == htons(ETH_P_IP)) 888 iph->ttl = old_iph->ttl; 889 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 890 else if (skb->protocol == htons(ETH_P_IPV6)) 891 iph->ttl = ((struct ipv6hdr *)old_iph)->hop_limit; 892 #endif 893 else 894 iph->ttl = ip4_dst_hoplimit(&rt->dst); 895 } 896 897 ((__be16 *)(iph + 1))[0] = tunnel->parms.o_flags; 898 ((__be16 *)(iph + 1))[1] = (dev->type == ARPHRD_ETHER) ? 899 htons(ETH_P_TEB) : skb->protocol; 900 901 if (tunnel->parms.o_flags&(GRE_KEY|GRE_CSUM|GRE_SEQ)) { 902 __be32 *ptr = (__be32*)(((u8*)iph) + tunnel->hlen - 4); 903 904 if (tunnel->parms.o_flags&GRE_SEQ) { 905 ++tunnel->o_seqno; 906 *ptr = htonl(tunnel->o_seqno); 907 ptr--; 908 } 909 if (tunnel->parms.o_flags&GRE_KEY) { 910 *ptr = tunnel->parms.o_key; 911 ptr--; 912 } 913 if (tunnel->parms.o_flags&GRE_CSUM) { 914 *ptr = 0; 915 *(__sum16*)ptr = ip_compute_csum((void*)(iph+1), skb->len - sizeof(struct iphdr)); 916 } 917 } 918 919 nf_reset(skb); 920 tstats = this_cpu_ptr(dev->tstats); 921 __IPTUNNEL_XMIT(tstats, &dev->stats); 922 return NETDEV_TX_OK; 923 924 tx_error_icmp: 925 dst_link_failure(skb); 926 927 tx_error: 928 dev->stats.tx_errors++; 929 dev_kfree_skb(skb); 930 return NETDEV_TX_OK; 931 } 932 933 static int ipgre_tunnel_bind_dev(struct net_device *dev) 934 { 935 struct net_device *tdev = NULL; 936 struct ip_tunnel *tunnel; 937 struct iphdr *iph; 938 int hlen = LL_MAX_HEADER; 939 int mtu = ETH_DATA_LEN; 940 int addend = sizeof(struct iphdr) + 4; 941 942 tunnel = netdev_priv(dev); 943 iph = &tunnel->parms.iph; 944 945 /* Guess output device to choose reasonable mtu and needed_headroom */ 946 947 if (iph->daddr) { 948 struct flowi fl = { 949 .oif = tunnel->parms.link, 950 .fl4_dst = iph->daddr, 951 .fl4_src = iph->saddr, 952 .fl4_tos = RT_TOS(iph->tos), 953 .proto = IPPROTO_GRE, 954 .fl_gre_key = tunnel->parms.o_key 955 }; 956 struct rtable *rt; 957 958 if (!ip_route_output_key(dev_net(dev), &rt, &fl)) { 959 tdev = rt->dst.dev; 960 ip_rt_put(rt); 961 } 962 963 if (dev->type != ARPHRD_ETHER) 964 dev->flags |= IFF_POINTOPOINT; 965 } 966 967 if (!tdev && tunnel->parms.link) 968 tdev = __dev_get_by_index(dev_net(dev), tunnel->parms.link); 969 970 if (tdev) { 971 hlen = tdev->hard_header_len + tdev->needed_headroom; 972 mtu = tdev->mtu; 973 } 974 dev->iflink = tunnel->parms.link; 975 976 /* Precalculate GRE options length */ 977 if (tunnel->parms.o_flags&(GRE_CSUM|GRE_KEY|GRE_SEQ)) { 978 if (tunnel->parms.o_flags&GRE_CSUM) 979 addend += 4; 980 if (tunnel->parms.o_flags&GRE_KEY) 981 addend += 4; 982 if (tunnel->parms.o_flags&GRE_SEQ) 983 addend += 4; 984 } 985 dev->needed_headroom = addend + hlen; 986 mtu -= dev->hard_header_len + addend; 987 988 if (mtu < 68) 989 mtu = 68; 990 991 tunnel->hlen = addend; 992 993 return mtu; 994 } 995 996 static int 997 ipgre_tunnel_ioctl (struct net_device *dev, struct ifreq *ifr, int cmd) 998 { 999 int err = 0; 1000 struct ip_tunnel_parm p; 1001 struct ip_tunnel *t; 1002 struct net *net = dev_net(dev); 1003 struct ipgre_net *ign = net_generic(net, ipgre_net_id); 1004 1005 switch (cmd) { 1006 case SIOCGETTUNNEL: 1007 t = NULL; 1008 if (dev == ign->fb_tunnel_dev) { 1009 if (copy_from_user(&p, ifr->ifr_ifru.ifru_data, sizeof(p))) { 1010 err = -EFAULT; 1011 break; 1012 } 1013 t = ipgre_tunnel_locate(net, &p, 0); 1014 } 1015 if (t == NULL) 1016 t = netdev_priv(dev); 1017 memcpy(&p, &t->parms, sizeof(p)); 1018 if (copy_to_user(ifr->ifr_ifru.ifru_data, &p, sizeof(p))) 1019 err = -EFAULT; 1020 break; 1021 1022 case SIOCADDTUNNEL: 1023 case SIOCCHGTUNNEL: 1024 err = -EPERM; 1025 if (!capable(CAP_NET_ADMIN)) 1026 goto done; 1027 1028 err = -EFAULT; 1029 if (copy_from_user(&p, ifr->ifr_ifru.ifru_data, sizeof(p))) 1030 goto done; 1031 1032 err = -EINVAL; 1033 if (p.iph.version != 4 || p.iph.protocol != IPPROTO_GRE || 1034 p.iph.ihl != 5 || (p.iph.frag_off&htons(~IP_DF)) || 1035 ((p.i_flags|p.o_flags)&(GRE_VERSION|GRE_ROUTING))) 1036 goto done; 1037 if (p.iph.ttl) 1038 p.iph.frag_off |= htons(IP_DF); 1039 1040 if (!(p.i_flags&GRE_KEY)) 1041 p.i_key = 0; 1042 if (!(p.o_flags&GRE_KEY)) 1043 p.o_key = 0; 1044 1045 t = ipgre_tunnel_locate(net, &p, cmd == SIOCADDTUNNEL); 1046 1047 if (dev != ign->fb_tunnel_dev && cmd == SIOCCHGTUNNEL) { 1048 if (t != NULL) { 1049 if (t->dev != dev) { 1050 err = -EEXIST; 1051 break; 1052 } 1053 } else { 1054 unsigned int nflags = 0; 1055 1056 t = netdev_priv(dev); 1057 1058 if (ipv4_is_multicast(p.iph.daddr)) 1059 nflags = IFF_BROADCAST; 1060 else if (p.iph.daddr) 1061 nflags = IFF_POINTOPOINT; 1062 1063 if ((dev->flags^nflags)&(IFF_POINTOPOINT|IFF_BROADCAST)) { 1064 err = -EINVAL; 1065 break; 1066 } 1067 ipgre_tunnel_unlink(ign, t); 1068 synchronize_net(); 1069 t->parms.iph.saddr = p.iph.saddr; 1070 t->parms.iph.daddr = p.iph.daddr; 1071 t->parms.i_key = p.i_key; 1072 t->parms.o_key = p.o_key; 1073 memcpy(dev->dev_addr, &p.iph.saddr, 4); 1074 memcpy(dev->broadcast, &p.iph.daddr, 4); 1075 ipgre_tunnel_link(ign, t); 1076 netdev_state_change(dev); 1077 } 1078 } 1079 1080 if (t) { 1081 err = 0; 1082 if (cmd == SIOCCHGTUNNEL) { 1083 t->parms.iph.ttl = p.iph.ttl; 1084 t->parms.iph.tos = p.iph.tos; 1085 t->parms.iph.frag_off = p.iph.frag_off; 1086 if (t->parms.link != p.link) { 1087 t->parms.link = p.link; 1088 dev->mtu = ipgre_tunnel_bind_dev(dev); 1089 netdev_state_change(dev); 1090 } 1091 } 1092 if (copy_to_user(ifr->ifr_ifru.ifru_data, &t->parms, sizeof(p))) 1093 err = -EFAULT; 1094 } else 1095 err = (cmd == SIOCADDTUNNEL ? -ENOBUFS : -ENOENT); 1096 break; 1097 1098 case SIOCDELTUNNEL: 1099 err = -EPERM; 1100 if (!capable(CAP_NET_ADMIN)) 1101 goto done; 1102 1103 if (dev == ign->fb_tunnel_dev) { 1104 err = -EFAULT; 1105 if (copy_from_user(&p, ifr->ifr_ifru.ifru_data, sizeof(p))) 1106 goto done; 1107 err = -ENOENT; 1108 if ((t = ipgre_tunnel_locate(net, &p, 0)) == NULL) 1109 goto done; 1110 err = -EPERM; 1111 if (t == netdev_priv(ign->fb_tunnel_dev)) 1112 goto done; 1113 dev = t->dev; 