xref: /linux/net/ipv4/ip_fragment.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The IP fragmentation functionality.
7  *
8  * Version:	$Id: ip_fragment.c,v 1.59 2002/01/12 07:54:56 davem Exp $
9  *
10  * Authors:	Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
11  *		Alan Cox <Alan.Cox@linux.org>
12  *
13  * Fixes:
14  *		Alan Cox	:	Split from ip.c , see ip_input.c for history.
15  *		David S. Miller :	Begin massive cleanup...
16  *		Andi Kleen	:	Add sysctls.
17  *		xxxx		:	Overlapfrag bug.
18  *		Ultima          :       ip_expire() kernel panic.
19  *		Bill Hawes	:	Frag accounting and evictor fixes.
20  *		John McDonald	:	0 length frag bug.
21  *		Alexey Kuznetsov:	SMP races, threading, cleanup.
22  *		Patrick McHardy :	LRU queue of frag heads for evictor.
23  */
24 
25 #include <linux/compiler.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/jiffies.h>
30 #include <linux/skbuff.h>
31 #include <linux/list.h>
32 #include <linux/ip.h>
33 #include <linux/icmp.h>
34 #include <linux/netdevice.h>
35 #include <linux/jhash.h>
36 #include <linux/random.h>
37 #include <net/sock.h>
38 #include <net/ip.h>
39 #include <net/icmp.h>
40 #include <net/checksum.h>
41 #include <net/inetpeer.h>
42 #include <net/inet_frag.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/inet.h>
46 #include <linux/netfilter_ipv4.h>
47 
48 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
49  * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
50  * as well. Or notify me, at least. --ANK
51  */
52 
53 int sysctl_ipfrag_max_dist __read_mostly = 64;
54 
55 struct ipfrag_skb_cb
56 {
57 	struct inet_skb_parm	h;
58 	int			offset;
59 };
60 
61 #define FRAG_CB(skb)	((struct ipfrag_skb_cb*)((skb)->cb))
62 
63 /* Describe an entry in the "incomplete datagrams" queue. */
64 struct ipq {
65 	struct inet_frag_queue q;
66 
67 	u32		user;
68 	__be32		saddr;
69 	__be32		daddr;
70 	__be16		id;
71 	u8		protocol;
72 	int             iif;
73 	unsigned int    rid;
74 	struct inet_peer *peer;
75 };
76 
77 struct inet_frags_ctl ip4_frags_ctl __read_mostly = {
78 	/*
79 	 * Fragment cache limits. We will commit 256K at one time. Should we
80 	 * cross that limit we will prune down to 192K. This should cope with
81 	 * even the most extreme cases without allowing an attacker to
82 	 * measurably harm machine performance.
83 	 */
84 	.high_thresh	 = 256 * 1024,
85 	.low_thresh	 = 192 * 1024,
86 
87 	/*
88 	 * Important NOTE! Fragment queue must be destroyed before MSL expires.
89 	 * RFC791 is wrong proposing to prolongate timer each fragment arrival
90 	 * by TTL.
