xref: /linux/net/ipv4/inet_fragment.c (revision a5d9265e017f081f0dc133c0e2f45103d027b874)
1 /*
2  * inet fragments management
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  * 		Authors:	Pavel Emelyanov <xemul@openvz.org>
10  *				Started as consolidation of ipv4/ip_fragment.c,
11  *				ipv6/reassembly. and ipv6 nf conntrack reassembly
12  */
13 
14 #include <linux/list.h>
15 #include <linux/spinlock.h>
16 #include <linux/module.h>
17 #include <linux/timer.h>
18 #include <linux/mm.h>
19 #include <linux/random.h>
20 #include <linux/skbuff.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/slab.h>
23 #include <linux/rhashtable.h>
24 
25 #include <net/sock.h>
26 #include <net/inet_frag.h>
27 #include <net/inet_ecn.h>
28 #include <net/ip.h>
29 #include <net/ipv6.h>
30 
31 /* Use skb->cb to track consecutive/adjacent fragments coming at
32  * the end of the queue. Nodes in the rb-tree queue will
33  * contain "runs" of one or more adjacent fragments.
34  *
35  * Invariants:
36  * - next_frag is NULL at the tail of a "run";
37  * - the head of a "run" has the sum of all fragment lengths in frag_run_len.
38  */
39 struct ipfrag_skb_cb {
40 	union {
41 		struct inet_skb_parm	h4;
42 		struct inet6_skb_parm	h6;
43 	};
44 	struct sk_buff		*next_frag;
45 	int			frag_run_len;
46 };
47 
48 #define FRAG_CB(skb)		((struct ipfrag_skb_cb *)((skb)->cb))
49 
50 static void fragcb_clear(struct sk_buff *skb)
51 {
52 	RB_CLEAR_NODE(&skb->rbnode);
53 	FRAG_CB(skb)->next_frag = NULL;
54 	FRAG_CB(skb)->frag_run_len = skb->len;
55 }
56 
57 /* Append skb to the last "run". */
58 static void fragrun_append_to_last(struct inet_frag_queue *q,
59 				   struct sk_buff *skb)
60 {
61 	fragcb_clear(skb);
62 
63 	FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
64 	FRAG_CB(q->fragments_tail)->next_frag = skb;
65 	q->fragments_tail = skb;
66 }
67 
68 /* Create a new "run" with the skb. */
69 static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb)
70 {
71 	BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
72 	fragcb_clear(skb);
73 
74 	if (q->last_run_head)
75 		rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
76 			     &q->last_run_head->rbnode.rb_right);
77 	else
78 		rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
79 	rb_insert_color(&skb->rbnode, &q->rb_fragments);
80 
81 	q->fragments_tail = skb;
82 	q->last_run_head = skb;
83 }
84 
85 /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
86  * Value : 0xff if frame should be dropped.
87  *         0 or INET_ECN_CE value, to be ORed in to final iph->tos field
88  */
89 const u8 ip_frag_ecn_table[16] = {
90 	/* at least one fragment had CE, and others ECT_0 or ECT_1 */
91 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0]			= INET_ECN_CE,
92 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1]			= INET_ECN_CE,
93 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1]	= INET_ECN_CE,
94 
95 	/* invalid combinations : drop frame */
96 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
97 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
98 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
99 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
100 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
101 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
102 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
103 };
104 EXPORT_SYMBOL(ip_frag_ecn_table);
105 
106 int inet_frags_init(struct inet_frags *f)
107 {
108 	f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0,
109 					    NULL);
110 	if (!f->frags_cachep)
111 		return -ENOMEM;
112 
113 	return 0;
114 }
115 EXPORT_SYMBOL(inet_frags_init);
116 
117 void inet_frags_fini(struct inet_frags *f)
118 {
119 	/* We must wait that all inet_frag_destroy_rcu() have completed. */
120 	rcu_barrier();
121 
122 	kmem_cache_destroy(f->frags_cachep);
123 	f->frags_cachep = NULL;
124 }
125 EXPORT_SYMBOL(inet_frags_fini);
126 
127 static void inet_frags_free_cb(void *ptr, void *arg)
128 {
129 	struct inet_frag_queue *fq = ptr;
130 
131 	/* If we can not cancel the timer, it means this frag_queue
132 	 * is already disappearing, we have nothing to do.
133 	 * Otherwise, we own a refcount until the end of this function.