1114 } 1115 unregister_netdevice(dev); 1116 err = 0; 1117 break; 1118 1119 default: 1120 err = -EINVAL; 1121 } 1122 1123 done: 1124 return err; 1125 } 1126 1127 static int ipgre_tunnel_change_mtu(struct net_device *dev, int new_mtu) 1128 { 1129 struct ip_tunnel *tunnel = netdev_priv(dev); 1130 if (new_mtu < 68 || 1131 new_mtu > 0xFFF8 - dev->hard_header_len - tunnel->hlen) 1132 return -EINVAL; 1133 dev->mtu = new_mtu; 1134 return 0; 1135 } 1136 1137 /* Nice toy. Unfortunately, useless in real life :-) 1138 It allows to construct virtual multiprotocol broadcast "LAN" 1139 over the Internet, provided multicast routing is tuned. 1140 1141 1142 I have no idea was this bicycle invented before me, 1143 so that I had to set ARPHRD_IPGRE to a random value. 1144 I have an impression, that Cisco could make something similar, 1145 but this feature is apparently missing in IOS<=11.2(8). 1146 1147 I set up 10.66.66/24 and fec0:6666:6666::0/96 as virtual networks 1148 with broadcast 224.66.66.66. If you have access to mbone, play with me :-) 1149 1150 ping -t 255 224.66.66.66 1151 1152 If nobody answers, mbone does not work. 1153 1154 ip tunnel add Universe mode gre remote 224.66.66.66 local <Your_real_addr> ttl 255 1155 ip addr add 10.66.66.<somewhat>/24 dev Universe 1156 ifconfig Universe up 1157 ifconfig Universe add fe80::<Your_real_addr>/10 1158 ifconfig Universe add fec0:6666:6666::<Your_real_addr>/96 1159 ftp 10.66.66.66 1160 ... 1161 ftp fec0:6666:6666::193.233.7.65 1162 ... 1163 1164 */ 1165 1166 static int ipgre_header(struct sk_buff *skb, struct net_device *dev, 1167 unsigned short type, 1168 const void *daddr, const void *saddr, unsigned int len) 1169 { 1170 struct ip_tunnel *t = netdev_priv(dev); 1171 struct iphdr *iph = (struct iphdr *)skb_push(skb, t->hlen); 1172 __be16 *p = (__be16*)(iph+1); 1173 1174 memcpy(iph, &t->parms.iph, sizeof(struct iphdr)); 1175 p[0] = t->parms.o_flags; 1176 p[1] = htons(type); 1177 1178 /* 1179 * Set the source hardware address. 1180 */ 1181 1182 if (saddr) 1183 memcpy(&iph->saddr, saddr, 4); 1184 if (daddr) 1185 memcpy(&iph->daddr, daddr, 4); 1186 if (iph->daddr) 1187 return t->hlen; 1188 1189 return -t->hlen; 1190 } 1191 1192 static int ipgre_header_parse(const struct sk_buff *skb, unsigned char *haddr) 1193 { 1194 struct iphdr *iph = (struct iphdr *) skb_mac_header(skb); 1195 memcpy(haddr, &iph->saddr, 4); 1196 return 4; 1197 } 1198 1199 static const struct header_ops ipgre_header_ops = { 1200 .create = ipgre_header, 1201 .parse = ipgre_header_parse, 1202 }; 1203 1204 #ifdef CONFIG_NET_IPGRE_BROADCAST 1205 static int ipgre_open(struct net_device *dev) 1206 { 1207 struct ip_tunnel *t = netdev_priv(dev); 1208 1209 if (ipv4_is_multicast(t->parms.iph.daddr)) { 1210 struct flowi fl = { 1211 .oif = t->parms.link, 1212 .fl4_dst = t->parms.iph.daddr, 1213 .fl4_src = t->parms.iph.saddr, 1214 .fl4_tos = RT_TOS(t->parms.iph.tos), 1215 .proto = IPPROTO_GRE, 1216 .fl_gre_key = t->parms.o_key 