1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Support for INET connection oriented protocols. 8 * 9 * Authors: See the TCP sources 10 */ 11 12 #include <linux/module.h> 13 #include <linux/jhash.h> 14 15 #include <net/inet_connection_sock.h> 16 #include <net/inet_hashtables.h> 17 #include <net/inet_timewait_sock.h> 18 #include <net/ip.h> 19 #include <net/route.h> 20 #include <net/tcp_states.h> 21 #include <net/xfrm.h> 22 #include <net/tcp.h> 23 #include <net/sock_reuseport.h> 24 #include <net/addrconf.h> 25 26 #if IS_ENABLED(CONFIG_IPV6) 27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses 28 * if IPv6 only, and any IPv4 addresses 29 * if not IPv6 only 30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e. 31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY, 32 * and 0.0.0.0 equals to 0.0.0.0 only 33 */ 34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6, 35 const struct in6_addr *sk2_rcv_saddr6, 36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 37 bool sk1_ipv6only, bool sk2_ipv6only, 38 bool match_sk1_wildcard, 39 bool match_sk2_wildcard) 40 { 41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6); 42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED; 43 44 /* if both are mapped, treat as IPv4 */ 45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) { 46 if (!sk2_ipv6only) { 47 if (sk1_rcv_saddr == sk2_rcv_saddr) 48 return true; 49 return (match_sk1_wildcard && !sk1_rcv_saddr) || 50 (match_sk2_wildcard && !sk2_rcv_saddr); 51 } 52 return false; 53 } 54 55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY) 56 return true; 57 58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard && 59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED)) 60 return true; 61 62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard && 63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED)) 64 return true; 65 66 if (sk2_rcv_saddr6 && 67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6)) 68 return true; 69 70 return false; 71 } 72 #endif 73 74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e. 76 * 0.0.0.0 only equals to 0.0.0.0 77 */ 78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 79 bool sk2_ipv6only, bool match_sk1_wildcard, 80 bool match_sk2_wildcard) 81 { 82 if (!sk2_ipv6only) { 83 if (sk1_rcv_saddr == sk2_rcv_saddr) 84 return true; 85 return (match_sk1_wildcard && !sk1_rcv_saddr) || 86 (match_sk2_wildcard && !sk2_rcv_saddr); 87 } 88 return false; 89 } 90 91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, 92 bool match_wildcard) 93 { 94 #if IS_ENABLED(CONFIG_IPV6) 95 if (sk->sk_family == AF_INET6) 96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr, 97 inet6_rcv_saddr(sk2), 98 sk->sk_rcv_saddr, 99 sk2->sk_rcv_saddr, 100 ipv6_only_sock(sk), 101 ipv6_only_sock(sk2), 102 match_wildcard, 103 match_wildcard); 104 #endif 105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr, 106 ipv6_only_sock(sk2), match_wildcard, 107 match_wildcard); 108 } 109 EXPORT_SYMBOL(inet_rcv_saddr_equal); 110 111 bool inet_rcv_saddr_any(const struct sock *sk) 112 { 113 #if IS_ENABLED(CONFIG_IPV6) 114 if (sk->sk_family == AF_INET6) 115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr); 116 #endif 117 return !sk->sk_rcv_saddr; 118 } 119 120 /** 121 * inet_sk_get_local_port_range - fetch ephemeral ports range 122 * @sk: socket 123 * @low: pointer to low port 124 * @high: pointer to high port 125 * 126 * Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range) 127 * Range can be overridden if socket got IP_LOCAL_PORT_RANGE option. 128 * Returns true if IP_LOCAL_PORT_RANGE was set on this socket. 129 */ 130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high) 131 { 132 int lo, hi, sk_lo, sk_hi; 133 bool local_range = false; 134 u32 sk_range; 135 136 inet_get_local_port_range(sock_net(sk), &lo, &hi); 137 138 sk_range = READ_ONCE(inet_sk(sk)->local_port_range); 139 if (unlikely(sk_range)) { 140 sk_lo = sk_range & 0xffff; 141 sk_hi = sk_range >> 16; 142 143 if (lo <= sk_lo && sk_lo <= hi) 144 lo = sk_lo; 145 if (lo <= sk_hi && sk_hi <= hi) 146 hi = sk_hi; 147 local_range = true; 148 } 149 150 *low = lo; 151 *high = hi; 152 return local_range; 153 } 154 EXPORT_SYMBOL(inet_sk_get_local_port_range); 155 156 static bool inet_use_bhash2_on_bind(const struct sock *sk) 157 { 158 #if IS_ENABLED(CONFIG_IPV6) 159 if (sk->sk_family == AF_INET6) { 160 if (ipv6_addr_any(&sk->sk_v6_rcv_saddr)) 161 return false; 162 163 if (!ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)) 164 return true; 165 } 166 #endif 167 return sk->sk_rcv_saddr != htonl(INADDR_ANY); 168 } 169 170 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2, 171 kuid_t sk_uid, bool relax, 172 bool reuseport_cb_ok, bool reuseport_ok) 173 { 174 int bound_dev_if2; 175 176 if (sk == sk2) 177 return false; 178 179 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if); 180 181 if (!sk->sk_bound_dev_if || !bound_dev_if2 || 182 sk->sk_bound_dev_if == bound_dev_if2) { 183 if (sk->sk_reuse && sk2->sk_reuse && 184 sk2->sk_state != TCP_LISTEN) { 185 if (!relax || (!reuseport_ok && sk->sk_reuseport && 186 sk2->sk_reuseport && reuseport_cb_ok && 187 (sk2->sk_state == TCP_TIME_WAIT || 188 uid_eq(sk_uid, sock_i_uid(sk2))))) 189 return true; 190 } else if (!reuseport_ok || !sk->sk_reuseport || 191 !sk2->sk_reuseport || !reuseport_cb_ok || 192 (sk2->sk_state != TCP_TIME_WAIT && 193 !uid_eq(sk_uid, sock_i_uid(sk2)))) { 194 return true; 195 } 196 } 197 return false; 198 } 199 200 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2, 201 kuid_t sk_uid, bool relax, 202 bool reuseport_cb_ok, bool reuseport_ok) 203 { 204 if (ipv6_only_sock(sk2)) { 205 if (sk->sk_family == AF_INET) 206 return false; 207 208 #if IS_ENABLED(CONFIG_IPV6) 209 if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)) 210 return false; 211 #endif 212 } 213 214 return