91 	 */
92 	.timeout	 = IP_FRAG_TIME,
93 	.secret_interval = 10 * 60 * HZ,
94 };
95 
96 static struct inet_frags ip4_frags;
97 
98 int ip_frag_nqueues(void)
99 {
100 	return ip4_frags.nqueues;
101 }
102 
103 int ip_frag_mem(void)
104 {
105 	return atomic_read(&ip4_frags.mem);
106 }
107 
108 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
109 			 struct net_device *dev);
110 
111 struct ip4_create_arg {
112 	struct iphdr *iph;
113 	u32 user;
114 };
115 
116 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
117 {
118 	return jhash_3words((__force u32)id << 16 | prot,
119 			    (__force u32)saddr, (__force u32)daddr,
120 			    ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
121 }
122 
123 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
124 {
125 	struct ipq *ipq;
126 
127 	ipq = container_of(q, struct ipq, q);
128 	return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
129 }
130 
131 static int ip4_frag_match(struct inet_frag_queue *q, void *a)
132 {
133 	struct ipq *qp;
134 	struct ip4_create_arg *arg = a;
135 
136 	qp = container_of(q, struct ipq, q);
137 	return (qp->id == arg->iph->id &&
138 			qp->saddr == arg->iph->saddr &&
139 			qp->daddr == arg->iph->daddr &&
140 			qp->protocol == arg->iph->protocol &&
141 			qp->user == arg->user);
142 }
143 
144 /* Memory Tracking Functions. */
145 static __inline__ void frag_kfree_skb(struct sk_buff *skb, int *work)
146 {
147 	if (work)
148 		*work -= skb->truesize;
149 	atomic_sub(skb->truesize, &ip4_frags.mem);
150 	kfree_skb(skb);
151 }
152 
153 static void ip4_frag_init(struct inet_frag_queue *q, void *a)
154 {
155 	struct ipq *qp = container_of(q, struct ipq, q);
156 	struct ip4_create_arg *arg = a;
157 
158 	qp->protocol = arg->iph->protocol;
159 	qp->id = arg->iph->id;
160 	qp->saddr = arg->iph->saddr;
161 	qp->daddr = arg->iph->daddr;
162 	qp->user = arg->user;
163 	qp->peer = sysctl_ipfrag_max_dist ?
164 		inet_getpeer(arg->iph->saddr, 1) : NULL;
165 }
166 
167 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
168 {
169 	struct ipq *qp;
170 
171 	qp = container_of(q, struct ipq, q);
172 	if (qp->peer)
173 		inet_putpeer(qp->peer);
174 }
175 
176 
177 /* Destruction primitives. */
178 
179 static __inline__ void ipq_put(struct ipq *ipq)
180 {
181 	inet_frag_put(&ipq->q, &ip4_frags);
182 }
183 
184 /* Kill ipq entry. It is not destroyed immediately,
185  * because caller (and someone more) holds reference count.
186  */
187 static void ipq_kill(struct ipq *ipq)
188 {
189 	inet_frag_kill(&ipq->q, &ip4_frags);
190 }
191 
192 /* Memory limiting on fragments.  Evictor trashes the oldest
193  * fragment queue until we are back under the threshold.
194  */
195 static void ip_evictor(void)
196 {
197 	int evicted;
198 
199 	evicted = inet_frag_evictor(&ip4_frags);
200 	if (evicted)
201 		IP_ADD_STATS_BH(IPSTATS_MIB_REASMFAILS, evicted);
202 }
203 
204 /*
205  * Oops, a fragment queue timed out.  Kill it and send an ICMP reply.
206  */
207 static void ip_expire(unsigned long arg)
208 {
209 	struct ipq *qp;
210 
211 	qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
212 
213 	spin_lock(&qp->q.lock);
214 
215 	if (qp->q.last_in & COMPLETE)
216 		goto out;
217 
218 	ipq_kill(qp);
219 
220 	IP_INC_STATS_BH(IPSTATS_MIB_REASMTIMEOUT);
221 	IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
222 
223 	if ((qp->q.last_in&FIRST_IN) && qp->q.fragments != NULL) {
224 		struct sk_buff *head = qp->q.fragments;
225 		/* Send an ICMP "Fragment Reassembly Timeout" message. */
226 		if ((head->dev = dev_get_by_index(&init_net, qp->iif)) != NULL) {
227 			icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
228 			dev_put(head->dev);
229 		}
230 	}
231 out:
232 	spin_unlock(&qp->q.lock);
233 	ipq_put(qp);
234 }
235 
236 /* Find the correct entry in the "incomplete datagrams" queue for
237  * this IP datagram, and create new one, if nothing is found.