1217 }; 1218 struct rtable *rt; 1219 1220 if (ip_route_output_key(dev_net(dev), &rt, &fl)) 1221 return -EADDRNOTAVAIL; 1222 dev = rt->dst.dev; 1223 ip_rt_put(rt); 1224 if (__in_dev_get_rtnl(dev) == NULL) 1225 return -EADDRNOTAVAIL; 1226 t->mlink = dev->ifindex; 1227 ip_mc_inc_group(__in_dev_get_rtnl(dev), t->parms.iph.daddr); 1228 } 1229 return 0; 1230 } 1231 1232 static int ipgre_close(struct net_device *dev) 1233 { 1234 struct ip_tunnel *t = netdev_priv(dev); 1235 1236 if (ipv4_is_multicast(t->parms.iph.daddr) && t->mlink) { 1237 struct in_device *in_dev; 1238 in_dev = inetdev_by_index(dev_net(dev), t->mlink); 1239 if (in_dev) 1240 ip_mc_dec_group(in_dev, t->parms.iph.daddr); 1241 } 1242 return 0; 1243 } 1244 1245 #endif 1246 1247 static const struct net_device_ops ipgre_netdev_ops = { 1248 .ndo_init = ipgre_tunnel_init, 1249 .ndo_uninit = ipgre_tunnel_uninit, 1250 #ifdef CONFIG_NET_IPGRE_BROADCAST 1251 .ndo_open = ipgre_open, 1252 .ndo_stop = ipgre_close, 1253 #endif 1254 .ndo_start_xmit = ipgre_tunnel_xmit, 1255 .ndo_do_ioctl = ipgre_tunnel_ioctl, 1256 .ndo_change_mtu = ipgre_tunnel_change_mtu, 1257 .ndo_get_stats = ipgre_get_stats, 1258 }; 1259 1260 static void ipgre_dev_free(struct net_device *dev) 1261 { 1262 free_percpu(dev->tstats); 1263 free_netdev(dev); 1264 } 1265 1266 static void ipgre_tunnel_setup(struct net_device *dev) 1267 { 1268 dev->netdev_ops = &ipgre_netdev_ops; 1269 dev->destructor = ipgre_dev_free; 1270 1271 dev->type = ARPHRD_IPGRE; 1272 dev->needed_headroom = LL_MAX_HEADER + sizeof(struct iphdr) + 4; 1273 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 4; 1274 dev->flags = IFF_NOARP; 1275 dev->iflink = 0; 1276 dev->addr_len = 4; 1277 dev->features |= NETIF_F_NETNS_LOCAL; 1278 dev->priv_flags &= ~IFF_XMIT_DST_RELEASE; 1279 } 1280 1281 static int ipgre_tunnel_init(struct net_device *dev) 1282 { 1283 struct ip_tunnel *tunnel; 1284 struct iphdr *iph; 1285 1286 tunnel = netdev_priv(dev); 1287 iph = &tunnel->parms.iph; 1288 1289 tunnel->dev = dev; 1290 strcpy(tunnel->parms.name, dev->name); 1291 1292 memcpy(dev->dev_addr, &tunnel->parms.iph.saddr, 4); 1293 memcpy(dev->broadcast, &tunnel->parms.iph.daddr, 4); 1294 1295 if (iph->daddr) { 1296 #ifdef CONFIG_NET_IPGRE_BROADCAST 1297 if (ipv4_is_multicast(iph->daddr)) { 1298 if (!iph->saddr) 1299 return -EINVAL; 1300 dev->flags = IFF_BROADCAST; 1301 dev->header_ops = &ipgre_header_ops; 1302 } 1303 #endif 1304 } else 1305 dev->header_ops = &ipgre_header_ops; 1306 1307 dev->tstats = alloc_percpu(struct pcpu_tstats); 1308 if (!dev->tstats) 1309 return -ENOMEM; 1310 1311 return 0; 1312 } 1313 1314 static void ipgre_fb_tunnel_init(struct net_device *dev) 1315 { 1316 struct ip_tunnel *tunnel = netdev_priv(dev); 1317 struct iphdr *iph = &tunnel->parms.iph; 1318 1319 tunnel->dev = dev; 1320 strcpy(tunnel->parms.name, dev->name); 1321 1322 iph->version = 4; 1323 iph->protocol = IPPROTO_GRE; 1324 iph->ihl = 5; 1325 tunnel->hlen = sizeof(struct iphdr) + 