inet_bind_conflict(sk, sk2, sk_uid, relax, 215 reuseport_cb_ok, reuseport_ok); 216 } 217 218 static bool inet_bhash2_conflict(const struct sock *sk, 219 const struct inet_bind2_bucket *tb2, 220 kuid_t sk_uid, 221 bool relax, bool reuseport_cb_ok, 222 bool reuseport_ok) 223 { 224 struct sock *sk2; 225 226 sk_for_each_bound(sk2, &tb2->owners) { 227 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax, 228 reuseport_cb_ok, reuseport_ok)) 229 return true; 230 } 231 232 return false; 233 } 234 235 #define sk_for_each_bound_bhash(__sk, __tb2, __tb) \ 236 hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node) \ 237 sk_for_each_bound((__sk), &(__tb2)->owners) 238 239 /* This should be called only when the tb and tb2 hashbuckets' locks are held */ 240 static int inet_csk_bind_conflict(const struct sock *sk, 241 const struct inet_bind_bucket *tb, 242 const struct inet_bind2_bucket *tb2, /* may be null */ 243 bool relax, bool reuseport_ok) 244 { 245 kuid_t uid = sock_i_uid((struct sock *)sk); 246 struct sock_reuseport *reuseport_cb; 247 bool reuseport_cb_ok; 248 struct sock *sk2; 249 250 rcu_read_lock(); 251 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb); 252 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */ 253 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks); 254 rcu_read_unlock(); 255 256 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if 257 * ipv4) should have been checked already. We need to do these two 258 * checks separately because their spinlocks have to be acquired/released 259 * independently of each other, to prevent possible deadlocks 260 */ 261 if (inet_use_bhash2_on_bind(sk)) 262 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, 263 reuseport_cb_ok, reuseport_ok); 264 265 /* Unlike other sk lookup places we do not check 266 * for sk_net here, since _all_ the socks listed 267 * in tb->owners and tb2->owners list belong 268 * to the same net - the one this bucket belongs to. 269 */ 270 sk_for_each_bound_bhash(sk2, tb2, tb) { 271 if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok)) 272 continue; 273 274 if (inet_rcv_saddr_equal(sk, sk2, true)) 275 return true; 276 } 277 278 return false; 279 } 280 281 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or 282 * INADDR_ANY (if ipv4) socket. 283 * 284 * Caller must hold bhash hashbucket lock with local bh disabled, to protect 285 * against concurrent binds on the port for addr any 286 */ 287 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev, 288 bool relax, bool reuseport_ok) 289 { 290 kuid_t uid = sock_i_uid((struct sock *)sk); 291 const struct net *net = sock_net(sk); 292 struct sock_reuseport *reuseport_cb; 293 struct inet_bind_hashbucket *head2; 294 struct inet_bind2_bucket *tb2; 295 bool conflict = false; 296 bool reuseport_cb_ok; 297 298 rcu_read_lock(); 299 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb); 300 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */ 301 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks); 302 rcu_read_unlock(); 303 304 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port); 305 306 spin_lock(&head2->lock); 307 308 inet_bind_bucket_for_each(tb2, &head2->chain) { 309 if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk)) 310 continue; 311 312 if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, reuseport_ok)) 313 continue; 314 315 conflict = true; 316 break; 317 } 318 319 spin_unlock(&head2->lock); 320 321 return conflict; 322 } 323 324 /* 325 * Find an open port number for the socket. Returns with the 326 * inet_bind_hashbucket locks held if successful. 327 */ 328 static struct inet_bind_hashbucket * 329 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret, 330 struct inet_bind2_bucket **tb2_ret, 331 struct inet_bind_hashbucket **head2_ret, int *port_ret) 332 { 333 struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk); 334 int i, low, high, attempt_half, port, l3mdev; 335 struct inet_bind_hashbucket *head, *head2; 336 struct net *net = sock_net(sk); 337 struct inet_bind2_bucket *tb2; 338 struct inet_bind_bucket *tb; 339 u32 remaining, offset; 340 bool relax = false; 341 342 l3mdev = inet_sk_bound_l3mdev(sk); 343 ports_exhausted: 344 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0; 345 other_half_scan: 346 inet_sk_get_local_port_range(sk, &low, &high); 347 high++; /* [32768, 60999] -> [32768, 61000[ */ 348 if (high - low < 4) 349 attempt_half = 0; 350 if (attempt_half) { 351 int half = low + (((high - low) >> 2) << 1); 352 353 if (attempt_half == 1) 354 high = half; 355 else 356 low = half; 357 } 358 remaining = high - low; 359 if (likely(remaining > 1)) 360 remaining &= ~1U; 361 362 offset = get_random_u32_below(remaining); 363 /* __inet_hash_connect() favors ports having @low parity 364 * We do the opposite to not pollute connect() users. 365 */ 366 offset |= 1U; 367 368 other_parity_scan: 369 port = low + offset; 370 for (i = 0; i < remaining; i += 2, port += 2) { 371 if (unlikely(port >= high)) 372 port -= remaining; 373 if (inet_is_local_reserved_port(net, port)) 374 continue; 375 head = &hinfo->bhash[inet_bhashfn(net, port, 376 hinfo->bhash_size)]; 377 spin_lock_bh(&head->lock); 378 if (inet_use_bhash2_on_bind(sk)) { 379 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false)) 380 goto next_port; 381 } 382 383 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port); 384 spin_lock(&head2->lock); 385 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk); 386 inet_bind_bucket_for_each(tb, &head->chain) 387 if (inet_bind_bucket_match(tb, net, port, l3mdev)) { 388 if (!inet_csk_bind_conflict(sk, tb, tb2, 389 relax, false)) 390 goto success; 391 spin_unlock(&head2->lock); 392 goto next_port; 393 } 394 tb = NULL; 395 goto success; 396 next_port: 397 spin_unlock_bh(&head->lock); 398 cond_resched(); 399 } 400 401 offset--; 402 if (!