xref: /linux/net/ipv4/inet_connection_sock.c (revision c5fbdf0ba7c1a6ed52dc3650bee73ce00c86cf7f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Support for INET connection oriented protocols.
8  *
9  * Authors:	See the TCP sources
10  */
11 
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14 
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25 
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *				if IPv6 only, and any IPv4 addresses
29  *				if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *				IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *				and 0.0.0.0 equals to 0.0.0.0 only
33  */
34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 				 const struct in6_addr *sk2_rcv_saddr6,
36 				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 				 bool sk1_ipv6only, bool sk2_ipv6only,
38 				 bool match_sk1_wildcard,
39 				 bool match_sk2_wildcard)
40 {
41 	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43 
44 	/* if both are mapped, treat as IPv4 */
45 	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 		if (!sk2_ipv6only) {
47 			if (sk1_rcv_saddr == sk2_rcv_saddr)
48 				return true;
49 			return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 				(match_sk2_wildcard && !sk2_rcv_saddr);
51 		}
52 		return false;
53 	}
54 
55 	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 		return true;
57 
58 	if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 		return true;
61 
62 	if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 		return true;
65 
66 	if (sk2_rcv_saddr6 &&
67 	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 		return true;
69 
70 	return false;
71 }
72 #endif
73 
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *				0.0.0.0 only equals to 0.0.0.0
77  */
78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 				 bool sk2_ipv6only, bool match_sk1_wildcard,
80 				 bool match_sk2_wildcard)
81 {
82 	if (!sk2_ipv6only) {
83 		if (sk1_rcv_saddr == sk2_rcv_saddr)
84 			return true;
85 		return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 			(match_sk2_wildcard && !sk2_rcv_saddr);
87 	}
88 	return false;
89 }
90 
91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 			  bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 	if (sk->sk_family == AF_INET6)
96 		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 					    inet6_rcv_saddr(sk2),
98 					    sk->sk_rcv_saddr,
99 					    sk2->sk_rcv_saddr,
100 					    ipv6_only_sock(sk),
101 					    ipv6_only_sock(sk2),
102 					    match_wildcard,
103 					    match_wildcard);
104 #endif
105 	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 				    ipv6_only_sock(sk2), match_wildcard,
107 				    match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110 
111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 	if (sk->sk_family == AF_INET6)
115 		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 	return !sk->sk_rcv_saddr;
118 }
119 
120 /**
121  *	inet_sk_get_local_port_range - fetch ephemeral ports range
122  *	@sk: socket
123  *	@low: pointer to low port
124  *	@high: pointer to high port
125  *
126  *	Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127  *	Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128  *	Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129  */
130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131 {
132 	int lo, hi, sk_lo, sk_hi;
133 	bool local_range = false;
134 	u32 sk_range;
135 
136 	inet_get_local_port_range(sock_net(sk), &lo, &hi);
137 
138 	sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139 	if (unlikely(sk_range)) {
140 		sk_lo = sk_range & 0xffff;
141 		sk_hi = sk_range >> 16;
142 
143 		if (lo <= sk_lo && sk_lo <= hi)
144 			lo = sk_lo;
145 		if (lo <= sk_hi && sk_hi <= hi)
146 			hi = sk_hi;
147 		local_range = true;
148 	}
149 
150 	*low = lo;
151 	*high = hi;
152 	return local_range;
153 }
154 EXPORT_SYMBOL(inet_sk_get_local_port_range);
155 
156 static bool inet_use_bhash2_on_bind(const struct sock *sk)
157 {
158 #if IS_ENABLED(CONFIG_IPV6)
159 	if (sk->sk_family == AF_INET6) {
160 		if (ipv6_addr_any(&sk->sk_v6_rcv_saddr))
161 			return false;
162 
163 		if (!ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
164 			return true;
165 	}
166 #endif
167 	return sk->sk_rcv_saddr != htonl(INADDR_ANY);
168 }
169 
170 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
171 			       kuid_t uid, bool relax,
172 			       bool reuseport_cb_ok, bool reuseport_ok)
173 {
174 	int bound_dev_if2;
175 
176 	if (sk == sk2)
177 		return false;
178 
179 	bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
180 
181 	if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
182 	    sk->sk_bound_dev_if == bound_dev_if2) {
183 		if (sk->sk_reuse && sk2->sk_reuse &&
184 		    sk2->sk_state != TCP_LISTEN) {
185 			if (!relax || (!reuseport_ok && sk->sk_reuseport &&
186 				       sk2->sk_reuseport && reuseport_cb_ok &&
187 				       (sk2->sk_state == TCP_TIME_WAIT ||
188 					uid_eq(uid, sk_uid(sk2)))))
189 				return true;
190 		} else if (!reuseport_ok || !sk->sk_reuseport ||
191 			   !sk2->sk_reuseport || !reuseport_cb_ok ||
192 			   (sk2->sk_state != TCP_TIME_WAIT &&
193 			    !uid_eq(uid, sk_uid(sk2)))) {
194 			return true;
195 		}
196 	}
197 	return false;
198 }
199 
200 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
201 				   kuid_t uid, bool relax,
202 				   bool reuseport_cb_ok, bool reuseport_ok)
203 {
204 	if (ipv6_only_sock(sk2)) {
205 		if (sk->sk_family == AF_INET)
206 			return false;
207 
208 #if IS_ENABLED(CONFIG_IPV6)
209 		if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
210 			return false;
211 #endif
212 	}
213 
214 	return inet_bind_conflict(sk, sk2, uid, relax,
215 				  reuseport_cb_ok, reuseport_ok);
216 }
217 
218 static bool inet_bhash2_conflict(const struct sock *sk,
219 				 const struct inet_bind2_bucket *tb2,
220 				 kuid_t uid,
221 				 bool relax, bool reuseport_cb_ok,
222 				 bool reuseport_ok)
223 {
224 	struct sock *sk2;
225 
226 	sk_for_each_bound(sk2, &tb2->owners) {
227 		if (__inet_bhash2_conflict(sk, sk2, uid, relax,
228 					   reuseport_cb_ok, reuseport_ok))
229 			return true;
230 	}
231 
232 	return false;
233 }
234 
235 #define sk_for_each_bound_bhash(__sk, __tb2, __tb)			\
236 	hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node)	\
237 		sk_for_each_bound((__sk), &(__tb2)->owners)
238 
239 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
240 static int inet_csk_bind_conflict(const struct sock *sk,
241 				  const struct inet_bind_bucket *tb,
242 				  const struct inet_bind2_bucket *tb2, /* may be null */
243 				  bool relax, bool reuseport_ok)
244 {
245 	struct sock_reuseport *reuseport_cb;
246 	kuid_t uid = sk_uid(sk);
247 	bool reuseport_cb_ok;
248 	struct sock *sk2;
249 
250 	rcu_read_lock();
251 	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
252 	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
253 	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
254 	rcu_read_unlock();
255 
256 	/* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
257 	 * ipv4) should have been checked already. We need to do these two
258 	 * checks separately because their spinlocks have to be acquired/released
259 	 * independently of each other, to prevent possible deadlocks
260 	 */
261 	if (inet_use_bhash2_on_bind(sk))
262 		return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
263 						   reuseport_cb_ok, reuseport_ok);
264 
265 	/* Unlike other sk lookup places we do not check
266 	 * for sk_net here, since _all_ the socks listed
267 	 * in tb->owners and tb2->owners list belong
268 	 * to the same net - the one this bucket belongs to.
