xref: /linux/net/ipv4/ip_fragment.c (revision 765532c8aaac624b5f8687af6d319c6a1138a257)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The IP fragmentation functionality.
7  *
8  * Authors:	Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
9  *		Alan Cox <alan@lxorguk.ukuu.org.uk>
10  *
11  * Fixes:
12  *		Alan Cox	:	Split from ip.c , see ip_input.c for history.
13  *		David S. Miller :	Begin massive cleanup...
14  *		Andi Kleen	:	Add sysctls.
15  *		xxxx		:	Overlapfrag bug.
16  *		Ultima          :       ip_expire() kernel panic.
17  *		Bill Hawes	:	Frag accounting and evictor fixes.
18  *		John McDonald	:	0 length frag bug.
19  *		Alexey Kuznetsov:	SMP races, threading, cleanup.
20  *		Patrick McHardy :	LRU queue of frag heads for evictor.
21  */
22 
23 #include <linux/compiler.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/jiffies.h>
28 #include <linux/skbuff.h>
29 #include <linux/list.h>
30 #include <linux/ip.h>
31 #include <linux/icmp.h>
32 #include <linux/netdevice.h>
33 #include <linux/jhash.h>
34 #include <linux/random.h>
35 #include <linux/slab.h>
36 #include <net/route.h>
37 #include <net/dst.h>
38 #include <net/sock.h>
39 #include <net/ip.h>
40 #include <net/icmp.h>
41 #include <net/checksum.h>
42 #include <net/inetpeer.h>
43 #include <net/inet_frag.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/inet.h>
47 #include <linux/netfilter_ipv4.h>
48 
49 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
50  * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
51  * as well. Or notify me, at least. --ANK
52  */
53 
54 static int sysctl_ipfrag_max_dist __read_mostly = 64;
55 
56 struct ipfrag_skb_cb
57 {
58 	struct inet_skb_parm	h;
59 	int			offset;
60 };
61 
62 #define FRAG_CB(skb)	((struct ipfrag_skb_cb *)((skb)->cb))
63 
64 /* Describe an entry in the "incomplete datagrams" queue. */
65 struct ipq {
66 	struct inet_frag_queue q;
67 
68 	u32		user;
69 	__be32		saddr;
70 	__be32		daddr;
71 	__be16		id;
72 	u8		protocol;
73 	int             iif;
74 	unsigned int    rid;
75 	struct inet_peer *peer;
76 };
77 
78 static struct inet_frags ip4_frags;
79 
80 int ip_frag_nqueues(struct net *net)
81 {
82 	return net->ipv4.frags.nqueues;
83 }
84 
85 int ip_frag_mem(struct net *net)
86 {
87 	return atomic_read(&net->ipv4.frags.mem);
88 }
89 
90 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
91 			 struct net_device *dev);
92 
93 struct ip4_create_arg {
94 	struct iphdr *iph;
95 	u32 user;
96 };
97 
98 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
99 {
100 	return jhash_3words((__force u32)id << 16 | prot,
101 			    (__force u32)saddr, (__force u32)daddr,
102 			    ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
103 }
104 
105 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
106 {
107 	struct ipq *ipq;
108 
109 	ipq = container_of(q, struct ipq, q);
110 	return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
111 }
112 
113 static int ip4_frag_match(struct inet_frag_queue *q, void *a)
114 {
115 	struct ipq *qp;
116 	struct ip4_create_arg *arg = a;
117 
118 	qp = container_of(q, struct ipq, q);
119 	return	qp->id == arg->iph->id &&
120 			qp->saddr == arg->iph->saddr &&
121 			qp->daddr == arg->iph->daddr &&
122 			qp->protocol == arg->iph->protocol &&
123 			qp->user == arg->user;
124 }
125 
126 /* Memory Tracking Functions. */
127 static void frag_kfree_skb(struct netns_frags *nf, struct sk_buff *skb)
128 {
129 	atomic_sub(skb->truesize, &nf->mem);
130 	kfree_skb(skb);
131 }
132 
133 static void ip4_frag_init(struct inet_frag_queue *q, void *a)
134 {
135 	struct ipq *qp = container_of(q, struct ipq, q);
136 	struct ip4_create_arg *arg = a;
137 
138 	qp->protocol = arg->iph->protocol;
139 	qp->id = arg->iph->id;
140 	qp->saddr = arg->iph->saddr;
141 	qp->daddr = arg->iph->daddr;
142 	qp->user = arg->user;
143 	qp->peer = sysctl_ipfrag_max_dist ?