(offset & 1)) 403 goto other_parity_scan; 404 405 if (attempt_half == 1) { 406 /* OK we now try the upper half of the range */ 407 attempt_half = 2; 408 goto other_half_scan; 409 } 410 411 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) { 412 /* We still have a chance to connect to different destinations */ 413 relax = true; 414 goto ports_exhausted; 415 } 416 return NULL; 417 success: 418 *port_ret = port; 419 *tb_ret = tb; 420 *tb2_ret = tb2; 421 *head2_ret = head2; 422 return head; 423 } 424 425 static inline int sk_reuseport_match(struct inet_bind_bucket *tb, 426 struct sock *sk) 427 { 428 kuid_t uid = sock_i_uid(sk); 429 430 if (tb->fastreuseport <= 0) 431 return 0; 432 if (!sk->sk_reuseport) 433 return 0; 434 if (rcu_access_pointer(sk->sk_reuseport_cb)) 435 return 0; 436 if (!uid_eq(tb->fastuid, uid)) 437 return 0; 438 /* We only need to check the rcv_saddr if this tb was once marked 439 * without fastreuseport and then was reset, as we can only know that 440 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the 441 * owners list. 442 */ 443 if (tb->fastreuseport == FASTREUSEPORT_ANY) 444 return 1; 445 #if IS_ENABLED(CONFIG_IPV6) 446 if (tb->fast_sk_family == AF_INET6) 447 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr, 448 inet6_rcv_saddr(sk), 449 tb->fast_rcv_saddr, 450 sk->sk_rcv_saddr, 451 tb->fast_ipv6_only, 452 ipv6_only_sock(sk), true, false); 453 #endif 454 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr, 455 ipv6_only_sock(sk), true, false); 456 } 457 458 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb, 459 struct sock *sk) 460 { 461 kuid_t uid = sock_i_uid(sk); 462 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 463 464 if (hlist_empty(&tb->bhash2)) { 465 tb->fastreuse = reuse; 466 if (sk->sk_reuseport) { 467 tb->fastreuseport = FASTREUSEPORT_ANY; 468 tb->fastuid = uid; 469 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 470 tb->fast_ipv6_only = ipv6_only_sock(sk); 471 tb->fast_sk_family = sk->sk_family; 472 #if IS_ENABLED(CONFIG_IPV6) 473 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 474 #endif 475 } else { 476 tb->fastreuseport = 0; 477 } 478 } else { 479 if (!reuse) 480 tb->fastreuse = 0; 481 if (sk->sk_reuseport) { 482 /* We didn't match or we don't have fastreuseport set on 483 * the tb, but we have sk_reuseport set on this socket 484 * and we know that there are no bind conflicts with 485 * this socket in this tb, so reset our tb's reuseport 486 * settings so that any subsequent sockets that match 487 * our current socket will be put on the fast path. 488 * 489 * If we reset we need to set FASTREUSEPORT_STRICT so we 490 * do extra checking for all subsequent sk_reuseport 491 * socks. 492 */ 493 if (!sk_reuseport_match(tb, sk)) { 494 tb->fastreuseport = FASTREUSEPORT_STRICT; 495 tb->fastuid = uid; 496 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 497 tb->fast_ipv6_only = ipv6_only_sock(sk); 498 tb->fast_sk_family = sk->sk_family; 499 #if IS_ENABLED(CONFIG_IPV6) 500 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 501 #endif 502 } 503 } else { 504 tb->fastreuseport = 0; 505 } 506 } 507 } 508 509 /* Obtain a reference to a local port for the given sock, 510 * if snum is zero it means select any available local port. 511 * We try to allocate an odd port (and leave even ports for connect()) 512 */ 513 int inet_csk_get_port(struct sock *sk, unsigned short snum) 514 { 515 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 516 bool found_port = false, check_bind_conflict = true; 517 bool bhash_created = false, bhash2_created = false; 518 struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk); 519 int ret = -EADDRINUSE, port = snum, l3mdev; 520 struct inet_bind_hashbucket *head, *head2; 521 struct inet_bind2_bucket *tb2 = NULL; 522 struct inet_bind_bucket *tb = NULL; 523 bool head2_lock_acquired = false; 524 struct net *net = sock_net(sk); 525 526 l3mdev = inet_sk_bound_l3mdev(sk); 527 528 if (!port) { 529 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port); 530 if (!head) 531 return ret; 532 533 head2_lock_acquired = true; 534 535 if (tb && tb2) 536 goto success; 537 found_port = true; 538 } else { 539 head = &hinfo->bhash[inet_bhashfn(net, port, 540 hinfo->bhash_size)]; 541 spin_lock_bh(&head->lock); 542 inet_bind_bucket_for_each(tb, &head->chain) 543 if (inet_bind_bucket_match(tb, net, port, l3mdev)) 544 break; 545 } 546 547 if (!tb) { 548 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net, 549 head, port, l3mdev); 550 if (!tb) 551 goto fail_unlock; 552 bhash_created = true; 553 } 554 555 if (!found_port) { 556 if (!hlist_empty(&tb->bhash2)) { 557 if (sk->sk_reuse == SK_FORCE_REUSE || 558 (tb->fastreuse > 0 && reuse) || 559 sk_reuseport_match(tb, sk)) 560 check_bind_conflict = false; 561 } 562 563 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) { 564 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true)) 565 goto fail_unlock; 566 } 567 568 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port); 569 spin_lock(&head2->lock); 570 head2_lock_acquired = true; 571 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk); 572 } 573 574 if (!tb2) { 575 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep, 576 net, head2, tb, sk); 577 if (!tb2) 578 goto fail_unlock; 579 bhash2_created = true; 580 } 581 582 if (!found_port && check_bind_conflict) { 583 if (inet_csk_bind_conflict(sk, tb, tb2, true, true)) 584 goto fail_unlock; 585 } 586 587 success: 588 inet_csk_update_fastreuse(tb, sk); 589 590 if (!inet_csk(sk)->icsk_bind_hash) 591 inet_bind_hash(sk, tb, tb2, port); 592 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb); 593 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2); 594 ret = 0; 595 596 fail_unlock: 597 if (ret) { 598 if (bhash2_created) 599 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2); 600 if (bhash_created) 601 inet_bind_bucket_destroy(tb); 602 } 603 if (head2_lock_acquired) 604 spin_unlock(&head2->lock); 605 spin_unlock_bh(&head->lock); 606 return ret; 607 } 608 EXPORT_SYMBOL_GPL(inet_csk_get_port); 609 610 /* 611 * Wait for an incoming connection, avoid race conditions. This must be called 612 * with the socket locked. 