xref: /linux/net/ipv4/ip_fragment.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The IP fragmentation functionality.
7  *
8  * Authors:	Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
9  *		Alan Cox <alan@lxorguk.ukuu.org.uk>
10  *
11  * Fixes:
12  *		Alan Cox	:	Split from ip.c , see ip_input.c for history.
13  *		David S. Miller :	Begin massive cleanup...
14  *		Andi Kleen	:	Add sysctls.
15  *		xxxx		:	Overlapfrag bug.
16  *		Ultima          :       ip_expire() kernel panic.
17  *		Bill Hawes	:	Frag accounting and evictor fixes.
18  *		John McDonald	:	0 length frag bug.
19  *		Alexey Kuznetsov:	SMP races, threading, cleanup.
20  *		Patrick McHardy :	LRU queue of frag heads for evictor.
21  */
22 
23 #define pr_fmt(fmt) "IPv4: " fmt
24 
25 #include <linux/compiler.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/jiffies.h>
30 #include <linux/skbuff.h>
31 #include <linux/list.h>
32 #include <linux/ip.h>
33 #include <linux/icmp.h>
34 #include <linux/netdevice.h>
35 #include <linux/jhash.h>
36 #include <linux/random.h>
37 #include <linux/slab.h>
38 #include <net/route.h>
39 #include <net/dst.h>
40 #include <net/sock.h>
41 #include <net/ip.h>
42 #include <net/icmp.h>
43 #include <net/checksum.h>
44 #include <net/inetpeer.h>
45 #include <net/inet_frag.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/inet.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <net/inet_ecn.h>
51 
52 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
53  * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
54  * as well. Or notify me, at least. --ANK
55  */
56 
57 static int sysctl_ipfrag_max_dist __read_mostly = 64;
58 
59 struct ipfrag_skb_cb
60 {
61 	struct inet_skb_parm	h;
62 	int			offset;
63 };
64 
65 #define FRAG_CB(skb)	((struct ipfrag_skb_cb *)((skb)->cb))
66 
67 /* Describe an entry in the "incomplete datagrams" queue. */
68 struct ipq {
69 	struct inet_frag_queue q;
70 
71 	u32		user;
72 	__be32		saddr;
73 	__be32		daddr;
74 	__be16		id;
75 	u8		protocol;
76 	u8		ecn; /* RFC3168 support */
77 	int             iif;
78 	unsigned int    rid;
79 	struct inet_peer *peer;
80 };
81 
82 /* RFC 3168 support :
83  * We want to check ECN values of all fragments, do detect invalid combinations.
84  * In ipq->ecn, we store the OR value of each ip4_frag_ecn() fragment value.
85  */
86 #define	IPFRAG_ECN_NOT_ECT	0x01 /* one frag had ECN_NOT_ECT */
87 #define	IPFRAG_ECN_ECT_1	0x02 /* one frag had ECN_ECT_1 */
88 #define	IPFRAG_ECN_ECT_0	0x04 /* one frag had ECN_ECT_0 */
89 #define	IPFRAG_ECN_CE		0x08 /* one frag had ECN_CE */
90 
91 static inline u8 ip4_frag_ecn(u8 tos)
92 {
93 	return 1 << (tos & INET_ECN_MASK);
94 }
95 
96 /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
97  * Value : 0xff if frame should be dropped.