238  */
239 static inline struct ipq *ip_find(struct iphdr *iph, u32 user)
240 {
241 	struct inet_frag_queue *q;
242 	struct ip4_create_arg arg;
243 	unsigned int hash;
244 
245 	arg.iph = iph;
246 	arg.user = user;
247 	hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
248 
249 	q = inet_frag_find(&ip4_frags, &arg, hash);
250 	if (q == NULL)
251 		goto out_nomem;
252 
253 	return container_of(q, struct ipq, q);
254 
255 out_nomem:
256 	LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
257 	return NULL;
258 }
259 
260 /* Is the fragment too far ahead to be part of ipq? */
261 static inline int ip_frag_too_far(struct ipq *qp)
262 {
263 	struct inet_peer *peer = qp->peer;
264 	unsigned int max = sysctl_ipfrag_max_dist;
265 	unsigned int start, end;
266 
267 	int rc;
268 
269 	if (!peer || !max)
270 		return 0;
271 
272 	start = qp->rid;
273 	end = atomic_inc_return(&peer->rid);
274 	qp->rid = end;
275 
276 	rc = qp->q.fragments && (end - start) > max;
277 
278 	if (rc) {
279 		IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
280 	}
281 
282 	return rc;
283 }
284 
285 static int ip_frag_reinit(struct ipq *qp)
286 {
287 	struct sk_buff *fp;
288 
289 	if (!mod_timer(&qp->q.timer, jiffies + ip4_frags_ctl.timeout)) {
290 		atomic_inc(&qp->q.refcnt);
291 		return -ETIMEDOUT;
292 	}
293 
294 	fp = qp->q.fragments;
295 	do {
296 		struct sk_buff *xp = fp->next;
297 		frag_kfree_skb(fp, NULL);
298 		fp = xp;
299 	} while (fp);
300 
301 	qp->q.last_in = 0;
302 	qp->q.len = 0;
303 	qp->q.meat = 0;
304 	qp->q.fragments = NULL;
305 	qp->iif = 0;
306 
307 	return 0;
308 }
309 
310 /* Add new segment to existing queue. */
311 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
312 {
313 	struct sk_buff *prev, *next;
314 	struct net_device *dev;
315 	int flags, offset;
316 	int ihl, end;
317 	int err = -ENOENT;
318 
319 	if (qp->q.last_in & COMPLETE)
320 		goto err;
321 
322 	if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
323 	    unlikely(ip_frag_too_far(qp)) &&
324 	    unlikely(err = ip_frag_reinit(qp))) {
325 		ipq_kill(qp);
326 		goto err;
327 	}
328 
329 	offset = ntohs(ip_hdr(skb)->frag_off);
330 	flags = offset & ~IP_OFFSET;
331 	offset &= IP_OFFSET;
332 	offset <<= 3;		/* offset is in 8-byte chunks */
333 	ihl = ip_hdrlen(skb);
334 
335 	/* Determine the position of this fragment. */
336 	end = offset + skb->len - ihl;
337 	err = -EINVAL;
338 
339 	/* Is this the final fragment? */
340 	if ((flags & IP_MF) == 0) {
341 		/* If we already have some bits beyond end
342 		 * or have different end, the segment is corrrupted.
343 		 */
344 		if (end < qp->q.len ||
345 		    ((qp->q.last_in & LAST_IN) && end != qp->q.len))
346 			goto err;
347 		qp->q.last_in |= LAST_IN;
348 		qp->q.len = end;
349 	} else {
350 		if (end&7) {
351 			end &= ~7;
352 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
353 				skb->ip_summed = CHECKSUM_NONE;
354 		}
355 		if (end > qp->q.len) {
356 			/* Some bits beyond end -> corruption. */
357 			if (qp->q.last_in & LAST_IN)
358 				goto err;
359 			qp->q.len = end;
360 		}
361 	}
362 	if (end == offset)
363 		goto err;
364 
365 	err = -ENOMEM;
366 	if (pskb_pull(skb, ihl) == NULL)
367 		goto err;
368 
369 	err = pskb_trim_rcsum(skb, end - offset);
370 	if (err)
371 		goto err;
372 
373 	/* Find out which fragments are in front and at the back of us
374 	 * in the chain of fragments so far.  We must know where to put
375 	 * this fragment, right?
376 	 */
377 	prev = NULL;
378 	for (next = qp->q.fragments; next != NULL; next = next->next) {
379 		if (FRAG_CB(next)->offset >= offset)
380 			break;	/* bingo! */
381 		prev = next;
382 	}
383 
384 	/* We found where to put this one.  Check for overlap with
385 	 * preceding fragment, and, if needed, align things so that
386 	 * any overlaps are eliminated.