269 	 */
270 	sk_for_each_bound_bhash(sk2, tb2, tb) {
271 		if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
272 			continue;
273 
274 		if (inet_rcv_saddr_equal(sk, sk2, true))
275 			return true;
276 	}
277 
278 	return false;
279 }
280 
281 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
282  * INADDR_ANY (if ipv4) socket.
283  *
284  * Caller must hold bhash hashbucket lock with local bh disabled, to protect
285  * against concurrent binds on the port for addr any
286  */
287 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
288 					  bool relax, bool reuseport_ok)
289 {
290 	const struct net *net = sock_net(sk);
291 	struct sock_reuseport *reuseport_cb;
292 	struct inet_bind_hashbucket *head2;
293 	struct inet_bind2_bucket *tb2;
294 	kuid_t uid = sk_uid(sk);
295 	bool conflict = false;
296 	bool reuseport_cb_ok;
297 
298 	rcu_read_lock();
299 	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
300 	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
301 	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
302 	rcu_read_unlock();
303 
304 	head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
305 
306 	spin_lock(&head2->lock);
307 
308 	inet_bind_bucket_for_each(tb2, &head2->chain) {
309 		if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
310 			continue;
311 
312 		if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,	reuseport_ok))
313 			continue;
314 
315 		conflict = true;
316 		break;
317 	}
318 
319 	spin_unlock(&head2->lock);
320 
321 	return conflict;
322 }
323 
324 /*
325  * Find an open port number for the socket.  Returns with the
326  * inet_bind_hashbucket locks held if successful.
327  */
328 static struct inet_bind_hashbucket *
329 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
330 			struct inet_bind2_bucket **tb2_ret,
331 			struct inet_bind_hashbucket **head2_ret, int *port_ret)
332 {
333 	struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
334 	int i, low, high, attempt_half, port, l3mdev;
335 	struct inet_bind_hashbucket *head, *head2;
336 	struct net *net = sock_net(sk);
337 	struct inet_bind2_bucket *tb2;
338 	struct inet_bind_bucket *tb;
339 	u32 remaining, offset;
340 	bool relax = false;
341 
342 	l3mdev = inet_sk_bound_l3mdev(sk);
343 ports_exhausted:
344 	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
345 other_half_scan:
346 	inet_sk_get_local_port_range(sk, &low, &high);
347 	high++; /* [32768, 60999] -> [32768, 61000[ */
348 	if (high - low < 4)
349 		attempt_half = 0;
350 	if (attempt_half) {
351 		int half = low + (((high - low) >> 2) << 1);
352 
353 		if (attempt_half == 1)
354 			high = half;
355 		else
356 			low = half;
357 	}
358 	remaining = high - low;
359 	if (likely(remaining > 1))
360 		remaining &= ~1U;
361 
362 	offset = get_random_u32_below(remaining);
363 	/* __inet_hash_connect() favors ports having @low parity
364 	 * We do the opposite to not pollute connect() users.
365 	 */
366 	offset |= 1U;
367 
368 other_parity_scan:
369 	port = low + offset;
370 	for (i = 0; i < remaining; i += 2, port += 2) {
371 		if (unlikely(port >= high))
372 			port -= remaining;
373 		if (inet_is_local_reserved_port(net, port))
374 			continue;
375 		head = &hinfo->bhash[inet_bhashfn(net, port,
376 						  hinfo->bhash_size)];
377 		spin_lock_bh(&head->lock);
378 		if (inet_use_bhash2_on_bind(sk)) {
379 			if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
380 				goto next_port;
381 		}
382 
383 		head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
384 		spin_lock(&head2->lock);
385 		tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
386 		inet_bind_bucket_for_each(tb, &head->chain)
387 			if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
388 				if (!inet_csk_bind_conflict(sk, tb, tb2,
389 							    relax, false))
390 					goto success;
391 				spin_unlock(&head2->lock);
392 				goto next_port;
393 			}
394 		tb = NULL;
395 		goto success;
396 next_port:
397 		spin_unlock_bh(&head->lock);
398 		cond_resched();
399 	}
400 
401 	offset--;
402 	if (!(offset & 1))
403 		goto other_parity_scan;
404 
405 	if (attempt_half == 1) {
406 		/* OK we now try the upper half of the range */
407 		attempt_half = 2;
408 		goto other_half_scan;
409 	}
410 
411 	if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
412 		/* We still have a chance to connect to different destinations */
413 		relax = true;
414 		goto ports_exhausted;
415 	}
416 	return NULL;
417 success:
418 	*port_ret = port;
419 	*tb_ret = tb;
420 	*tb2_ret = tb2;
421 	*head2_ret = head2;
422 	return head;
423 }
424 
425 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
426 				     struct sock *sk)
427 {
428 	if (tb->fastreuseport <= 0)
429 		return 0;
430 	if (!sk->sk_reuseport)
431 		return 0;
432 	if (rcu_access_pointer(sk->sk_reuseport_cb))
433 		return 0;
434 	if (!uid_eq(tb->fastuid, sk_uid(sk)))
435 		return 0;
436 	/* We only need to check the rcv_saddr if this tb was once marked
437 	 * without fastreuseport and then was reset, as we can only know that
438 	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
439 	 * owners list.
