1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Support for INET connection oriented protocols. 8 * 9 * Authors: See the TCP sources 10 */ 11 12 #include <linux/module.h> 13 #include <linux/jhash.h> 14 15 #include <net/inet_connection_sock.h> 16 #include <net/inet_hashtables.h> 17 #include <net/inet_timewait_sock.h> 18 #include <net/ip.h> 19 #include <net/route.h> 20 #include <net/tcp_states.h> 21 #include <net/xfrm.h> 22 #include <net/tcp.h> 23 #include <net/sock_reuseport.h> 24 #include <net/addrconf.h> 25 26 #if IS_ENABLED(CONFIG_IPV6) 27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses 28 * if IPv6 only, and any IPv4 addresses 29 * if not IPv6 only 30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e. 31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY, 32 * and 0.0.0.0 equals to 0.0.0.0 only 33 */ 34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6, 35 const struct in6_addr *sk2_rcv_saddr6, 36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 37 bool sk1_ipv6only, bool sk2_ipv6only, 38 bool match_sk1_wildcard, 39 bool match_sk2_wildcard) 40 { 41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6); 42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED; 43 44 /* if both are mapped, treat as IPv4 */ 45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) { 46 if (!sk2_ipv6only) { 47 if (sk1_rcv_saddr == sk2_rcv_saddr) 48 return true; 49 return (match_sk1_wildcard && !sk1_rcv_saddr) || 50 (match_sk2_wildcard && !sk2_rcv_saddr); 51 } 52 return false; 53 } 54 55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY) 56 return true; 57 58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard && 59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED)) 60 return true; 61 62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard && 63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED)) 64 return true; 65 66 if (sk2_rcv_saddr6 && 67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6)) 68 return true; 69 70 return false; 71 } 72 #endif 73 74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e. 76 * 0.0.0.0 only equals to 0.0.0.0 77 */ 78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 79 bool sk2_ipv6only, bool match_sk1_wildcard, 80 bool match_sk2_wildcard) 81 { 82 if (!sk2_ipv6only) { 83 if (sk1_rcv_saddr == sk2_rcv_saddr) 84 return true; 85 return (match_sk1_wildcard && !sk1_rcv_saddr) || 86 (match_sk2_wildcard && !sk2_rcv_saddr); 87 } 88 return false; 89 } 90 91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, 92 bool match_wildcard) 93 { 94 #if IS_ENABLED(CONFIG_IPV6) 95 if (sk->sk_family == AF_INET6) 96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr, 97 inet6_rcv_saddr(sk2), 98 sk->sk_rcv_saddr, 99 sk2->sk_rcv_saddr, 100 ipv6_only_sock(sk), 101 ipv6_only_sock(sk2), 102 match_wildcard, 103 match_wildcard); 104 #endif 105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr, 106 ipv6_only_sock(sk2), match_wildcard, 107 match_wildcard); 108 } 109 EXPORT_SYMBOL(inet_rcv_saddr_equal); 110 111 bool inet_rcv_saddr_any(const struct sock *sk) 112 { 113 #if IS_ENABLED(CONFIG_IPV6) 114 if (sk->sk_family == AF_INET6) 115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr); 116 #endif 117 return !sk->sk_rcv_saddr; 118 } 119 120 /** 121 * inet_sk_get_local_port_range - fetch ephemeral ports range 122 * @sk: socket 123 * @low: pointer to low port 124 * @high: pointer to high port 125 * 126 * Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range) 127 * Range can be overridden if socket got IP_LOCAL_PORT_RANGE option. 128 * Returns true if IP_LOCAL_PORT_RANGE was set on this socket. 129 */ 130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high) 131 { 132 int lo, hi, sk_lo, sk_hi; 133 bool local_range = false; 134 u32 sk_range; 135 136 inet_get_local_port_range(sock_net(sk), &lo, &hi); 137 138 sk_range = READ_ONCE(inet_sk(sk)->local_port_range); 139 if (unlikely(sk_range)) { 140 sk_lo = sk_range & 0xffff; 141 sk_hi = sk_range >> 16; 142 143 if (lo <= sk_lo && sk_lo <= hi) 144 lo = sk_lo; 145 if (lo <= sk_hi && sk_hi <= hi) 146 hi = sk_hi; 147 local_range = true; 148 } 149 150 *low = lo; 151 *high = hi; 152 return local_range; 153 } 154 EXPORT_SYMBOL(inet_sk_get_local_port_range); 155 156 static bool inet_use_bhash2_on_bind(const struct sock *sk) 157 { 158 #if IS_ENABLED(CONFIG_IPV6) 159 if (sk->sk_family == AF_INET6) { 160 if (ipv6_addr_any(&sk->sk_v6_rcv_saddr)) 161 return false; 162 163 if (!ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)) 164 return true; 165 } 166 #endif 167 return sk->sk_rcv_saddr != htonl(INADDR_ANY); 168 } 169 170 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2, 171 kuid_t uid, bool relax, 172 bool reuseport_cb_ok, bool reuseport_ok) 173 { 174 int bound_dev_if2; 175 176 if (sk == sk2) 177 return false; 178 179 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if); 180 181 if (!sk->sk_bound_dev_if || !bound_dev_if2 || 182 sk->sk_bound_dev_if == bound_dev_if2) { 183 if (sk->sk_reuse && sk2->sk_reuse && 184 sk2->sk_state != TCP_LISTEN) { 185 if (!relax || (!reuseport_ok && sk->sk_reuseport && 186 sk2->sk_reuseport && reuseport_cb_ok && 187 (sk2->sk_state == TCP_TIME_WAIT || 188 uid_eq(uid, sk_uid(sk2))))) 189 return true; 190 } else if (!reuseport_ok || !sk->sk_reuseport || 191 !sk2->sk_reuseport || !reuseport_cb_ok || 192 (sk2->sk_state != TCP_TIME_WAIT && 193 !uid_eq(uid, sk_uid(sk2)))) { 194 return true; 195 } 196 } 197 return false; 198 } 199 200 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2, 201 kuid_t uid, bool relax, 202 bool reuseport_cb_ok, bool reuseport_ok) 203 { 204 if (ipv6_only_sock(sk2)) { 205 if (sk->sk_family == AF_INET) 206 return false; 207 208 #if IS_ENABLED(CONFIG_IPV6) 209 if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)) 210 return false; 211 #endif 212 } 213 214 return inet_bind_conflict(sk, sk2, uid, relax, 215 reuseport_cb_ok, reuseport_ok); 216 } 217 218 static bool inet_bhash2_conflict(const struct sock *sk, 219 const struct inet_bind2_bucket *tb2, 220 kuid_t uid, 221 bool relax, bool reuseport_cb_ok, 222 bool reuseport_ok) 223 { 224 struct sock *sk2; 225 226 sk_for_each_bound(sk2, &tb2->owners) { 227 if (__inet_bhash2_conflict(sk, sk2, uid, relax, 228 reuseport_cb_ok, reuseport_ok)) 229 return true; 230 } 231 232 return false; 233 } 234 235 #define sk_for_each_bound_bhash(__sk, __tb2, __tb) \ 236 hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node) \ 237 sk_for_each_bound((__sk), &(__tb2)->owners) 238 239 /* This should be called only when the tb and tb2 hashbuckets' locks are held */ 240 static int inet_csk_bind_conflict(const struct sock *sk, 241 const struct inet_bind_bucket *tb, 242 const struct inet_bind2_bucket *tb2, /* may be null */ 243 bool relax, bool reuseport_ok) 244 { 245 struct sock_reuseport *reuseport_cb; 246 kuid_t uid = sk_uid(sk); 247 bool reuseport_cb_ok; 248 struct sock *sk2; 249 250 rcu_read_lock(); 251 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb); 252 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */ 253 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks); 254 rcu_read_unlock(); 255 256 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if 257 * ipv4) should have been checked already. We need to do these two 258 * checks separately because their spinlocks have to be acquired/released 259 * independently of each other, to prevent possible deadlocks 260 */ 261 if (inet_use_bhash2_on_bind(sk)) 262 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, 263 reuseport_cb_ok, reuseport_ok); 264 265 /* Unlike other sk lookup places we do not check 266 * for sk_net here, since _all_ the socks listed 267 * in tb->owners and tb2->owners list belong 268 * to the same net - the one this bucket belongs to. 269 */ 270 sk_for_each_bound_bhash(sk2, tb2, tb) { 271 if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok)) 272 continue; 273 274 if (inet_rcv_saddr_equal(sk, sk2, true)) 275 return true; 276 } 277 278 return false; 279 } 280 281 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or 282 * INADDR_ANY (if ipv4) socket. 283 * 284 * Caller must hold bhash hashbucket lock with local bh disabled, to protect 285 * against concurrent binds on the port for addr any 286 */ 287 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev, 288 bool relax, bool reuseport_ok) 289 { 290 const struct net *net = sock_net(sk); 291 struct sock_reuseport *reuseport_cb; 292 struct inet_bind_hashbucket *head2; 293 struct inet_bind2_bucket *tb2; 294 kuid_t uid = sk_uid(sk); 295 bool conflict = false; 296 bool reuseport_cb_ok; 297 298 rcu_read_lock(); 299 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb); 300 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */ 301 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks); 302 rcu_read_unlock(); 303 304 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port); 305 306 spin_lock(&head2->lock); 307 308 inet_bind_bucket_for_each(tb2, &head2->chain) { 309 if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk)) 310 continue; 311 312 if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, reuseport_ok)) 313 continue; 314 315 conflict = true; 316 break; 317 } 318 319 spin_unlock(&head2->lock); 320 321 return conflict; 322 } 323 324 /* 325 * Find an open port number for the socket. Returns with the 326 * inet_bind_hashbucket locks held if successful. 