134 	 */
135 	if (!del_timer(&fq->timer))
136 		return;
137 
138 	spin_lock_bh(&fq->lock);
139 	if (!(fq->flags & INET_FRAG_COMPLETE)) {
140 		fq->flags |= INET_FRAG_COMPLETE;
141 		refcount_dec(&fq->refcnt);
142 	}
143 	spin_unlock_bh(&fq->lock);
144 
145 	inet_frag_put(fq);
146 }
147 
148 void inet_frags_exit_net(struct netns_frags *nf)
149 {
150 	nf->high_thresh = 0; /* prevent creation of new frags */
151 
152 	rhashtable_free_and_destroy(&nf->rhashtable, inet_frags_free_cb, NULL);
153 }
154 EXPORT_SYMBOL(inet_frags_exit_net);
155 
156 void inet_frag_kill(struct inet_frag_queue *fq)
157 {
158 	if (del_timer(&fq->timer))
159 		refcount_dec(&fq->refcnt);
160 
161 	if (!(fq->flags & INET_FRAG_COMPLETE)) {
162 		struct netns_frags *nf = fq->net;
163 
164 		fq->flags |= INET_FRAG_COMPLETE;
165 		rhashtable_remove_fast(&nf->rhashtable, &fq->node, nf->f->rhash_params);
166 		refcount_dec(&fq->refcnt);
167 	}
168 }
169 EXPORT_SYMBOL(inet_frag_kill);
170 
171 static void inet_frag_destroy_rcu(struct rcu_head *head)
172 {
173 	struct inet_frag_queue *q = container_of(head, struct inet_frag_queue,
174 						 rcu);
175 	struct inet_frags *f = q->net->f;
176 
177 	if (f->destructor)
178 		f->destructor(q);
179 	kmem_cache_free(f->frags_cachep, q);
180 }
181 
182 unsigned int inet_frag_rbtree_purge(struct rb_root *root)
183 {
184 	struct rb_node *p = rb_first(root);
185 	unsigned int sum = 0;
186 
187 	while (p) {
188 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
189 
190 		p = rb_next(p);
191 		rb_erase(&skb->rbnode, root);
192 		while (skb) {
193 			struct sk_buff *next = FRAG_CB(skb)->next_frag;
194 
195 			sum += skb->truesize;
196 			kfree_skb(skb);
197 			skb = next;
198 		}
199 	}
200 	return sum;
201 }
202 EXPORT_SYMBOL(inet_frag_rbtree_purge);
203 
204 void inet_frag_destroy(struct inet_frag_queue *q)
205 {
206 	struct sk_buff *fp;
207 	struct netns_frags *nf;
208 	unsigned int sum, sum_truesize = 0;
209 	struct inet_frags *f;
210 
211 	WARN_ON(!(q->flags & INET_FRAG_COMPLETE));
212 	WARN_ON(del_timer(&q->timer) != 0);
213 
214 	/* Release all fragment data. */
215 	fp = q->fragments;
216 	nf = q->net;
217 	f = nf->f;
218 	if (fp) {
219 		do {
220 			struct sk_buff *xp = fp->next;
221 
222 			sum_truesize += fp->truesize;
223 			kfree_skb(fp);
224 			fp = xp;
225 		} while (fp);
226 	} else {
227 		sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments);
228 	}
229 	sum = sum_truesize + f->qsize;
230 
231 	call_rcu(&q->rcu, inet_frag_destroy_rcu);
232 
233 	sub_frag_mem_limit(nf, sum);
234 }
235 EXPORT_SYMBOL(inet_frag_destroy);
236 
237 static struct inet_frag_queue *inet_frag_alloc(struct netns_frags *nf,
238 					       struct inet_frags *f,
239 					       void *arg)
240 {
241 	struct inet_frag_queue *q;
242 
243 	q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC);
244 	if (!q)
245 		return NULL;
246 
247 	q->net = nf;
248 	f->constructor(q, arg);
249 	add_frag_mem_limit(nf, f->qsize);
250 
251 	timer_setup(&q->timer, f->frag_expire, 0);
252 	spin_lock_init(&q->lock);
253 	refcount_set(&q->refcnt, 3);
254 
255 	return q;
256 }
257 
258 static struct inet_frag_queue *inet_frag_create(struct netns_frags *nf,
259 						void *arg,
260 						struct inet_frag_queue **prev)
261 {
262 	struct inet_frags *f = nf->f;
263 	struct inet_frag_queue *q;
264 
265 	q = inet_frag_alloc(nf, f, arg);
266 	if (!q) {
267 		*prev = ERR_PTR(-ENOMEM);
268 		return NULL;
269 	}
270 	mod_timer(&q->timer, jiffies + nf->timeout);
271 
272 	*prev = rhashtable_lookup_get_insert_key(&nf->rhashtable, &q->key,
273 						 &q->node, f->rhash_params);
274 	if (*prev) {
275 		q->flags |= INET_FRAG_COMPLETE;
276 		inet_frag_kill(q);
277 		inet_frag_destroy(q);
278 		return NULL;
279 	}
280 	return q;
281 }
282 
283 /* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */
284 struct inet_frag_queue *inet_frag_find(struct netns_frags *nf, void *key)
285 {
286 	struct inet_frag_queue *fq = NULL, *prev;