440 	 */
441 	if (tb->fastreuseport == FASTREUSEPORT_ANY)
442 		return 1;
443 #if IS_ENABLED(CONFIG_IPV6)
444 	if (tb->fast_sk_family == AF_INET6)
445 		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
446 					    inet6_rcv_saddr(sk),
447 					    tb->fast_rcv_saddr,
448 					    sk->sk_rcv_saddr,
449 					    tb->fast_ipv6_only,
450 					    ipv6_only_sock(sk), true, false);
451 #endif
452 	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
453 				    ipv6_only_sock(sk), true, false);
454 }
455 
456 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
457 			       struct sock *sk)
458 {
459 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
460 
461 	if (hlist_empty(&tb->bhash2)) {
462 		tb->fastreuse = reuse;
463 		if (sk->sk_reuseport) {
464 			tb->fastreuseport = FASTREUSEPORT_ANY;
465 			tb->fastuid = sk_uid(sk);
466 			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
467 			tb->fast_ipv6_only = ipv6_only_sock(sk);
468 			tb->fast_sk_family = sk->sk_family;
469 #if IS_ENABLED(CONFIG_IPV6)
470 			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
471 #endif
472 		} else {
473 			tb->fastreuseport = 0;
474 		}
475 	} else {
476 		if (!reuse)
477 			tb->fastreuse = 0;
478 		if (sk->sk_reuseport) {
479 			/* We didn't match or we don't have fastreuseport set on
480 			 * the tb, but we have sk_reuseport set on this socket
481 			 * and we know that there are no bind conflicts with
482 			 * this socket in this tb, so reset our tb's reuseport
483 			 * settings so that any subsequent sockets that match
484 			 * our current socket will be put on the fast path.
485 			 *
486 			 * If we reset we need to set FASTREUSEPORT_STRICT so we
487 			 * do extra checking for all subsequent sk_reuseport
488 			 * socks.
489 			 */
490 			if (!sk_reuseport_match(tb, sk)) {
491 				tb->fastreuseport = FASTREUSEPORT_STRICT;
492 				tb->fastuid = sk_uid(sk);
493 				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
494 				tb->fast_ipv6_only = ipv6_only_sock(sk);
495 				tb->fast_sk_family = sk->sk_family;
496 #if IS_ENABLED(CONFIG_IPV6)
497 				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
498 #endif
499 			}
500 		} else {
501 			tb->fastreuseport = 0;
502 		}
503 	}
504 }
505 
506 /* Obtain a reference to a local port for the given sock,
507  * if snum is zero it means select any available local port.
508  * We try to allocate an odd port (and leave even ports for connect())
509  */
510 int inet_csk_get_port(struct sock *sk, unsigned short snum)
511 {
512 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
513 	bool found_port = false, check_bind_conflict = true;
514 	bool bhash_created = false, bhash2_created = false;
515 	struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
516 	int ret = -EADDRINUSE, port = snum, l3mdev;
517 	struct inet_bind_hashbucket *head, *head2;
518 	struct inet_bind2_bucket *tb2 = NULL;
519 	struct inet_bind_bucket *tb = NULL;
520 	bool head2_lock_acquired = false;
521 	struct net *net = sock_net(sk);
522 
523 	l3mdev = inet_sk_bound_l3mdev(sk);
524 
525 	if (!port) {
526 		head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
527 		if (!head)
528 			return ret;
529 
530 		head2_lock_acquired = true;
531 
532 		if (tb && tb2)
533 			goto success;
534 		found_port = true;
535 	} else {
536 		head = &hinfo->bhash[inet_bhashfn(net, port,
537 						  hinfo->bhash_size)];
538 		spin_lock_bh(&head->lock);
539 		inet_bind_bucket_for_each(tb, &head->chain)
540 			if (inet_bind_bucket_match(tb, net, port, l3mdev))
541 				break;
542 	}
543 
544 	if (!tb) {
545 		tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
546 					     head, port, l3mdev);
547 		if (!tb)
548 			goto fail_unlock;
549 		bhash_created = true;
550 	}
551 
552 	if (!found_port) {
553 		if (!hlist_empty(&tb->bhash2)) {
554 			if (sk->sk_reuse == SK_FORCE_REUSE ||
555 			    (tb->fastreuse > 0 && reuse) ||
556 			    sk_reuseport_match(tb, sk))
557 				check_bind_conflict = false;
558 		}
559 
560 		if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
561 			if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
562 				goto fail_unlock;
563 		}
564 
565 		head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
566 		spin_lock(&head2->lock);
567 		head2_lock_acquired = true;
568 		tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
569 	}
570 
571 	if (!tb2) {
572 		tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
573 					       net, head2, tb, sk);
574 		if (!tb2)
575 			goto fail_unlock;
576 		bhash2_created = true;
577 	}
578 
579 	if (!found_port && check_bind_conflict) {
580 		if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
581 			goto fail_unlock;
582 	}
583 
584 success:
585 	inet_csk_update_fastreuse(tb, sk);
586 
587 	if (!inet_csk(sk)->icsk_bind_hash)
588 		inet_bind_hash(sk, tb, tb2, port);
589 	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
590 	WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
591 	ret = 0;
592 
593 fail_unlock:
594 	if (ret) {
595 		if (bhash2_created)
596 			inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
597 		if (bhash_created)
598 			inet_bind_bucket_destroy(tb);
599 	}
600 	if (head2_lock_acquired)
601 		spin_unlock(&head2->lock);
602 	spin_unlock_bh(&head->lock);
603 	return ret;
604 }
605 EXPORT_SYMBOL_GPL(inet_csk_get_port);
606 
607 /*
608  * Wait for an incoming connection, avoid race conditions. This must be called
609  * with the socket locked.
610  */
611 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
612 {
613 	struct inet_connection_sock *icsk = inet_csk(sk);
614 	DEFINE_WAIT(wait);
615 	int err;
616 
617 	/*
618 	 * True wake-one mechanism for incoming connections: only
619 	 * one process gets woken up, not the 'whole herd'.
620 	 * Since we do not 'race & poll' for established sockets
621 	 * anymore, the common case will execute the loop only once.
622 	 *
623 	 * Subtle issue: "add_wait_queue_exclusive()" will be added
624 	 * after any current non-exclusive waiters, and we know that
625 	 * it will always _stay_ after any new non-exclusive waiters
626 	 * because all non-exclusive waiters are added at the
627 	 * beginning of the wait-queue. As such, it's ok to "drop"
628 	 * our exclusiveness temporarily when we get woken up without
629 	 * having to remove and re-insert us on the wait queue.