613 */ 614 static int inet_csk_wait_for_connect(struct sock *sk, long timeo) 615 { 616 struct inet_connection_sock *icsk = inet_csk(sk); 617 DEFINE_WAIT(wait); 618 int err; 619 620 /* 621 * True wake-one mechanism for incoming connections: only 622 * one process gets woken up, not the 'whole herd'. 623 * Since we do not 'race & poll' for established sockets 624 * anymore, the common case will execute the loop only once. 625 * 626 * Subtle issue: "add_wait_queue_exclusive()" will be added 627 * after any current non-exclusive waiters, and we know that 628 * it will always _stay_ after any new non-exclusive waiters 629 * because all non-exclusive waiters are added at the 630 * beginning of the wait-queue. As such, it's ok to "drop" 631 * our exclusiveness temporarily when we get woken up without 632 * having to remove and re-insert us on the wait queue. 633 */ 634 for (;;) { 635 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 636 TASK_INTERRUPTIBLE); 637 release_sock(sk); 638 if (reqsk_queue_empty(&icsk->icsk_accept_queue)) 639 timeo = schedule_timeout(timeo); 640 sched_annotate_sleep(); 641 lock_sock(sk); 642 err = 0; 643 if (!reqsk_queue_empty(&icsk->icsk_accept_queue)) 644 break; 645 err = -EINVAL; 646 if (sk->sk_state != TCP_LISTEN) 647 break; 648 err = sock_intr_errno(timeo); 649 if (signal_pending(current)) 650 break; 651 err = -EAGAIN; 652 if (!timeo) 653 break; 654 } 655 finish_wait(sk_sleep(sk), &wait); 656 return err; 657 } 658 659 /* 660 * This will accept the next outstanding connection. 661 */ 662 struct sock *inet_csk_accept(struct sock *sk, struct proto_accept_arg *arg) 663 { 664 struct inet_connection_sock *icsk = inet_csk(sk); 665 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 666 struct request_sock *req; 667 struct sock *newsk; 668 int error; 669 670 lock_sock(sk); 671 672 /* We need to make sure that this socket is listening, 673 * and that it has something pending. 674 */ 675 error = -EINVAL; 676 if (sk->sk_state != TCP_LISTEN) 677 goto out_err; 678 679 /* Find already established connection */ 680 if (reqsk_queue_empty(queue)) { 681 long timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK); 682 683 /* If this is a non blocking socket don't sleep */ 684 error = -EAGAIN; 685 if (!timeo) 686 goto out_err; 687 688 error = inet_csk_wait_for_connect(sk, timeo); 689 if (error) 690 goto out_err; 691 } 692 req = reqsk_queue_remove(queue, sk); 693 arg->is_empty = reqsk_queue_empty(queue); 694 newsk = req->sk; 695 696 if (sk->sk_protocol == IPPROTO_TCP && 697 tcp_rsk(req)->tfo_listener) { 698 spin_lock_bh(&queue->fastopenq.lock); 699 if (tcp_rsk(req)->tfo_listener) { 700 /* We are still waiting for the final ACK from 3WHS 701 * so can't free req now. Instead, we set req->sk to 702 * NULL to signify that the child socket is taken 703 * so reqsk_fastopen_remove() will free the req 704 * when 3WHS finishes (or is aborted). 705 */ 706 req->sk = NULL; 707 req = NULL; 708 } 709 spin_unlock_bh(&queue->fastopenq.lock); 710 } 711 712 out: 713 release_sock(sk); 714 if (newsk && mem_cgroup_sockets_enabled) { 715 gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL; 716 int amt = 0; 717 718 /* atomically get the memory usage, set and charge the 719 * newsk->sk_memcg. 720 */ 721 lock_sock(newsk); 722 723 mem_cgroup_sk_alloc(newsk); 724 if (newsk->sk_memcg) { 725 /* The socket has not been accepted yet, no need 726 * to look at newsk->sk_wmem_queued. 727 */ 728 amt = sk_mem_pages(newsk->sk_forward_alloc + 729 atomic_read(&newsk->sk_rmem_alloc)); 730 } 731 732 if (amt) 733 mem_cgroup_charge_skmem(newsk->sk_memcg, amt, gfp); 734 kmem_cache_charge(newsk, gfp); 735 736 release_sock(newsk); 737 } 738 if (req) 739 reqsk_put(req); 740 741 if (newsk) 742 inet_init_csk_locks(newsk); 743 744 return newsk; 745 out_err: 746 newsk = NULL; 747 req = NULL; 748 arg->err = error; 749 goto out; 750 } 751 EXPORT_SYMBOL(inet_csk_accept); 752 753 /* 754 * Using different timers for retransmit, delayed acks and probes 755 * We may wish use just one timer maintaining a list of expire jiffies 756 * to optimize. 757 */ 758 void inet_csk_init_xmit_timers(struct sock *sk, 759 void (*retransmit_handler)(struct timer_list *t), 760 void (*delack_handler)(struct timer_list *t), 761 void (*keepalive_handler)(struct timer_list *t)) 762 { 763 struct inet_connection_sock *icsk = inet_csk(sk); 764 765 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0); 766 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0); 767 timer_setup(&sk->sk_timer, keepalive_handler, 0); 768 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 769 } 770 771 void inet_csk_clear_xmit_timers(struct sock *sk) 772 { 773 struct inet_connection_sock *icsk = inet_csk(sk); 774 775 smp_store_release(&icsk->icsk_pending, 0); 776 smp_store_release(&icsk->icsk_ack.pending, 0); 777 778 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 779 sk_stop_timer(sk, &icsk->icsk_delack_timer); 780 sk_stop_timer(sk, &sk->sk_timer); 781 } 782 783 void inet_csk_clear_xmit_timers_sync(struct sock *sk) 784 { 785 struct inet_connection_sock *icsk = inet_csk(sk); 786 787 /* ongoing timer handlers need to acquire socket lock. */ 788 sock_not_owned_by_me(sk); 789 790 smp_store_release(&icsk->icsk_pending, 0); 791 smp_store_release(&icsk->icsk_ack.pending, 0); 792 793 sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer); 794 sk_stop_timer_sync(sk, &icsk->icsk_delack_timer); 795 sk_stop_timer_sync(sk, &sk->sk_timer); 796 } 797 798 struct dst_entry *inet_csk_route_req(const struct sock *sk, 799 