xref: /linux/net/ipv4/inet_connection_sock.c (revision be239684b18e1cdcafcf8c7face4a2f562c745ad)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Support for INET connection oriented protocols.
8  *
9  * Authors:	See the TCP sources
10  */
11 
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14 
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25 
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *				if IPv6 only, and any IPv4 addresses
29  *				if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *				IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *				and 0.0.0.0 equals to 0.0.0.0 only
33  */
34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 				 const struct in6_addr *sk2_rcv_saddr6,
36 				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 				 bool sk1_ipv6only, bool sk2_ipv6only,
38 				 bool match_sk1_wildcard,
39 				 bool match_sk2_wildcard)
40 {
41 	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43 
44 	/* if both are mapped, treat as IPv4 */
45 	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 		if (!sk2_ipv6only) {
47 			if (sk1_rcv_saddr == sk2_rcv_saddr)
48 				return true;
49 			return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 				(match_sk2_wildcard && !sk2_rcv_saddr);
51 		}
52 		return false;
53 	}
54 
55 	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 		return true;
57 
58 	if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 		return true;
61 
62 	if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 		return true;
65 
66 	if (sk2_rcv_saddr6 &&
67 	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 		return true;
69 
70 	return false;
71 }
72 #endif
73 
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *				0.0.0.0 only equals to 0.0.0.0
77  */
78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 				 bool sk2_ipv6only, bool match_sk1_wildcard,
80 				 bool match_sk2_wildcard)
81 {
82 	if (!sk2_ipv6only) {
83 		if (sk1_rcv_saddr == sk2_rcv_saddr)
84 			return true;
85 		return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 			(match_sk2_wildcard && !sk2_rcv_saddr);
87 	}
88 	return false;
89 }
90 
91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 			  bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 	if (sk->sk_family == AF_INET6)
96 		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 					    inet6_rcv_saddr(sk2),
98 					    sk->sk_rcv_saddr,
99 					    sk2->sk_rcv_saddr,
100 					    ipv6_only_sock(sk),
101 					    ipv6_only_sock(sk2),
102 					    match_wildcard,
103 					    match_wildcard);
104 #endif
105 	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 				    ipv6_only_sock(sk2), match_wildcard,
107 				    match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110 
111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 	if (sk->sk_family == AF_INET6)
115 		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 	return !sk->sk_rcv_saddr;
118 }
119 
120 /**
121  *	inet_sk_get_local_port_range - fetch ephemeral ports range
122  *	@sk: socket
123  *	@low: pointer to low port
124  *	@high: pointer to high port
125  *
126  *	Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127  *	Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128  *	Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129  */
130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131 {
132 	int lo, hi, sk_lo, sk_hi;
133 	bool local_range = false;
134 	u32 sk_range;
135 
136 	inet_get_local_port_range(sock_net(sk), &lo, &hi);
137 
138 	sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139 	if (unlikely(sk_range)) {
140 		sk_lo = sk_range & 0xffff;
141 		sk_hi = sk_range >> 16;
142 
143 		if (lo <= sk_lo && sk_lo <= hi)
144 			lo = sk_lo;
145 		if (lo <= sk_hi && sk_hi <= hi)
146 			hi = sk_hi;
147 		local_range = true;
148 	}
149 
150 	*low = lo;
151 	*high = hi;
152 	return local_range;
153 }
154 EXPORT_SYMBOL(inet_sk_get_local_port_range);
155 
156 static bool inet_use_bhash2_on_bind(const struct sock *sk)
157 {
158 #if IS_ENABLED(CONFIG_IPV6)
159 	if (sk->sk_family == AF_INET6) {
160 		int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
161 
162 		if (addr_type == IPV6_ADDR_ANY)
163 			return false;
164 
165 		if (addr_type != IPV6_ADDR_MAPPED)
166 			return true;
167 	}
168 #endif
169 	return sk->sk_rcv_saddr != htonl(INADDR_ANY);
170 }
171 
172 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
173 			       kuid_t sk_uid, bool relax,
174 			       bool reuseport_cb_ok, bool reuseport_ok)
175 {
176 	int bound_dev_if2;
177 
178 	if (sk == sk2)
179 		return false;
180 
181 	bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
182 
183 	if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
184 	    sk->sk_bound_dev_if == bound_dev_if2) {
185 		if (sk->sk_reuse && sk2->sk_reuse &&
186 		    sk2->sk_state != TCP_LISTEN) {
187 			if (!relax || (!reuseport_ok && sk->sk_reuseport &&
188 				       sk2->sk_reuseport && reuseport_cb_ok &&
189 				       (sk2->sk_state == TCP_TIME_WAIT ||
190 					uid_eq(sk_uid, sock_i_uid(sk2)))))
191 				return true;
192 		} else if (!reuseport_ok || !sk->sk_reuseport ||
193 			   !sk2->sk_reuseport || !reuseport_cb_ok ||
194 			   (sk2->sk_state != TCP_TIME_WAIT &&
195 			    !uid_eq(sk_uid, sock_i_uid(sk2)))) {
196 			return true;
197 		}
198 	}
199 	return false;
200 }
201 
202 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
203 				   kuid_t sk_uid, bool relax,
204 				   bool reuseport_cb_ok, bool reuseport_ok)
205 {
206 	if (sk->sk_family == AF_INET && ipv6_only_sock(sk2))
207 		return false;
208 
209 	return inet_bind_conflict(sk, sk2, sk_uid, relax,
210 				  reuseport_cb_ok, reuseport_ok);
211 }
212 
213 static bool inet_bhash2_conflict(const struct sock *sk,
214 				 const struct inet_bind2_bucket *tb2,
215 				 kuid_t sk_uid,
216 				 bool relax, bool reuseport_cb_ok,
217 				 bool reuseport_ok)
218 {
219 	struct sock *sk2;
220 
221 	sk_for_each_bound(sk2, &tb2->owners) {
222 		if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
223 					   reuseport_cb_ok, reuseport_ok))
224 			return true;
225 	}
226 
227 	return false;
228 }
229 
230 #define sk_for_each_bound_bhash(__sk, __tb2, __tb)			\
231 	hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node)	\
232 		sk_for_each_bound(sk2, &(__tb2)->owners)
233 
234 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
235 static int inet_csk_bind_conflict(const struct sock *sk,
236 				  const struct inet_bind_bucket *tb,
237 				  const struct inet_bind2_bucket *tb2, /* may be null */
238 				  bool relax, bool reuseport_ok)
239 {
240 	kuid_t uid = sock_i_uid((struct sock *)sk);
241 	struct sock_reuseport *reuseport_cb;
242 	bool reuseport_cb_ok;
243 	struct sock *sk2;
244 
245 	rcu_read_lock();
246 	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
247 	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
248 	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
249 	rcu_read_unlock();
250 
251 	/* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
252 	 * ipv4) should have been checked already. We need to do these two
253 	 * checks separately because their spinlocks have to be acquired/released
254 	 * independently of each other, to prevent possible deadlocks
255 	 */
256 	if (inet_use_bhash2_on_bind(sk))
257 		return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
258 						   reuseport_cb_ok, reuseport_ok);
259 
260 	/* Unlike other sk lookup places we do not check
261 	 * for sk_net here, since _all_ the socks listed
262 	 * in tb->owners and tb2->owners list belong
263 	 * to the same net - the one this bucket belongs to.