144 		inet_getpeer(arg->iph->saddr, 1) : NULL;
145 }
146 
147 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
148 {
149 	struct ipq *qp;
150 
151 	qp = container_of(q, struct ipq, q);
152 	if (qp->peer)
153 		inet_putpeer(qp->peer);
154 }
155 
156 
157 /* Destruction primitives. */
158 
159 static __inline__ void ipq_put(struct ipq *ipq)
160 {
161 	inet_frag_put(&ipq->q, &ip4_frags);
162 }
163 
164 /* Kill ipq entry. It is not destroyed immediately,
165  * because caller (and someone more) holds reference count.
166  */
167 static void ipq_kill(struct ipq *ipq)
168 {
169 	inet_frag_kill(&ipq->q, &ip4_frags);
170 }
171 
172 /* Memory limiting on fragments.  Evictor trashes the oldest
173  * fragment queue until we are back under the threshold.
174  */
175 static void ip_evictor(struct net *net)
176 {
177 	int evicted;
178 
179 	evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags);
180 	if (evicted)
181 		IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted);
182 }
183 
184 /*
185  * Oops, a fragment queue timed out.  Kill it and send an ICMP reply.
186  */
187 static void ip_expire(unsigned long arg)
188 {
189 	struct ipq *qp;
190 	struct net *net;
191 
192 	qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
193 	net = container_of(qp->q.net, struct net, ipv4.frags);
194 
195 	spin_lock(&qp->q.lock);
196 
197 	if (qp->q.last_in & INET_FRAG_COMPLETE)
198 		goto out;
199 
200 	ipq_kill(qp);
201 
202 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
203 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
204 
205 	if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) {
206 		struct sk_buff *head = qp->q.fragments;
207 
208 		rcu_read_lock();
209 		head->dev = dev_get_by_index_rcu(net, qp->iif);
210 		if (!head->dev)
211 			goto out_rcu_unlock;
212 
213 		/*
214 		 * Only search router table for the head fragment,
215 		 * when defraging timeout at PRE_ROUTING HOOK.
216 		 */
217 		if (qp->user == IP_DEFRAG_CONNTRACK_IN && !skb_dst(head)) {
218 			const struct iphdr *iph = ip_hdr(head);
219 			int err = ip_route_input(head, iph->daddr, iph->saddr,
220 						 iph->tos, head->dev);
221 			if (unlikely(err))
222 				goto out_rcu_unlock;
223 
224 			/*
225 			 * Only an end host needs to send an ICMP
226 			 * "Fragment Reassembly Timeout" message, per RFC792.
227 			 */
228 			if (skb_rtable(head)->rt_type != RTN_LOCAL)
229 				goto out_rcu_unlock;
230 
231 		}
232 
233 		/* Send an ICMP "Fragment Reassembly Timeout" message. */
234 		icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
235 out_rcu_unlock:
236 		rcu_read_unlock();
237 	}
238 out:
239 	spin_unlock(&qp->q.lock);
240 	ipq_put(qp);
241 }
242 
243 /* Find the correct entry in the "incomplete datagrams" queue for
244  * this IP datagram, and create new one, if nothing is found.