98  *         0 or INET_ECN_CE value, to be ORed in to final iph->tos field
99  */
100 static const u8 ip4_frag_ecn_table[16] = {
101 	/* at least one fragment had CE, and others ECT_0 or ECT_1 */
102 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0]			= INET_ECN_CE,
103 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1]			= INET_ECN_CE,
104 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1]	= INET_ECN_CE,
105 
106 	/* invalid combinations : drop frame */
107 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
108 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
109 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
110 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
111 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
112 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
113 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
114 };
115 
116 static struct inet_frags ip4_frags;
117 
118 int ip_frag_nqueues(struct net *net)
119 {
120 	return net->ipv4.frags.nqueues;
121 }
122 
123 int ip_frag_mem(struct net *net)
124 {
125 	return atomic_read(&net->ipv4.frags.mem);
126 }
127 
128 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
129 			 struct net_device *dev);
130 
131 struct ip4_create_arg {
132 	struct iphdr *iph;
133 	u32 user;
134 };
135 
136 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
137 {
138 	return jhash_3words((__force u32)id << 16 | prot,
139 			    (__force u32)saddr, (__force u32)daddr,
140 			    ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
141 }
142 
143 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
144 {
145 	struct ipq *ipq;
146 
147 	ipq = container_of(q, struct ipq, q);
148 	return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
149 }
150 
151 static bool ip4_frag_match(struct inet_frag_queue *q, void *a)
152 {
153 	struct ipq *qp;
154 	struct ip4_create_arg *arg = a;
155 
156 	qp = container_of(q, struct ipq, q);
157 	return	qp->id == arg->iph->id &&
158 		qp->saddr == arg->iph->saddr &&
159 		qp->daddr == arg->iph->daddr &&
160 		qp->protocol == arg->iph->protocol &&
161 		qp->user == arg->user;
162 }
163 
164 /* Memory Tracking Functions. */
165 static void frag_kfree_skb(struct netns_frags *nf, struct sk_buff *skb)
166 {
167 	atomic_sub(skb->truesize, &nf->mem);
168 	kfree_skb(skb);
169 }
170 
171 static void ip4_frag_init(struct inet_frag_queue *q, void *a)
172 {
173 	struct ipq *qp = container_of(q, struct ipq, q);
174 	struct netns_ipv4 *ipv4 = container_of(q->net, struct netns_ipv4,
175 					       frags);
176 	struct net *net = container_of(ipv4, struct net, ipv4);
177 
178 	struct ip4_create_arg *arg = a;
179 
180 	qp->protocol = arg->iph->protocol;
181 	qp->id = arg->iph->id;
182 	qp->ecn = ip4_frag_ecn(arg->iph->tos);
183 	qp->saddr = arg->iph->saddr;
184 	qp->daddr = arg->iph->daddr;
185 	qp->user = arg->user;
186 	qp->peer = sysctl_ipfrag_max_dist ?
187 		inet_getpeer_v4(net->ipv4.peers, arg->iph->saddr, 1) : NULL;
188 }
189 
190 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
191 {
192 	struct ipq *qp;
193 
194 	qp = container_of(q, struct ipq, q);
195 	if (qp->peer)
196 		inet_putpeer(qp->peer);
197 }
198 
199 
200 /* Destruction primitives. */
201 
202 static __inline__ void ipq_put(struct ipq *ipq)
203 {
204 	inet_frag_put(&ipq->q, &ip4_frags);
205 }
206 
207 /* Kill ipq entry. It is not destroyed immediately,
208  * because caller (and someone more) holds reference count.
209  */
210 static void ipq_kill(struct ipq *ipq)
211 {
212 	inet_frag_kill(&ipq->q, &ip4_frags);
213 }
214 
215 /* Memory limiting on fragments.  Evictor trashes the oldest
216  * fragment queue until we are back under the threshold.
217  */
218 static void ip_evictor(struct net *net)
219 {
220 	int evicted;
221 
222 	evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags, false);
223 	if (evicted)
224 		IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted);
225 }
226 
227 /*
228  * Oops, a fragment queue timed out.  Kill it and send an ICMP reply.
229  */
230 static void ip_expire(unsigned long arg)
231 {
232 	struct ipq *qp;
233 	struct net *net;
234 
235 	qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
236 	net = container_of(qp->q.net, struct net, ipv4.frags);
237 
238 	spin_lock(&qp->q.lock);
239 
240 	if (qp->q.last_in & INET_FRAG_COMPLETE)
241 		goto out;
242 
243 	ipq_kill(qp);
244 
245 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
246 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
247 
248 	if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) {
249 		struct sk_buff *head = qp->q.fragments;
250 		const struct iphdr *iph;
251 		int err;
252 
253 		rcu_read_lock();
254 		head->dev = dev_get_by_index_rcu(net, qp->iif);
255 		if (!head->dev)
256 			goto out_rcu_unlock;
257 
258 		/* skb dst is stale, drop it, and perform route lookup again */
259 		skb_dst_drop(head);
260 		iph = ip_hdr(head);
261 		err = ip_route_input_noref(head, iph->daddr, iph->saddr,
262 					   iph->tos, head->dev);
263 		if (err)
264 			goto out_rcu_unlock;
265 
266 		/*
267 		 * Only an end host needs to send an ICMP
268 		 * "Fragment Reassembly Timeout" message, per RFC792.