264 	 */
265 	sk_for_each_bound_bhash(sk2, tb2, tb) {
266 		if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
267 			continue;
268 
269 		if (inet_rcv_saddr_equal(sk, sk2, true))
270 			return true;
271 	}
272 
273 	return false;
274 }
275 
276 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
277  * INADDR_ANY (if ipv4) socket.
278  *
279  * Caller must hold bhash hashbucket lock with local bh disabled, to protect
280  * against concurrent binds on the port for addr any
281  */
282 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
283 					  bool relax, bool reuseport_ok)
284 {
285 	kuid_t uid = sock_i_uid((struct sock *)sk);
286 	const struct net *net = sock_net(sk);
287 	struct sock_reuseport *reuseport_cb;
288 	struct inet_bind_hashbucket *head2;
289 	struct inet_bind2_bucket *tb2;
290 	bool reuseport_cb_ok;
291 
292 	rcu_read_lock();
293 	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
294 	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
295 	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
296 	rcu_read_unlock();
297 
298 	head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
299 
300 	spin_lock(&head2->lock);
301 
302 	inet_bind_bucket_for_each(tb2, &head2->chain)
303 		if (inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
304 			break;
305 
306 	if (tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
307 					reuseport_ok)) {
308 		spin_unlock(&head2->lock);
309 		return true;
310 	}
311 
312 	spin_unlock(&head2->lock);
313 	return false;
314 }
315 
316 /*
317  * Find an open port number for the socket.  Returns with the
318  * inet_bind_hashbucket locks held if successful.
319  */
320 static struct inet_bind_hashbucket *
321 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
322 			struct inet_bind2_bucket **tb2_ret,
323 			struct inet_bind_hashbucket **head2_ret, int *port_ret)
324 {
325 	struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
326 	int i, low, high, attempt_half, port, l3mdev;
327 	struct inet_bind_hashbucket *head, *head2;
328 	struct net *net = sock_net(sk);
329 	struct inet_bind2_bucket *tb2;
330 	struct inet_bind_bucket *tb;
331 	u32 remaining, offset;
332 	bool relax = false;
333 
334 	l3mdev = inet_sk_bound_l3mdev(sk);
335 ports_exhausted:
336 	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
337 other_half_scan:
338 	inet_sk_get_local_port_range(sk, &low, &high);
339 	high++; /* [32768, 60999] -> [32768, 61000[ */
340 	if (high - low < 4)
341 		attempt_half = 0;
342 	if (attempt_half) {
343 		int half = low + (((high - low) >> 2) << 1);
344 
345 		if (attempt_half == 1)
346 			high = half;
347 		else
348 			low = half;
349 	}
350 	remaining = high - low;
351 	if (likely(remaining > 1))
352 		remaining &= ~1U;
353 
354 	offset = get_random_u32_below(remaining);
355 	/* __inet_hash_connect() favors ports having @low parity
356 	 * We do the opposite to not pollute connect() users.
357 	 */
358 	offset |= 1U;
359 
360 other_parity_scan:
361 	port = low + offset;
362 	for (i = 0; i < remaining; i += 2, port += 2) {
363 		if (unlikely(port >= high))
364 			port -= remaining;
365 		if (inet_is_local_reserved_port(net, port))
366 			continue;
367 		head = &hinfo->bhash[inet_bhashfn(net, port,
368 						  hinfo->bhash_size)];
369 		spin_lock_bh(&head->lock);
370 		if (inet_use_bhash2_on_bind(sk)) {
371 			if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
372 				goto next_port;
373 		}
374 
375 		head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
376 		spin_lock(&head2->lock);
377 		tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
378 		inet_bind_bucket_for_each(tb, &head->chain)
379 			if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
380 				if (!inet_csk_bind_conflict(sk, tb, tb2,
381 							    relax, false))
382 					goto success;
383 				spin_unlock(&head2->lock);
384 				goto next_port;
385 			}
386 		tb = NULL;
387 		goto success;
388 next_port:
389 		spin_unlock_bh(&head->lock);
390 		cond_resched();
391 	}
392 
393 	offset--;
394 	if (!(offset & 1))
395 		goto other_parity_scan;
396 
397 	if (attempt_half == 1) {
398 		/* OK we now try the upper half of the range */
399 		attempt_half = 2;
400 		goto other_half_scan;
401 	}
402 
403 	if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
404 		/* We still have a chance to connect to different destinations */
405 		relax = true;
406 		goto ports_exhausted;
407 	}
408 	return NULL;
409 success:
410 	*port_ret = port;
411 	*tb_ret = tb;
412 	*tb2_ret = tb2;
413 	*head2_ret = head2;
414 	return head;
415 }
416 
417 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
418 				     struct sock *sk)
419 {
420 	kuid_t uid = sock_i_uid(sk);
421 
422 	if (tb->fastreuseport <= 0)
423 		return 0;
424 	if (!sk->sk_reuseport)
425 		return 0;
426 	if (rcu_access_pointer(sk->sk_reuseport_cb))
427 		return 0;
428 	if (!uid_eq(tb->fastuid, uid))
429 		return 0;
430 	/* We only need to check the rcv_saddr if this tb was once marked
431 	 * without fastreuseport and then was reset, as we can only know that
432 	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
433 	 * owners list.