387 	 */
388 	if (prev) {
389 		int i = (FRAG_CB(prev)->offset + prev->len) - offset;
390 
391 		if (i > 0) {
392 			offset += i;
393 			err = -EINVAL;
394 			if (end <= offset)
395 				goto err;
396 			err = -ENOMEM;
397 			if (!pskb_pull(skb, i))
398 				goto err;
399 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
400 				skb->ip_summed = CHECKSUM_NONE;
401 		}
402 	}
403 
404 	err = -ENOMEM;
405 
406 	while (next && FRAG_CB(next)->offset < end) {
407 		int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
408 
409 		if (i < next->len) {
410 			/* Eat head of the next overlapped fragment
411 			 * and leave the loop. The next ones cannot overlap.
412 			 */
413 			if (!pskb_pull(next, i))
414 				goto err;
415 			FRAG_CB(next)->offset += i;
416 			qp->q.meat -= i;
417 			if (next->ip_summed != CHECKSUM_UNNECESSARY)
418 				next->ip_summed = CHECKSUM_NONE;
419 			break;
420 		} else {
421 			struct sk_buff *free_it = next;
422 
423 			/* Old fragment is completely overridden with
424 			 * new one drop it.
425 			 */
426 			next = next->next;
427 
428 			if (prev)
429 				prev->next = next;
430 			else
431 				qp->q.fragments = next;
432 
433 			qp->q.meat -= free_it->len;
434 			frag_kfree_skb(free_it, NULL);
435 		}
436 	}
437 
438 	FRAG_CB(skb)->offset = offset;
439 
440 	/* Insert this fragment in the chain of fragments. */
441 	skb->next = next;
442 	if (prev)
443 		prev->next = skb;
444 	else
445 		qp->q.fragments = skb;
446 
447 	dev = skb->dev;
448 	if (dev) {
449 		qp->iif = dev->ifindex;
450 		skb->dev = NULL;
451 	}
452 	qp->q.stamp = skb->tstamp;
453 	qp->q.meat += skb->len;
454 	atomic_add(skb->truesize, &ip4_frags.mem);
455 	if (offset == 0)
456 		qp->q.last_in |= FIRST_IN;
457 
458 	if (qp->q.last_in == (FIRST_IN | LAST_IN) && qp->q.meat == qp->q.len)
459 		return ip_frag_reasm(qp, prev, dev);
460 
461 	write_lock(&ip4_frags.lock);
462 	list_move_tail(&qp->q.lru_list, &ip4_frags.lru_list);
463 	write_unlock(&ip4_frags.lock);
464 	return -EINPROGRESS;
465 
466 err:
467 	kfree_skb(skb);
468 	return err;
469 }
470 
471 
472 /* Build a new IP datagram from all its fragments. */
473 
474 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
475 			 struct net_device *dev)
476 {
477 	struct iphdr *iph;
478 	struct sk_buff *fp, *head = qp->q.fragments;
479 	int len;
480 	int ihlen;
481 	int err;
482 
483 	ipq_kill(qp);
484 
485 	/* Make the one we just received the head. */
486 	if (prev) {
487 		head = prev->next;
488 		fp = skb_clone(head, GFP_ATOMIC);
489 		if (!fp)
490 			goto out_nomem;
491 
492 		fp->next = head->next;
493 		prev->next = fp;
494 
495 		skb_morph(head, qp->q.fragments);
496 		head->next = qp->q.fragments->next;
497 
498 		kfree_skb(qp->q.fragments);
499 		qp->q.fragments = head;
500 	}
501 
502 	BUG_TRAP(head != NULL);
503 	BUG_TRAP(FRAG_CB(head)->offset == 0);
504 
505 	/* Allocate a new buffer for the datagram. */
506 	ihlen = ip_hdrlen(head);
507 	len = ihlen + qp->q.len;
508 
509 	err = -E2BIG;
510 	if (len > 65535)
511 		goto out_oversize;
512 
513 	/* Head of list must not be cloned. */
514 	if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
515 		goto out_nomem;
516 