327 */ 328 static struct inet_bind_hashbucket * 329 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret, 330 struct inet_bind2_bucket **tb2_ret, 331 struct inet_bind_hashbucket **head2_ret, int *port_ret) 332 { 333 struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk); 334 int i, low, high, attempt_half, port, l3mdev; 335 struct inet_bind_hashbucket *head, *head2; 336 struct net *net = sock_net(sk); 337 struct inet_bind2_bucket *tb2; 338 struct inet_bind_bucket *tb; 339 u32 remaining, offset; 340 bool relax = false; 341 342 l3mdev = inet_sk_bound_l3mdev(sk); 343 ports_exhausted: 344 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0; 345 other_half_scan: 346 inet_sk_get_local_port_range(sk, &low, &high); 347 high++; /* [32768, 60999] -> [32768, 61000[ */ 348 if (high - low < 4) 349 attempt_half = 0; 350 if (attempt_half) { 351 int half = low + (((high - low) >> 2) << 1); 352 353 if (attempt_half == 1) 354 high = half; 355 else 356 low = half; 357 } 358 remaining = high - low; 359 if (likely(remaining > 1)) 360 remaining &= ~1U; 361 362 offset = get_random_u32_below(remaining); 363 /* __inet_hash_connect() favors ports having @low parity 364 * We do the opposite to not pollute connect() users. 365 */ 366 offset |= 1U; 367 368 other_parity_scan: 369 port = low + offset; 370 for (i = 0; i < remaining; i += 2, port += 2) { 371 if (unlikely(port >= high)) 372 port -= remaining; 373 if (inet_is_local_reserved_port(net, port)) 374 continue; 375 head = &hinfo->bhash[inet_bhashfn(net, port, 376 hinfo->bhash_size)]; 377 spin_lock_bh(&head->lock); 378 if (inet_use_bhash2_on_bind(sk)) { 379 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false)) 380 goto next_port; 381 } 382 383 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port); 384 spin_lock(&head2->lock); 385 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk); 386 inet_bind_bucket_for_each(tb, &head->chain) 387 if (inet_bind_bucket_match(tb, net, port, l3mdev)) { 388 if (!inet_csk_bind_conflict(sk, tb, tb2, 389 relax, false)) 390 goto success; 391 spin_unlock(&head2->lock); 392 goto next_port; 393 } 394 tb = NULL; 395 goto success; 396 next_port: 397 spin_unlock_bh(&head->lock); 398 cond_resched(); 399 } 400 401 offset--; 402 if (!(offset & 1)) 403 goto other_parity_scan; 404 405 if (attempt_half == 1) { 406 /* OK we now try the upper half of the range */ 407 attempt_half = 2; 408 goto other_half_scan; 409 } 410 411 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) { 412 /* We still have a chance to connect to different destinations */ 413 relax = true; 414 goto ports_exhausted; 415 } 416 return NULL; 417 success: 418 *port_ret = port; 419 *tb_ret = tb; 420 *tb2_ret = tb2; 421 *head2_ret = head2; 422 return head; 423 } 424 425 static inline int sk_reuseport_match(struct inet_bind_bucket *tb, 426 struct sock *sk) 427 { 428 if (tb->fastreuseport <= 0) 429 return 0; 430 if (!sk->sk_reuseport) 431 return 0; 432 if (rcu_access_pointer(sk->sk_reuseport_cb)) 433 return 0; 434 if (!uid_eq(tb->fastuid, sk_uid(sk))) 435 return 0; 436 /* We only need to check the rcv_saddr if this tb was once marked 437 * without fastreuseport and then was reset, as we can only know that 438 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the 439 * owners list. 440 */ 441 if (tb->fastreuseport == FASTREUSEPORT_ANY) 442 return 1; 443 #if IS_ENABLED(CONFIG_IPV6) 444 if (tb->fast_sk_family == AF_INET6) 445 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr, 446 inet6_rcv_saddr(sk), 447 tb->fast_rcv_saddr, 448 sk->sk_rcv_saddr, 449 tb->fast_ipv6_only, 450 ipv6_only_sock(sk), true, false); 451 #endif 452 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr, 453 ipv6_only_sock(sk), true, false); 454 } 455 456 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb, 457 struct sock *sk) 458 { 459 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 460 461 if (hlist_empty(&tb->bhash2)) { 462 tb->fastreuse = reuse; 463 if (sk->sk_reuseport) { 464 tb->fastreuseport = FASTREUSEPORT_ANY; 465 tb->fastuid = sk_uid(sk); 466 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 467 tb->fast_ipv6_only = ipv6_only_sock(sk); 468 tb->fast_sk_family = sk->sk_family; 469 #if IS_ENABLED(CONFIG_IPV6) 470 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 471 #endif 472 } else { 473 tb->fastreuseport = 0; 474 } 475 } else { 476 if (!reuse) 477 tb->fastreuse = 0; 478 if (sk->sk_reuseport) { 479 /* We didn't match or we don't have fastreuseport set on 480 * the tb, but we have sk_reuseport set on this socket 481 * and we know that there are no bind conflicts with 482 * this socket in this tb, so reset our tb's reuseport 483 * settings so that any subsequent sockets that match 484 * our current socket will be put on the fast path. 485 * 486 * If we reset we need to set FASTREUSEPORT_STRICT so we 487 * do extra checking for all subsequent sk_reuseport 488 * socks. 