4; 1326 1327 dev_hold(dev); 1328 } 1329 1330 1331 static const struct gre_protocol ipgre_protocol = { 1332 .handler = ipgre_rcv, 1333 .err_handler = ipgre_err, 1334 }; 1335 1336 static void ipgre_destroy_tunnels(struct ipgre_net *ign, struct list_head *head) 1337 { 1338 int prio; 1339 1340 for (prio = 0; prio < 4; prio++) { 1341 int h; 1342 for (h = 0; h < HASH_SIZE; h++) { 1343 struct ip_tunnel *t; 1344 1345 t = rtnl_dereference(ign->tunnels[prio][h]); 1346 1347 while (t != NULL) { 1348 unregister_netdevice_queue(t->dev, head); 1349 t = rtnl_dereference(t->next); 1350 } 1351 } 1352 } 1353 } 1354 1355 static int __net_init ipgre_init_net(struct net *net) 1356 { 1357 struct ipgre_net *ign = net_generic(net, ipgre_net_id); 1358 int err; 1359 1360 ign->fb_tunnel_dev = alloc_netdev(sizeof(struct ip_tunnel), "gre0", 1361 ipgre_tunnel_setup); 1362 if (!ign->fb_tunnel_dev) { 1363 err = -ENOMEM; 1364 goto err_alloc_dev; 1365 } 1366 dev_net_set(ign->fb_tunnel_dev, net); 1367 1368 ipgre_fb_tunnel_init(ign->fb_tunnel_dev); 1369 ign->fb_tunnel_dev->rtnl_link_ops = &ipgre_link_ops; 1370 1371 if ((err = register_netdev(ign->fb_tunnel_dev))) 1372 goto err_reg_dev; 1373 1374 rcu_assign_pointer(ign->tunnels_wc[0], 1375 netdev_priv(ign->fb_tunnel_dev)); 1376 return 0; 1377 1378 err_reg_dev: 1379 ipgre_dev_free(ign->fb_tunnel_dev); 1380 err_alloc_dev: 1381 return err; 1382 } 1383 1384 static void __net_exit ipgre_exit_net(struct net *net) 1385 { 1386 struct ipgre_net *ign; 1387 LIST_HEAD(list); 1388 1389 ign = net_generic(net, ipgre_net_id); 1390 rtnl_lock(); 1391 ipgre_destroy_tunnels(ign, &list); 1392 unregister_netdevice_many(&list); 1393 rtnl_unlock(); 1394 } 1395 1396 static struct pernet_operations ipgre_net_ops = { 1397 .init = ipgre_init_net, 1398 .exit = ipgre_exit_net, 1399 .id = &ipgre_net_id, 1400 .size = sizeof(struct ipgre_net), 1401 }; 1402 1403 static int ipgre_tunnel_validate(struct nlattr *tb[], struct nlattr *data[]) 1404 { 1405 __be16 flags; 1406 1407 if (!data) 1408 return 0; 1409 1410 flags = 0; 1411 if (data[IFLA_GRE_IFLAGS]) 1412 flags |= nla_get_be16(data[IFLA_GRE_IFLAGS]); 1413 if (data[IFLA_GRE_OFLAGS]) 1414 flags |= nla_get_be16(data[IFLA_GRE_OFLAGS]); 1415 if (flags & (GRE_VERSION|GRE_ROUTING)) 1416 return -EINVAL; 1417 1418 return 0; 1419 } 1420 1421 static int ipgre_tap_validate(struct nlattr *tb[], struct nlattr *data[]) 1422 { 1423 __be32 daddr; 1424 1425 if (tb[IFLA_ADDRESS]) { 1426 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) 1427 return -EINVAL; 1428 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) 1429 return -EADDRNOTAVAIL; 1430 } 1431 1432 if (!data) 1433 goto out; 1434 1435 if (data[IFLA_GRE_REMOTE]) { 1436 memcpy(&daddr, nla_data(data[IFLA_GRE_REMOTE]), 4); 1437 if (!daddr) 1438 return -EINVAL; 1439 } 1440 1441 out: 1442 return ipgre_tunnel_validate(tb, data); 1443 } 1444 1445 static void ipgre_netlink_parms(struct nlattr *data[], 1446 struct ip_tunnel_parm *parms) 1447 { 1448 