434 	 */
435 	if (tb->fastreuseport == FASTREUSEPORT_ANY)
436 		return 1;
437 #if IS_ENABLED(CONFIG_IPV6)
438 	if (tb->fast_sk_family == AF_INET6)
439 		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
440 					    inet6_rcv_saddr(sk),
441 					    tb->fast_rcv_saddr,
442 					    sk->sk_rcv_saddr,
443 					    tb->fast_ipv6_only,
444 					    ipv6_only_sock(sk), true, false);
445 #endif
446 	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
447 				    ipv6_only_sock(sk), true, false);
448 }
449 
450 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
451 			       struct sock *sk)
452 {
453 	kuid_t uid = sock_i_uid(sk);
454 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
455 
456 	if (hlist_empty(&tb->bhash2)) {
457 		tb->fastreuse = reuse;
458 		if (sk->sk_reuseport) {
459 			tb->fastreuseport = FASTREUSEPORT_ANY;
460 			tb->fastuid = uid;
461 			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
462 			tb->fast_ipv6_only = ipv6_only_sock(sk);
463 			tb->fast_sk_family = sk->sk_family;
464 #if IS_ENABLED(CONFIG_IPV6)
465 			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
466 #endif
467 		} else {
468 			tb->fastreuseport = 0;
469 		}
470 	} else {
471 		if (!reuse)
472 			tb->fastreuse = 0;
473 		if (sk->sk_reuseport) {
474 			/* We didn't match or we don't have fastreuseport set on
475 			 * the tb, but we have sk_reuseport set on this socket
476 			 * and we know that there are no bind conflicts with
477 			 * this socket in this tb, so reset our tb's reuseport
478 			 * settings so that any subsequent sockets that match
479 			 * our current socket will be put on the fast path.
480 			 *
481 			 * If we reset we need to set FASTREUSEPORT_STRICT so we
482 			 * do extra checking for all subsequent sk_reuseport
483 			 * socks.
484 			 */
485 			if (!sk_reuseport_match(tb, sk)) {
486 				tb->fastreuseport = FASTREUSEPORT_STRICT;
487 				tb->fastuid = uid;
488 				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
489 				tb->fast_ipv6_only = ipv6_only_sock(sk);
490 				tb->fast_sk_family = sk->sk_family;
491 #if IS_ENABLED(CONFIG_IPV6)
492 				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
493 #endif
494 			}
495 		} else {
496 			tb->fastreuseport = 0;
497 		}
498 	}
499 }
500 
501 /* Obtain a reference to a local port for the given sock,
502  * if snum is zero it means select any available local port.
503  * We try to allocate an odd port (and leave even ports for connect())
504  */
505 int inet_csk_get_port(struct sock *sk, unsigned short snum)
506 {
507 	struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
508 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
509 	bool found_port = false, check_bind_conflict = true;
510 	bool bhash_created = false, bhash2_created = false;
511 	int ret = -EADDRINUSE, port = snum, l3mdev;
512 	struct inet_bind_hashbucket *head, *head2;
513 	struct inet_bind2_bucket *tb2 = NULL;
514 	struct inet_bind_bucket *tb = NULL;
515 	bool head2_lock_acquired = false;
516 	struct net *net = sock_net(sk);
517 
518 	l3mdev = inet_sk_bound_l3mdev(sk);
519 
520 	if (!port) {
521 		head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
522 		if (!head)
523 			return ret;
524 
525 		head2_lock_acquired = true;
526 
527 		if (tb && tb2)
528 			goto success;
529 		found_port = true;
530 	} else {
531 		head = &hinfo->bhash[inet_bhashfn(net, port,
532 						  hinfo->bhash_size)];
533 		spin_lock_bh(&head->lock);
534 		inet_bind_bucket_for_each(tb, &head->chain)
535 			if (inet_bind_bucket_match(tb, net, port, l3mdev))
536 				break;
537 	}
538 
539 	if (!tb) {
540 		tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
541 					     head, port, l3mdev);
542 		if (!tb)
543 			goto fail_unlock;
544 		bhash_created = true;
545 	}
546 
547 	if (!found_port) {
548 		if (!hlist_empty(&tb->bhash2)) {
549 			if (sk->sk_reuse == SK_FORCE_REUSE ||
550 			    (tb->fastreuse > 0 && reuse) ||
551 			    sk_reuseport_match(tb, sk))
552 				check_bind_conflict = false;
553 		}
554 
555 		if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
556 			if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
557 				goto fail_unlock;
558 		}
559 
560 		head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
561 		spin_lock(&head2->lock);
562 		head2_lock_acquired = true;
563 		tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
564 	}
565 
566 	if (!tb2) {
567 		tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
568 					       net, head2, tb, sk);
569 		if (!tb2)
570 			goto fail_unlock;
571 		bhash2_created = true;
572 	}
573 
574 	if (!found_port && check_bind_conflict) {
575 		if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
576 			goto fail_unlock;
577 	}
578 
579 success:
580 	inet_csk_update_fastreuse(tb, sk);
581 
582 	if (!inet_csk(sk)->icsk_bind_hash)
583 		inet_bind_hash(sk, tb, tb2, port);
584 	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
585 	WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
586 	ret = 0;
587 
588 fail_unlock:
589 	if (ret) {
590 		if (bhash2_created)
591 			inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
592 		if (bhash_created)
593 			inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
594 	}
595 	if (head2_lock_acquired)
596 		spin_unlock(&head2->lock);
597 	spin_unlock_bh(&head->lock);
598 	return ret;
599 }
600 EXPORT_SYMBOL_GPL(inet_csk_get_port);
601 
602 /*
603  * Wait for an incoming connection, avoid race conditions. This must be called
604  * with the socket locked.