489 */ 490 if (!sk_reuseport_match(tb, sk)) { 491 tb->fastreuseport = FASTREUSEPORT_STRICT; 492 tb->fastuid = sk_uid(sk); 493 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 494 tb->fast_ipv6_only = ipv6_only_sock(sk); 495 tb->fast_sk_family = sk->sk_family; 496 #if IS_ENABLED(CONFIG_IPV6) 497 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 498 #endif 499 } 500 } else { 501 tb->fastreuseport = 0; 502 } 503 } 504 } 505 506 /* Obtain a reference to a local port for the given sock, 507 * if snum is zero it means select any available local port. 508 * We try to allocate an odd port (and leave even ports for connect()) 509 */ 510 int inet_csk_get_port(struct sock *sk, unsigned short snum) 511 { 512 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 513 bool found_port = false, check_bind_conflict = true; 514 bool bhash_created = false, bhash2_created = false; 515 struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk); 516 int ret = -EADDRINUSE, port = snum, l3mdev; 517 struct inet_bind_hashbucket *head, *head2; 518 struct inet_bind2_bucket *tb2 = NULL; 519 struct inet_bind_bucket *tb = NULL; 520 bool head2_lock_acquired = false; 521 struct net *net = sock_net(sk); 522 523 l3mdev = inet_sk_bound_l3mdev(sk); 524 525 if (!port) { 526 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port); 527 if (!head) 528 return ret; 529 530 head2_lock_acquired = true; 531 532 if (tb && tb2) 533 goto success; 534 found_port = true; 535 } else { 536 head = &hinfo->bhash[inet_bhashfn(net, port, 537 hinfo->bhash_size)]; 538 spin_lock_bh(&head->lock); 539 inet_bind_bucket_for_each(tb, &head->chain) 540 if (inet_bind_bucket_match(tb, net, port, l3mdev)) 541 break; 542 } 543 544 if (!tb) { 545 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net, 546 head, port, l3mdev); 547 if (!tb) 548 goto fail_unlock; 549 bhash_created = true; 550 } 551 552 if (!found_port) { 553 if (!hlist_empty(&tb->bhash2)) { 554 if (sk->sk_reuse == SK_FORCE_REUSE || 555 (tb->fastreuse > 0 && reuse) || 556 sk_reuseport_match(tb, sk)) 557 check_bind_conflict = false; 558 } 559 560 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) { 561 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true)) 562 goto fail_unlock; 563 } 564 565 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port); 566 spin_lock(&head2->lock); 567 head2_lock_acquired = true; 568 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk); 569 } 570 571 if (!tb2) { 572 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep, 573 net, head2, tb, sk); 574 if (!tb2) 575 goto fail_unlock; 576 bhash2_created = true; 577 } 578 579 if (!found_port && check_bind_conflict) { 580 if (inet_csk_bind_conflict(sk, tb, tb2, true, true)) 581 goto fail_unlock; 582 } 583 584 success: 585 inet_csk_update_fastreuse(tb, sk); 586 587 if (!inet_csk(sk)->icsk_bind_hash) 588 inet_bind_hash(sk, tb, tb2, port); 589 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb); 590 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2); 591 ret = 0; 592 593 fail_unlock: 594 if (ret) { 595 if (bhash2_created) 596 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2); 597 if (bhash_created) 598 inet_bind_bucket_destroy(tb); 599 } 600 if (head2_lock_acquired) 601 spin_unlock(&head2->lock); 602 spin_unlock_bh(&head->lock); 603 return ret; 604 } 605 EXPORT_SYMBOL_GPL(inet_csk_get_port); 606 607 /* 608 * Wait for an incoming connection, avoid race conditions. This must be called 609 * with the socket locked. 610 */ 611 static int inet_csk_wait_for_connect(struct sock *sk, long timeo) 612 { 613 struct inet_connection_sock *icsk = inet_csk(sk); 614 DEFINE_WAIT(wait); 615 int err; 616 617 /* 618 * True wake-one mechanism for incoming connections: only 619 * one process gets woken up, not the 'whole herd'. 620 * Since we do not 'race & poll' for established sockets 621 * anymore, the common case will execute the loop only once. 622 * 623 * Subtle issue: "add_wait_queue_exclusive()" will be added 624 * after any current non-exclusive waiters, and we know that 625 * it will always _stay_ after any new non-exclusive waiters 626 * because all non-exclusive waiters are added at the 627 * beginning of the wait-queue. As such, it's ok to "drop" 628 * our exclusiveness temporarily when we get woken up without 629 * having to remove and re-insert us on the wait queue. 