245  */
246 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
247 {
248 	struct inet_frag_queue *q;
249 	struct ip4_create_arg arg;
250 	unsigned int hash;
251 
252 	arg.iph = iph;
253 	arg.user = user;
254 
255 	read_lock(&ip4_frags.lock);
256 	hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
257 
258 	q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
259 	if (q == NULL)
260 		goto out_nomem;
261 
262 	return container_of(q, struct ipq, q);
263 
264 out_nomem:
265 	LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
266 	return NULL;
267 }
268 
269 /* Is the fragment too far ahead to be part of ipq? */
270 static inline int ip_frag_too_far(struct ipq *qp)
271 {
272 	struct inet_peer *peer = qp->peer;
273 	unsigned int max = sysctl_ipfrag_max_dist;
274 	unsigned int start, end;
275 
276 	int rc;
277 
278 	if (!peer || !max)
279 		return 0;
280 
281 	start = qp->rid;
282 	end = atomic_inc_return(&peer->rid);
283 	qp->rid = end;
284 
285 	rc = qp->q.fragments && (end - start) > max;
286 
287 	if (rc) {
288 		struct net *net;
289 
290 		net = container_of(qp->q.net, struct net, ipv4.frags);
291 		IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
292 	}
293 
294 	return rc;
295 }
296 
297 static int ip_frag_reinit(struct ipq *qp)
298 {
299 	struct sk_buff *fp;
300 
301 	if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
302 		atomic_inc(&qp->q.refcnt);
303 		return -ETIMEDOUT;
304 	}
305 
306 	fp = qp->q.fragments;
307 	do {
308 		struct sk_buff *xp = fp->next;
309 		frag_kfree_skb(qp->q.net, fp);
310 		fp = xp;
311 	} while (fp);
312 
313 	qp->q.last_in = 0;
314 	qp->q.len = 0;
315 	qp->q.meat = 0;
316 	qp->q.fragments = NULL;
317 	qp->q.fragments_tail = NULL;
318 	qp->iif = 0;
319 
320 	return 0;
321 }
322 
323 /* Add new segment to existing queue. */
324 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
325 {
326 	struct sk_buff *prev, *next;
327 	struct net_device *dev;
328 	int flags, offset;
329 	int ihl, end;
330 	int err = -ENOENT;
331 
332 	if (qp->q.last_in & INET_FRAG_COMPLETE)
333 		goto err;
334 
335 	if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
336 	    unlikely(ip_frag_too_far(qp)) &&
337 	    unlikely(err = ip_frag_reinit(qp))) {
338 		ipq_kill(qp);
339 		goto err;
340 	}
341 
342 	offset = ntohs(ip_hdr(skb)->frag_off);
343 	flags = offset & ~IP_OFFSET;
344 	offset &= IP_OFFSET;
345 	offset <<= 3;		/* offset is in 8-byte chunks */
346 	ihl = ip_hdrlen(skb);
347 
348 	/* Determine the position of this fragment. */
349 	end = offset + skb->len - ihl;
350 	err = -EINVAL;
351 
352 	/* Is this the final fragment? */
353 	if ((flags & IP_MF) == 0) {
354 		/* If we already have some bits beyond end
355 		 * or have different end, the segment is corrrupted.
356 		 */
357 		if (end < qp->q.len ||
358 		    ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
359 			goto err;
360 		qp->q.last_in |= INET_FRAG_LAST_IN;
361 		qp->q.len = end;
362 	} else {
363 		if (end&7) {
364 			end &= ~7;
365 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
366 				skb->ip_summed = CHECKSUM_NONE;
367 		}
368 		if (end > qp->q.len) {
369 			/* Some bits beyond end -> corruption. */
370 			if (qp->q.last_in & INET_FRAG_LAST_IN)
371 				goto err;
372 			qp->q.len = end;
373 		}
374 	}
375 	if (end == offset)
376 		goto err;
377 
378 	err = -ENOMEM;
379 	if (pskb_pull(skb, ihl) == NULL)
380 		goto err;
381 
382 	err = pskb_trim_rcsum(skb, end - offset);
383 	if (err)
384 		goto err;
385 
386 	/* Find out which fragments are in front and at the back of us
387 	 * in the chain of fragments so far.  We must know where to put
388 	 * this fragment, right?
389 	 */
390 	prev = qp->q.fragments_tail;
391 	if (!prev || FRAG_CB(prev)->offset < offset) {
392 		next = NULL;
393 		goto found;
394 	}
395 	prev = NULL;
396 	for (next = qp->q.fragments; next != NULL; next = next->next) {
397 		if (FRAG_CB(next)->offset >= offset)
398 			break;	/* bingo! */
399 		prev = next;
400 	}
401 
402 found:
403 	/* We found where to put this one.  Check for overlap with
404 	 * preceding fragment, and, if needed, align things so that
405 	 * any overlaps are eliminated.
