xref: /linux/net/ipv4/inet_fragment.c (revision a6cdeeb16bff89c8486324f53577db058cbe81ba)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * inet fragments management
4  *
5  * 		Authors:	Pavel Emelyanov <xemul@openvz.org>
6  *				Started as consolidation of ipv4/ip_fragment.c,
7  *				ipv6/reassembly. and ipv6 nf conntrack reassembly
8  */
9 
10 #include <linux/list.h>
11 #include <linux/spinlock.h>
12 #include <linux/module.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/random.h>
16 #include <linux/skbuff.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/rhashtable.h>
20 
21 #include <net/sock.h>
22 #include <net/inet_frag.h>
23 #include <net/inet_ecn.h>
24 #include <net/ip.h>
25 #include <net/ipv6.h>
26 
27 /* Use skb->cb to track consecutive/adjacent fragments coming at
28  * the end of the queue. Nodes in the rb-tree queue will
29  * contain "runs" of one or more adjacent fragments.
30  *
31  * Invariants:
32  * - next_frag is NULL at the tail of a "run";
33  * - the head of a "run" has the sum of all fragment lengths in frag_run_len.
34  */
35 struct ipfrag_skb_cb {
36 	union {
37 		struct inet_skb_parm	h4;
38 		struct inet6_skb_parm	h6;
39 	};
40 	struct sk_buff		*next_frag;
41 	int			frag_run_len;
42 };
43 
44 #define FRAG_CB(skb)		((struct ipfrag_skb_cb *)((skb)->cb))
45 
46 static void fragcb_clear(struct sk_buff *skb)
47 {
48 	RB_CLEAR_NODE(&skb->rbnode);
49 	FRAG_CB(skb)->next_frag = NULL;
50 	FRAG_CB(skb)->frag_run_len = skb->len;
51 }
52 
53 /* Append skb to the last "run". */
54 static void fragrun_append_to_last(struct inet_frag_queue *q,
55 				   struct sk_buff *skb)
56 {
57 	fragcb_clear(skb);
58 
59 	FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
60 	FRAG_CB(q->fragments_tail)->next_frag = skb;
61 	q->fragments_tail = skb;
62 }
63 
64 /* Create a new "run" with the skb. */
65 static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb)
66 {
67 	BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
68 	fragcb_clear(skb);
69 
70 	if (q->last_run_head)
71 		rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
72 			     &q->last_run_head->rbnode.rb_right);
73 	else
74 		rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
75 	rb_insert_color(&skb->rbnode, &q->rb_fragments);
76 
77 	q->fragments_tail = skb;
78 	q->last_run_head = skb;
79 }
80 
81 /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
82  * Value : 0xff if frame should be dropped.
83  *         0 or INET_ECN_CE value, to be ORed in to final iph->tos field
84  */
85 const u8 ip_frag_ecn_table[16] = {
86 	/* at least one fragment had CE, and others ECT_0 or ECT_1 */
87 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0]			= INET_ECN_CE,
88 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1]			= INET_ECN_CE,
89 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1]	= INET_ECN_CE,
90 
91 	/* invalid combinations : drop frame */
92 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
93 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
94 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
95 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
96 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
97 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
98 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
99 };
100 EXPORT_SYMBOL(ip_frag_ecn_table);
101 