struct flowi4 *fl4, 800 const struct request_sock *req) 801 { 802 const struct inet_request_sock *ireq = inet_rsk(req); 803 struct net *net = read_pnet(&ireq->ireq_net); 804 struct ip_options_rcu *opt; 805 struct rtable *rt; 806 807 rcu_read_lock(); 808 opt = rcu_dereference(ireq->ireq_opt); 809 810 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 811 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk), 812 sk->sk_protocol, inet_sk_flowi_flags(sk), 813 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 814 ireq->ir_loc_addr, ireq->ir_rmt_port, 815 htons(ireq->ir_num), sk->sk_uid); 816 security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); 817 rt = ip_route_output_flow(net, fl4, sk); 818 if (IS_ERR(rt)) 819 goto no_route; 820 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 821 goto route_err; 822 rcu_read_unlock(); 823 return &rt->dst; 824 825 route_err: 826 ip_rt_put(rt); 827 no_route: 828 rcu_read_unlock(); 829 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 830 return NULL; 831 } 832 833 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, 834 struct sock *newsk, 835 const struct request_sock *req) 836 { 837 const struct inet_request_sock *ireq = inet_rsk(req); 838 struct net *net = read_pnet(&ireq->ireq_net); 839 struct inet_sock *newinet = inet_sk(newsk); 840 struct ip_options_rcu *opt; 841 struct flowi4 *fl4; 842 struct rtable *rt; 843 844 opt = rcu_dereference(ireq->ireq_opt); 845 fl4 = &newinet->cork.fl.u.ip4; 846 847 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 848 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk), 849 sk->sk_protocol, inet_sk_flowi_flags(sk), 850 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 851 ireq->ir_loc_addr, ireq->ir_rmt_port, 852 htons(ireq->ir_num), sk->sk_uid); 853 security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); 854 rt = ip_route_output_flow(net, fl4, sk); 855 if (IS_ERR(rt)) 856 goto no_route; 857 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 858 goto route_err; 859 return &rt->dst; 860 861 route_err: 862 ip_rt_put(rt); 863 no_route: 864 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 865 return NULL; 866 } 867 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock); 868 869 /* Decide when to expire the request and when to resend SYN-ACK */ 870 static void syn_ack_recalc(struct request_sock *req, 871 const int max_syn_ack_retries, 872 const u8 rskq_defer_accept, 873 int *expire, int *resend) 874 { 875 if (!rskq_defer_accept) { 876 *expire = req->num_timeout >= max_syn_ack_retries; 877 *resend = 1; 878 return; 879 } 880 *expire = req->num_timeout >= max_syn_ack_retries && 881 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept); 882 /* Do not resend while waiting for data after ACK, 883 * start to resend on end of deferring period to give 884 * last chance for data or ACK to create established socket. 885 */ 886 *resend = !inet_rsk(req)->acked || 887 req->num_timeout >= rskq_defer_accept - 1; 888 } 889 890 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req) 891 { 892 int err = req->rsk_ops->rtx_syn_ack(parent, req); 893 894 if (!err) 895 req->num_retrans++; 896 return err; 897 } 898 899 static struct request_sock * 900 reqsk_alloc_noprof(const struct request_sock_ops *ops, struct sock *sk_listener, 901 bool attach_listener) 902 { 903 struct request_sock *req; 904 905 req = kmem_cache_alloc_noprof(ops->slab, GFP_ATOMIC | __GFP_NOWARN); 906 if (!req) 907 return NULL; 908 req->rsk_listener = NULL; 909 if (attach_listener) { 910 if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) { 911 kmem_cache_free(ops->slab, req); 912 return NULL; 913 } 914 req->rsk_listener = sk_listener; 915 } 916 req->rsk_ops = ops; 917 req_to_sk(req)->sk_prot = sk_listener->sk_prot; 918 sk_node_init(&req_to_sk(req)->sk_node); 919 sk_tx_queue_clear(req_to_sk(req)); 920 req->saved_syn = NULL; 921 req->syncookie = 0; 922 req->timeout = 0; 923 req->num_timeout = 0; 924 req->num_retrans = 0; 925 req->sk = NULL; 926 refcount_set(&req->rsk_refcnt, 0); 927 928 return req; 929 } 930 #define reqsk_alloc(...) alloc_hooks(reqsk_alloc_noprof(__VA_ARGS__)) 931 932 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 933 struct sock *sk_listener, 934 bool attach_listener) 935 { 936 struct request_sock *req = reqsk_alloc(ops, sk_listener, 937 attach_listener); 938 939 if (req) { 940 struct inet_request_sock *ireq = inet_rsk(req); 941 942 ireq->ireq_opt = NULL; 943 #if IS_ENABLED(CONFIG_IPV6) 944 ireq->pktopts = NULL; 945 #endif 946 atomic64_set(&ireq->ir_cookie, 0); 947 ireq->ireq_state = TCP_NEW_SYN_RECV; 948 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 949 ireq->ireq_family = sk_listener->sk_family; 950 req->timeout = TCP_TIMEOUT_INIT; 951 } 952 953 return req; 954 } 955 EXPORT_SYMBOL(inet_reqsk_alloc); 956 957 static struct request_sock *inet_reqsk_clone(struct request_sock *req, 958 struct sock *sk) 959 { 960 struct sock *req_sk, *nreq_sk; 961 struct request_sock *nreq; 962 963 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN); 964 if (!nreq) { 965 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); 966 967 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */ 968 sock_put(sk); 969 return NULL; 970 } 971 972 req_sk = req_to_sk(req); 973 nreq_sk = req_to_sk(nreq); 974 975 memcpy(nreq_sk, req_sk, 976 offsetof(struct sock, sk_dontcopy_begin)); 977 unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end, 978 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end), 979 /* alloc is larger than struct, see above */); 980 981 sk_node_init(&nreq_sk->sk_node); 982 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping; 983 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 984 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping; 985 #endif 986 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu; 987 988 nreq->rsk_listener = sk; 989 990 /* We need not acquire fastopenq->lock 991 * because the child socket is locked in inet_csk_listen_stop(). 