269 		 */
270 		if (qp->user == IP_DEFRAG_AF_PACKET ||
271 		    (qp->user == IP_DEFRAG_CONNTRACK_IN &&
272 		     skb_rtable(head)->rt_type != RTN_LOCAL))
273 			goto out_rcu_unlock;
274 
275 
276 		/* Send an ICMP "Fragment Reassembly Timeout" message. */
277 		icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
278 out_rcu_unlock:
279 		rcu_read_unlock();
280 	}
281 out:
282 	spin_unlock(&qp->q.lock);
283 	ipq_put(qp);
284 }
285 
286 /* Find the correct entry in the "incomplete datagrams" queue for
287  * this IP datagram, and create new one, if nothing is found.
288  */
289 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
290 {
291 	struct inet_frag_queue *q;
292 	struct ip4_create_arg arg;
293 	unsigned int hash;
294 
295 	arg.iph = iph;
296 	arg.user = user;
297 
298 	read_lock(&ip4_frags.lock);
299 	hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
300 
301 	q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
302 	if (q == NULL)
303 		goto out_nomem;
304 
305 	return container_of(q, struct ipq, q);
306 
307 out_nomem:
308 	LIMIT_NETDEBUG(KERN_ERR pr_fmt("ip_frag_create: no memory left !\n"));
309 	return NULL;
310 }
311 
312 /* Is the fragment too far ahead to be part of ipq? */
313 static inline int ip_frag_too_far(struct ipq *qp)
314 {
315 	struct inet_peer *peer = qp->peer;
316 	unsigned int max = sysctl_ipfrag_max_dist;
317 	unsigned int start, end;
318 
319 	int rc;
320 
321 	if (!peer || !max)
322 		return 0;
323 
324 	start = qp->rid;
325 	end = atomic_inc_return(&peer->rid);
326 	qp->rid = end;
327 
328 	rc = qp->q.fragments && (end - start) > max;
329 
330 	if (rc) {
331 		struct net *net;
332 
333 		net = container_of(qp->q.net, struct net, ipv4.frags);
334 		IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
335 	}
336 
337 	return rc;
338 }
339 
340 static int ip_frag_reinit(struct ipq *qp)
341 {
342 	struct sk_buff *fp;
343 
344 	if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
345 		atomic_inc(&qp->q.refcnt);
346 		return -ETIMEDOUT;
347 	}
348 
349 	fp = qp->q.fragments;
350 	do {
351 		struct sk_buff *xp = fp->next;
352 		frag_kfree_skb(qp->q.net, fp);
353 		fp = xp;
354 	} while (fp);
355 
356 	qp->q.last_in = 0;
357 	qp->q.len = 0;
358 	qp->q.meat = 0;
359 	qp->q.fragments = NULL;
360 	qp->q.fragments_tail = NULL;
361 	qp->iif = 0;
362 	qp->ecn = 0;
363 
364 	return 0;
365 }
366 
367 /* Add new segment to existing queue. */
368 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
369 {
370 	struct sk_buff *prev, *next;
371 	struct net_device *dev;
372 	int flags, offset;
373 	int ihl, end;
374 	int err = -ENOENT;
375 	u8 ecn;
376 
377 	if (qp->q.last_in & INET_FRAG_COMPLETE)
378 		goto err;
379 
380 	if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
381 	    unlikely(ip_frag_too_far(qp)) &&
382 	    unlikely(err = ip_frag_reinit(qp))) {
383 		ipq_kill(qp);
384 		goto err;
385 	}
386 
387 	ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
388 	offset = ntohs(ip_hdr(skb)->frag_off);
389 	flags = offset & ~IP_OFFSET;
390 	offset &= IP_OFFSET;
391 	offset <<= 3;		/* offset is in 8-byte chunks */
392 	ihl = ip_hdrlen(skb);
393 
394 	/* Determine the position of this fragment. */
395 	end = offset + skb->len - ihl;
396 	err = -EINVAL;
397 
398 	/* Is this the final fragment? */
399 	if ((flags & IP_MF) == 0) {
400 		/* If we already have some bits beyond end
401 		 * or have different end, the segment is corrupted.
