1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The IP fragmentation functionality. 8 * 9 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG> 10 * Alan Cox <alan@lxorguk.ukuu.org.uk> 11 * 12 * Fixes: 13 * Alan Cox : Split from ip.c , see ip_input.c for history. 14 * David S. Miller : Begin massive cleanup... 15 * Andi Kleen : Add sysctls. 16 * xxxx : Overlapfrag bug. 17 * Ultima : ip_expire() kernel panic. 18 * Bill Hawes : Frag accounting and evictor fixes. 19 * John McDonald : 0 length frag bug. 20 * Alexey Kuznetsov: SMP races, threading, cleanup. 21 * Patrick McHardy : LRU queue of frag heads for evictor. 22 */ 23 24 #define pr_fmt(fmt) "IPv4: " fmt 25 26 #include <linux/compiler.h> 27 #include <linux/module.h> 28 #include <linux/types.h> 29 #include <linux/mm.h> 30 #include <linux/jiffies.h> 31 #include <linux/skbuff.h> 32 #include <linux/list.h> 33 #include <linux/ip.h> 34 #include <linux/icmp.h> 35 #include <linux/netdevice.h> 36 #include <linux/jhash.h> 37 #include <linux/random.h> 38 #include <linux/slab.h> 39 #include <net/route.h> 40 #include <net/dst.h> 41 #include <net/sock.h> 42 #include <net/ip.h> 43 #include <net/icmp.h> 44 #include <net/checksum.h> 45 #include <net/inetpeer.h> 46 #include <net/inet_frag.h> 47 #include <linux/tcp.h> 48 #include <linux/udp.h> 49 #include <linux/inet.h> 50 #include <linux/netfilter_ipv4.h> 51 #include <net/inet_ecn.h> 52 #include <net/l3mdev.h> 53 54 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6 55 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c 56 * as well. Or notify me, at least. --ANK 57 */ 58 static const char ip_frag_cache_name[] = "ip4-frags"; 59 60 /* Describe an entry in the "incomplete datagrams" queue. */ 61 struct ipq { 62 struct inet_frag_queue q; 63 64 u8 ecn; /* RFC3168 support */ 65 u16 max_df_size; /* largest frag with DF set seen */ 66 int iif; 67 unsigned int rid; 68 struct inet_peer *peer; 69 }; 70 71 static u8 ip4_frag_ecn(u8 tos) 72 { 73 return 1 << (tos & INET_ECN_MASK); 74 } 75 76 static struct inet_frags ip4_frags; 77 78 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb, 79 struct sk_buff *prev_tail, struct net_device *dev); 80 81 82 static void ip4_frag_init(struct inet_frag_queue *q, const void *a) 83 { 84 struct ipq *qp = container_of(q, struct ipq, q); 85 struct net *net = q->fqdir->net; 86 87 const struct frag_v4_compare_key *key = a; 88 89 q->key.v4 = *key; 90 qp->ecn = 0; 91 qp->peer = q->fqdir->max_dist ? 92 inet_getpeer_v4(net->ipv4.peers, key->saddr, key->vif, 1) : 93 NULL; 94 } 95 96 static void ip4_frag_free(struct inet_frag_queue *q) 97 { 98 struct ipq *qp; 99 100 qp = container_of(q, struct ipq, q); 101 if (qp->peer) 102 inet_putpeer(qp->peer); 103 } 104 105 106 /* Destruction primitives. */ 107 108 static void ipq_put(struct ipq *ipq) 109 { 110 inet_frag_put(&ipq->q); 111 } 112 113 /* Kill ipq entry. It is not destroyed immediately, 114 * because caller (and someone more) holds reference count. 115 */ 116 static void ipq_kill(struct ipq *ipq) 117 { 118 inet_frag_kill(&ipq->q); 119 } 120 121 static bool frag_expire_skip_icmp(u32 user) 122 { 123 return user == IP_DEFRAG_AF_PACKET || 124 ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_IN, 125 __IP_DEFRAG_CONNTRACK_IN_END) || 126 ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_BRIDGE_IN, 127 __IP_DEFRAG_CONNTRACK_BRIDGE_IN); 128 } 129 130 /* 131 * Oops, a fragment queue timed out. Kill it and send an ICMP reply. 