memset(parms, 0, sizeof(*parms)); 1449 1450 parms->iph.protocol = IPPROTO_GRE; 1451 1452 if (!data) 1453 return; 1454 1455 if (data[IFLA_GRE_LINK]) 1456 parms->link = nla_get_u32(data[IFLA_GRE_LINK]); 1457 1458 if (data[IFLA_GRE_IFLAGS]) 1459 parms->i_flags = nla_get_be16(data[IFLA_GRE_IFLAGS]); 1460 1461 if (data[IFLA_GRE_OFLAGS]) 1462 parms->o_flags = nla_get_be16(data[IFLA_GRE_OFLAGS]); 1463 1464 if (data[IFLA_GRE_IKEY]) 1465 parms->i_key = nla_get_be32(data[IFLA_GRE_IKEY]); 1466 1467 if (data[IFLA_GRE_OKEY]) 1468 parms->o_key = nla_get_be32(data[IFLA_GRE_OKEY]); 1469 1470 if (data[IFLA_GRE_LOCAL]) 1471 parms->iph.saddr = nla_get_be32(data[IFLA_GRE_LOCAL]); 1472 1473 if (data[IFLA_GRE_REMOTE]) 1474 parms->iph.daddr = nla_get_be32(data[IFLA_GRE_REMOTE]); 1475 1476 if (data[IFLA_GRE_TTL]) 1477 parms->iph.ttl = nla_get_u8(data[IFLA_GRE_TTL]); 1478 1479 if (data[IFLA_GRE_TOS]) 1480 parms->iph.tos = nla_get_u8(data[IFLA_GRE_TOS]); 1481 1482 if (!data[IFLA_GRE_PMTUDISC] || nla_get_u8(data[IFLA_GRE_PMTUDISC])) 1483 parms->iph.frag_off = htons(IP_DF); 1484 } 1485 1486 static int ipgre_tap_init(struct net_device *dev) 1487 { 1488 struct ip_tunnel *tunnel; 1489 1490 tunnel = netdev_priv(dev); 1491 1492 tunnel->dev = dev; 1493 strcpy(tunnel->parms.name, dev->name); 1494 1495 ipgre_tunnel_bind_dev(dev); 1496 1497 dev->tstats = alloc_percpu(struct pcpu_tstats); 1498 if (!dev->tstats) 1499 return -ENOMEM; 1500 1501 return 0; 1502 } 1503 1504 static const struct net_device_ops ipgre_tap_netdev_ops = { 1505 .ndo_init = ipgre_tap_init, 1506 .ndo_uninit = ipgre_tunnel_uninit, 1507 .ndo_start_xmit = ipgre_tunnel_xmit, 1508 .ndo_set_mac_address = eth_mac_addr, 1509 .ndo_validate_addr = eth_validate_addr, 1510 .ndo_change_mtu = ipgre_tunnel_change_mtu, 1511 .ndo_get_stats = ipgre_get_stats, 1512 }; 1513 1514 static void ipgre_tap_setup(struct net_device *dev) 1515 { 1516 1517 ether_setup(dev); 1518 1519 dev->netdev_ops = &ipgre_tap_netdev_ops; 1520 dev->destructor = ipgre_dev_free; 1521 1522 dev->iflink = 0; 1523 dev->features |= NETIF_F_NETNS_LOCAL; 1524 } 1525 1526 static int ipgre_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], 1527 struct nlattr *data[]) 1528 { 1529 struct ip_tunnel *nt; 1530 struct net *net = dev_net(dev); 1531 struct ipgre_net *ign = net_generic(net, ipgre_net_id); 1532 int mtu; 1533 int err; 1534 1535 nt = netdev_priv(dev); 1536 ipgre_netlink_parms(data, &nt->parms); 1537 1538 if (ipgre_tunnel_find(net, &nt->parms, dev->type)) 1539 return -EEXIST; 1540 1541 if (dev->type == ARPHRD_ETHER && !tb[IFLA_ADDRESS]) 1542 random_ether_addr(dev->dev_addr); 1543 1544 mtu = ipgre_tunnel_bind_dev(dev); 1545 if (!tb[IFLA_MTU]) 1546 dev->mtu = mtu; 1547 1548 /* Can use a lockless transmit, unless we generate output sequences */ 1549 if (!