102 int inet_frags_init(struct inet_frags *f)
103 {
104 	f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0,
105 					    NULL);
106 	if (!f->frags_cachep)
107 		return -ENOMEM;
108 
109 	refcount_set(&f->refcnt, 1);
110 	init_completion(&f->completion);
111 	return 0;
112 }
113 EXPORT_SYMBOL(inet_frags_init);
114 
115 void inet_frags_fini(struct inet_frags *f)
116 {
117 	if (refcount_dec_and_test(&f->refcnt))
118 		complete(&f->completion);
119 
120 	wait_for_completion(&f->completion);
121 
122 	kmem_cache_destroy(f->frags_cachep);
123 	f->frags_cachep = NULL;
124 }
125 EXPORT_SYMBOL(inet_frags_fini);
126 
127 /* called from rhashtable_free_and_destroy() at netns_frags dismantle */
128 static void inet_frags_free_cb(void *ptr, void *arg)
129 {
130 	struct inet_frag_queue *fq = ptr;
131 	int count;
132 
133 	count = del_timer_sync(&fq->timer) ? 1 : 0;
134 
135 	spin_lock_bh(&fq->lock);
136 	if (!(fq->flags & INET_FRAG_COMPLETE)) {
137 		fq->flags |= INET_FRAG_COMPLETE;
138 		count++;
139 	} else if (fq->flags & INET_FRAG_HASH_DEAD) {
140 		count++;
141 	}
142 	spin_unlock_bh(&fq->lock);
143 
144 	if (refcount_sub_and_test(count, &fq->refcnt))
145 		inet_frag_destroy(fq);
146 }
147 
148 static void fqdir_rwork_fn(struct work_struct *work)
149 {
150 	struct fqdir *fqdir = container_of(to_rcu_work(work),
151 					   struct fqdir, destroy_rwork);
152 	struct inet_frags *f = fqdir->f;
153 
154 	rhashtable_free_and_destroy(&fqdir->rhashtable, inet_frags_free_cb, NULL);
155 
156 	/* We need to make sure all ongoing call_rcu(..., inet_frag_destroy_rcu)
157 	 * have completed, since they need to dereference fqdir.
158 	 * Would it not be nice to have kfree_rcu_barrier() ? :)
159 	 */
160 	rcu_barrier();
161 
162 	if (refcount_dec_and_test(&f->refcnt))
163 		complete(&f->completion);
164 
165 	kfree(fqdir);
166 }
167 
168 int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net)
169 {
170 	struct fqdir *fqdir = kzalloc(sizeof(*fqdir), GFP_KERNEL);
171 	int res;
172 
173 	if (!fqdir)
174 		return -ENOMEM;
175 	fqdir->f = f;
176 	fqdir->net = net;
177 	res = rhashtable_init(&fqdir->rhashtable, &fqdir->f->rhash_params);
178 	if (res < 0) {
179 		kfree(fqdir);
180 		return res;
181 	}
182 	refcount_inc(&f->refcnt);
183 	*fqdirp = fqdir;
184 	return 0;
185 }
186 EXPORT_SYMBOL(fqdir_init);
187 
188 void fqdir_exit(struct fqdir *fqdir)
189 {
190 	fqdir->high_thresh = 0; /* prevent creation of new frags */
191 
192 	fqdir->dead = true;
193 
194 	/* call_rcu is supposed to provide memory barrier semantics,
195 	 * separating the setting of fqdir->dead with the destruction
196 	 * work.  This implicit barrier is paired with inet_frag_kill().
197 	 */
198 
199 	INIT_RCU_WORK(&fqdir->destroy_rwork, fqdir_rwork_fn);
200 	queue_rcu_work(system_wq, &fqdir->destroy_rwork);
201 
202 }
203 EXPORT_SYMBOL(fqdir_exit);
204 
205 void inet_frag_kill(struct inet_frag_queue *fq)
206 {
207 	if (del_timer(&fq->timer))
208 		refcount_dec(&fq->refcnt);
209 
210 	if (!(fq->flags & INET_FRAG_COMPLETE)) {
211 		struct fqdir *fqdir = fq->fqdir;
212 
213 		fq->flags |= INET_FRAG_COMPLETE;
214 		rcu_read_lock();
215 		/* The RCU read lock provides a memory barrier
216 		 * guaranteeing that if fqdir->dead is false then
217 		 * the hash table destruction will not start until
218 		 * after we unlock.  Paired with inet_frags_exit_net().