630 	 */
631 	for (;;) {
632 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
633 					  TASK_INTERRUPTIBLE);
634 		release_sock(sk);
635 		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
636 			timeo = schedule_timeout(timeo);
637 		sched_annotate_sleep();
638 		lock_sock(sk);
639 		err = 0;
640 		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
641 			break;
642 		err = -EINVAL;
643 		if (sk->sk_state != TCP_LISTEN)
644 			break;
645 		err = sock_intr_errno(timeo);
646 		if (signal_pending(current))
647 			break;
648 		err = -EAGAIN;
649 		if (!timeo)
650 			break;
651 	}
652 	finish_wait(sk_sleep(sk), &wait);
653 	return err;
654 }
655 
656 /*
657  * This will accept the next outstanding connection.
658  */
659 struct sock *inet_csk_accept(struct sock *sk, struct proto_accept_arg *arg)
660 {
661 	struct inet_connection_sock *icsk = inet_csk(sk);
662 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
663 	struct request_sock *req;
664 	struct sock *newsk;
665 	int error;
666 
667 	lock_sock(sk);
668 
669 	/* We need to make sure that this socket is listening,
670 	 * and that it has something pending.
671 	 */
672 	error = -EINVAL;
673 	if (sk->sk_state != TCP_LISTEN)
674 		goto out_err;
675 
676 	/* Find already established connection */
677 	if (reqsk_queue_empty(queue)) {
678 		long timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK);
679 
680 		/* If this is a non blocking socket don't sleep */
681 		error = -EAGAIN;
682 		if (!timeo)
683 			goto out_err;
684 
685 		error = inet_csk_wait_for_connect(sk, timeo);
686 		if (error)
687 			goto out_err;
688 	}
689 	req = reqsk_queue_remove(queue, sk);
690 	arg->is_empty = reqsk_queue_empty(queue);
691 	newsk = req->sk;
692 
693 	if (sk->sk_protocol == IPPROTO_TCP &&
694 	    tcp_rsk(req)->tfo_listener) {
695 		spin_lock_bh(&queue->fastopenq.lock);
696 		if (tcp_rsk(req)->tfo_listener) {
697 			/* We are still waiting for the final ACK from 3WHS
698 			 * so can't free req now. Instead, we set req->sk to
699 			 * NULL to signify that the child socket is taken
700 			 * so reqsk_fastopen_remove() will free the req
701 			 * when 3WHS finishes (or is aborted).
702 			 */
703 			req->sk = NULL;
704 			req = NULL;
705 		}
706 		spin_unlock_bh(&queue->fastopenq.lock);
707 	}
708 
709 out:
710 	release_sock(sk);
711 	if (newsk && mem_cgroup_sockets_enabled) {
712 		gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL;
713 		int amt = 0;
714 
715 		/* atomically get the memory usage, set and charge the
716 		 * newsk->sk_memcg.
717 		 */
718 		lock_sock(newsk);
719 
720 		mem_cgroup_sk_alloc(newsk);
721 		if (newsk->sk_memcg) {
722 			/* The socket has not been accepted yet, no need
723 			 * to look at newsk->sk_wmem_queued.
724 			 */
725 			amt = sk_mem_pages(newsk->sk_forward_alloc +
726 					   atomic_read(&newsk->sk_rmem_alloc));
727 		}
728 
729 		if (amt)
730 			mem_cgroup_charge_skmem(newsk->sk_memcg, amt, gfp);
731 		kmem_cache_charge(newsk, gfp);
732 
733 		release_sock(newsk);
734 	}
735 	if (req)
736 		reqsk_put(req);
737 
738 	if (newsk)
739 		inet_init_csk_locks(newsk);
740 
741 	return newsk;
742 out_err:
743 	newsk = NULL;
744 	req = NULL;
745 	arg->err = error;
746 	goto out;
747 }
748 EXPORT_SYMBOL(inet_csk_accept);
749 
750 /*
751  * Using different timers for retransmit, delayed acks and probes
752  * We may wish use just one timer maintaining a list of expire jiffies
753  * to optimize.
754  */
755 void inet_csk_init_xmit_timers(struct sock *sk,
756 			       void (*retransmit_handler)(struct timer_list *t),
757 			       void (*delack_handler)(struct timer_list *t),
758 			       void (*keepalive_handler)(struct timer_list *t))
759 {
760 	struct inet_connection_sock *icsk = inet_csk(sk);
761 
762 	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
763 	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
764 	timer_setup(&sk->sk_timer, keepalive_handler, 0);
765 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
766 }
767 
768 void inet_csk_clear_xmit_timers(struct sock *sk)
769 {
770 	struct inet_connection_sock *icsk = inet_csk(sk);
771 
772 	smp_store_release(&icsk->icsk_pending, 0);
773 	smp_store_release(&icsk->icsk_ack.pending, 0);
774 
775 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
776 	sk_stop_timer(sk, &icsk->icsk_delack_timer);
777 	sk_stop_timer(sk, &sk->sk_timer);
778 }
779 
780 void inet_csk_clear_xmit_timers_sync(struct sock *sk)
781 {
782 	struct inet_connection_sock *icsk = inet_csk(sk);
783 
784 	/* ongoing timer handlers need to acquire socket lock. */
785 	sock_not_owned_by_me(sk);
786 
787 	smp_store_release(&icsk->icsk_pending, 0);
788 	smp_store_release(&icsk->icsk_ack.pending, 0);
789 
790 	sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
791 	sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
792 	sk_stop_timer_sync(sk, &sk->sk_timer);
793 }
794 
795 struct dst_entry *inet_csk_route_req(const struct sock *sk,
796 				     struct flowi4 *fl4,
797 				     const struct request_sock *req)
798 {
799 	const struct inet_request_sock *ireq = inet_rsk(req);
800 	struct net *net = read_pnet(&ireq->ireq_net);
801 	struct ip_options_rcu *opt;
802 	struct rtable *rt;
803 
804 	rcu_read_lock();
805 	opt = rcu_dereference(ireq->ireq_opt);
806 
807 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
808 			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
809 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
810 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
811 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
812 			   htons(ireq->ir_num), sk_uid(sk));
813 	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
814 	rt = ip_route_output_flow(net, fl4, sk);
815 	if (IS_ERR(rt))
816 		goto no_route;
817 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
818 		goto route_err;
819 	rcu_read_unlock();
820 	return &rt->dst;
821 
822 route_err:
823 	ip_rt_put(rt);
824 no_route:
825 	rcu_read_unlock();
826 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
827 	return NULL;
828 }
829 
830 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
831 					    struct sock *newsk,
832 					    const struct request_sock *req)
833 {
834 	const struct inet_request_sock *ireq = inet_rsk(req);
835 	struct net *net = read_pnet(&ireq->ireq_net);
836 	struct inet_sock *newinet = inet_sk(newsk);
837 	struct ip_options_rcu *opt;
838 	struct flowi4 *fl4;
839 	struct rtable *rt;
840 
841 	opt = rcu_dereference(ireq->ireq_opt);
842 	fl4 = &newinet->cork.fl.u.ip4;
843 
844 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
845 			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
846 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
847 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
848 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
849 			   htons(ireq->ir_num), sk_uid(sk));
850 	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
851 	rt = ip_route_output_flow(net, fl4, sk);
852 	if (IS_ERR(rt))
853 		goto no_route;
854 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
855 		goto route_err;
856 	return &rt->dst;
857 
858 route_err:
859 	ip_rt_put(rt);
860 no_route:
861 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
862 	return NULL;
863 }
864 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
865 
866 /* Decide when to expire the request and when to resend SYN-ACK */
867 static void syn_ack_recalc(struct request_sock *req,
868 			   const int max_syn_ack_retries,
869 			   const u8 rskq_defer_accept,
870 			   int *expire, int *resend)
871 {
872 	if (!rskq_defer_accept) {
873 		*expire = req->num_timeout >= max_syn_ack_retries;
874 		*resend = 1;
875 		return;
876 	}
877 	*expire = req->num_timeout >= max_syn_ack_retries &&
878 		  (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
879 	/* Do not resend while waiting for data after ACK,
880 	 * start to resend on end of deferring period to give
881 	 * last chance for data or ACK to create established socket.