630 */ 631 for (;;) { 632 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 633 TASK_INTERRUPTIBLE); 634 release_sock(sk); 635 if (reqsk_queue_empty(&icsk->icsk_accept_queue)) 636 timeo = schedule_timeout(timeo); 637 sched_annotate_sleep(); 638 lock_sock(sk); 639 err = 0; 640 if (!reqsk_queue_empty(&icsk->icsk_accept_queue)) 641 break; 642 err = -EINVAL; 643 if (sk->sk_state != TCP_LISTEN) 644 break; 645 err = sock_intr_errno(timeo); 646 if (signal_pending(current)) 647 break; 648 err = -EAGAIN; 649 if (!timeo) 650 break; 651 } 652 finish_wait(sk_sleep(sk), &wait); 653 return err; 654 } 655 656 /* 657 * This will accept the next outstanding connection. 658 */ 659 struct sock *inet_csk_accept(struct sock *sk, struct proto_accept_arg *arg) 660 { 661 struct inet_connection_sock *icsk = inet_csk(sk); 662 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 663 struct request_sock *req; 664 struct sock *newsk; 665 int error; 666 667 lock_sock(sk); 668 669 /* We need to make sure that this socket is listening, 670 * and that it has something pending. 671 */ 672 error = -EINVAL; 673 if (sk->sk_state != TCP_LISTEN) 674 goto out_err; 675 676 /* Find already established connection */ 677 if (reqsk_queue_empty(queue)) { 678 long timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK); 679 680 /* If this is a non blocking socket don't sleep */ 681 error = -EAGAIN; 682 if (!timeo) 683 goto out_err; 684 685 error = inet_csk_wait_for_connect(sk, timeo); 686 if (error) 687 goto out_err; 688 } 689 req = reqsk_queue_remove(queue, sk); 690 arg->is_empty = reqsk_queue_empty(queue); 691 newsk = req->sk; 692 693 if (sk->sk_protocol == IPPROTO_TCP && 694 tcp_rsk(req)->tfo_listener) { 695 spin_lock_bh(&queue->fastopenq.lock); 696 if (tcp_rsk(req)->tfo_listener) { 697 /* We are still waiting for the final ACK from 3WHS 698 * so can't free req now. Instead, we set req->sk to 699 * NULL to signify that the child socket is taken 700 * so reqsk_fastopen_remove() will free the req 701 * when 3WHS finishes (or is aborted). 702 */ 703 req->sk = NULL; 704 req = NULL; 705 } 706 spin_unlock_bh(&queue->fastopenq.lock); 707 } 708 709 release_sock(sk); 710 711 if (mem_cgroup_sockets_enabled) { 712 gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL; 713 int amt = 0; 714 715 /* atomically get the memory usage, set and charge the 716 * newsk->sk_memcg. 717 */ 718 lock_sock(newsk); 719 720 mem_cgroup_sk_alloc(newsk); 721 if (mem_cgroup_from_sk(newsk)) { 722 /* The socket has not been accepted yet, no need 723 * to look at newsk->sk_wmem_queued. 724 */ 725 amt = sk_mem_pages(newsk->sk_forward_alloc + 726 atomic_read(&newsk->sk_rmem_alloc)); 727 } 728 729 if (amt) 730 mem_cgroup_sk_charge(newsk, amt, gfp); 731 kmem_cache_charge(newsk, gfp); 732 733 release_sock(newsk); 734 } 735 736 if (req) 737 reqsk_put(req); 738 739 inet_init_csk_locks(newsk); 740 return newsk; 741 742 out_err: 743 release_sock(sk); 744 arg->err = error; 745 return NULL; 746 } 747 EXPORT_SYMBOL(inet_csk_accept); 748 749 /* 750 * Using different timers for retransmit, delayed acks and probes 751 * We may wish use just one timer maintaining a list of expire jiffies 752 * to optimize. 753 */ 754 void inet_csk_init_xmit_timers(struct sock *sk, 755 void (*retransmit_handler)(struct timer_list *t), 756 void (*delack_handler)(struct timer_list *t), 757 void (*keepalive_handler)(struct timer_list *t)) 758 { 759 struct inet_connection_sock *icsk = inet_csk(sk); 760 761 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0); 762 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0); 763 timer_setup(&sk->sk_timer, keepalive_handler, 0); 764 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 765 } 766 767 void inet_csk_clear_xmit_timers(struct sock *sk) 768 { 769 struct inet_connection_sock *icsk = inet_csk(sk); 770 771 smp_store_release(&icsk->icsk_pending, 0); 772 smp_store_release(&icsk->icsk_ack.pending, 0); 773 774 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 775 sk_stop_timer(sk, &icsk->icsk_delack_timer); 776 sk_stop_timer(sk, &sk->sk_timer); 777 } 778 779 void inet_csk_clear_xmit_timers_sync(struct sock *sk) 780 { 781 struct inet_connection_sock *icsk = inet_csk(sk); 782 783 /* ongoing timer handlers need to acquire socket lock. */ 784 sock_not_owned_by_me(sk); 785 786 smp_store_release(&icsk->icsk_pending, 0); 787 smp_store_release(&icsk->icsk_ack.pending, 0); 788 789 sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer); 790 sk_stop_timer_sync(sk, &icsk->icsk_delack_timer); 791 sk_stop_timer_sync(sk, &sk->sk_timer); 792 } 793 794 struct dst_entry *inet_csk_route_req(const struct sock *sk, 795 struct flowi4 *fl4, 796 const struct request_sock *req) 797 { 798 