402 		 */
403 		if (end < qp->q.len ||
404 		    ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
405 			goto err;
406 		qp->q.last_in |= INET_FRAG_LAST_IN;
407 		qp->q.len = end;
408 	} else {
409 		if (end&7) {
410 			end &= ~7;
411 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
412 				skb->ip_summed = CHECKSUM_NONE;
413 		}
414 		if (end > qp->q.len) {
415 			/* Some bits beyond end -> corruption. */
416 			if (qp->q.last_in & INET_FRAG_LAST_IN)
417 				goto err;
418 			qp->q.len = end;
419 		}
420 	}
421 	if (end == offset)
422 		goto err;
423 
424 	err = -ENOMEM;
425 	if (pskb_pull(skb, ihl) == NULL)
426 		goto err;
427 
428 	err = pskb_trim_rcsum(skb, end - offset);
429 	if (err)
430 		goto err;
431 
432 	/* Find out which fragments are in front and at the back of us
433 	 * in the chain of fragments so far.  We must know where to put
434 	 * this fragment, right?
435 	 */
436 	prev = qp->q.fragments_tail;
437 	if (!prev || FRAG_CB(prev)->offset < offset) {
438 		next = NULL;
439 		goto found;
440 	}
441 	prev = NULL;
442 	for (next = qp->q.fragments; next != NULL; next = next->next) {
443 		if (FRAG_CB(next)->offset >= offset)
444 			break;	/* bingo! */
445 		prev = next;
446 	}
447 
448 found:
449 	/* We found where to put this one.  Check for overlap with
450 	 * preceding fragment, and, if needed, align things so that
451 	 * any overlaps are eliminated.
452 	 */
453 	if (prev) {
454 		int i = (FRAG_CB(prev)->offset + prev->len) - offset;
455 
456 		if (i > 0) {
457 			offset += i;
458 			err = -EINVAL;
459 			if (end <= offset)
460 				goto err;
461 			err = -ENOMEM;
462 			if (!pskb_pull(skb, i))
463 				goto err;
464 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
465 				skb->ip_summed = CHECKSUM_NONE;
466 		}
467 	}
468 
469 	err = -ENOMEM;
470 
471 	while (next && FRAG_CB(next)->offset < end) {
472 		int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
473 
474 		if (i < next->len) {
475 			/* Eat head of the next overlapped fragment
476 			 * and leave the loop. The next ones cannot overlap.
477 			 */
478 			if (!pskb_pull(next, i))
479 				goto err;
480 			FRAG_CB(next)->offset += i;
481 			qp->q.meat -= i;
482 			if (next->ip_summed != CHECKSUM_UNNECESSARY)
483 				next->ip_summed = CHECKSUM_NONE;
484 			break;
485 		} else {
486 			struct sk_buff *free_it = next;
487 
488 			/* Old fragment is completely overridden with
489 			 * new one drop it.