882 	 */
883 	*resend = !inet_rsk(req)->acked ||
884 		  req->num_timeout >= rskq_defer_accept - 1;
885 }
886 
887 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
888 {
889 	int err = req->rsk_ops->rtx_syn_ack(parent, req);
890 
891 	if (!err)
892 		req->num_retrans++;
893 	return err;
894 }
895 
896 static struct request_sock *
897 reqsk_alloc_noprof(const struct request_sock_ops *ops, struct sock *sk_listener,
898 		   bool attach_listener)
899 {
900 	struct request_sock *req;
901 
902 	req = kmem_cache_alloc_noprof(ops->slab, GFP_ATOMIC | __GFP_NOWARN);
903 	if (!req)
904 		return NULL;
905 	req->rsk_listener = NULL;
906 	if (attach_listener) {
907 		if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) {
908 			kmem_cache_free(ops->slab, req);
909 			return NULL;
910 		}
911 		req->rsk_listener = sk_listener;
912 	}
913 	req->rsk_ops = ops;
914 	req_to_sk(req)->sk_prot = sk_listener->sk_prot;
915 	sk_node_init(&req_to_sk(req)->sk_node);
916 	sk_tx_queue_clear(req_to_sk(req));
917 	req->saved_syn = NULL;
918 	req->syncookie = 0;
919 	req->timeout = 0;
920 	req->num_timeout = 0;
921 	req->num_retrans = 0;
922 	req->sk = NULL;
923 	refcount_set(&req->rsk_refcnt, 0);
924 
925 	return req;
926 }
927 #define reqsk_alloc(...)	alloc_hooks(reqsk_alloc_noprof(__VA_ARGS__))
928 
929 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
930 				      struct sock *sk_listener,
931 				      bool attach_listener)
932 {
933 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
934 					       attach_listener);
935 
936 	if (req) {
937 		struct inet_request_sock *ireq = inet_rsk(req);
938 
939 		ireq->ireq_opt = NULL;
940 #if IS_ENABLED(CONFIG_IPV6)
941 		ireq->pktopts = NULL;
942 #endif
943 		atomic64_set(&ireq->ir_cookie, 0);
944 		ireq->ireq_state = TCP_NEW_SYN_RECV;
945 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
946 		ireq->ireq_family = sk_listener->sk_family;
947 		req->timeout = TCP_TIMEOUT_INIT;
948 	}
949 
950 	return req;
951 }
952 EXPORT_SYMBOL(inet_reqsk_alloc);
953 
954 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
955 					     struct sock *sk)
956 {
957 	struct sock *req_sk, *nreq_sk;
958 	struct request_sock *nreq;
959 
960 	nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
961 	if (!nreq) {
962 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
963 
964 		/* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
965 		sock_put(sk);
966 		return NULL;
967 	}
968 
969 	req_sk = req_to_sk(req);
970 	nreq_sk = req_to_sk(nreq);
971 
972 	memcpy(nreq_sk, req_sk,
973 	       offsetof(struct sock, sk_dontcopy_begin));
974 	unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
975 		      req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end),
976 		      /* alloc is larger than struct, see above */);
977 
978 	sk_node_init(&nreq_sk->sk_node);
979 	nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
980 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
981 	nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
982 #endif
983 	nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
984 
985 	nreq->rsk_listener = sk;
986 
987 	/* We need not acquire fastopenq->lock
988 	 * because the child socket is locked in inet_csk_listen_stop().