406 	 */
407 	if (prev) {
408 		int i = (FRAG_CB(prev)->offset + prev->len) - offset;
409 
410 		if (i > 0) {
411 			offset += i;
412 			err = -EINVAL;
413 			if (end <= offset)
414 				goto err;
415 			err = -ENOMEM;
416 			if (!pskb_pull(skb, i))
417 				goto err;
418 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
419 				skb->ip_summed = CHECKSUM_NONE;
420 		}
421 	}
422 
423 	err = -ENOMEM;
424 
425 	while (next && FRAG_CB(next)->offset < end) {
426 		int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
427 
428 		if (i < next->len) {
429 			/* Eat head of the next overlapped fragment
430 			 * and leave the loop. The next ones cannot overlap.
431 			 */
432 			if (!pskb_pull(next, i))
433 				goto err;
434 			FRAG_CB(next)->offset += i;
435 			qp->q.meat -= i;
436 			if (next->ip_summed != CHECKSUM_UNNECESSARY)
437 				next->ip_summed = CHECKSUM_NONE;
438 			break;
439 		} else {
440 			struct sk_buff *free_it = next;
441 
442 			/* Old fragment is completely overridden with
443 			 * new one drop it.
444 			 */
445 			next = next->next;
446 
447 			if (prev)
448 				prev->next = next;
449 			else
450 				qp->q.fragments = next;
451 
452 			qp->q.meat -= free_it->len;
453 			frag_kfree_skb(qp->q.net, free_it);
454 		}
455 	}
456 
457 	FRAG_CB(skb)->offset = offset;
458 
459 	/* Insert this fragment in the chain of fragments. */
460 	skb->next = next;
461 	if (!next)
462 		qp->q.fragments_tail = skb;
463 	if (prev)
464 		prev->next = skb;
465 	else
466 		qp->q.fragments = skb;
467 
468 	dev = skb->dev;
469 	if (dev) {
470 		qp->iif = dev->ifindex;
471 		skb->dev = NULL;
472 	}
473 	qp->q.stamp = skb->tstamp;
474 	qp->q.meat += skb->len;
475 	atomic_add(skb->truesize, &qp->q.net->mem);
476 	if (offset == 0)
477 		qp->q.last_in |= INET_FRAG_FIRST_IN;
478 
479 	if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
480 	    qp->q.meat == qp->q.len)
481 		return ip_frag_reasm(qp, prev, dev);
482 
483 	write_lock(&ip4_frags.lock);
484 	list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list);
485 	write_unlock(&ip4_frags.lock);
486 	return -EINPROGRESS;
487 
488 err:
489 	kfree_skb(skb);
490 	return err;
491 }
492 
493 
494 /* Build a new IP datagram from all its fragments. */
495 
496 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
497 			 struct net_device *dev)
498 {
499 	struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
500 	struct iphdr *iph;
501 	struct sk_buff *fp, *head = qp->q.fragments;
502 	int len;
503 	int ihlen;
504 	int err;
505 
506 	ipq_kill(qp);
507 
508 	/* Make the one we just received the head. */
509 	if (prev) {
510 		head = prev->next;
511 		fp = skb_clone(head, GFP_ATOMIC);
512 		if (!fp)
513 			goto out_nomem;
514 
515 		fp->next = head->next;
516 		if (!fp->next)
517 			qp->q.fragments_tail = fp;
518 		prev->next = fp;
519 
520 		skb_morph(head, qp->q.fragments);
521 		head->next = qp->q.fragments->next;
522 
523 		kfree_skb(qp->q.fragments);
524 		qp->q.fragments = head;
525 	}
526 
527 	WARN_ON(head == NULL);
528 	WARN_ON(FRAG_CB(head)->offset != 0);
529 
530 	/* Allocate a new buffer for the datagram. */
531 	ihlen = ip_hdrlen(head);
532 	len = ihlen + qp->q.len;
533 
534 	err = -E2BIG;
535 	if (len > 65535)
536 		goto out_oversize;
537 
538 	/* Head of list must not be cloned. */
539 	if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
540 		goto out_nomem;
541 
542 	/* If the first fragment is fragmented itself, we split