490 			 */
491 			next = next->next;
492 
493 			if (prev)
494 				prev->next = next;
495 			else
496 				qp->q.fragments = next;
497 
498 			qp->q.meat -= free_it->len;
499 			frag_kfree_skb(qp->q.net, free_it);
500 		}
501 	}
502 
503 	FRAG_CB(skb)->offset = offset;
504 
505 	/* Insert this fragment in the chain of fragments. */
506 	skb->next = next;
507 	if (!next)
508 		qp->q.fragments_tail = skb;
509 	if (prev)
510 		prev->next = skb;
511 	else
512 		qp->q.fragments = skb;
513 
514 	dev = skb->dev;
515 	if (dev) {
516 		qp->iif = dev->ifindex;
517 		skb->dev = NULL;
518 	}
519 	qp->q.stamp = skb->tstamp;
520 	qp->q.meat += skb->len;
521 	qp->ecn |= ecn;
522 	atomic_add(skb->truesize, &qp->q.net->mem);
523 	if (offset == 0)
524 		qp->q.last_in |= INET_FRAG_FIRST_IN;
525 
526 	if (ip_hdr(skb)->frag_off & htons(IP_DF) &&
527 	    skb->len + ihl > qp->q.max_size)
528 		qp->q.max_size = skb->len + ihl;
529 
530 	if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
531 	    qp->q.meat == qp->q.len)
532 		return ip_frag_reasm(qp, prev, dev);
533 
534 	write_lock(&ip4_frags.lock);
535 	list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list);
536 	write_unlock(&ip4_frags.lock);
537 	return -EINPROGRESS;
538 
539 err:
540 	kfree_skb(skb);
541 	return err;
542 }
543 
544 
545 /* Build a new IP datagram from all its fragments. */
546 
547 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
548 			 struct net_device *dev)
549 {
550 	struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
551 	struct iphdr *iph;
552 	struct sk_buff *fp, *head = qp->q.fragments;
553 	int len;
554 	int ihlen;
555 	int err;
556 	int sum_truesize;
557 	u8 ecn;
558 
559 	ipq_kill(qp);
560 
561 	ecn = ip4_frag_ecn_table[qp->ecn];
562 	if (unlikely(ecn == 0xff)) {
563 		err = -EINVAL;
564 		goto out_fail;
565 	}
566 	/* Make the one we just received the head. */
567 	if (prev) {
568 		head = prev->next;
569 		fp = skb_clone(head, GFP_ATOMIC);
570 		if (!fp)
571 			goto out_nomem;
572 
573 		fp->next = head->next;
574 		if (!fp->next)
575 			qp->q.fragments_tail = fp;
576 		prev->next = fp;
577 
578 		skb_morph(head, qp->q.fragments);
579 		head->next = qp->q.fragments->next;
580 
581 		consume_skb(qp->q.fragments);
582 		qp->q.fragments = head;
583 	}
584 
585 	WARN_ON(head == NULL);
586 	WARN_ON(FRAG_CB(head)->offset != 0);
587 
588 	/* Allocate a new buffer for the datagram. */
589 	ihlen = ip_hdrlen(head);
590 	len = ihlen + qp->q.len;
591 
592 	err = -E2BIG;
593 	if (len > 65535)
594 		goto out_oversize;
595 
596 	/* Head of list must not be cloned. */
597 	if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
598 		goto out_nomem;
599 
600 	/* If the first fragment is fragmented itself, we split
601 	 * it to two chunks: the first with data and paged part
602 	 * and the second, holding only fragments. */
603 	if (skb_has_frag_list(head)) {
604 		struct sk_buff *clone;
605 		int i, plen = 0;
606 
607 		if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
608 			goto out_nomem;
609 		clone->next = head->next;
610 		head->next = clone;
611 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
612 		skb_frag_list_init(head);
613 		for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
614 			plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
615 		clone->len = clone->data_len = head->data_len - plen;
616 		head->data_len -= clone->len;
617 		head->len -= clone->len;
618 		clone->csum = 0;
619 		clone->ip_summed = head->ip_summed;
620 		atomic_add(clone->truesize, &qp->q.net->mem);
621 	}
622 
623 	skb_push(head, head->data - skb_network_header(head));
624 
625 	sum_truesize = head->truesize;
626 	for (fp = head->next; fp;) {
627 		bool headstolen;