989 	 */
990 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
991 		rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
992 
993 	return nreq;
994 }
995 
996 static void reqsk_queue_migrated(struct request_sock_queue *queue,
997 				 const struct request_sock *req)
998 {
999 	if (req->num_timeout == 0)
1000 		atomic_inc(&queue->young);
1001 	atomic_inc(&queue->qlen);
1002 }
1003 
1004 static void reqsk_migrate_reset(struct request_sock *req)
1005 {
1006 	req->saved_syn = NULL;
1007 #if IS_ENABLED(CONFIG_IPV6)
1008 	inet_rsk(req)->ipv6_opt = NULL;
1009 	inet_rsk(req)->pktopts = NULL;
1010 #else
1011 	inet_rsk(req)->ireq_opt = NULL;
1012 #endif
1013 }
1014 
1015 /* return true if req was found in the ehash table */
1016 static bool reqsk_queue_unlink(struct request_sock *req)
1017 {
1018 	struct sock *sk = req_to_sk(req);
1019 	bool found = false;
1020 
1021 	if (sk_hashed(sk)) {
1022 		struct inet_hashinfo *hashinfo = tcp_get_hashinfo(sk);
1023 		spinlock_t *lock;
1024 
1025 		lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
1026 		spin_lock(lock);
1027 		found = __sk_nulls_del_node_init_rcu(sk);
1028 		spin_unlock(lock);
1029 	}
1030 
1031 	return found;
1032 }
1033 
1034 static bool __inet_csk_reqsk_queue_drop(struct sock *sk,
1035 					struct request_sock *req,
1036 					bool from_timer)
1037 {
1038 	bool unlinked = reqsk_queue_unlink(req);
1039 
1040 	if (!from_timer && timer_delete_sync(&req->rsk_timer))
1041 		reqsk_put(req);
1042 
1043 	if (unlinked) {
1044 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1045 		reqsk_put(req);
1046 	}
1047 
1048 	return unlinked;
1049 }
1050 
1051 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
1052 {
1053 	return __inet_csk_reqsk_queue_drop(sk, req, false);
1054 }
1055 
1056 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
1057 {
1058 	inet_csk_reqsk_queue_drop(sk, req);
1059 	reqsk_put(req);
1060 }
1061 EXPORT_IPV6_MOD(inet_csk_reqsk_queue_drop_and_put);
1062 
1063 static void reqsk_timer_handler(struct timer_list *t)
1064 {
1065 	struct request_sock *req = timer_container_of(req, t, rsk_timer);
1066 	struct request_sock *nreq = NULL, *oreq = req;
1067 	struct sock *sk_listener = req->rsk_listener;
1068 	struct inet_connection_sock *icsk;
1069 	struct request_sock_queue *queue;
1070 	struct net *net;
1071 	int max_syn_ack_retries, qlen, expire = 0, resend = 0;
1072 
1073 	if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
1074 		struct sock *nsk;
1075 
1076 		nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1077 		if (!nsk)
1078 			goto drop;
1079 
1080 		nreq = inet_reqsk_clone(req, nsk);
1081 		if (!nreq)
1082 			goto drop;
1083 
1084 		/* The new timer for the cloned req can decrease the 2
1085 		 * by calling inet_csk_reqsk_queue_drop_and_put(), so
1086 		 * hold another count to prevent use-after-free and
1087 		 * call reqsk_put() just before return.
1088 		 */
1089 		refcount_set(&nreq->rsk_refcnt, 2 + 1);
1090 		timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1091 		reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1092 
1093 		req = nreq;
1094 		sk_listener = nsk;
1095 	}
1096 
1097 	icsk = inet_csk(sk_listener);
1098 	net = sock_net(sk_listener);
1099 	max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1100 		READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1101 	/* Normally all the openreqs are young and become mature
1102 	 * (i.e. converted to established socket) for first timeout.
1103 	 * If synack was not acknowledged for 1 second, it means
1104 	 * one of the following things: synack was lost, ack was lost,
1105 	 * rtt is high or nobody planned to ack (i.e. synflood).
1106 	 * When server is a bit loaded, queue is populated with old
1107 	 * open requests, reducing effective size of queue.
1108 	 * When server is well loaded, queue size reduces to zero
1109 	 * after several minutes of work. It is not synflood,
1110 	 * it is normal operation. The solution is pruning
1111 	 * too old entries overriding normal timeout, when
1112 	 * situation becomes dangerous.
1113 	 *
1114 	 * Essentially, we reserve half of room for young
1115 	 * embrions; and abort old ones without pity, if old
1116 	 * ones are about to clog our table.
1117 	 */
1118 	queue = &icsk->icsk_accept_queue;
1119 	qlen = reqsk_queue_len(queue);
1120 	if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1121 		int young = reqsk_queue_len_young(queue) << 1;
1122 
1123 		while (max_syn_ack_retries > 2) {
1124 			if (qlen < young)
1125 				break;
1126 			max_syn_ack_retries--;
1127 			young <<= 1;
1128 		}
1129 	}
1130 	syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1131 		       &expire, &resend);
1132 	req->rsk_ops->syn_ack_timeout(req);
1133 	if (!expire &&
1134 	    (!resend ||
1135 	     !inet_rtx_syn_ack(sk_listener, req) ||
1136 	     inet_rsk(req)->acked)) {
1137 		if (req->num_timeout++ == 0)
1138 			atomic_dec(&queue->young);
1139 		mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1140 
1141 		if (!nreq)
1142 			return;
1143 
1144 		if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1145 			/* delete timer */
1146 			__inet_csk_reqsk_queue_drop(sk_listener, nreq, true);
1147 			goto no_ownership;
1148 		}
1149 
1150 		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1151 		reqsk_migrate_reset(oreq);
1152 		reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1153 		reqsk_put(oreq);
1154 
1155 		reqsk_put(nreq);
1156 		return;
1157 	}
1158 
1159 	/* Even if we can clone the req, we may need not retransmit any more
1160 	 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1161 	 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1162 	 */
1163 	if (nreq) {
1164 		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1165 no_ownership:
1166 		reqsk_migrate_reset(nreq);
1167 		reqsk_queue_removed(queue, nreq);
1168 		__reqsk_free(nreq);
1169 	}
1170 
1171 drop:
1172 	__inet_csk_reqsk_queue_drop(sk_listener, oreq, true);
1173 	reqsk_put(oreq);
1174 }
1175 
1176 static bool reqsk_queue_hash_req(struct request_sock *req,
1177 				 unsigned long timeout)
1178 {
1179 	bool found_dup_sk = false;
1180 
1181 	if (!inet_ehash_insert(req_to_sk(req), NULL, &found_dup_sk))
1182 		return false;
1183 
1184 	/* The timer needs to be setup after a successful insertion. */
1185 	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1186 	mod_timer(&req->rsk_timer, jiffies + timeout);
1187 
1188 	/* before letting lookups find us, make sure all req fields
1189 	 * are committed to memory and refcnt initialized.