const struct inet_request_sock *ireq = inet_rsk(req); 799 struct net *net = read_pnet(&ireq->ireq_net); 800 struct ip_options_rcu *opt; 801 struct rtable *rt; 802 803 rcu_read_lock(); 804 opt = rcu_dereference(ireq->ireq_opt); 805 806 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 807 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk), 808 sk->sk_protocol, inet_sk_flowi_flags(sk), 809 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 810 ireq->ir_loc_addr, ireq->ir_rmt_port, 811 htons(ireq->ir_num), sk_uid(sk)); 812 security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); 813 rt = ip_route_output_flow(net, fl4, sk); 814 if (IS_ERR(rt)) 815 goto no_route; 816 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 817 goto route_err; 818 rcu_read_unlock(); 819 return &rt->dst; 820 821 route_err: 822 ip_rt_put(rt); 823 no_route: 824 rcu_read_unlock(); 825 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 826 return NULL; 827 } 828 829 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, 830 struct sock *newsk, 831 const struct request_sock *req) 832 { 833 const struct inet_request_sock *ireq = inet_rsk(req); 834 struct net *net = read_pnet(&ireq->ireq_net); 835 struct inet_sock *newinet = inet_sk(newsk); 836 struct ip_options_rcu *opt; 837 struct flowi4 *fl4; 838 struct rtable *rt; 839 840 opt = rcu_dereference(ireq->ireq_opt); 841 fl4 = &newinet->cork.fl.u.ip4; 842 843 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 844 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk), 845 sk->sk_protocol, inet_sk_flowi_flags(sk), 846 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 847 ireq->ir_loc_addr, ireq->ir_rmt_port, 848 htons(ireq->ir_num), sk_uid(sk)); 849 security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); 850 rt = ip_route_output_flow(net, fl4, sk); 851 if (IS_ERR(rt)) 852 goto no_route; 853 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 854 goto route_err; 855 return &rt->dst; 856 857 route_err: 858 ip_rt_put(rt); 859 no_route: 860 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 861 return NULL; 862 } 863 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock); 864 865 /* Decide when to expire the request and when to resend SYN-ACK */ 866 static void syn_ack_recalc(struct request_sock *req, 867 const int max_syn_ack_retries, 868 const u8 rskq_defer_accept, 869 int *expire, int *resend) 870 { 871 if (!rskq_defer_accept) { 872 *expire = req->num_timeout >= max_syn_ack_retries; 873 *resend = 1; 874 return; 875 } 876 *expire = req->num_timeout >= max_syn_ack_retries && 877 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept); 878 /* Do not resend while waiting for data after ACK, 879 * start to resend on end of deferring period to give 880 * last chance for data or ACK to create established socket. 881 */ 882 *resend = !inet_rsk(req)->acked || 883 req->num_timeout >= rskq_defer_accept - 1; 884 } 885 886 static struct request_sock * 887 reqsk_alloc_noprof(const struct request_sock_ops *ops, struct sock *sk_listener, 888 bool attach_listener) 889 { 890 struct request_sock *req; 891 892 req = kmem_cache_alloc_noprof(ops->slab, GFP_ATOMIC | __GFP_NOWARN); 893 if (!req) 894 return NULL; 895 req->rsk_listener = NULL; 896 if (attach_listener) { 897 if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) { 898 kmem_cache_free(ops->slab, req); 899 return NULL; 900 } 901 req->rsk_listener = sk_listener; 902 } 903 req->rsk_ops = ops; 904 req_to_sk(req)->sk_prot = sk_listener->sk_prot; 905 sk_node_init(&req_to_sk(req)->sk_node); 906 sk_tx_queue_clear(req_to_sk(req)); 907 req->saved_syn = NULL; 908 req->syncookie = 0; 909 req->timeout = 0; 910 req->num_timeout = 0; 911 req->num_retrans = 0; 912 req->sk = NULL; 913 refcount_set(&req->rsk_refcnt, 0); 914 915 return req; 916 } 917 #define reqsk_alloc(...) alloc_hooks(reqsk_alloc_noprof(__VA_ARGS__)) 918 919 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 920 struct sock *sk_listener, 921 bool attach_listener) 922 { 923 struct request_sock *req = reqsk_alloc(ops, sk_listener, 924 attach_listener); 925 926 if (req) { 927 struct inet_request_sock *ireq = inet_rsk(req); 928 929 ireq->ireq_opt = NULL; 930 #if IS_ENABLED(CONFIG_IPV6) 931 ireq->pktopts = NULL; 932 #endif 933 atomic64_set(&ireq->ir_cookie, 0); 934 ireq->ireq_state = TCP_NEW_SYN_RECV; 935 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 936 ireq->ireq_family = sk_listener->sk_family; 937 req->timeout = TCP_TIMEOUT_INIT; 938 } 939 940 return req; 941 } 942 EXPORT_SYMBOL(inet_reqsk_alloc); 943 944 static struct request_sock *inet_reqsk_clone(struct request_sock *req, 945 struct sock *sk) 946 { 947 struct