605  */
606 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
607 {
608 	struct inet_connection_sock *icsk = inet_csk(sk);
609 	DEFINE_WAIT(wait);
610 	int err;
611 
612 	/*
613 	 * True wake-one mechanism for incoming connections: only
614 	 * one process gets woken up, not the 'whole herd'.
615 	 * Since we do not 'race & poll' for established sockets
616 	 * anymore, the common case will execute the loop only once.
617 	 *
618 	 * Subtle issue: "add_wait_queue_exclusive()" will be added
619 	 * after any current non-exclusive waiters, and we know that
620 	 * it will always _stay_ after any new non-exclusive waiters
621 	 * because all non-exclusive waiters are added at the
622 	 * beginning of the wait-queue. As such, it's ok to "drop"
623 	 * our exclusiveness temporarily when we get woken up without
624 	 * having to remove and re-insert us on the wait queue.
625 	 */
626 	for (;;) {
627 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
628 					  TASK_INTERRUPTIBLE);
629 		release_sock(sk);
630 		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
631 			timeo = schedule_timeout(timeo);
632 		sched_annotate_sleep();
633 		lock_sock(sk);
634 		err = 0;
635 		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
636 			break;
637 		err = -EINVAL;
638 		if (sk->sk_state != TCP_LISTEN)
639 			break;
640 		err = sock_intr_errno(timeo);
641 		if (signal_pending(current))
642 			break;
643 		err = -EAGAIN;
644 		if (!timeo)
645 			break;
646 	}
647 	finish_wait(sk_sleep(sk), &wait);
648 	return err;
649 }
650 
651 /*
652  * This will accept the next outstanding connection.
653  */
654 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
655 {
656 	struct inet_connection_sock *icsk = inet_csk(sk);
657 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
658 	struct request_sock *req;
659 	struct sock *newsk;
660 	int error;
661 
662 	lock_sock(sk);
663 
664 	/* We need to make sure that this socket is listening,
665 	 * and that it has something pending.
666 	 */
667 	error = -EINVAL;
668 	if (sk->sk_state != TCP_LISTEN)
669 		goto out_err;
670 
671 	/* Find already established connection */
672 	if (reqsk_queue_empty(queue)) {
673 		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
674 
675 		/* If this is a non blocking socket don't sleep */
676 		error = -EAGAIN;
677 		if (!timeo)
678 			goto out_err;
679 
680 		error = inet_csk_wait_for_connect(sk, timeo);
681 		if (error)
682 			goto out_err;
683 	}
684 	req = reqsk_queue_remove(queue, sk);
685 	newsk = req->sk;
686 
687 	if (sk->sk_protocol == IPPROTO_TCP &&
688 	    tcp_rsk(req)->tfo_listener) {
689 		spin_lock_bh(&queue->fastopenq.lock);
690 		if (tcp_rsk(req)->tfo_listener) {
691 			/* We are still waiting for the final ACK from 3WHS
692 			 * so can't free req now. Instead, we set req->sk to
693 			 * NULL to signify that the child socket is taken
694 			 * so reqsk_fastopen_remove() will free the req
695 			 * when 3WHS finishes (or is aborted).
696 			 */
697 			req->sk = NULL;
698 			req = NULL;
699 		}
700 		spin_unlock_bh(&queue->fastopenq.lock);
701 	}
702 
703 out:
704 	release_sock(sk);
705 	if (newsk && mem_cgroup_sockets_enabled) {
706 		int amt = 0;
707 
708 		/* atomically get the memory usage, set and charge the
709 		 * newsk->sk_memcg.
710 		 */
711 		lock_sock(newsk);
712 
713 		mem_cgroup_sk_alloc(newsk);
714 		if (newsk->sk_memcg) {
715 			/* The socket has not been accepted yet, no need
716 			 * to look at newsk->sk_wmem_queued.
717 			 */
718 			amt = sk_mem_pages(newsk->sk_forward_alloc +
719 					   atomic_read(&newsk->sk_rmem_alloc));
720 		}
721 
722 		if (amt)
723 			mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
724 						GFP_KERNEL | __GFP_NOFAIL);
725 
726 		release_sock(newsk);
727 	}
728 	if (req)
729 		reqsk_put(req);
730 
731 	if (newsk)
732 		inet_init_csk_locks(newsk);
733 
734 	return newsk;
735 out_err:
736 	newsk = NULL;
737 	req = NULL;
738 	*err = error;
739 	goto out;
740 }
741 EXPORT_SYMBOL(inet_csk_accept);
742 
743 /*
744  * Using different timers for retransmit, delayed acks and probes
745  * We may wish use just one timer maintaining a list of expire jiffies
746  * to optimize.