132 */ 133 static void ip_expire(struct timer_list *t) 134 { 135 struct inet_frag_queue *frag = from_timer(frag, t, timer); 136 const struct iphdr *iph; 137 struct sk_buff *head = NULL; 138 struct net *net; 139 struct ipq *qp; 140 int err; 141 142 qp = container_of(frag, struct ipq, q); 143 net = qp->q.fqdir->net; 144 145 rcu_read_lock(); 146 spin_lock(&qp->q.lock); 147 148 if (qp->q.flags & INET_FRAG_COMPLETE) 149 goto out; 150 151 ipq_kill(qp); 152 __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS); 153 __IP_INC_STATS(net, IPSTATS_MIB_REASMTIMEOUT); 154 155 if (!(qp->q.flags & INET_FRAG_FIRST_IN)) 156 goto out; 157 158 /* sk_buff::dev and sk_buff::rbnode are unionized. So we 159 * pull the head out of the tree in order to be able to 160 * deal with head->dev. 161 */ 162 head = inet_frag_pull_head(&qp->q); 163 if (!head) 164 goto out; 165 head->dev = dev_get_by_index_rcu(net, qp->iif); 166 if (!head->dev) 167 goto out; 168 169 170 /* skb has no dst, perform route lookup again */ 171 iph = ip_hdr(head); 172 err = ip_route_input_noref(head, iph->daddr, iph->saddr, 173 iph->tos, head->dev); 174 if (err) 175 goto out; 176 177 /* Only an end host needs to send an ICMP 178 * "Fragment Reassembly Timeout" message, per RFC792. 179 */ 180 if (frag_expire_skip_icmp(qp->q.key.v4.user) && 181 (skb_rtable(head)->rt_type != RTN_LOCAL)) 182 goto out; 183 184 spin_unlock(&qp->q.lock); 185 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0); 186 goto out_rcu_unlock; 187 188 out: 189 spin_unlock(&qp->q.lock); 190 out_rcu_unlock: 191 rcu_read_unlock(); 192 kfree_skb(head); 193 ipq_put(qp); 194 } 195 196 /* Find the correct entry in the "incomplete datagrams" queue for 197 * this IP datagram, and create new one, if nothing is found. 198 */ 199 static struct ipq *ip_find(struct net *net, struct iphdr *iph, 200 u32 user, int vif) 201 { 202 struct frag_v4_compare_key key = { 203 .saddr = iph->saddr, 204 .daddr = iph->daddr, 205 .user = user, 206 .vif = vif, 207 .id = iph->id, 208 .protocol = iph->protocol, 209 }; 210 struct inet_frag_queue *q; 211 212 q = inet_frag_find(net->ipv4.fqdir, &key); 213 if (!q) 214 return NULL; 215 216 return container_of(q, struct ipq, q); 217 } 218 219 /* Is the fragment too far ahead to be part of ipq? */ 220 static int ip_frag_too_far(struct ipq *qp) 221 { 222 struct inet_peer *peer = qp->peer; 223 unsigned int max = qp->q.fqdir->max_dist; 224 unsigned int start, end; 225 226 int rc; 227 228 if (!peer || !max) 229 return 0; 230 231 start = qp->rid; 232 end = atomic_inc_return(&peer->rid); 233 qp->rid = end; 234 235 rc = qp->q.fragments_tail && (end - start) > max; 236 237 if (rc) 238 __IP_INC_STATS(qp->q.fqdir->net, IPSTATS_MIB_REASMFAILS); 239 240 return rc; 241 } 242 243 static int ip_frag_reinit(struct ipq *qp) 244 { 245 unsigned int sum_truesize = 0; 246 247 if (!mod_timer(&qp->q.timer, jiffies + qp->q.fqdir->timeout)) { 248 refcount_inc(&qp->q.refcnt); 249 return -ETIMEDOUT; 250 } 251 252 sum_truesize = inet_frag_rbtree_purge(&qp->q.rb_fragments); 253 sub_frag_mem_limit(qp->q.fqdir, sum_truesize); 254 255 qp->q.flags = 0; 256 qp->q.len = 0; 257 qp->q.meat = 0; 258 qp->q.rb_fragments = RB_ROOT; 259 qp->q.fragments_tail = NULL; 260 qp->q.last_run_head = NULL; 261 qp->iif = 0; 262 qp->ecn = 0; 263 264 return 0; 265 } 266 267 /* Add new segment to existing queue. */ 268 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb) 269 { 270 struct net *net = qp->q.fqdir->net; 271 int ihl, end, flags, offset; 272 struct sk_buff *prev_tail; 273 struct net_device *dev; 274 unsigned int fragsize; 275 int err = -ENOENT; 276 u8 ecn; 277 278 if (qp->q.flags & INET_FRAG_COMPLETE) 279 goto err; 280 281 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) && 282 unlikely(ip_frag_too_far(qp)) && 283 unlikely(err = ip_frag_reinit(qp))) { 284 ipq_kill(qp); 285 goto err; 286 } 287 288 ecn = ip4_frag_ecn(ip_hdr(skb)->tos); 289 offset = ntohs(ip_hdr(skb)->frag_off); 290 flags = offset & ~IP_OFFSET; 291 offset &= IP_OFFSET; 292 offset <<= 3; /* offset is in 8-byte chunks */ 293 ihl = ip_hdrlen(skb); 294 295 /* Determine the position of this fragment. */ 296 end = offset + skb->len - skb_network_offset(skb) - ihl; 297 err = -EINVAL; 298 299 /* Is this the final fragment? */ 300 if ((flags & IP_MF) == 0) { 301 /* If we already have some bits beyond end 302 * or have different end, the segment is corrupted. 303 */ 304 if (end < qp->q.len || 305 ((qp->q.flags & INET_FRAG_LAST_IN) && end != qp->q.len)) 306 goto discard_qp; 307 qp->q.flags |= INET_FRAG_LAST_IN; 308 qp->q.len = end; 309 } else { 310 if (end&7) { 311 end &= ~7; 312 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 313 skb->ip_summed = CHECKSUM_NONE; 314 } 315 if (end > qp->q.len) { 316 /* Some bits beyond end -> corruption. */ 317 if (qp->q.flags & INET_FRAG_LAST_IN) 318 goto discard_qp; 319 qp->q.len = end; 320 } 321 } 322 if (end == offset) 323 goto discard_qp; 324 325 err = -ENOMEM; 326 if (!pskb_pull(skb, skb_network_offset(skb) + ihl)) 327 goto discard_qp; 328 329 err = pskb_trim_rcsum(skb, end - offset); 330 if (err) 331 goto discard_qp; 332 333 /* Note : skb->rbnode and skb->dev share the same location. */ 334 dev = skb->dev; 335 /* Makes sure compiler wont do silly aliasing games */ 336 barrier(); 337 338 prev_tail = qp->q.fragments_tail; 339 err = inet_frag_queue_insert(&qp->q, skb, offset, end); 340 if (err) 341 goto insert_error; 342 343 if (dev) 344 qp->iif = dev->ifindex; 345 346 qp->q.stamp = skb->tstamp; 347 qp->q.meat += skb->len; 348 qp->ecn |= ecn; 349 add_frag_mem_limit(qp->q.fqdir, skb->truesize); 350 if (offset == 0) 351 qp->q.flags |= INET_FRAG_FIRST_IN; 352 353 fragsize = skb->len + ihl; 354 355 if (fragsize > qp->q.max_size) 356 qp->q.max_size = fragsize; 357 358 if (ip_hdr(skb)->frag_off & htons(IP_DF) && 359 fragsize > qp->max_df_size) 360 qp->max_df_size = fragsize; 361 362 if (qp->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) && 363 qp->q.meat == qp->q.len) { 364 unsigned long orefdst = skb->_skb_refdst; 365 366 skb->_skb_refdst = 0UL; 367 err = ip_frag_reasm(qp, skb, prev_tail, dev); 368 skb->_skb_refdst = orefdst; 369 if (err) 370 inet_frag_kill(&qp->q); 371 return err; 372 } 373 374 skb_dst_drop(skb); 375 return -EINPROGRESS; 376 377 insert_error: 378 if (err == IPFRAG_DUP) { 379 kfree_skb(skb); 380 return -EINVAL; 381 } 382 err = -EINVAL; 383 __IP_INC_STATS(net, IPSTATS_MIB_REASM_OVERLAPS); 384 discard_qp: 385 inet_frag_kill(&qp->q); 386 __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS); 387 err: 388 kfree_skb(skb); 389 return err; 390 } 391 392 /* Build a new IP datagram from all its fragments. */ 393 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb, 394 struct sk_buff *prev_tail, struct net_device *dev) 395 { 396 struct net *net = qp->q.fqdir->net; 397 struct iphdr *iph; 398 void *reasm_data; 399 int len, err; 400 u8 ecn; 401 402 ipq_kill(qp); 403 404 ecn = ip_frag_ecn_table[qp->ecn]; 405 if (unlikely(ecn == 0xff)) { 406 err = -EINVAL; 407 goto out_fail; 408 } 409 410 /* Make the one we just received the head. */ 411 reasm_data = inet_frag_reasm_prepare(&qp->q, skb, prev_tail); 412 if (!reasm_data) 413 goto out_nomem; 414 415 len = ip_hdrlen(skb) + qp->q.len; 416 err = -E2BIG; 417 if (len > 65535) 418 goto out_oversize; 419 420 inet_frag_reasm_finish(&qp->q, skb, reasm_data); 421 422 skb->dev = dev; 423 IPCB(skb)->frag_max_size = max(qp->max_df_size, qp->q.max_size); 424 425 iph = ip_hdr(skb); 426 iph->tot_len = htons(len); 427 iph->tos |= ecn; 428 429 /* When we set IP_DF on a refragmented skb we must also force a 430 * call to ip_fragment to avoid forwarding a DF-skb of size s while 431 * original sender only sent fragments of size f (where f < s). 432 * 433 * We only set DF/IPSKB_FRAG_PMTU if such DF fragment was the largest 434 * frag seen to avoid sending tiny DF-fragments in case skb was built 435 * from one very small df-fragment and one large non-df frag. 436 */ 437 if (qp->max_df_size == qp->q.max_size) { 438 IPCB(skb)->flags |= IPSKB_FRAG_PMTU; 439 iph->frag_off = htons(IP_DF); 440 } else { 441 iph->frag_off = 0; 442 } 443 444 ip_send_check(iph); 445 446 __IP_INC_STATS(net, IPSTATS_MIB_REASMOKS); 447 qp->q.rb_fragments = RB_ROOT; 448 qp->q.fragments_tail = NULL; 449 qp->q.last_run_head = NULL; 450 return 0; 451 452 out_nomem: 453 net_dbg_ratelimited("queue_glue: no memory for gluing queue %p\n", qp); 454 err = -ENOMEM; 455 goto out_fail; 456 out_oversize: 457 net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->q.key.v4.saddr); 458 out_fail: 459 __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS); 460 return err; 461 } 462 463 /* Process an incoming IP datagram fragment. */ 464 int ip_defrag(struct net *net, struct sk_buff *skb, u32 user) 465 { 466 struct net_device *dev = skb->dev ? : skb_dst(skb)->dev; 467 int vif = l3mdev_master_ifindex_rcu(dev); 468 struct ipq *qp; 469 470 __IP_INC_STATS(net, IPSTATS_MIB_REASMREQDS); 471 skb_orphan(skb); 472 473 /* Lookup (or create) queue header */ 474 qp = ip_find(net, ip_hdr(skb), user, vif); 475 if (qp) { 476 int ret; 477 478 spin_lock(&qp->q.lock); 479 480 ret = ip_frag_queue(qp, skb); 481 482 spin_unlock(&qp->q.lock); 483 ipq_put(qp); 484 return ret; 485 } 486 487 __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS); 488 kfree_skb(skb); 489 return -ENOMEM; 490 } 491 EXPORT_SYMBOL(ip_defrag); 492 493 struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user) 494 { 495 struct iphdr iph; 