sock *req_sk, *nreq_sk; 948 struct request_sock *nreq; 949 950 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN); 951 if (!nreq) { 952 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); 953 954 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */ 955 sock_put(sk); 956 return NULL; 957 } 958 959 req_sk = req_to_sk(req); 960 nreq_sk = req_to_sk(nreq); 961 962 memcpy(nreq_sk, req_sk, 963 offsetof(struct sock, sk_dontcopy_begin)); 964 unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end, 965 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end), 966 /* alloc is larger than struct, see above */); 967 968 sk_node_init(&nreq_sk->sk_node); 969 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping; 970 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 971 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping; 972 #endif 973 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu; 974 975 nreq->rsk_listener = sk; 976 977 /* We need not acquire fastopenq->lock 978 * because the child socket is locked in inet_csk_listen_stop(). 979 */ 980 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener) 981 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq); 982 983 return nreq; 984 } 985 986 static void reqsk_queue_migrated(struct request_sock_queue *queue, 987 const struct request_sock *req) 988 { 989 if (req->num_timeout == 0) 990 atomic_inc(&queue->young); 991 atomic_inc(&queue->qlen); 992 } 993 994 static void reqsk_migrate_reset(struct request_sock *req) 995 { 996 req->saved_syn = NULL; 997 #if IS_ENABLED(CONFIG_IPV6) 998 inet_rsk(req)->ipv6_opt = NULL; 999 inet_rsk(req)->pktopts = NULL; 1000 #else 1001 inet_rsk(req)->ireq_opt = NULL; 1002 #endif 1003 } 1004 1005 /* return true if req was found in the ehash table */ 1006 static bool reqsk_queue_unlink(struct request_sock *req) 1007 { 1008 struct sock *sk = req_to_sk(req); 1009 bool found = false; 1010 1011 if (sk_hashed(sk)) { 1012 struct inet_hashinfo *hashinfo = tcp_get_hashinfo(sk); 1013 spinlock_t *lock; 1014 1015 lock = inet_ehash_lockp(hashinfo, req->rsk_hash); 1016 spin_lock(lock); 1017 found = __sk_nulls_del_node_init_rcu(sk); 1018 spin_unlock(lock); 1019 } 1020 1021 return found; 1022 } 1023 1024 static bool __inet_csk_reqsk_queue_drop(struct sock *sk, 1025 struct request_sock *req, 1026 bool from_timer) 1027 { 1028 bool unlinked = reqsk_queue_unlink(req); 1029 1030 if (!from_timer && timer_delete_sync(&req->rsk_timer)) 1031 reqsk_put(req); 1032 1033 if (unlinked) { 1034 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 1035 reqsk_put(req); 1036 } 1037 1038 return unlinked; 1039 } 1040 1041 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req) 1042 { 1043 return __inet_csk_reqsk_queue_drop(sk, req, false); 1044 } 1045 1046 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req) 1047 { 1048 inet_csk_reqsk_queue_drop(sk, req); 1049 reqsk_put(req); 1050 } 1051 EXPORT_IPV6_MOD(inet_csk_reqsk_queue_drop_and_put); 1052 1053 static void reqsk_timer_handler(struct timer_list *t) 1054 { 1055 struct request_sock *req = timer_container_of(req, t, rsk_timer); 1056 struct request_sock *nreq = NULL, *oreq = req; 1057 struct sock *sk_listener = req->rsk_listener; 1058 struct inet_connection_sock *icsk; 1059 struct request_sock_queue *queue; 1060 struct net *net; 1061 int max_syn_ack_retries, qlen, expire = 0, resend = 0; 1062 1063 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) { 1064 struct sock *nsk; 1065 1066 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL); 1067 if (!nsk) 1068 goto drop; 1069 1070 nreq = inet_reqsk_clone(req, nsk); 1071 if (!nreq) 1072 goto drop; 1073 1074 /* The new timer for the cloned req can decrease the 2 1075 * by calling inet_csk_reqsk_queue_drop_and_put(), so 1076 * hold another count to prevent use-after-free and 1077 * call reqsk_put() just before return. 1078 */ 1079 refcount_set(&nreq->rsk_refcnt, 2 + 1); 1080 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 1081 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req); 1082 1083 req = nreq; 1084 sk_listener = nsk; 1085 } 1086 1087 icsk = inet_csk(sk_listener); 1088 net = sock_net(sk_listener); 1089 max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? : 1090 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries); 1091 /* Normally all the openreqs are young and become mature 1092 * (i.e. converted to established socket) for first timeout. 1093 * If synack was not acknowledged for 1 second, it means 1094 * one of the following things: synack was lost, ack was lost, 1095 * rtt is high or nobody planned to ack (i.e. synflood). 