747  */
748 void inet_csk_init_xmit_timers(struct sock *sk,
749 			       void (*retransmit_handler)(struct timer_list *t),
750 			       void (*delack_handler)(struct timer_list *t),
751 			       void (*keepalive_handler)(struct timer_list *t))
752 {
753 	struct inet_connection_sock *icsk = inet_csk(sk);
754 
755 	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
756 	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
757 	timer_setup(&sk->sk_timer, keepalive_handler, 0);
758 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
759 }
760 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
761 
762 void inet_csk_clear_xmit_timers(struct sock *sk)
763 {
764 	struct inet_connection_sock *icsk = inet_csk(sk);
765 
766 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
767 
768 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
769 	sk_stop_timer(sk, &icsk->icsk_delack_timer);
770 	sk_stop_timer(sk, &sk->sk_timer);
771 }
772 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
773 
774 void inet_csk_delete_keepalive_timer(struct sock *sk)
775 {
776 	sk_stop_timer(sk, &sk->sk_timer);
777 }
778 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
779 
780 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
781 {
782 	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
783 }
784 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
785 
786 struct dst_entry *inet_csk_route_req(const struct sock *sk,
787 				     struct flowi4 *fl4,
788 				     const struct request_sock *req)
789 {
790 	const struct inet_request_sock *ireq = inet_rsk(req);
791 	struct net *net = read_pnet(&ireq->ireq_net);
792 	struct ip_options_rcu *opt;
793 	struct rtable *rt;
794 
795 	rcu_read_lock();
796 	opt = rcu_dereference(ireq->ireq_opt);
797 
798 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
799 			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
800 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
801 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
802 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
803 			   htons(ireq->ir_num), sk->sk_uid);
804 	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
805 	rt = ip_route_output_flow(net, fl4, sk);
806 	if (IS_ERR(rt))
807 		goto no_route;
808 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
809 		goto route_err;
810 	rcu_read_unlock();
811 	return &rt->dst;
812 
813 route_err:
814 	ip_rt_put(rt);
815 no_route:
816 	rcu_read_unlock();
817 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
818 	return NULL;
819 }
820 EXPORT_SYMBOL_GPL(inet_csk_route_req);
821 
822 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
823 					    struct sock *newsk,
824 					    const struct request_sock *req)
825 {
826 	const struct inet_request_sock *ireq = inet_rsk(req);
827 	struct net *net = read_pnet(&ireq->ireq_net);
828 	struct inet_sock *newinet = inet_sk(newsk);
829 	struct ip_options_rcu *opt;
830 	struct flowi4 *fl4;
831 	struct rtable *rt;
832 
833 	opt = rcu_dereference(ireq->ireq_opt);
834 	fl4 = &newinet->cork.fl.u.ip4;
835 
836 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
837 			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
838 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
839 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
840 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
841 			   htons(ireq->ir_num), sk->sk_uid);
842 	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
843 	rt = ip_route_output_flow(net, fl4, sk);
844 	if (IS_ERR(rt))
845 		goto no_route;
846 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
847 		goto route_err;
848 	return &rt->dst;
849 
850 route_err:
851 	ip_rt_put(rt);
852 no_route:
853 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
854 	return NULL;
855 }
856 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
857 
858 /* Decide when to expire the request and when to resend SYN-ACK */
859 static void syn_ack_recalc(struct request_sock *req,
860 			   const int max_syn_ack_retries,
861 			   const u8 rskq_defer_accept,
862 			   int *expire, int *resend)
863 {
864 	if (!rskq_defer_accept) {
865 		*expire = req->num_timeout >= max_syn_ack_retries;
866 		*resend = 1;
867 		return;
868 	}
869 	*expire = req->num_timeout >= max_syn_ack_retries &&
870 		  (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
871 	/* Do not resend while waiting for data after ACK,
872 	 * start to resend on end of deferring period to give
873 	 * last chance for data or ACK to create established socket.
874 	 */
875 	*resend = !inet_rsk(req)->acked ||
876 		  req->num_timeout >= rskq_defer_accept - 1;
877 }
878 
879 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
880 {
881 	int err = req->rsk_ops->rtx_syn_ack(parent, req);
882 
883 	if (!err)
884 		req->num_retrans++;
885 	return err;
886 }
887 EXPORT_SYMBOL(inet_rtx_syn_ack);
888 
889 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
890 					     struct sock *sk)
891 {
892 	struct sock *req_sk, *nreq_sk;
893 	struct request_sock *nreq;
894 
895 	nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
896 	if (!nreq) {
897 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
898 
899 		/* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
900 		sock_put(sk);
901 		return NULL;
902 	}
903 
904 	req_sk = req_to_sk(req);
905 	nreq_sk = req_to_sk(nreq);
906 
907 	memcpy(nreq_sk, req_sk,
908 	       offsetof(struct sock, sk_dontcopy_begin));
909 	memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
910 	       req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
911 
912 	sk_node_init(&nreq_sk->sk_node);
913 	nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
914 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
915 	nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
916 #endif
917 	nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
918 
919 	nreq->rsk_listener = sk;
920 
921 	/* We need not acquire fastopenq->lock
922 	 * because the child socket is locked in inet_csk_listen_stop().
923 	 */
924 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
925 		rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
926 
927 	return nreq;
928 }
929 
930 static void reqsk_queue_migrated(struct request_sock_queue *queue,
931 				 const struct request_sock *req)
932 {
933 	if (req->num_timeout == 0)
934 		atomic_inc(&queue->young);
935 	atomic_inc(&queue->qlen);
936 }
937 
938 static void reqsk_migrate_reset(struct request_sock *req)
939 {
940 	req->saved_syn = NULL;
941 #if IS_ENABLED(CONFIG_IPV6)
942 	inet_rsk(req)->ipv6_opt = NULL;
943 	inet_rsk(req)->pktopts = NULL;
944 #else
945 	inet_rsk(req)->ireq_opt = NULL;
946 #endif
947 }
948 
949 /* return true if req was found in the ehash table */
950 static bool reqsk_queue_unlink(struct request_sock *req)
951 {
952 	struct sock *sk = req_to_sk(req);
953 	bool found = false;
954 
955 	if (sk_hashed(sk)) {
956 		struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
957 		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
958 
959 		spin_lock(lock);
960 		found = __sk_nulls_del_node_init_rcu(sk);
961 		spin_unlock(lock);
962 	}
963 	if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
964 		reqsk_put(req);
965 	return found;
966 }
967 
968 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
969 {
970 	bool unlinked = reqsk_queue_unlink(req);
971 
972 	if (unlinked) {
973 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
974 		reqsk_put(req);
975 	}
976 	return unlinked;
977 }
978 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
979 
980 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
981 {
982 	inet_csk_reqsk_queue_drop(sk, req);
983 	reqsk_put(req);
984 }
985 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
986 
987 static void reqsk_timer_handler(struct timer_list *t)
988 {
989 	struct request_sock *req = from_timer(req, t, rsk_timer);
990 	struct request_sock *nreq = NULL, *oreq = req;
991 	struct sock *sk_listener = req->rsk_listener;
992 	struct inet_connection_sock *icsk;
993 	struct request_sock_queue *queue;
994 	struct net *net;
995 	int max_syn_ack_retries, qlen, expire = 0, resend = 0;
996 
997 	if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
998 		struct sock *nsk;
999 
1000 		nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1001 		if (!nsk)
1002 			goto drop;
1003 
1004 		nreq = inet_reqsk_clone(req, nsk);
1005 		if (!nreq)
1006 			goto drop;
1007 
1008 		/* The new timer for the cloned req can decrease the 2
1009 		 * by calling inet_csk_reqsk_queue_drop_and_put(), so
1010 		 * hold another count to prevent use-after-free and
1011 		 * call reqsk_put() just before return.