219 		 */
220 		if (!fqdir->dead) {
221 			rhashtable_remove_fast(&fqdir->rhashtable, &fq->node,
222 					       fqdir->f->rhash_params);
223 			refcount_dec(&fq->refcnt);
224 		} else {
225 			fq->flags |= INET_FRAG_HASH_DEAD;
226 		}
227 		rcu_read_unlock();
228 	}
229 }
230 EXPORT_SYMBOL(inet_frag_kill);
231 
232 static void inet_frag_destroy_rcu(struct rcu_head *head)
233 {
234 	struct inet_frag_queue *q = container_of(head, struct inet_frag_queue,
235 						 rcu);
236 	struct inet_frags *f = q->fqdir->f;
237 
238 	if (f->destructor)
239 		f->destructor(q);
240 	kmem_cache_free(f->frags_cachep, q);
241 }
242 
243 unsigned int inet_frag_rbtree_purge(struct rb_root *root)
244 {
245 	struct rb_node *p = rb_first(root);
246 	unsigned int sum = 0;
247 
248 	while (p) {
249 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
250 
251 		p = rb_next(p);
252 		rb_erase(&skb->rbnode, root);
253 		while (skb) {
254 			struct sk_buff *next = FRAG_CB(skb)->next_frag;
255 
256 			sum += skb->truesize;
257 			kfree_skb(skb);
258 			skb = next;
259 		}
260 	}
261 	return sum;
262 }
263 EXPORT_SYMBOL(inet_frag_rbtree_purge);
264 
265 void inet_frag_destroy(struct inet_frag_queue *q)
266 {
267 	struct fqdir *fqdir;
268 	unsigned int sum, sum_truesize = 0;
269 	struct inet_frags *f;
270 
271 	WARN_ON(!(q->flags & INET_FRAG_COMPLETE));
272 	WARN_ON(del_timer(&q->timer) != 0);
273 
274 	/* Release all fragment data. */
275 	fqdir = q->fqdir;
276 	f = fqdir->f;
277 	sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments);
278 	sum = sum_truesize + f->qsize;
279 
280 	call_rcu(&q->rcu, inet_frag_destroy_rcu);
281 
282 	sub_frag_mem_limit(fqdir, sum);
283 }
284 EXPORT_SYMBOL(inet_frag_destroy);
285 
286 static struct inet_frag_queue *inet_frag_alloc(struct fqdir *fqdir,
287 					       struct inet_frags *f,
288 					       void *arg)
289 {
290 	struct inet_frag_queue *q;
291 
292 	q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC);
293 	if (!q)
294 		return NULL;
295 
296 	q->fqdir = fqdir;
297 	f->constructor(q, arg);
298 	add_frag_mem_limit(fqdir, f->qsize);
299 
300 	timer_setup(&q->timer, f->frag_expire, 0);
301 	spin_lock_init(&q->lock);
302 	refcount_set(&q->refcnt, 3);
303 
304 	return q;
305 }
306 
307 static struct inet_frag_queue *inet_frag_create(struct fqdir *fqdir,
308 						void *arg,
309 						struct inet_frag_queue **prev)
310 {
311 	struct inet_frags *f = fqdir->f;
312 	struct inet_frag_queue *q;
313 
314 	q = inet_frag_alloc(fqdir, f, arg);
315 	if (!q) {
316 		*prev = ERR_PTR(-ENOMEM);
317 		return NULL;
318 	}
319 	mod_timer(&q->timer, jiffies + fqdir->timeout);
320 
321 	*prev = rhashtable_lookup_get_insert_key(&fqdir->rhashtable, &q->key,
322 						 &q->node, f->rhash_params);
323 	if (*prev) {
324 		q->flags |= INET_FRAG_COMPLETE;
325 		inet_frag_kill(q);
326 		inet_frag_destroy(q);
327 		return NULL;
328 	}
329 	return q;
330 }
331 
332 /* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */
333 struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key)
334 {
335 	struct inet_frag_queue *fq = NULL, *prev;
336 
337 	if (!fqdir->high_thresh || frag_mem_limit(fqdir) > fqdir->high_thresh)
338 		return NULL;
339 
340 	rcu_read_lock();
341 
342 	prev = rhashtable_lookup(&fqdir->rhashtable, key, fqdir->f->rhash_params);
343 	if (!prev)
344 		fq = inet_frag_create(fqdir, key, &prev);
345 	if (prev && !IS_ERR(prev)) {
346 		fq = prev;
347 		if (!refcount_inc_not_zero(&fq->refcnt))
348 			fq = NULL;
349 	}
350 	rcu_read_unlock();
351 	return fq;
352 }
353 EXPORT_SYMBOL(inet_frag_find);
354 
355 int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
356 			   int offset, int end)
357 {
358 	struct sk_buff *last = q->fragments_tail;
359 
360 	/* RFC5722, Section 4, amended by Errata ID : 3089
361 	 *                          When reassembling an IPv6 datagram, if
362 	 *   one or more its constituent fragments is determined to be an
363 	 *   overlapping fragment, the entire datagram (and any constituent
364 	 *   fragments) MUST be silently discarded.