287 
288 	if (!nf->high_thresh || frag_mem_limit(nf) > nf->high_thresh)
289 		return NULL;
290 
291 	rcu_read_lock();
292 
293 	prev = rhashtable_lookup(&nf->rhashtable, key, nf->f->rhash_params);
294 	if (!prev)
295 		fq = inet_frag_create(nf, key, &prev);
296 	if (prev && !IS_ERR(prev)) {
297 		fq = prev;
298 		if (!refcount_inc_not_zero(&fq->refcnt))
299 			fq = NULL;
300 	}
301 	rcu_read_unlock();
302 	return fq;
303 }
304 EXPORT_SYMBOL(inet_frag_find);
305 
306 int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
307 			   int offset, int end)
308 {
309 	struct sk_buff *last = q->fragments_tail;
310 
311 	/* RFC5722, Section 4, amended by Errata ID : 3089
312 	 *                          When reassembling an IPv6 datagram, if
313 	 *   one or more its constituent fragments is determined to be an
314 	 *   overlapping fragment, the entire datagram (and any constituent
315 	 *   fragments) MUST be silently discarded.
316 	 *
317 	 * Duplicates, however, should be ignored (i.e. skb dropped, but the
318 	 * queue/fragments kept for later reassembly).
319 	 */
320 	if (!last)
321 		fragrun_create(q, skb);  /* First fragment. */
322 	else if (last->ip_defrag_offset + last->len < end) {
323 		/* This is the common case: skb goes to the end. */
324 		/* Detect and discard overlaps. */
325 		if (offset < last->ip_defrag_offset + last->len)
326 			return IPFRAG_OVERLAP;
327 		if (offset == last->ip_defrag_offset + last->len)
328 			fragrun_append_to_last(q, skb);
329 		else
330 			fragrun_create(q, skb);
331 	} else {
332 		/* Binary search. Note that skb can become the first fragment,
333 		 * but not the last (covered above).
334 		 */
335 		struct rb_node **rbn, *parent;
336 
337 		rbn = &q->rb_fragments.rb_node;
338 		do {
339 			struct sk_buff *curr;
340 			int curr_run_end;
341 
342 			parent = *rbn;
343 			curr = rb_to_skb(parent);
344 			curr_run_end = curr->ip_defrag_offset +
345 					FRAG_CB(curr)->frag_run_len;
346 			if (end <= curr->ip_defrag_offset)
347 				rbn = &parent->rb_left;
348 			else if (offset >= curr_run_end)
349 				rbn = &parent->rb_right;
350 			else if (offset >= curr->ip_defrag_offset &&
351 				 end <= curr_run_end)
352 				return IPFRAG_DUP;
353 			else
354 				return IPFRAG_OVERLAP;
355 		} while (*rbn);
356 		/* Here we have parent properly set, and rbn pointing to
357 		 * one of its NULL left/right children. Insert skb.
358 		 */
359 		fragcb_clear(skb);
360 		rb_link_node(&skb->rbnode, parent, rbn);
361 		rb_insert_color(&skb->rbnode, &q->rb_fragments);
362 	}
363 
364 	skb->ip_defrag_offset = offset;
365 
366 	return IPFRAG_OK;
367 }
368 EXPORT_SYMBOL(inet_frag_queue_insert);
369 
370 void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
371 			      struct sk_buff *parent)
372 {
373 	struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments);
374 	struct sk_buff **nextp;
375 	int delta;
376 
377 	if (head != skb) {
378 		fp = skb_clone(skb, GFP_ATOMIC);
379 		if (!fp)
380 			return NULL;
381 		FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
382 		if (RB_EMPTY_NODE(&skb->rbnode))
383 			FRAG_CB(parent)->next_frag = fp;
384 		else
385 			rb_replace_node(&skb->rbnode, &fp->rbnode,
386 					&q->rb_fragments);
387 		if (q->fragments_tail == skb)
388 			q->fragments_tail = fp;
389 		skb_morph(skb, head);
390 		FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
391 		rb_replace_node(&head->rbnode, &skb->rbnode,
392 				&q->rb_fragments);
393 		consume_skb(head);
394 		head = skb;
395 	}
396 	WARN_ON(head->ip_defrag_offset != 0);
397 
398 	delta = -head->truesize;
399 
400 	/* Head of list must not be cloned. */
401 	if (skb_unclone(head, GFP_ATOMIC))
402 		return NULL;
403 
404 	delta += head->truesize;
405 	if (delta)
406 		add_frag_mem_limit(q->net, delta);
407 
408 	/* If the first fragment is fragmented itself, we split
409 	 * it to two chunks: the first with data and paged part
410 	 * and the second, holding only fragments.