992 */ 993 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener) 994 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq); 995 996 return nreq; 997 } 998 999 static void reqsk_queue_migrated(struct request_sock_queue *queue, 1000 const struct request_sock *req) 1001 { 1002 if (req->num_timeout == 0) 1003 atomic_inc(&queue->young); 1004 atomic_inc(&queue->qlen); 1005 } 1006 1007 static void reqsk_migrate_reset(struct request_sock *req) 1008 { 1009 req->saved_syn = NULL; 1010 #if IS_ENABLED(CONFIG_IPV6) 1011 inet_rsk(req)->ipv6_opt = NULL; 1012 inet_rsk(req)->pktopts = NULL; 1013 #else 1014 inet_rsk(req)->ireq_opt = NULL; 1015 #endif 1016 } 1017 1018 /* return true if req was found in the ehash table */ 1019 static bool reqsk_queue_unlink(struct request_sock *req) 1020 { 1021 struct sock *sk = req_to_sk(req); 1022 bool found = false; 1023 1024 if (sk_hashed(sk)) { 1025 struct inet_hashinfo *hashinfo = tcp_get_hashinfo(sk); 1026 spinlock_t *lock; 1027 1028 lock = inet_ehash_lockp(hashinfo, req->rsk_hash); 1029 spin_lock(lock); 1030 found = __sk_nulls_del_node_init_rcu(sk); 1031 spin_unlock(lock); 1032 } 1033 1034 return found; 1035 } 1036 1037 static bool __inet_csk_reqsk_queue_drop(struct sock *sk, 1038 struct request_sock *req, 1039 bool from_timer) 1040 { 1041 bool unlinked = reqsk_queue_unlink(req); 1042 1043 if (!from_timer && timer_delete_sync(&req->rsk_timer)) 1044 reqsk_put(req); 1045 1046 if (unlinked) { 1047 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 1048 reqsk_put(req); 1049 } 1050 1051 return unlinked; 1052 } 1053 1054 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req) 1055 { 1056 return __inet_csk_reqsk_queue_drop(sk, req, false); 1057 } 1058 1059 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req) 1060 { 1061 inet_csk_reqsk_queue_drop(sk, req); 1062 reqsk_put(req); 1063 } 1064 EXPORT_IPV6_MOD(inet_csk_reqsk_queue_drop_and_put); 1065 1066 static void reqsk_timer_handler(struct timer_list *t) 1067 { 1068 struct request_sock *req = timer_container_of(req, t, rsk_timer); 1069 struct request_sock *nreq = NULL, *oreq = req; 1070 struct sock *sk_listener = req->rsk_listener; 1071 struct inet_connection_sock *icsk; 1072 struct request_sock_queue *queue; 1073 struct net *net; 1074 int max_syn_ack_retries, qlen, expire = 0, resend = 0; 1075 1076 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) { 1077 struct sock *nsk; 1078 1079 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL); 1080 if (!nsk) 1081 goto drop; 1082 1083 nreq = inet_reqsk_clone(req, nsk); 1084 if (!nreq) 1085 goto drop; 1086 1087 /* The new timer for the cloned req can decrease the 2 1088 * by calling inet_csk_reqsk_queue_drop_and_put(), so 1089 * hold another count to prevent use-after-free and 1090 * call reqsk_put() just before return. 1091 */ 1092 refcount_set(&nreq->rsk_refcnt, 2 + 1); 1093 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 1094 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req); 1095 1096 req = nreq; 1097 sk_listener = nsk; 1098 } 1099 1100 icsk = inet_csk(sk_listener); 1101 net = sock_net(sk_listener); 1102 max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? : 1103 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries); 1104 /* Normally all the openreqs are young and become mature 1105 * (i.e. converted to established socket) for first timeout. 1106 * If synack was not acknowledged for 1 second, it means 1107 * one of the following things: synack was lost, ack was lost, 1108 * rtt is high or nobody planned to ack (i.e. synflood). 1109 * When server is a bit loaded, queue is populated with old 1110 * open requests, reducing effective size of queue. 1111 * When server is well loaded, queue size reduces to zero 1112 * after several minutes of work. It is not synflood, 1113 * it is normal operation. The solution is pruning 1114 * too old entries overriding normal timeout, when 1115 * situation becomes dangerous. 1116 * 1117 * Essentially, we reserve half of room for young 1118 * embrions; and abort old ones without pity, if old 1119 * ones are about to clog our table. 1120 */ 1121 queue = &icsk->icsk_accept_queue; 1122 qlen = reqsk_queue_len(queue); 1123 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) { 1124 int young = reqsk_queue_len_young(queue) << 1; 1125 1126 while (max_syn_ack_retries > 2) { 1127 if (qlen < young) 1128 break; 1129 max_syn_ack_retries--; 1130 young <<= 1; 1131 } 1132 } 1133 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept), 1134 &expire, &resend); 1135 req->rsk_ops->syn_ack_timeout(req); 1136 if (!expire && 1137 (!resend || 1138 !inet_rtx_syn_ack(sk_listener, req) || 1139 inet_rsk(req)->acked)) { 1140 if (req->num_timeout++ == 0) 1141 atomic_dec(&queue->young); 1142 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX)); 1143 1144 if (!nreq) 1145 return; 1146 1147 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) { 1148 /* delete timer */ 1149 __inet_csk_reqsk_queue_drop(sk_listener, nreq, true); 1150 goto no_ownership; 1151 } 1152 1153 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS); 1154 reqsk_migrate_reset(oreq); 1155 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq); 1156 reqsk_put(oreq); 1157 1158 reqsk_put(nreq); 1159 return; 1160 } 1161 1162 /* Even if we can clone the req, we may need not retransmit any more 1163 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another 1164 * CPU may win the "own_req" race so that inet_ehash_insert() fails. 