1190 	 */
1191 	smp_wmb();
1192 	refcount_set(&req->rsk_refcnt, 2 + 1);
1193 	return true;
1194 }
1195 
1196 bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1197 				   unsigned long timeout)
1198 {
1199 	if (!reqsk_queue_hash_req(req, timeout))
1200 		return false;
1201 
1202 	inet_csk_reqsk_queue_added(sk);
1203 	return true;
1204 }
1205 
1206 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1207 			   const gfp_t priority)
1208 {
1209 	struct inet_connection_sock *icsk = inet_csk(newsk);
1210 
1211 	if (!icsk->icsk_ulp_ops)
1212 		return;
1213 
1214 	icsk->icsk_ulp_ops->clone(req, newsk, priority);
1215 }
1216 
1217 /**
1218  *	inet_csk_clone_lock - clone an inet socket, and lock its clone
1219  *	@sk: the socket to clone
1220  *	@req: request_sock
1221  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1222  *
1223  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1224  */
1225 struct sock *inet_csk_clone_lock(const struct sock *sk,
1226 				 const struct request_sock *req,
1227 				 const gfp_t priority)
1228 {
1229 	struct sock *newsk = sk_clone_lock(sk, priority);
1230 	struct inet_connection_sock *newicsk;
1231 	struct inet_request_sock *ireq;
1232 	struct inet_sock *newinet;
1233 
1234 	if (!newsk)
1235 		return NULL;
1236 
1237 	newicsk = inet_csk(newsk);
1238 	newinet = inet_sk(newsk);
1239 	ireq = inet_rsk(req);
1240 
1241 	newicsk->icsk_bind_hash = NULL;
1242 	newicsk->icsk_bind2_hash = NULL;
1243 
1244 	newinet->inet_dport = ireq->ir_rmt_port;
1245 	newinet->inet_num = ireq->ir_num;
1246 	newinet->inet_sport = htons(ireq->ir_num);
1247 
1248 	newsk->sk_bound_dev_if = ireq->ir_iif;
1249 
1250 	newsk->sk_daddr = ireq->ir_rmt_addr;
1251 	newsk->sk_rcv_saddr = ireq->ir_loc_addr;
1252 	newinet->inet_saddr = ireq->ir_loc_addr;
1253 
1254 #if IS_ENABLED(CONFIG_IPV6)
1255 	newsk->sk_v6_daddr = ireq->ir_v6_rmt_addr;
1256 	newsk->sk_v6_rcv_saddr = ireq->ir_v6_loc_addr;
1257 #endif
1258 
1259 	/* listeners have SOCK_RCU_FREE, not the children */
1260 	sock_reset_flag(newsk, SOCK_RCU_FREE);
1261 
1262 	inet_sk(newsk)->mc_list = NULL;
1263 
1264 	newsk->sk_mark = inet_rsk(req)->ir_mark;
1265 	atomic64_set(&newsk->sk_cookie,
1266 		     atomic64_read(&inet_rsk(req)->ir_cookie));
1267 
1268 	newicsk->icsk_retransmits = 0;
1269 	newicsk->icsk_backoff	  = 0;
1270 	newicsk->icsk_probes_out  = 0;
1271 	newicsk->icsk_probes_tstamp = 0;
1272 
1273 	/* Deinitialize accept_queue to trap illegal accesses. */
1274 	memset(&newicsk->icsk_accept_queue, 0,
1275 	       sizeof(newicsk->icsk_accept_queue));
1276 
1277 	inet_sk_set_state(newsk, TCP_SYN_RECV);
1278 
1279 	inet_clone_ulp(req, newsk, priority);
1280 
1281 	security_inet_csk_clone(newsk, req);
1282 
1283 	return newsk;
1284 }
1285 
1286 /*
1287  * At this point, there should be no process reference to this
1288  * socket, and thus no user references at all.  Therefore we
1289  * can assume the socket waitqueue is inactive and nobody will
1290  * try to jump onto it.
1291  */
1292 void inet_csk_destroy_sock(struct sock *sk)
1293 {
1294 	WARN_ON(sk->sk_state != TCP_CLOSE);
1295 	WARN_ON(!sock_flag(sk, SOCK_DEAD));
1296 
1297 	/* It cannot be in hash table! */
1298 	WARN_ON(!sk_unhashed(sk));
1299 
1300 	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1301 	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1302 
1303 	sk->sk_prot->destroy(sk);
1304 
1305 	sk_stream_kill_queues(sk);
1306 
1307 	xfrm_sk_free_policy(sk);
1308 
1309 	this_cpu_dec(*sk->sk_prot->orphan_count);
1310 
1311 	sock_put(sk);
1312 }
1313 EXPORT_SYMBOL(inet_csk_destroy_sock);
1314 
1315 /* This function allows to force a closure of a socket after the call to
1316  * tcp_create_openreq_child().
1317  */
1318 void inet_csk_prepare_forced_close(struct sock *sk)
1319 	__releases(&sk->sk_lock.slock)
1320 {
1321 	/* sk_clone_lock locked the socket and set refcnt to 2 */
1322 	bh_unlock_sock(sk);
1323 	sock_put(sk);
1324 	inet_csk_prepare_for_destroy_sock(sk);
1325 	inet_sk(sk)->inet_num = 0;
1326 }
1327 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1328 
1329 static int inet_ulp_can_listen(const struct sock *sk)
1330 {
1331 	const struct inet_connection_sock *icsk = inet_csk(sk);
1332 
1333 	if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1334 		return -EINVAL;
1335 
1336 	return 0;
1337 }
1338 
1339 int inet_csk_listen_start(struct sock *sk)
1340 {
1341 	struct inet_connection_sock *icsk = inet_csk(sk);
1342 	struct inet_sock *inet = inet_sk(sk);
1343 	int err;
1344 
1345 	err = inet_ulp_can_listen(sk);
1346 	if (unlikely(err))
1347 		return err;
1348 
1349 	reqsk_queue_alloc(&icsk->icsk_accept_queue);
1350 
1351 	sk->sk_ack_backlog = 0;
1352 	inet_csk_delack_init(sk);
1353 
1354 	/* There is race window here: we announce ourselves listening,
1355 	 * but this transition is still not validated by get_port().
1356 	 * It is OK, because this socket enters to hash table only
1357 	 * after validation is complete.
1358 	 */
1359 	inet_sk_state_store(sk, TCP_LISTEN);
1360 	err = sk->sk_prot->get_port(sk, inet->inet_num);
1361 	if (!err) {
1362 		inet->inet_sport = htons(inet->inet_num);
1363 
1364 		sk_dst_reset(sk);
1365 		err = sk->sk_prot->hash(sk);
1366 
1367 		if (likely(!err))
1368 			return 0;
1369 	}
1370 
1371 	inet_sk_set_state(sk, TCP_CLOSE);
1372 	return err;
1373 }
1374 
1375 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1376 			      struct sock *child)
1377 {
1378 	sk->sk_prot->disconnect(child, O_NONBLOCK);
1379 
1380 	sock_orphan(child);
1381 
1382 	this_cpu_inc(*sk->sk_prot->orphan_count);
1383 
1384 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1385 		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1386 		BUG_ON(sk != req->rsk_listener);
1387 
1388 		/* Paranoid, to prevent race condition if
1389 		 * an inbound pkt destined for child is
1390 		 * blocked by sock lock in tcp_v4_rcv().