628 		int delta;
629 		struct sk_buff *next = fp->next;
630 
631 		sum_truesize += fp->truesize;
632 		if (head->ip_summed != fp->ip_summed)
633 			head->ip_summed = CHECKSUM_NONE;
634 		else if (head->ip_summed == CHECKSUM_COMPLETE)
635 			head->csum = csum_add(head->csum, fp->csum);
636 
637 		if (skb_try_coalesce(head, fp, &headstolen, &delta)) {
638 			kfree_skb_partial(fp, headstolen);
639 		} else {
640 			if (!skb_shinfo(head)->frag_list)
641 				skb_shinfo(head)->frag_list = fp;
642 			head->data_len += fp->len;
643 			head->len += fp->len;
644 			head->truesize += fp->truesize;
645 		}
646 		fp = next;
647 	}
648 	atomic_sub(sum_truesize, &qp->q.net->mem);
649 
650 	head->next = NULL;
651 	head->dev = dev;
652 	head->tstamp = qp->q.stamp;
653 	IPCB(head)->frag_max_size = qp->q.max_size;
654 
655 	iph = ip_hdr(head);
656 	/* max_size != 0 implies at least one fragment had IP_DF set */
657 	iph->frag_off = qp->q.max_size ? htons(IP_DF) : 0;
658 	iph->tot_len = htons(len);
659 	iph->tos |= ecn;
660 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
661 	qp->q.fragments = NULL;
662 	qp->q.fragments_tail = NULL;
663 	return 0;
664 
665 out_nomem:
666 	LIMIT_NETDEBUG(KERN_ERR pr_fmt("queue_glue: no memory for gluing queue %p\n"),
667 		       qp);
668 	err = -ENOMEM;
669 	goto out_fail;
670 out_oversize:
671 	net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->saddr);
672 out_fail:
673 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
674 	return err;
675 }
676 
677 /* Process an incoming IP datagram fragment. */
678 int ip_defrag(struct sk_buff *skb, u32 user)
679 {
680 	struct ipq *qp;
681 	struct net *net;
682 
683 	net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
684 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
685 
686 	/* Start by cleaning up the memory. */
687 	ip_evictor(net);
688 
689 	/* Lookup (or create) queue header */
690 	if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
691 		int ret;
692 
693 		spin_lock(&qp->q.lock);
694 
695 		ret = ip_frag_queue(qp, skb);
696 
697 		spin_unlock(&qp->q.lock);
698 		ipq_put(qp);
699 		return ret;
700 	}
701 
702 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
703 	kfree_skb(skb);
704 	return -ENOMEM;
705 }
706 EXPORT_SYMBOL(ip_defrag);
707 
708 struct sk_buff *ip_check_defrag(struct sk_buff *skb, u32 user)
709 {
710 	struct iphdr iph;
711 	u32 len;
712 
713 	if (skb->protocol != htons(ETH_P_IP))
714 		return skb;
715 
716 	if (!skb_copy_bits(skb, 0, &iph, sizeof(iph)))
717 		return skb;
718 
719 	if (iph.ihl < 5 || iph.version != 4)
720 		return skb;
721 
722 	len = ntohs(iph.tot_len);
723 	if (skb->len < len || len < (iph.ihl * 4))
724 		return skb;
725 
726 	if (ip_is_fragment(&iph)) {
727 		skb = skb_share_check(skb, GFP_ATOMIC);
728 		if (skb) {
729 			if (!pskb_may_pull(skb, iph.ihl*4))
730 				return skb;
731 			if (pskb_trim_rcsum(skb, len))
732 				return skb;
733 			memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
734 			if (ip_defrag(skb, user))
735 				return NULL;
736 			skb->rxhash = 0;
737 		}
738 	}
739 	return skb;
740 }
741 EXPORT_SYMBOL(ip_check_defrag);
742 
743 #ifdef CONFIG_SYSCTL
744 static int zero;
745 
746 static struct ctl_table ip4_frags_ns_ctl_table[] = {
747 	{
748 		.procname	= "ipfrag_high_thresh",
749 		.data		= &init_net.ipv4.frags.high_thresh,
750 		.maxlen		= sizeof(int),
751 		.mode		= 0644,
752 		.proc_handler	= proc_dointvec
753 	},
754 	{
755 		.procname	= "ipfrag_low_thresh",
756 		.data		= &init_net.ipv4.frags.low_thresh,
757 		.maxlen		= sizeof(int),
758 		.mode		= 0644,
759 		.proc_handler	= proc_dointvec
760 	},
761 	{
762 		.procname	= "ipfrag_time",
763 		.data		= &init_net.ipv4.frags.timeout,