365 	 *
366 	 * Duplicates, however, should be ignored (i.e. skb dropped, but the
367 	 * queue/fragments kept for later reassembly).
368 	 */
369 	if (!last)
370 		fragrun_create(q, skb);  /* First fragment. */
371 	else if (last->ip_defrag_offset + last->len < end) {
372 		/* This is the common case: skb goes to the end. */
373 		/* Detect and discard overlaps. */
374 		if (offset < last->ip_defrag_offset + last->len)
375 			return IPFRAG_OVERLAP;
376 		if (offset == last->ip_defrag_offset + last->len)
377 			fragrun_append_to_last(q, skb);
378 		else
379 			fragrun_create(q, skb);
380 	} else {
381 		/* Binary search. Note that skb can become the first fragment,
382 		 * but not the last (covered above).
383 		 */
384 		struct rb_node **rbn, *parent;
385 
386 		rbn = &q->rb_fragments.rb_node;
387 		do {
388 			struct sk_buff *curr;
389 			int curr_run_end;
390 
391 			parent = *rbn;
392 			curr = rb_to_skb(parent);
393 			curr_run_end = curr->ip_defrag_offset +
394 					FRAG_CB(curr)->frag_run_len;
395 			if (end <= curr->ip_defrag_offset)
396 				rbn = &parent->rb_left;
397 			else if (offset >= curr_run_end)
398 				rbn = &parent->rb_right;
399 			else if (offset >= curr->ip_defrag_offset &&
400 				 end <= curr_run_end)
401 				return IPFRAG_DUP;
402 			else
403 				return IPFRAG_OVERLAP;
404 		} while (*rbn);
405 		/* Here we have parent properly set, and rbn pointing to
406 		 * one of its NULL left/right children. Insert skb.
407 		 */
408 		fragcb_clear(skb);
409 		rb_link_node(&skb->rbnode, parent, rbn);
410 		rb_insert_color(&skb->rbnode, &q->rb_fragments);
411 	}
412 
413 	skb->ip_defrag_offset = offset;
414 
415 	return IPFRAG_OK;
416 }
417 EXPORT_SYMBOL(inet_frag_queue_insert);
418 
419 void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
420 			      struct sk_buff *parent)
421 {
422 	struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments);
423 	struct sk_buff **nextp;
424 	int delta;
425 
426 	if (head != skb) {
427 		fp = skb_clone(skb, GFP_ATOMIC);
428 		if (!fp)
429 			return NULL;
430 		FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
431 		if (RB_EMPTY_NODE(&skb->rbnode))
432 			FRAG_CB(parent)->next_frag = fp;
433 		else
434 			rb_replace_node(&skb->rbnode, &fp->rbnode,
435 					&q->rb_fragments);
436 		if (q->fragments_tail == skb)
437 			q->fragments_tail = fp;
438 		skb_morph(skb, head);
439 		FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
440 		rb_replace_node(&head->rbnode, &skb->rbnode,
441 				&q->rb_fragments);
442 		consume_skb(head);
443 		head = skb;
444 	}
445 	WARN_ON(head->ip_defrag_offset != 0);
446 
447 	delta = -head->truesize;
448 
449 	/* Head of list must not be cloned. */
450 	if (skb_unclone(head, GFP_ATOMIC))
451 		return NULL;
452 
453 	delta += head->truesize;
454 	if (delta)
455 		add_frag_mem_limit(q->fqdir, delta);
456 
457 	/* If the first fragment is fragmented itself, we split
458 	 * it to two chunks: the first with data and paged part
459 	 * and the second, holding only fragments.