1165 */ 1166 if (nreq) { 1167 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE); 1168 no_ownership: 1169 reqsk_migrate_reset(nreq); 1170 reqsk_queue_removed(queue, nreq); 1171 __reqsk_free(nreq); 1172 } 1173 1174 drop: 1175 __inet_csk_reqsk_queue_drop(sk_listener, oreq, true); 1176 reqsk_put(oreq); 1177 } 1178 1179 static bool reqsk_queue_hash_req(struct request_sock *req, 1180 unsigned long timeout) 1181 { 1182 bool found_dup_sk = false; 1183 1184 if (!inet_ehash_insert(req_to_sk(req), NULL, &found_dup_sk)) 1185 return false; 1186 1187 /* The timer needs to be setup after a successful insertion. */ 1188 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 1189 mod_timer(&req->rsk_timer, jiffies + timeout); 1190 1191 /* before letting lookups find us, make sure all req fields 1192 * are committed to memory and refcnt initialized. 1193 */ 1194 smp_wmb(); 1195 refcount_set(&req->rsk_refcnt, 2 + 1); 1196 return true; 1197 } 1198 1199 bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, 1200 unsigned long timeout) 1201 { 1202 if (!reqsk_queue_hash_req(req, timeout)) 1203 return false; 1204 1205 inet_csk_reqsk_queue_added(sk); 1206 return true; 1207 } 1208 1209 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk, 1210 const gfp_t priority) 1211 { 1212 struct inet_connection_sock *icsk = inet_csk(newsk); 1213 1214 if (!icsk->icsk_ulp_ops) 1215 return; 1216 1217 icsk->icsk_ulp_ops->clone(req, newsk, priority); 1218 } 1219 1220 /** 1221 * inet_csk_clone_lock - clone an inet socket, and lock its clone 1222 * @sk: the socket to clone 1223 * @req: request_sock 1224 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1225 * 1226 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1227 */ 1228 struct sock *inet_csk_clone_lock(const struct sock *sk, 1229 const struct request_sock *req, 1230 const gfp_t priority) 1231 { 1232 struct sock *newsk = sk_clone_lock(sk, priority); 1233 struct inet_connection_sock *newicsk; 1234 struct inet_request_sock *ireq; 1235 struct inet_sock *newinet; 1236 1237 if (!newsk) 1238 return NULL; 1239 1240 newicsk = inet_csk(newsk); 1241 newinet = inet_sk(newsk); 1242 ireq = inet_rsk(req); 1243 1244 newicsk->icsk_bind_hash = NULL; 1245 newicsk->icsk_bind2_hash = NULL; 1246 1247 newinet->inet_dport = ireq->ir_rmt_port; 1248 newinet->inet_num = ireq->ir_num; 1249 newinet->inet_sport = htons(ireq->ir_num); 1250 1251 newsk->sk_bound_dev_if = ireq->ir_iif; 1252 1253 newsk->sk_daddr = ireq->ir_rmt_addr; 1254 newsk->sk_rcv_saddr = ireq->ir_loc_addr; 1255 newinet->inet_saddr = ireq->ir_loc_addr; 1256 1257 #if IS_ENABLED(CONFIG_IPV6) 1258 newsk->sk_v6_daddr = ireq->ir_v6_rmt_addr; 1259 newsk->sk_v6_rcv_saddr = ireq->ir_v6_loc_addr; 1260 #endif 1261 1262 /* listeners have SOCK_RCU_FREE, not the children */ 1263 sock_reset_flag(newsk, SOCK_RCU_FREE); 1264 1265 inet_sk(newsk)->mc_list = NULL; 1266 1267 newsk->sk_mark = inet_rsk(req)->ir_mark; 1268 atomic64_set(&newsk->sk_cookie, 1269 atomic64_read(&inet_rsk(req)->ir_cookie)); 1270 1271 newicsk->icsk_retransmits = 0; 1272 newicsk->icsk_backoff = 0; 1273 newicsk->icsk_probes_out = 0; 1274 newicsk->icsk_probes_tstamp = 0; 1275 1276 /* Deinitialize accept_queue to trap illegal accesses. */ 1277 memset(&newicsk->icsk_accept_queue, 0, 1278 sizeof(newicsk->icsk_accept_queue)); 1279 1280 inet_sk_set_state(newsk, TCP_SYN_RECV); 1281 1282 inet_clone_ulp(req, newsk, priority); 1283 1284 security_inet_csk_clone(newsk, req); 1285 1286 return newsk; 1287 } 1288 1289 /* 1290 * At this point, there should be no process reference to this 1291 * socket, and thus no user references at all. Therefore we 1292 * can assume the socket waitqueue is inactive and nobody will 1293 * try to jump onto it. 1294 */ 1295 void inet_csk_destroy_sock(struct sock *sk) 1296 { 1297 WARN_ON(sk->sk_state != TCP_CLOSE); 1298 WARN_ON(!sock_flag(sk, SOCK_DEAD)); 1299 1300 /* It cannot be in hash table! */ 1301 WARN_ON(!sk_unhashed(sk)); 1302 1303 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */ 1304 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); 1305 1306 sk->sk_prot->destroy(sk); 1307 1308 sk_stream_kill_queues(sk); 1309 1310 xfrm_sk_free_policy(sk); 1311 1312 this_cpu_dec(*sk->sk_prot->orphan_count); 1313 1314 sock_put(sk); 1315 } 1316 EXPORT_SYMBOL(inet_csk_destroy_sock); 1317 1318 /* This function allows to force a closure of a socket after the call to 1319 * tcp_create_openreq_child(). 1320 */ 1321 void inet_csk_prepare_forced_close(struct sock *sk) 1322 __releases(&sk->sk_lock.slock) 1323 { 1324 /* sk_clone_lock locked the socket and set refcnt to 2 */ 1325 bh_unlock_sock(sk); 1326 sock_put(sk); 1327 inet_csk_prepare_for_destroy_sock(sk); 1328 inet_sk(sk)->inet_num = 0; 1329 } 1330 EXPORT_SYMBOL(inet_csk_prepare_forced_close); 1331 1332 static int inet_ulp_can_listen(const struct sock *sk) 1333 { 1334 const struct inet_connection_sock *icsk = inet_csk(sk); 1335 1336 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone) 1337 return -EINVAL; 1338 1339 return 0; 1340 } 1341 1342 int inet_csk_listen_start(struct sock *sk) 1343 { 1344 struct inet_connection_sock *icsk = inet_csk(sk); 1345 struct inet_sock *inet = inet_sk(sk); 1346 int err; 1347 1348 err = inet_ulp_can_listen(sk); 1349 if (unlikely(err)) 1350 return err; 1351 1352 reqsk_queue_alloc(&icsk->icsk_accept_queue); 1353 1354 sk->sk_ack_backlog = 0; 1355 inet_csk_delack_init(sk); 1356 1357 /* There is race window here: we announce ourselves listening, 1358 * but this transition is still not validated by get_port(). 1359 * It is OK, because this socket enters to hash table only 1360 * after validation is complete. 1361 */ 1362 inet_sk_state_store(sk, TCP_LISTEN); 1363 err = sk->sk_prot->get_port(sk, inet->inet_num); 1364 if (!err) { 1365 inet->inet_sport = htons(inet->inet_num); 1366 1367 sk_dst_reset(sk); 1368 err = sk->sk_prot->hash(sk); 1369 1370 if (likely(!err)) 1371 return 0; 1372 } 1373 1374 inet_sk_set_state(sk, TCP_CLOSE); 1375 return err; 1376 } 1377 1378 static void inet_child_forget(struct sock *sk, struct request_sock *req, 1379 struct sock *child) 1380 { 1381 sk->sk_prot->disconnect(child, O_NONBLOCK); 1382 1383 sock_orphan(child); 1384 1385 this_cpu_inc(*sk->sk_prot->orphan_count); 1386 1387 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) { 1388 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req); 1389 BUG_ON(sk != req->rsk_listener); 1390 1391 /* Paranoid, to prevent race condition if 1392 * an inbound pkt destined for child is 1393 * blocked by sock lock in tcp_v4_rcv(). 