(nt->parms.o_flags & GRE_SEQ)) 1550 dev->features |= NETIF_F_LLTX; 1551 1552 err = register_netdevice(dev); 1553 if (err) 1554 goto out; 1555 1556 dev_hold(dev); 1557 ipgre_tunnel_link(ign, nt); 1558 1559 out: 1560 return err; 1561 } 1562 1563 static int ipgre_changelink(struct net_device *dev, struct nlattr *tb[], 1564 struct nlattr *data[]) 1565 { 1566 struct ip_tunnel *t, *nt; 1567 struct net *net = dev_net(dev); 1568 struct ipgre_net *ign = net_generic(net, ipgre_net_id); 1569 struct ip_tunnel_parm p; 1570 int mtu; 1571 1572 if (dev == ign->fb_tunnel_dev) 1573 return -EINVAL; 1574 1575 nt = netdev_priv(dev); 1576 ipgre_netlink_parms(data, &p); 1577 1578 t = ipgre_tunnel_locate(net, &p, 0); 1579 1580 if (t) { 1581 if (t->dev != dev) 1582 return -EEXIST; 1583 } else { 1584 t = nt; 1585 1586 if (dev->type != ARPHRD_ETHER) { 1587 unsigned int nflags = 0; 1588 1589 if (ipv4_is_multicast(p.iph.daddr)) 1590 nflags = IFF_BROADCAST; 1591 else if (p.iph.daddr) 1592 nflags = IFF_POINTOPOINT; 1593 1594 if ((dev->flags ^ nflags) & 1595 (IFF_POINTOPOINT | IFF_BROADCAST)) 1596 return -EINVAL; 1597 } 1598 1599 ipgre_tunnel_unlink(ign, t); 1600 t->parms.iph.saddr = p.iph.saddr; 1601 t->parms.iph.daddr = p.iph.daddr; 1602 t->parms.i_key = p.i_key; 1603 if (dev->type != ARPHRD_ETHER) { 1604 memcpy(dev->dev_addr, &p.iph.saddr, 4); 1605 memcpy(dev->broadcast, &p.iph.daddr, 4); 1606 } 1607 ipgre_tunnel_link(ign, t); 1608 netdev_state_change(dev); 1609 } 1610 1611 t->parms.o_key = p.o_key; 1612 t->parms.iph.ttl = p.iph.ttl; 1613 t->parms.iph.tos = p.iph.tos; 1614 t->parms.iph.frag_off = p.iph.frag_off; 1615 1616 if (t->parms.link != p.link) { 1617 t->parms.link = p.link; 1618 mtu = ipgre_tunnel_bind_dev(dev); 1619 if (!tb[IFLA_MTU]) 1620 dev->mtu = mtu; 1621 netdev_state_change(dev); 1622 } 1623 1624 return 0; 1625 } 1626 1627 static size_t ipgre_get_size(const struct net_device *dev) 1628 { 1629 return 1630 /* IFLA_GRE_LINK */ 1631 nla_total_size(4) + 1632 /* IFLA_GRE_IFLAGS */ 1633 nla_total_size(2) + 1634 /* IFLA_GRE_OFLAGS */ 1635 nla_total_size(2) + 1636 /* IFLA_GRE_IKEY */ 1637 nla_total_size(4) + 1638 /* IFLA_GRE_OKEY */ 1639 nla_total_size(4) + 1640 /* IFLA_GRE_LOCAL */ 1641 nla_total_size(4) + 1642 /* IFLA_GRE_REMOTE */ 1643 nla_total_size(4) + 1644 /* IFLA_GRE_TTL */ 1645 nla_total_size(1) + 1646 /* IFLA_GRE_TOS */ 1647 nla_total_size(1) + 1648 /* IFLA_GRE_PMTUDISC */ 1649 nla_total_size(1) + 1650 0; 1651 } 1652 1653 static int ipgre_fill_info(struct sk_buff *skb, const struct net_device *dev) 1654 { 1655 struct ip_tunnel *t = netdev_priv(dev); 1656 struct ip_tunnel_parm *p = &t->parms; 1657 1658 NLA_PUT_U32(skb, IFLA_GRE_LINK, p->link); 1659 NLA_PUT_BE16(skb, IFLA_GRE_IFLAGS, p->i_flags); 1660 NLA_PUT_BE16(skb, IFLA_GRE_OFLAGS, p->o_flags); 1661 NLA_PUT_BE32(skb, IFLA_GRE_IKEY, p->i_key); 1662 NLA_PUT_BE32(skb, IFLA_GRE_OKEY, p->o_key); 1663 NLA_PUT_BE32(skb, IFLA_GRE_LOCAL, p->iph.saddr); 1664 NLA_PUT_BE32(skb, IFLA_GRE_REMOTE, p->iph.daddr); 1665 NLA_PUT_U8(skb, IFLA_GRE_TTL, p->iph.ttl); 1666 NLA_PUT_U8(skb, IFLA_GRE_TOS, p->iph.tos); 1667 NLA_PUT_U8(skb, IFLA_GRE_PMTUDISC, !!