460 	 */
461 	if (skb_has_frag_list(head)) {
462 		struct sk_buff *clone;
463 		int i, plen = 0;
464 
465 		clone = alloc_skb(0, GFP_ATOMIC);
466 		if (!clone)
467 			return NULL;
468 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
469 		skb_frag_list_init(head);
470 		for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
471 			plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
472 		clone->data_len = head->data_len - plen;
473 		clone->len = clone->data_len;
474 		head->truesize += clone->truesize;
475 		clone->csum = 0;
476 		clone->ip_summed = head->ip_summed;
477 		add_frag_mem_limit(q->fqdir, clone->truesize);
478 		skb_shinfo(head)->frag_list = clone;
479 		nextp = &clone->next;
480 	} else {
481 		nextp = &skb_shinfo(head)->frag_list;
482 	}
483 
484 	return nextp;
485 }
486 EXPORT_SYMBOL(inet_frag_reasm_prepare);
487 
488 void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
489 			    void *reasm_data)
490 {
491 	struct sk_buff **nextp = (struct sk_buff **)reasm_data;
492 	struct rb_node *rbn;
493 	struct sk_buff *fp;
494 
495 	skb_push(head, head->data - skb_network_header(head));
496 
497 	/* Traverse the tree in order, to build frag_list. */
498 	fp = FRAG_CB(head)->next_frag;
499 	rbn = rb_next(&head->rbnode);
500 	rb_erase(&head->rbnode, &q->rb_fragments);
501 	while (rbn || fp) {
502 		/* fp points to the next sk_buff in the current run;
503 		 * rbn points to the next run.
504 		 */
505 		/* Go through the current run. */
506 		while (fp) {
507 			*nextp = fp;
508 			nextp = &fp->next;
509 			fp->prev = NULL;
510 			memset(&fp->rbnode, 0, sizeof(fp->rbnode));
511 			fp->sk = NULL;
512 			head->data_len += fp->len;
513 			head->len += fp->len;
514 			if (head->ip_summed != fp->ip_summed)
515 				head->ip_summed = CHECKSUM_NONE;
516 			else if (head->ip_summed == CHECKSUM_COMPLETE)
517 				head->csum = csum_add(head->csum, fp->csum);
518 			head->truesize += fp->truesize;
519 			fp = FRAG_CB(fp)->next_frag;
520 		}
521 		/* Move to the next run. */
522 		if (rbn) {
523 			struct rb_node *rbnext = rb_next(rbn);
524 
525 			fp = rb_to_skb(rbn);
526 			rb_erase(rbn, &q->rb_fragments);
527 			rbn = rbnext;
528 		}
529 	}
530 	sub_frag_mem_limit(q->fqdir, head->truesize);
531 
532 	*nextp = NULL;
533 	skb_mark_not_on_list(head);
534 	head->prev = NULL;
535 	head->tstamp = q->stamp;
536 }
537 EXPORT_SYMBOL(inet_frag_reasm_finish);
538 
539 struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q)
540 {
541 	struct sk_buff *head, *skb;
542 
543 	head = skb_rb_first(&q->rb_fragments);
544 	if (!head)
545 		return NULL;
546 	skb = FRAG_CB(head)->next_frag;
547 	if (skb)
548 		rb_replace_node(&head->rbnode, &skb->rbnode,
549 				&q->rb_fragments);
550 	else
551 		rb_erase(&head->rbnode, &q->rb_fragments);
552 	memset(&head->rbnode, 0, sizeof(head->rbnode));
553 	barrier();
554 
555 	if (head == q->fragments_tail)
556 		q->fragments_tail = NULL;
557 
558 	sub_frag_mem_limit(q->fqdir, head->truesize);
559 
560 	return head;
561 }
562 EXPORT_SYMBOL(inet_frag_pull_head);
563