496 int netoff; 497 u32 len; 498 499 if (skb->protocol != htons(ETH_P_IP)) 500 return skb; 501 502 netoff = skb_network_offset(skb); 503 504 if (skb_copy_bits(skb, netoff, &iph, sizeof(iph)) < 0) 505 return skb; 506 507 if (iph.ihl < 5 || iph.version != 4) 508 return skb; 509 510 len = ntohs(iph.tot_len); 511 if (skb->len < netoff + len || len < (iph.ihl * 4)) 512 return skb; 513 514 if (ip_is_fragment(&iph)) { 515 skb = skb_share_check(skb, GFP_ATOMIC); 516 if (skb) { 517 if (!pskb_may_pull(skb, netoff + iph.ihl * 4)) { 518 kfree_skb(skb); 519 return NULL; 520 } 521 if (pskb_trim_rcsum(skb, netoff + len)) { 522 kfree_skb(skb); 523 return NULL; 524 } 525 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 526 if (ip_defrag(net, skb, user)) 527 return NULL; 528 skb_clear_hash(skb); 529 } 530 } 531 return skb; 532 } 533 EXPORT_SYMBOL(ip_check_defrag); 534 535 #ifdef CONFIG_SYSCTL 536 static int dist_min; 537 538 static struct ctl_table ip4_frags_ns_ctl_table[] = { 539 { 540 .procname = "ipfrag_high_thresh", 541 .maxlen = sizeof(unsigned long), 542 .mode = 0644, 543 .proc_handler = proc_doulongvec_minmax, 544 }, 545 { 546 .procname = "ipfrag_low_thresh", 547 .maxlen = sizeof(unsigned long), 548 .mode = 0644, 549 .proc_handler = proc_doulongvec_minmax, 550 }, 551 { 552 .procname = "ipfrag_time", 553 .maxlen = sizeof(int), 554 .mode = 0644, 555 .proc_handler = proc_dointvec_jiffies, 556 }, 557 { 558 .procname = "ipfrag_max_dist", 559 .maxlen = sizeof(int), 560 .mode = 0644, 561 .proc_handler = proc_dointvec_minmax, 562 .extra1 = &dist_min, 563 }, 564 { } 565 }; 566 567 /* secret interval has been deprecated */ 568 static int ip4_frags_secret_interval_unused; 569 static struct ctl_table ip4_frags_ctl_table[] = { 570 { 571 .procname = "ipfrag_secret_interval", 572 .data = &ip4_frags_secret_interval_unused, 573 .maxlen = sizeof(int), 574 .mode = 0644, 575 .proc_handler = proc_dointvec_jiffies, 576 }, 577 { } 578 }; 579 580 static int __net_init ip4_frags_ns_ctl_register(struct net *net) 581 { 582 struct ctl_table *table; 583 struct ctl_table_header *hdr; 584 585 table = ip4_frags_ns_ctl_table; 586 if (!net_eq(net, &init_net)) { 587 table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL); 588 if (!table) 589 goto err_alloc; 590 591 } 592 table[0].data = &net->ipv4.fqdir->high_thresh; 593 table[0].extra1 = &net->ipv4.fqdir->low_thresh; 594 table[1].data = &net->ipv4.fqdir->low_thresh; 595 table[1].extra2 = &net->ipv4.fqdir->high_thresh; 596 table[2].data = &net->ipv4.fqdir->timeout; 597 table[3].data = &net->ipv4.fqdir->max_dist; 598 599 hdr = register_net_sysctl(net, "net/ipv4", table); 600 if (!hdr) 601 goto err_reg; 602 603 net->ipv4.frags_hdr = hdr; 604 return 0; 605 606 err_reg: 607 if (!net_eq(net, &init_net)) 608 kfree(table); 609 err_alloc: 610 return -ENOMEM; 611 } 612 613 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net) 614 { 615 struct ctl_table *table; 616 617 table = net->ipv4.frags_hdr->ctl_table_arg; 618 unregister_net_sysctl_table(net->ipv4.frags_hdr); 619 kfree(table); 620 } 621 622 static void __init ip4_frags_ctl_register(void) 623 { 624 register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table); 625 } 626 #else 627 static int ip4_frags_ns_ctl_register(struct net *net) 628 { 629 return 0; 630 } 631 632 static void ip4_frags_ns_ctl_unregister(struct net *net) 633 { 634 } 635 636 static void __init ip4_frags_ctl_register(void) 637 { 638 } 639 #endif 640 641 static int __net_init ipv4_frags_init_net(struct net *net) 642 { 643 int res; 644 645 res = fqdir_init(&net->ipv4.fqdir, &ip4_frags, net); 646 if (res < 0) 647 return res; 648 /* Fragment cache limits. 