764 		.maxlen		= sizeof(int),
765 		.mode		= 0644,
766 		.proc_handler	= proc_dointvec_jiffies,
767 	},
768 	{ }
769 };
770 
771 static struct ctl_table ip4_frags_ctl_table[] = {
772 	{
773 		.procname	= "ipfrag_secret_interval",
774 		.data		= &ip4_frags.secret_interval,
775 		.maxlen		= sizeof(int),
776 		.mode		= 0644,
777 		.proc_handler	= proc_dointvec_jiffies,
778 	},
779 	{
780 		.procname	= "ipfrag_max_dist",
781 		.data		= &sysctl_ipfrag_max_dist,
782 		.maxlen		= sizeof(int),
783 		.mode		= 0644,
784 		.proc_handler	= proc_dointvec_minmax,
785 		.extra1		= &zero
786 	},
787 	{ }
788 };
789 
790 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
791 {
792 	struct ctl_table *table;
793 	struct ctl_table_header *hdr;
794 
795 	table = ip4_frags_ns_ctl_table;
796 	if (!net_eq(net, &init_net)) {
797 		table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
798 		if (table == NULL)
799 			goto err_alloc;
800 
801 		table[0].data = &net->ipv4.frags.high_thresh;
802 		table[1].data = &net->ipv4.frags.low_thresh;
803 		table[2].data = &net->ipv4.frags.timeout;
804 
805 		/* Don't export sysctls to unprivileged users */
806 		if (net->user_ns != &init_user_ns)
807 			table[0].procname = NULL;
808 	}
809 
810 	hdr = register_net_sysctl(net, "net/ipv4", table);
811 	if (hdr == NULL)
812 		goto err_reg;
813 
814 	net->ipv4.frags_hdr = hdr;
815 	return 0;
816 
817 err_reg:
818 	if (!net_eq(net, &init_net))
819 		kfree(table);
820 err_alloc:
821 	return -ENOMEM;
822 }
823 
824 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
825 {
826 	struct ctl_table *table;
827 
828 	table = net->ipv4.frags_hdr->ctl_table_arg;
829 	unregister_net_sysctl_table(net->ipv4.frags_hdr);
830 	kfree(table);
831 }
832 
833 static void ip4_frags_ctl_register(void)
834 {
835 	register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table);
836 }
837 #else
838 static inline int ip4_frags_ns_ctl_register(struct net *net)
839 {
840 	return 0;
841 }
842 
843 static inline void ip4_frags_ns_ctl_unregister(struct net *net)
844 {
845 }
846 
847 static inline void ip4_frags_ctl_register(void)
848 {
849 }
850 #endif
851 
852 static int __net_init ipv4_frags_init_net(struct net *net)
853 {
854 	/*
855 	 * Fragment cache limits. We will commit 256K at one time. Should we
856 	 * cross that limit we will prune down to 192K. This should cope with
857 	 * even the most extreme cases without allowing an attacker to
858 	 * measurably harm machine performance.
859 	 */
860 	net->ipv4.frags.high_thresh = 256 * 1024;
861 	net->ipv4.frags.low_thresh = 192 * 1024;
862 	/*
863 	 * Important NOTE! Fragment queue must be destroyed before MSL expires.
864 	 * RFC791 is wrong proposing to prolongate timer each fragment arrival
865 	 * by TTL.
866 	 */
867 	net->ipv4.frags.timeout = IP_FRAG_TIME;
868 
869 	inet_frags_init_net(&net->ipv4.frags);
870 
871 	return ip4_frags_ns_ctl_register(net);
872 }
873 
874 static void __net_exit ipv4_frags_exit_net(struct net *net)
875 {
876 	ip4_frags_ns_ctl_unregister(net);
877 	inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
878 }
879 
880 static struct pernet_operations ip4_frags_ops = {
881 	.init = ipv4_frags_init_net,
882 	.exit = ipv4_frags_exit_net,
883 };
884 
885 void __init ipfrag_init(void)
886 {
887 	ip4_frags_ctl_register();
888 	register_pernet_subsys(&ip4_frags_ops);
889 	ip4_frags.hashfn = ip4_hashfn;
890 	ip4_frags.constructor = ip4_frag_init;
891 	ip4_frags.destructor = ip4_frag_free;
892 	ip4_frags.skb_free = NULL;
893 	ip4_frags.qsize = sizeof(struct ipq);
894 	ip4_frags.match = ip4_frag_match;
895 	ip4_frags.frag_expire = ip_expire;
896 	ip4_frags.secret_interval = 10 * 60 * HZ;
897 	inet_frags_init(&ip4_frags);
898 }
899