543 	 * it to two chunks: the first with data and paged part
544 	 * and the second, holding only fragments. */
545 	if (skb_has_frag_list(head)) {
546 		struct sk_buff *clone;
547 		int i, plen = 0;
548 
549 		if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
550 			goto out_nomem;
551 		clone->next = head->next;
552 		head->next = clone;
553 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
554 		skb_frag_list_init(head);
555 		for (i=0; i<skb_shinfo(head)->nr_frags; i++)
556 			plen += skb_shinfo(head)->frags[i].size;
557 		clone->len = clone->data_len = head->data_len - plen;
558 		head->data_len -= clone->len;
559 		head->len -= clone->len;
560 		clone->csum = 0;
561 		clone->ip_summed = head->ip_summed;
562 		atomic_add(clone->truesize, &qp->q.net->mem);
563 	}
564 
565 	skb_shinfo(head)->frag_list = head->next;
566 	skb_push(head, head->data - skb_network_header(head));
567 
568 	for (fp=head->next; fp; fp = fp->next) {
569 		head->data_len += fp->len;
570 		head->len += fp->len;
571 		if (head->ip_summed != fp->ip_summed)
572 			head->ip_summed = CHECKSUM_NONE;
573 		else if (head->ip_summed == CHECKSUM_COMPLETE)
574 			head->csum = csum_add(head->csum, fp->csum);
575 		head->truesize += fp->truesize;
576 	}
577 	atomic_sub(head->truesize, &qp->q.net->mem);
578 
579 	head->next = NULL;
580 	head->dev = dev;
581 	head->tstamp = qp->q.stamp;
582 
583 	iph = ip_hdr(head);
584 	iph->frag_off = 0;
585 	iph->tot_len = htons(len);
586 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
587 	qp->q.fragments = NULL;
588 	qp->q.fragments_tail = NULL;
589 	return 0;
590 
591 out_nomem:
592 	LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
593 			      "queue %p\n", qp);
594 	err = -ENOMEM;
595 	goto out_fail;
596 out_oversize:
597 	if (net_ratelimit())
598 		printk(KERN_INFO "Oversized IP packet from %pI4.\n",
599 			&qp->saddr);
600 out_fail:
601 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
602 	return err;
603 }
604 
605 /* Process an incoming IP datagram fragment. */
606 int ip_defrag(struct sk_buff *skb, u32 user)
607 {
608 	struct ipq *qp;
609 	struct net *net;
610 
611 	net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
612 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
613 
614 	/* Start by cleaning up the memory. */
615 	if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh)
616 		ip_evictor(net);
617 
618 	/* Lookup (or create) queue header */
619 	if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
620 		int ret;
621 
622 		spin_lock(&qp->q.lock);
623 
624 		ret = ip_frag_queue(qp, skb);
625 
626 		spin_unlock(&qp->q.lock);
627 		ipq_put(qp);
628 		return ret;
629 	}
630 
631 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
632 	kfree_skb(skb);
633 	return -ENOMEM;
634 }
635 EXPORT_SYMBOL(ip_defrag);
636 
637 #ifdef CONFIG_SYSCTL
638 static int zero;
639 
640 static struct ctl_table ip4_frags_ns_ctl_table[] = {
641 	{
642 		.procname	= "ipfrag_high_thresh",
643 		.data		= &init_net.ipv4.frags.high_thresh,
644 		.maxlen		= sizeof(int),
645 		.mode		= 0644,
646 		.proc_handler	= proc_dointvec
647 	},
648 	{
649 		.procname	= "ipfrag_low_thresh",
650 		.data		= &init_net.ipv4.frags.low_thresh,
651 		.maxlen		= sizeof(int),
652 		.mode		= 0644,
653 		.proc_handler	= proc_dointvec
654 	},
655 	{
656 		.procname	= "ipfrag_time",
657 		.data		= &init_net.ipv4.frags.timeout,
658 		.maxlen		= sizeof(int),
659 		.mode		= 0644,
660 		.proc_handler	= proc_dointvec_jiffies,
661 	},
662 	{ }