1012 		 */
1013 		refcount_set(&nreq->rsk_refcnt, 2 + 1);
1014 		timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1015 		reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1016 
1017 		req = nreq;
1018 		sk_listener = nsk;
1019 	}
1020 
1021 	icsk = inet_csk(sk_listener);
1022 	net = sock_net(sk_listener);
1023 	max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1024 		READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1025 	/* Normally all the openreqs are young and become mature
1026 	 * (i.e. converted to established socket) for first timeout.
1027 	 * If synack was not acknowledged for 1 second, it means
1028 	 * one of the following things: synack was lost, ack was lost,
1029 	 * rtt is high or nobody planned to ack (i.e. synflood).
1030 	 * When server is a bit loaded, queue is populated with old
1031 	 * open requests, reducing effective size of queue.
1032 	 * When server is well loaded, queue size reduces to zero
1033 	 * after several minutes of work. It is not synflood,
1034 	 * it is normal operation. The solution is pruning
1035 	 * too old entries overriding normal timeout, when
1036 	 * situation becomes dangerous.
1037 	 *
1038 	 * Essentially, we reserve half of room for young
1039 	 * embrions; and abort old ones without pity, if old
1040 	 * ones are about to clog our table.
1041 	 */
1042 	queue = &icsk->icsk_accept_queue;
1043 	qlen = reqsk_queue_len(queue);
1044 	if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1045 		int young = reqsk_queue_len_young(queue) << 1;
1046 
1047 		while (max_syn_ack_retries > 2) {
1048 			if (qlen < young)
1049 				break;
1050 			max_syn_ack_retries--;
1051 			young <<= 1;
1052 		}
1053 	}
1054 	syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1055 		       &expire, &resend);
1056 	req->rsk_ops->syn_ack_timeout(req);
1057 	if (!expire &&
1058 	    (!resend ||
1059 	     !inet_rtx_syn_ack(sk_listener, req) ||
1060 	     inet_rsk(req)->acked)) {
1061 		if (req->num_timeout++ == 0)
1062 			atomic_dec(&queue->young);
1063 		mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1064 
1065 		if (!nreq)
1066 			return;
1067 
1068 		if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1069 			/* delete timer */
1070 			inet_csk_reqsk_queue_drop(sk_listener, nreq);
1071 			goto no_ownership;
1072 		}
1073 
1074 		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1075 		reqsk_migrate_reset(oreq);
1076 		reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1077 		reqsk_put(oreq);
1078 
1079 		reqsk_put(nreq);
1080 		return;
1081 	}
1082 
1083 	/* Even if we can clone the req, we may need not retransmit any more
1084 	 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1085 	 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1086 	 */
1087 	if (nreq) {
1088 		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1089 no_ownership:
1090 		reqsk_migrate_reset(nreq);
1091 		reqsk_queue_removed(queue, nreq);
1092 		__reqsk_free(nreq);
1093 	}
1094 
1095 drop:
1096 	inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
1097 }
1098 
1099 static void reqsk_queue_hash_req(struct request_sock *req,
1100 				 unsigned long timeout)
1101 {
1102 	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1103 	mod_timer(&req->rsk_timer, jiffies + timeout);
1104 
1105 	inet_ehash_insert(req_to_sk(req), NULL, NULL);
1106 	/* before letting lookups find us, make sure all req fields
1107 	 * are committed to memory and refcnt initialized.
1108 	 */
1109 	smp_wmb();
1110 	refcount_set(&req->rsk_refcnt, 2 + 1);
1111 }
1112 
1113 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1114 				   unsigned long timeout)
1115 {
1116 	reqsk_queue_hash_req(req, timeout);
1117 	inet_csk_reqsk_queue_added(sk);
1118 }
1119 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1120 
1121 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1122 			   const gfp_t priority)
1123 {
1124 	struct inet_connection_sock *icsk = inet_csk(newsk);
1125 
1126 	if (!icsk->icsk_ulp_ops)
1127 		return;
1128 
1129 	icsk->icsk_ulp_ops->clone(req, newsk, priority);
1130 }
1131 
1132 /**
1133  *	inet_csk_clone_lock - clone an inet socket, and lock its clone
1134  *	@sk: the socket to clone
1135  *	@req: request_sock
1136  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1137  *
1138  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1139  */
1140 struct sock *inet_csk_clone_lock(const struct sock *sk,
1141 				 const struct request_sock *req,
1142 				 const gfp_t priority)
1143 {
1144 	struct sock *newsk = sk_clone_lock(sk, priority);
1145 
1146 	if (newsk) {
1147 		struct inet_connection_sock *newicsk = inet_csk(newsk);
1148 
1149 		inet_sk_set_state(newsk, TCP_SYN_RECV);
1150 		newicsk->icsk_bind_hash = NULL;
1151 		newicsk->icsk_bind2_hash = NULL;
1152 
1153 		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1154 		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1155 		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1156 
1157 		/* listeners have SOCK_RCU_FREE, not the children */
1158 		sock_reset_flag(newsk, SOCK_RCU_FREE);
1159 
1160 		inet_sk(newsk)->mc_list = NULL;
1161 
1162 		newsk->sk_mark = inet_rsk(req)->ir_mark;
1163 		atomic64_set(&newsk->sk_cookie,
1164 			     atomic64_read(&inet_rsk(req)->ir_cookie));
1165 
1166 		newicsk->icsk_retransmits = 0;
1167 		newicsk->icsk_backoff	  = 0;
1168 		newicsk->icsk_probes_out  = 0;
1169 		newicsk->icsk_probes_tstamp = 0;
1170 
1171 		/* Deinitialize accept_queue to trap illegal accesses. */
1172 		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1173 
1174 		inet_clone_ulp(req, newsk, priority);
1175 
1176 		security_inet_csk_clone(newsk, req);
1177 	}
1178 	return newsk;
1179 }
1180 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1181 
1182 /*
1183  * At this point, there should be no process reference to this
1184  * socket, and thus no user references at all.  Therefore we
1185  * can assume the socket waitqueue is inactive and nobody will
1186  * try to jump onto it.