1394 * Also to satisfy an assertion in 1395 * tcp_v4_destroy_sock(). 1396 */ 1397 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL); 1398 } 1399 inet_csk_destroy_sock(child); 1400 } 1401 1402 struct sock *inet_csk_reqsk_queue_add(struct sock *sk, 1403 struct request_sock *req, 1404 struct sock *child) 1405 { 1406 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 1407 1408 spin_lock(&queue->rskq_lock); 1409 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1410 inet_child_forget(sk, req, child); 1411 child = NULL; 1412 } else { 1413 req->sk = child; 1414 req->dl_next = NULL; 1415 if (queue->rskq_accept_head == NULL) 1416 WRITE_ONCE(queue->rskq_accept_head, req); 1417 else 1418 queue->rskq_accept_tail->dl_next = req; 1419 queue->rskq_accept_tail = req; 1420 sk_acceptq_added(sk); 1421 } 1422 spin_unlock(&queue->rskq_lock); 1423 return child; 1424 } 1425 EXPORT_SYMBOL(inet_csk_reqsk_queue_add); 1426 1427 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, 1428 struct request_sock *req, bool own_req) 1429 { 1430 if (own_req) { 1431 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 1432 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req); 1433 1434 if (sk != req->rsk_listener) { 1435 /* another listening sk has been selected, 1436 * migrate the req to it. 1437 */ 1438 struct request_sock *nreq; 1439 1440 /* hold a refcnt for the nreq->rsk_listener 1441 * which is assigned in inet_reqsk_clone() 1442 */ 1443 sock_hold(sk); 1444 nreq = inet_reqsk_clone(req, sk); 1445 if (!nreq) { 1446 inet_child_forget(sk, req, child); 1447 goto child_put; 1448 } 1449 1450 refcount_set(&nreq->rsk_refcnt, 1); 1451 if (inet_csk_reqsk_queue_add(sk, nreq, child)) { 1452 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS); 1453 reqsk_migrate_reset(req); 1454 reqsk_put(req); 1455 return child; 1456 } 1457 1458 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); 1459 reqsk_migrate_reset(nreq); 1460 __reqsk_free(nreq); 1461 } else if (inet_csk_reqsk_queue_add(sk, req, child)) { 1462 return child; 1463 } 1464 } 1465 /* Too bad, another child took ownership of the request, undo. */ 1466 child_put: 1467 bh_unlock_sock(child); 1468 sock_put(child); 1469 return NULL; 1470 } 1471 1472 /* 1473 * This routine closes sockets which have been at least partially 1474 * opened, but not yet accepted. 1475 */ 1476 void inet_csk_listen_stop(struct sock *sk) 1477 { 1478 struct inet_connection_sock *icsk = inet_csk(sk); 1479 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 1480 struct request_sock *next, *req; 1481 1482 /* Following specs, it would be better either to send FIN 1483 * (and enter FIN-WAIT-1, it is normal close) 1484 * or to send active reset (abort). 1485 * Certainly, it is pretty dangerous while synflood, but it is 1486 * bad justification for our negligence 8) 1487 * To be honest, we are not able to make either 1488 * of the variants now. --ANK 1489 */ 1490 while ((req = reqsk_queue_remove(queue, sk)) != NULL) { 1491 struct sock *child = req->sk, *nsk; 1492 struct request_sock *nreq; 1493 1494 local_bh_disable(); 1495 bh_lock_sock(child); 1496 WARN_ON(sock_owned_by_user(child)); 1497 sock_hold(child); 1498 1499 nsk = reuseport_migrate_sock(sk, child, NULL); 1500 if (nsk) { 1501 nreq = inet_reqsk_clone(req, nsk); 1502 if (nreq) { 1503 refcount_set(&nreq->rsk_refcnt, 1); 1504 1505 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) { 1506 __NET_INC_STATS(sock_net(nsk), 1507 LINUX_MIB_TCPMIGRATEREQSUCCESS); 1508 reqsk_migrate_reset(req); 1509 } else { 1510 __NET_INC_STATS(sock_net(nsk), 1511 LINUX_MIB_TCPMIGRATEREQFAILURE); 1512 reqsk_migrate_reset(nreq); 1513 __reqsk_free(nreq); 1514 } 1515 1516 /* inet_csk_reqsk_queue_add() has already 1517 * called inet_child_forget() on failure case. 1518 */ 1519 goto skip_child_forget; 1520 } 1521 } 1522 1523 inet_child_forget(sk, req, child); 1524 skip_child_forget: 1525 reqsk_put(req); 1526 bh_unlock_sock(child); 1527 local_bh_enable(); 1528 sock_put(child); 1529 1530 cond_resched(); 1531 } 1532 if (queue->fastopenq.rskq_rst_head) { 1533 /* Free all the reqs queued in rskq_rst_head. */ 1534 spin_lock_bh(&queue->fastopenq.lock); 1535 req = queue->fastopenq.rskq_rst_head; 1536 queue->fastopenq.rskq_rst_head = NULL; 1537 spin_unlock_bh(&queue->fastopenq.lock); 1538 while (req != NULL) { 1539 next = req->dl_next; 1540 reqsk_put(req); 1541 req = next; 1542 } 1543 } 1544 WARN_ON_ONCE(sk->sk_ack_backlog); 1545 } 1546 EXPORT_SYMBOL_GPL(inet_csk_listen_stop); 1547 1548 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl) 1549 { 1550 const struct inet_sock *inet = inet_sk(sk); 1551 struct flowi4 *fl4; 1552 struct rtable *rt; 1553 1554 rcu_read_lock(); 1555 fl4 = &fl->u.ip4; 1556 inet_sk_init_flowi4(inet, fl4); 1557 rt = ip_route_output_flow(sock_net(sk), fl4, sk); 1558 if (IS_ERR(rt)) 1559 rt = NULL; 1560 if (rt) 1561 sk_setup_caps(sk, &rt->dst); 1562 rcu_read_unlock(); 1563 1564 return &rt->dst; 1565 } 1566 1567 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu) 1568 { 1569 struct dst_entry *dst = __sk_dst_check(sk, 0); 1570 struct inet_sock *inet = inet_sk(sk); 1571 1572 if (!dst) { 1573 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1574 if (!dst) 1575 goto out; 1576 } 1577 dst->ops->update_pmtu(dst, sk, NULL, mtu, true); 1578 1579 dst = __sk_dst_check(sk, 0); 1580 if (!dst) 1581 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1582 out: 1583 return dst; 1584 } 1585