517 	/* If the first fragment is fragmented itself, we split
518 	 * it to two chunks: the first with data and paged part
519 	 * and the second, holding only fragments. */
520 	if (skb_shinfo(head)->frag_list) {
521 		struct sk_buff *clone;
522 		int i, plen = 0;
523 
524 		if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
525 			goto out_nomem;
526 		clone->next = head->next;
527 		head->next = clone;
528 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
529 		skb_shinfo(head)->frag_list = NULL;
530 		for (i=0; i<skb_shinfo(head)->nr_frags; i++)
531 			plen += skb_shinfo(head)->frags[i].size;
532 		clone->len = clone->data_len = head->data_len - plen;
533 		head->data_len -= clone->len;
534 		head->len -= clone->len;
535 		clone->csum = 0;
536 		clone->ip_summed = head->ip_summed;
537 		atomic_add(clone->truesize, &ip4_frags.mem);
538 	}
539 
540 	skb_shinfo(head)->frag_list = head->next;
541 	skb_push(head, head->data - skb_network_header(head));
542 	atomic_sub(head->truesize, &ip4_frags.mem);
543 
544 	for (fp=head->next; fp; fp = fp->next) {
545 		head->data_len += fp->len;
546 		head->len += fp->len;
547 		if (head->ip_summed != fp->ip_summed)
548 			head->ip_summed = CHECKSUM_NONE;
549 		else if (head->ip_summed == CHECKSUM_COMPLETE)
550 			head->csum = csum_add(head->csum, fp->csum);
551 		head->truesize += fp->truesize;
552 		atomic_sub(fp->truesize, &ip4_frags.mem);
553 	}
554 
555 	head->next = NULL;
556 	head->dev = dev;
557 	head->tstamp = qp->q.stamp;
558 
559 	iph = ip_hdr(head);
560 	iph->frag_off = 0;
561 	iph->tot_len = htons(len);
562 	IP_INC_STATS_BH(IPSTATS_MIB_REASMOKS);
563 	qp->q.fragments = NULL;
564 	return 0;
565 
566 out_nomem:
567 	LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
568 			      "queue %p\n", qp);
569 	err = -ENOMEM;
570 	goto out_fail;
571 out_oversize:
572 	if (net_ratelimit())
573 		printk(KERN_INFO
574 			"Oversized IP packet from %d.%d.%d.%d.\n",
575 			NIPQUAD(qp->saddr));
576 out_fail:
577 	IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
578 	return err;
579 }
580 
581 /* Process an incoming IP datagram fragment. */
582 int ip_defrag(struct sk_buff *skb, u32 user)
583 {
584 	struct ipq *qp;
585 
586 	IP_INC_STATS_BH(IPSTATS_MIB_REASMREQDS);
587 
588 	/* Start by cleaning up the memory. */
589 	if (atomic_read(&ip4_frags.mem) > ip4_frags_ctl.high_thresh)
590 		ip_evictor();
591 
592 	/* Lookup (or create) queue header */
593 	if ((qp = ip_find(ip_hdr(skb), user)) != NULL) {
594 		int ret;
595 
596 		spin_lock(&qp->q.lock);
597 
598 		ret = ip_frag_queue(qp, skb);
599 
600 		spin_unlock(&qp->q.lock);
601 		ipq_put(qp);
602 		return ret;
603 	}
604 
605 	IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
606 	kfree_skb(skb);
607 	return -ENOMEM;
608 }
609 
610 void __init ipfrag_init(void)
611 {
612 	ip4_frags.ctl = &ip4_frags_ctl;
613 	ip4_frags.hashfn = ip4_hashfn;
614 	ip4_frags.constructor = ip4_frag_init;
615 	ip4_frags.destructor = ip4_frag_free;
616 	ip4_frags.skb_free = NULL;
617 	ip4_frags.qsize = sizeof(struct ipq);
618 	ip4_frags.match = ip4_frag_match;
619 	ip4_frags.frag_expire = ip_expire;
620 	inet_frags_init(&ip4_frags);
621 }
622 
623 EXPORT_SYMBOL(ip_defrag);
624