1391 		 * Also to satisfy an assertion in
1392 		 * tcp_v4_destroy_sock().
1393 		 */
1394 		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1395 	}
1396 	inet_csk_destroy_sock(child);
1397 }
1398 
1399 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1400 				      struct request_sock *req,
1401 				      struct sock *child)
1402 {
1403 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1404 
1405 	spin_lock(&queue->rskq_lock);
1406 	if (unlikely(sk->sk_state != TCP_LISTEN)) {
1407 		inet_child_forget(sk, req, child);
1408 		child = NULL;
1409 	} else {
1410 		req->sk = child;
1411 		req->dl_next = NULL;
1412 		if (queue->rskq_accept_head == NULL)
1413 			WRITE_ONCE(queue->rskq_accept_head, req);
1414 		else
1415 			queue->rskq_accept_tail->dl_next = req;
1416 		queue->rskq_accept_tail = req;
1417 		sk_acceptq_added(sk);
1418 	}
1419 	spin_unlock(&queue->rskq_lock);
1420 	return child;
1421 }
1422 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1423 
1424 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1425 					 struct request_sock *req, bool own_req)
1426 {
1427 	if (own_req) {
1428 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1429 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1430 
1431 		if (sk != req->rsk_listener) {
1432 			/* another listening sk has been selected,
1433 			 * migrate the req to it.
1434 			 */
1435 			struct request_sock *nreq;
1436 
1437 			/* hold a refcnt for the nreq->rsk_listener
1438 			 * which is assigned in inet_reqsk_clone()
1439 			 */
1440 			sock_hold(sk);
1441 			nreq = inet_reqsk_clone(req, sk);
1442 			if (!nreq) {
1443 				inet_child_forget(sk, req, child);
1444 				goto child_put;
1445 			}
1446 
1447 			refcount_set(&nreq->rsk_refcnt, 1);
1448 			if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1449 				__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1450 				reqsk_migrate_reset(req);
1451 				reqsk_put(req);
1452 				return child;
1453 			}
1454 
1455 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1456 			reqsk_migrate_reset(nreq);
1457 			__reqsk_free(nreq);
1458 		} else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1459 			return child;
1460 		}
1461 	}
1462 	/* Too bad, another child took ownership of the request, undo. */
1463 child_put:
1464 	bh_unlock_sock(child);
1465 	sock_put(child);
1466 	return NULL;
1467 }
1468 
1469 /*
1470  *	This routine closes sockets which have been at least partially
1471  *	opened, but not yet accepted.
1472  */
1473 void inet_csk_listen_stop(struct sock *sk)
1474 {
1475 	struct inet_connection_sock *icsk = inet_csk(sk);
1476 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1477 	struct request_sock *next, *req;
1478 
1479 	/* Following specs, it would be better either to send FIN
1480 	 * (and enter FIN-WAIT-1, it is normal close)
1481 	 * or to send active reset (abort).
1482 	 * Certainly, it is pretty dangerous while synflood, but it is
1483 	 * bad justification for our negligence 8)
1484 	 * To be honest, we are not able to make either
1485 	 * of the variants now.			--ANK
1486 	 */
1487 	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1488 		struct sock *child = req->sk, *nsk;
1489 		struct request_sock *nreq;
1490 
1491 		local_bh_disable();
1492 		bh_lock_sock(child);
1493 		WARN_ON(sock_owned_by_user(child));
1494 		sock_hold(child);
1495 
1496 		nsk = reuseport_migrate_sock(sk, child, NULL);
1497 		if (nsk) {
1498 			nreq = inet_reqsk_clone(req, nsk);
1499 			if (nreq) {
1500 				refcount_set(&nreq->rsk_refcnt, 1);
1501 
1502 				if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1503 					__NET_INC_STATS(sock_net(nsk),
1504 							LINUX_MIB_TCPMIGRATEREQSUCCESS);
1505 					reqsk_migrate_reset(req);
1506 				} else {
1507 					__NET_INC_STATS(sock_net(nsk),
1508 							LINUX_MIB_TCPMIGRATEREQFAILURE);
1509 					reqsk_migrate_reset(nreq);
1510 					__reqsk_free(nreq);
1511 				}
1512 
1513 				/* inet_csk_reqsk_queue_add() has already
1514 				 * called inet_child_forget() on failure case.
1515 				 */
1516 				goto skip_child_forget;
1517 			}
1518 		}
1519 
1520 		inet_child_forget(sk, req, child);
1521 skip_child_forget:
1522 		reqsk_put(req);
1523 		bh_unlock_sock(child);
1524 		local_bh_enable();
1525 		sock_put(child);
1526 
1527 		cond_resched();
1528 	}
1529 	if (queue->fastopenq.rskq_rst_head) {
1530 		/* Free all the reqs queued in rskq_rst_head. */
1531 		spin_lock_bh(&queue->fastopenq.lock);
1532 		req = queue->fastopenq.rskq_rst_head;
1533 		queue->fastopenq.rskq_rst_head = NULL;
1534 		spin_unlock_bh(&queue->fastopenq.lock);
1535 		while (req != NULL) {
1536 			next = req->dl_next;
1537 			reqsk_put(req);
1538 			req = next;
1539 		}
1540 	}
1541 	WARN_ON_ONCE(sk->sk_ack_backlog);
1542 }
1543 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1544 
1545 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1546 {
1547 	const struct inet_sock *inet = inet_sk(sk);
1548 	struct flowi4 *fl4;
1549 	struct rtable *rt;
1550 
1551 	rcu_read_lock();
1552 	fl4 = &fl->u.ip4;
1553 	inet_sk_init_flowi4(inet, fl4);
1554 	rt = ip_route_output_flow(sock_net(sk), fl4, sk);
1555 	if (IS_ERR(rt))
1556 		rt = NULL;
1557 	if (rt)
1558 		sk_setup_caps(sk, &rt->dst);
1559 	rcu_read_unlock();
1560 
1561 	return &rt->dst;
1562 }
1563 
1564 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1565 {
1566 	struct dst_entry *dst = __sk_dst_check(sk, 0);
1567 	struct inet_sock *inet = inet_sk(sk);
1568 
1569 	if (!dst) {
1570 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1571 		if (!dst)
1572 			goto out;
1573 	}
1574 	dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1575 
1576 	dst = __sk_dst_check(sk, 0);
1577 	if (!dst)
1578 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1579 out:
1580 	return dst;
1581 }
1582