1187  */
1188 void inet_csk_destroy_sock(struct sock *sk)
1189 {
1190 	WARN_ON(sk->sk_state != TCP_CLOSE);
1191 	WARN_ON(!sock_flag(sk, SOCK_DEAD));
1192 
1193 	/* It cannot be in hash table! */
1194 	WARN_ON(!sk_unhashed(sk));
1195 
1196 	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1197 	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1198 
1199 	sk->sk_prot->destroy(sk);
1200 
1201 	sk_stream_kill_queues(sk);
1202 
1203 	xfrm_sk_free_policy(sk);
1204 
1205 	this_cpu_dec(*sk->sk_prot->orphan_count);
1206 
1207 	sock_put(sk);
1208 }
1209 EXPORT_SYMBOL(inet_csk_destroy_sock);
1210 
1211 /* This function allows to force a closure of a socket after the call to
1212  * tcp/dccp_create_openreq_child().
1213  */
1214 void inet_csk_prepare_forced_close(struct sock *sk)
1215 	__releases(&sk->sk_lock.slock)
1216 {
1217 	/* sk_clone_lock locked the socket and set refcnt to 2 */
1218 	bh_unlock_sock(sk);
1219 	sock_put(sk);
1220 	inet_csk_prepare_for_destroy_sock(sk);
1221 	inet_sk(sk)->inet_num = 0;
1222 }
1223 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1224 
1225 static int inet_ulp_can_listen(const struct sock *sk)
1226 {
1227 	const struct inet_connection_sock *icsk = inet_csk(sk);
1228 
1229 	if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1230 		return -EINVAL;
1231 
1232 	return 0;
1233 }
1234 
1235 int inet_csk_listen_start(struct sock *sk)
1236 {
1237 	struct inet_connection_sock *icsk = inet_csk(sk);
1238 	struct inet_sock *inet = inet_sk(sk);
1239 	int err;
1240 
1241 	err = inet_ulp_can_listen(sk);
1242 	if (unlikely(err))
1243 		return err;
1244 
1245 	reqsk_queue_alloc(&icsk->icsk_accept_queue);
1246 
1247 	sk->sk_ack_backlog = 0;
1248 	inet_csk_delack_init(sk);
1249 
1250 	/* There is race window here: we announce ourselves listening,
1251 	 * but this transition is still not validated by get_port().
1252 	 * It is OK, because this socket enters to hash table only
1253 	 * after validation is complete.
1254 	 */
1255 	inet_sk_state_store(sk, TCP_LISTEN);
1256 	err = sk->sk_prot->get_port(sk, inet->inet_num);
1257 	if (!err) {
1258 		inet->inet_sport = htons(inet->inet_num);
1259 
1260 		sk_dst_reset(sk);
1261 		err = sk->sk_prot->hash(sk);
1262 
1263 		if (likely(!err))
1264 			return 0;
1265 	}
1266 
1267 	inet_sk_set_state(sk, TCP_CLOSE);
1268 	return err;
1269 }
1270 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1271 
1272 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1273 			      struct sock *child)
1274 {
1275 	sk->sk_prot->disconnect(child, O_NONBLOCK);
1276 
1277 	sock_orphan(child);
1278 
1279 	this_cpu_inc(*sk->sk_prot->orphan_count);
1280 
1281 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1282 		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1283 		BUG_ON(sk != req->rsk_listener);
1284 
1285 		/* Paranoid, to prevent race condition if
1286 		 * an inbound pkt destined for child is
1287 		 * blocked by sock lock in tcp_v4_rcv().
1288 		 * Also to satisfy an assertion in
1289 		 * tcp_v4_destroy_sock().
1290 		 */
1291 		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1292 	}
1293 	inet_csk_destroy_sock(child);
1294 }
1295 
1296 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1297 				      struct request_sock *req,
1298 				      struct sock *child)
1299 {
1300 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1301 
1302 	spin_lock(&queue->rskq_lock);
1303 	if (unlikely(sk->sk_state != TCP_LISTEN)) {
1304 		inet_child_forget(sk, req, child);
1305 		child = NULL;
1306 	} else {
1307 		req->sk = child;
1308 		req->dl_next = NULL;
1309 		if (queue->rskq_accept_head == NULL)
1310 			WRITE_ONCE(queue->rskq_accept_head, req);
1311 		else
1312 			queue->rskq_accept_tail->dl_next = req;
1313 		queue->rskq_accept_tail = req;
1314 		sk_acceptq_added(sk);
1315 	}
1316 	spin_unlock(&queue->rskq_lock);
1317 	return child;
1318 }
1319 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1320 
1321 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1322 					 struct request_sock *req, bool own_req)
1323 {
1324 	if (own_req) {
1325 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1326 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1327 
1328 		if (sk != req->rsk_listener) {
1329 			/* another listening sk has been selected,
1330 			 * migrate the req to it.