(p->iph.frag_off & htons(IP_DF))); 1668 1669 return 0; 1670 1671 nla_put_failure: 1672 return -EMSGSIZE; 1673 } 1674 1675 static const struct nla_policy ipgre_policy[IFLA_GRE_MAX + 1] = { 1676 [IFLA_GRE_LINK] = { .type = NLA_U32 }, 1677 [IFLA_GRE_IFLAGS] = { .type = NLA_U16 }, 1678 [IFLA_GRE_OFLAGS] = { .type = NLA_U16 }, 1679 [IFLA_GRE_IKEY] = { .type = NLA_U32 }, 1680 [IFLA_GRE_OKEY] = { .type = NLA_U32 }, 1681 [IFLA_GRE_LOCAL] = { .len = FIELD_SIZEOF(struct iphdr, saddr) }, 1682 [IFLA_GRE_REMOTE] = { .len = FIELD_SIZEOF(struct iphdr, daddr) }, 1683 [IFLA_GRE_TTL] = { .type = NLA_U8 }, 1684 [IFLA_GRE_TOS] = { .type = NLA_U8 }, 1685 [IFLA_GRE_PMTUDISC] = { .type = NLA_U8 }, 1686 }; 1687 1688 static struct rtnl_link_ops ipgre_link_ops __read_mostly = { 1689 .kind = "gre", 1690 .maxtype = IFLA_GRE_MAX, 1691 .policy = ipgre_policy, 1692 .priv_size = sizeof(struct ip_tunnel), 1693 .setup = ipgre_tunnel_setup, 1694 .validate = ipgre_tunnel_validate, 1695 .newlink = ipgre_newlink, 1696 .changelink = ipgre_changelink, 1697 .get_size = ipgre_get_size, 1698 .fill_info = ipgre_fill_info, 1699 }; 1700 1701 static struct rtnl_link_ops ipgre_tap_ops __read_mostly = { 1702 .kind = "gretap", 1703 .maxtype = IFLA_GRE_MAX, 1704 .policy = ipgre_policy, 1705 .priv_size = sizeof(struct ip_tunnel), 1706 .setup = ipgre_tap_setup, 1707 .validate = ipgre_tap_validate, 1708 .newlink = ipgre_newlink, 1709 .changelink = ipgre_changelink, 1710 .get_size = ipgre_get_size, 1711 .fill_info = ipgre_fill_info, 1712 }; 1713 1714 /* 1715 * And now the modules code and kernel interface. 1716 */ 1717 1718 static int __init ipgre_init(void) 1719 { 1720 int err; 1721 1722 printk(KERN_INFO "GRE over IPv4 tunneling driver\n"); 1723 1724 err = register_pernet_device(&ipgre_net_ops); 1725 if (err < 0) 1726 return err; 1727 1728 err = gre_add_protocol(&ipgre_protocol, GREPROTO_CISCO); 1729 if (err < 0) { 1730 printk(KERN_INFO "ipgre init: can't add protocol\n"); 1731 goto add_proto_failed; 1732 } 1733 1734 err = rtnl_link_register(&ipgre_link_ops); 1735 if (err < 0) 1736 goto rtnl_link_failed; 1737 1738 err = rtnl_link_register(&ipgre_tap_ops); 1739 if (err < 0) 1740 goto tap_ops_failed; 1741 1742 out: 1743 return err; 1744 1745 tap_ops_failed: 1746 rtnl_link_unregister(&ipgre_link_ops); 1747 rtnl_link_failed: 1748 gre_del_protocol(&ipgre_protocol, GREPROTO_CISCO); 1749 add_proto_failed: 1750 unregister_pernet_device(&ipgre_net_ops); 1751 goto out; 1752 } 1753 1754 static void __exit ipgre_fini(void) 1755 { 1756 rtnl_link_unregister(&ipgre_tap_ops); 1757 rtnl_link_unregister(&ipgre_link_ops); 1758 if (gre_del_protocol(&ipgre_protocol, GREPROTO_CISCO) < 0) 1759 printk(KERN_INFO "ipgre close: can't remove protocol\n"); 1760 unregister_pernet_device(&ipgre_net_ops); 1761 } 1762 1763 module_init(ipgre_init); 1764 module_exit(ipgre_fini); 1765 MODULE_LICENSE("GPL"); 1766 MODULE_ALIAS_RTNL_LINK("gre"); 1767 MODULE_ALIAS_RTNL_LINK("gretap"); 1768 MODULE_ALIAS_NETDEV("gre0"); 1769