663 };
664 
665 static struct ctl_table ip4_frags_ctl_table[] = {
666 	{
667 		.procname	= "ipfrag_secret_interval",
668 		.data		= &ip4_frags.secret_interval,
669 		.maxlen		= sizeof(int),
670 		.mode		= 0644,
671 		.proc_handler	= proc_dointvec_jiffies,
672 	},
673 	{
674 		.procname	= "ipfrag_max_dist",
675 		.data		= &sysctl_ipfrag_max_dist,
676 		.maxlen		= sizeof(int),
677 		.mode		= 0644,
678 		.proc_handler	= proc_dointvec_minmax,
679 		.extra1		= &zero
680 	},
681 	{ }
682 };
683 
684 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
685 {
686 	struct ctl_table *table;
687 	struct ctl_table_header *hdr;
688 
689 	table = ip4_frags_ns_ctl_table;
690 	if (!net_eq(net, &init_net)) {
691 		table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
692 		if (table == NULL)
693 			goto err_alloc;
694 
695 		table[0].data = &net->ipv4.frags.high_thresh;
696 		table[1].data = &net->ipv4.frags.low_thresh;
697 		table[2].data = &net->ipv4.frags.timeout;
698 	}
699 
700 	hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table);
701 	if (hdr == NULL)
702 		goto err_reg;
703 
704 	net->ipv4.frags_hdr = hdr;
705 	return 0;
706 
707 err_reg:
708 	if (!net_eq(net, &init_net))
709 		kfree(table);
710 err_alloc:
711 	return -ENOMEM;
712 }
713 
714 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
715 {
716 	struct ctl_table *table;
717 
718 	table = net->ipv4.frags_hdr->ctl_table_arg;
719 	unregister_net_sysctl_table(net->ipv4.frags_hdr);
720 	kfree(table);
721 }
722 
723 static void ip4_frags_ctl_register(void)
724 {
725 	register_net_sysctl_rotable(net_ipv4_ctl_path, ip4_frags_ctl_table);
726 }
727 #else
728 static inline int ip4_frags_ns_ctl_register(struct net *net)
729 {
730 	return 0;
731 }
732 
733 static inline void ip4_frags_ns_ctl_unregister(struct net *net)
734 {
735 }
736 
737 static inline void ip4_frags_ctl_register(void)
738 {
739 }
740 #endif
741 
742 static int __net_init ipv4_frags_init_net(struct net *net)
743 {
744 	/*
745 	 * Fragment cache limits. We will commit 256K at one time. Should we
746 	 * cross that limit we will prune down to 192K. This should cope with
747 	 * even the most extreme cases without allowing an attacker to
748 	 * measurably harm machine performance.
749 	 */
750 	net->ipv4.frags.high_thresh = 256 * 1024;
751 	net->ipv4.frags.low_thresh = 192 * 1024;
752 	/*
753 	 * Important NOTE! Fragment queue must be destroyed before MSL expires.
754 	 * RFC791 is wrong proposing to prolongate timer each fragment arrival
755 	 * by TTL.
756 	 */
757 	net->ipv4.frags.timeout = IP_FRAG_TIME;
758 
759 	inet_frags_init_net(&net->ipv4.frags);
760 
761 	return ip4_frags_ns_ctl_register(net);
762 }
763 
764 static void __net_exit ipv4_frags_exit_net(struct net *net)
765 {
766 	ip4_frags_ns_ctl_unregister(net);
767 	inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
768 }
769 
770 static struct pernet_operations ip4_frags_ops = {
771 	.init = ipv4_frags_init_net,
772 	.exit = ipv4_frags_exit_net,
773 };
774 
775 void __init ipfrag_init(void)
776 {
777 	ip4_frags_ctl_register();
778 	register_pernet_subsys(&ip4_frags_ops);
779 	ip4_frags.hashfn = ip4_hashfn;
780 	ip4_frags.constructor = ip4_frag_init;
781 	ip4_frags.destructor = ip4_frag_free;
782 	ip4_frags.skb_free = NULL;
783 	ip4_frags.qsize = sizeof(struct ipq);
784 	ip4_frags.match = ip4_frag_match;
785 	ip4_frags.frag_expire = ip_expire;
786 	ip4_frags.secret_interval = 10 * 60 * HZ;
787 	inet_frags_init(&ip4_frags);
788 }
789