649 * 650 * The fragment memory accounting code, (tries to) account for 651 * the real memory usage, by measuring both the size of frag 652 * queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue)) 653 * and the SKB's truesize. 654 * 655 * A 64K fragment consumes 129736 bytes (44*2944)+200 656 * (1500 truesize == 2944, sizeof(struct ipq) == 200) 657 * 658 * We will commit 4MB at one time. Should we cross that limit 659 * we will prune down to 3MB, making room for approx 8 big 64K 660 * fragments 8x128k. 661 */ 662 net->ipv4.fqdir->high_thresh = 4 * 1024 * 1024; 663 net->ipv4.fqdir->low_thresh = 3 * 1024 * 1024; 664 /* 665 * Important NOTE! Fragment queue must be destroyed before MSL expires. 666 * RFC791 is wrong proposing to prolongate timer each fragment arrival 667 * by TTL. 668 */ 669 net->ipv4.fqdir->timeout = IP_FRAG_TIME; 670 671 net->ipv4.fqdir->max_dist = 64; 672 673 res = ip4_frags_ns_ctl_register(net); 674 if (res < 0) 675 fqdir_exit(net->ipv4.fqdir); 676 return res; 677 } 678 679 static void __net_exit ipv4_frags_exit_net(struct net *net) 680 { 681 ip4_frags_ns_ctl_unregister(net); 682 fqdir_exit(net->ipv4.fqdir); 683 } 684 685 static struct pernet_operations ip4_frags_ops = { 686 .init = ipv4_frags_init_net, 687 .exit = ipv4_frags_exit_net, 688 }; 689 690 691 static u32 ip4_key_hashfn(const void *data, u32 len, u32 seed) 692 { 693 return jhash2(data, 694 sizeof(struct frag_v4_compare_key) / sizeof(u32), seed); 695 } 696 697 static u32 ip4_obj_hashfn(const void *data, u32 len, u32 seed) 698 { 699 const struct inet_frag_queue *fq = data; 700 701 return jhash2((const u32 *)&fq->key.v4, 702 sizeof(struct frag_v4_compare_key) / sizeof(u32), seed); 703 } 704 705 static int ip4_obj_cmpfn(struct rhashtable_compare_arg *arg, const void *ptr) 706 { 707 const struct frag_v4_compare_key *key = arg->key; 708 const struct inet_frag_queue *fq = ptr; 709 710 return !!memcmp(&fq->key, key, sizeof(*key)); 711 } 712 713 static const struct rhashtable_params ip4_rhash_params = { 714 .head_offset = offsetof(struct inet_frag_queue, node), 715 .key_offset = offsetof(struct inet_frag_queue, key), 716 .key_len = sizeof(struct frag_v4_compare_key), 717 .hashfn = ip4_key_hashfn, 718 .obj_hashfn = ip4_obj_hashfn, 719 .obj_cmpfn = ip4_obj_cmpfn, 720 .automatic_shrinking = true, 721 }; 722 723 void __init ipfrag_init(void) 724 { 725 ip4_frags.constructor = ip4_frag_init; 726 ip4_frags.destructor = ip4_frag_free; 727 ip4_frags.qsize = sizeof(struct ipq); 728 ip4_frags.frag_expire = ip_expire; 729 ip4_frags.frags_cache_name = ip_frag_cache_name; 730 ip4_frags.rhash_params = ip4_rhash_params; 731 if (inet_frags_init(&ip4_frags)) 732 panic("IP: failed to allocate ip4_frags cache\n"); 733 ip4_frags_ctl_register(); 734 register_pernet_subsys(&ip4_frags_ops); 735 } 736