1331 			 */
1332 			struct request_sock *nreq;
1333 
1334 			/* hold a refcnt for the nreq->rsk_listener
1335 			 * which is assigned in inet_reqsk_clone()
1336 			 */
1337 			sock_hold(sk);
1338 			nreq = inet_reqsk_clone(req, sk);
1339 			if (!nreq) {
1340 				inet_child_forget(sk, req, child);
1341 				goto child_put;
1342 			}
1343 
1344 			refcount_set(&nreq->rsk_refcnt, 1);
1345 			if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1346 				__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1347 				reqsk_migrate_reset(req);
1348 				reqsk_put(req);
1349 				return child;
1350 			}
1351 
1352 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1353 			reqsk_migrate_reset(nreq);
1354 			__reqsk_free(nreq);
1355 		} else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1356 			return child;
1357 		}
1358 	}
1359 	/* Too bad, another child took ownership of the request, undo. */
1360 child_put:
1361 	bh_unlock_sock(child);
1362 	sock_put(child);
1363 	return NULL;
1364 }
1365 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1366 
1367 /*
1368  *	This routine closes sockets which have been at least partially
1369  *	opened, but not yet accepted.
1370  */
1371 void inet_csk_listen_stop(struct sock *sk)
1372 {
1373 	struct inet_connection_sock *icsk = inet_csk(sk);
1374 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1375 	struct request_sock *next, *req;
1376 
1377 	/* Following specs, it would be better either to send FIN
1378 	 * (and enter FIN-WAIT-1, it is normal close)
1379 	 * or to send active reset (abort).
1380 	 * Certainly, it is pretty dangerous while synflood, but it is
1381 	 * bad justification for our negligence 8)
1382 	 * To be honest, we are not able to make either
1383 	 * of the variants now.			--ANK
1384 	 */
1385 	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1386 		struct sock *child = req->sk, *nsk;
1387 		struct request_sock *nreq;
1388 
1389 		local_bh_disable();
1390 		bh_lock_sock(child);
1391 		WARN_ON(sock_owned_by_user(child));
1392 		sock_hold(child);
1393 
1394 		nsk = reuseport_migrate_sock(sk, child, NULL);
1395 		if (nsk) {
1396 			nreq = inet_reqsk_clone(req, nsk);
1397 			if (nreq) {
1398 				refcount_set(&nreq->rsk_refcnt, 1);
1399 
1400 				if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1401 					__NET_INC_STATS(sock_net(nsk),
1402 							LINUX_MIB_TCPMIGRATEREQSUCCESS);
1403 					reqsk_migrate_reset(req);
1404 				} else {
1405 					__NET_INC_STATS(sock_net(nsk),
1406 							LINUX_MIB_TCPMIGRATEREQFAILURE);
1407 					reqsk_migrate_reset(nreq);
1408 					__reqsk_free(nreq);
1409 				}
1410 
1411 				/* inet_csk_reqsk_queue_add() has already
1412 				 * called inet_child_forget() on failure case.
1413 				 */
1414 				goto skip_child_forget;
1415 			}
1416 		}
1417 
1418 		inet_child_forget(sk, req, child);
1419 skip_child_forget:
1420 		reqsk_put(req);
1421 		bh_unlock_sock(child);
1422 		local_bh_enable();
1423 		sock_put(child);
1424 
1425 		cond_resched();
1426 	}
1427 	if (queue->fastopenq.rskq_rst_head) {
1428 		/* Free all the reqs queued in rskq_rst_head. */
1429 		spin_lock_bh(&queue->fastopenq.lock);
1430 		req = queue->fastopenq.rskq_rst_head;
1431 		queue->fastopenq.rskq_rst_head = NULL;
1432 		spin_unlock_bh(&queue->fastopenq.lock);
1433 		while (req != NULL) {
1434 			next = req->dl_next;
1435 			reqsk_put(req);
1436 			req = next;
1437 		}
1438 	}
1439 	WARN_ON_ONCE(sk->sk_ack_backlog);
1440 }
1441 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1442 
1443 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1444 {
1445 	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1446 	const struct inet_sock *inet = inet_sk(sk);
1447 
1448 	sin->sin_family		= AF_INET;
1449 	sin->sin_addr.s_addr	= inet->inet_daddr;
1450 	sin->sin_port		= inet->inet_dport;
1451 }
1452 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1453 
1454 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1455 {
1456 	const struct inet_sock *inet = inet_sk(sk);
1457 	const struct ip_options_rcu *inet_opt;
1458 	__be32 daddr = inet->inet_daddr;
1459 	struct flowi4 *fl4;
1460 	struct rtable *rt;
1461 
1462 	rcu_read_lock();
1463 	inet_opt = rcu_dereference(inet->inet_opt);
1464 	if (inet_opt && inet_opt->opt.srr)
1465 		daddr = inet_opt->opt.faddr;
1466 	fl4 = &fl->u.ip4;
1467 	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1468 				   inet->inet_saddr, inet->inet_dport,
1469 				   inet->inet_sport, sk->sk_protocol,
1470 				   RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1471 	if (IS_ERR(rt))
1472 		rt = NULL;
1473 	if (rt)
1474 		sk_setup_caps(sk, &rt->dst);
1475 	rcu_read_unlock();
1476 
1477 	return &rt->dst;
1478 }
1479 
1480 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1481 {
1482 	struct dst_entry *dst = __sk_dst_check(sk, 0);
1483 	struct inet_sock *inet = inet_sk(sk);
1484 
1485 	if (!dst) {
1486 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1487 		if (!dst)
1488 			goto out;
1489 	}
1490 	dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1491 
1492 	dst = __sk_dst_check(sk, 0);
1493 	if (!dst)
1494 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1495 out:
1496 	return dst;
1497 }
1498 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1499