411 	 */
412 	if (skb_has_frag_list(head)) {
413 		struct sk_buff *clone;
414 		int i, plen = 0;
415 
416 		clone = alloc_skb(0, GFP_ATOMIC);
417 		if (!clone)
418 			return NULL;
419 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
420 		skb_frag_list_init(head);
421 		for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
422 			plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
423 		clone->data_len = head->data_len - plen;
424 		clone->len = clone->data_len;
425 		head->truesize += clone->truesize;
426 		clone->csum = 0;
427 		clone->ip_summed = head->ip_summed;
428 		add_frag_mem_limit(q->net, clone->truesize);
429 		skb_shinfo(head)->frag_list = clone;
430 		nextp = &clone->next;
431 	} else {
432 		nextp = &skb_shinfo(head)->frag_list;
433 	}
434 
435 	return nextp;
436 }
437 EXPORT_SYMBOL(inet_frag_reasm_prepare);
438 
439 void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
440 			    void *reasm_data)
441 {
442 	struct sk_buff **nextp = (struct sk_buff **)reasm_data;
443 	struct rb_node *rbn;
444 	struct sk_buff *fp;
445 
446 	skb_push(head, head->data - skb_network_header(head));
447 
448 	/* Traverse the tree in order, to build frag_list. */
449 	fp = FRAG_CB(head)->next_frag;
450 	rbn = rb_next(&head->rbnode);
451 	rb_erase(&head->rbnode, &q->rb_fragments);
452 	while (rbn || fp) {
453 		/* fp points to the next sk_buff in the current run;
454 		 * rbn points to the next run.
455 		 */
456 		/* Go through the current run. */
457 		while (fp) {
458 			*nextp = fp;
459 			nextp = &fp->next;
460 			fp->prev = NULL;
461 			memset(&fp->rbnode, 0, sizeof(fp->rbnode));
462 			fp->sk = NULL;
463 			head->data_len += fp->len;
464 			head->len += fp->len;
465 			if (head->ip_summed != fp->ip_summed)
466 				head->ip_summed = CHECKSUM_NONE;
467 			else if (head->ip_summed == CHECKSUM_COMPLETE)
468 				head->csum = csum_add(head->csum, fp->csum);
469 			head->truesize += fp->truesize;
470 			fp = FRAG_CB(fp)->next_frag;
471 		}
472 		/* Move to the next run. */
473 		if (rbn) {
474 			struct rb_node *rbnext = rb_next(rbn);
475 
476 			fp = rb_to_skb(rbn);
477 			rb_erase(rbn, &q->rb_fragments);
478 			rbn = rbnext;
479 		}
480 	}
481 	sub_frag_mem_limit(q->net, head->truesize);
482 
483 	*nextp = NULL;
484 	skb_mark_not_on_list(head);
485 	head->prev = NULL;
486 	head->tstamp = q->stamp;
487 }
488 EXPORT_SYMBOL(inet_frag_reasm_finish);
489 
490 struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q)
491 {
492 	struct sk_buff *head;
493 
494 	if (q->fragments) {
495 		head = q->fragments;
496 		q->fragments = head->next;
497 	} else {
498 		struct sk_buff *skb;
499 
500 		head = skb_rb_first(&q->rb_fragments);
501 		if (!head)
502 			return NULL;
503 		skb = FRAG_CB(head)->next_frag;
504 		if (skb)
505 			rb_replace_node(&head->rbnode, &skb->rbnode,
506 					&q->rb_fragments);
507 		else
508 			rb_erase(&head->rbnode, &q->rb_fragments);
509 		memset(&head->rbnode, 0, sizeof(head->rbnode));
510 		barrier();
511 	}
512 	if (head == q->fragments_tail)
513 		q->fragments_tail = NULL;
514 
515 	sub_frag_mem_limit(q->net, head->truesize);
516 
517 	return head;
518 }
519 EXPORT_SYMBOL(inet_frag_pull_head);
520