1096 * When server is a bit loaded, queue is populated with old 1097 * open requests, reducing effective size of queue. 1098 * When server is well loaded, queue size reduces to zero 1099 * after several minutes of work. It is not synflood, 1100 * it is normal operation. The solution is pruning 1101 * too old entries overriding normal timeout, when 1102 * situation becomes dangerous. 1103 * 1104 * Essentially, we reserve half of room for young 1105 * embrions; and abort old ones without pity, if old 1106 * ones are about to clog our table. 1107 */ 1108 queue = &icsk->icsk_accept_queue; 1109 qlen = reqsk_queue_len(queue); 1110 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) { 1111 int young = reqsk_queue_len_young(queue) << 1; 1112 1113 while (max_syn_ack_retries > 2) { 1114 if (qlen < young) 1115 break; 1116 max_syn_ack_retries--; 1117 young <<= 1; 1118 } 1119 } 1120 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept), 1121 &expire, &resend); 1122 req->rsk_ops->syn_ack_timeout(req); 1123 if (!expire && 1124 (!resend || 1125 !tcp_rtx_synack(sk_listener, req) || 1126 inet_rsk(req)->acked)) { 1127 if (req->num_timeout++ == 0) 1128 atomic_dec(&queue->young); 1129 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX)); 1130 1131 if (!nreq) 1132 return; 1133 1134 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) { 1135 /* delete timer */ 1136 __inet_csk_reqsk_queue_drop(sk_listener, nreq, true); 1137 goto no_ownership; 1138 } 1139 1140 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS); 1141 reqsk_migrate_reset(oreq); 1142 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq); 1143 reqsk_put(oreq); 1144 1145 reqsk_put(nreq); 1146 return; 1147 } 1148 1149 /* Even if we can clone the req, we may need not retransmit any more 1150 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another 1151 * CPU may win the "own_req" race so that inet_ehash_insert() fails. 1152 */ 1153 if (nreq) { 1154 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE); 1155 no_ownership: 1156 reqsk_migrate_reset(nreq); 1157 reqsk_queue_removed(queue, nreq); 1158 __reqsk_free(nreq); 1159 } 1160 1161 drop: 1162 __inet_csk_reqsk_queue_drop(sk_listener, oreq, true); 1163 reqsk_put(oreq); 1164 } 1165 1166 static bool reqsk_queue_hash_req(struct request_sock *req, 1167 unsigned long timeout) 1168 { 1169 bool found_dup_sk = false; 1170 1171 if (!inet_ehash_insert(req_to_sk(req), NULL, &found_dup_sk)) 1172 return false; 1173 1174 /* The timer needs to be setup after a successful insertion. */ 1175 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 1176 mod_timer(&req->rsk_timer, jiffies + timeout); 1177 1178 /* before letting lookups find us, make sure all req fields 1179 * are committed to memory and refcnt initialized. 1180 */ 1181 smp_wmb(); 1182 refcount_set(&req->rsk_refcnt, 2 + 1); 1183 return true; 1184 } 1185 1186 bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, 1187 unsigned long timeout) 1188 { 1189 if (!reqsk_queue_hash_req(req, timeout)) 1190 return false; 1191 1192 inet_csk_reqsk_queue_added(sk); 1193 return true; 1194 } 1195 1196 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk, 1197 const gfp_t priority) 1198 { 1199 struct inet_connection_sock *icsk = inet_csk(newsk); 1200 1201 if (!icsk->icsk_ulp_ops) 1202 return; 1203 1204 icsk->icsk_ulp_ops->clone(req, newsk, priority); 1205 } 1206 1207 /** 1208 * inet_csk_clone_lock - clone an inet socket, and lock its clone 1209 * @sk: the socket to clone 1210 * @req: request_sock 1211 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1212 * 1213 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1214 */ 1215 struct sock *inet_csk_clone_lock(const struct sock *sk, 1216 const struct request_sock *req, 1217 const gfp_t priority) 1218 { 1219 struct sock *newsk = sk_clone_lock(sk, priority); 1220 struct inet_connection_sock *newicsk; 1221 struct inet_request_sock *ireq; 1222 struct inet_sock *newinet; 1223 1224 if (!newsk) 1225 return NULL; 1226 1227 newicsk = inet_csk(newsk); 1228 newinet = inet_sk(newsk); 1229 ireq = inet_rsk(req); 1230 1231 newicsk->icsk_bind_hash = NULL; 1232 newicsk->icsk_bind2_hash = NULL; 1233 1234 newinet->inet_dport = ireq->ir_rmt_port; 1235 newinet->inet_num = ireq->ir_num; 1236 newinet->inet_sport = htons(ireq->ir_num); 1237 1238 newsk->sk_bound_dev_if = ireq->ir_iif; 1239 1240 newsk->sk_daddr = ireq->ir_rmt_addr; 1241 newsk->sk_rcv_saddr = ireq->ir_loc_addr; 1242 newinet->inet_saddr = ireq->ir_loc_addr; 1243 1244 #if IS_ENABLED(CONFIG_IPV6) 1245 newsk->sk_v6_daddr = ireq->ir_v6_rmt_addr; 1246 newsk->sk_v6_rcv_saddr = ireq->ir_v6_loc_addr; 1247 #endif 1248 1249 /* listeners have SOCK_RCU_FREE, not the children */ 1250 sock_reset_flag(newsk, SOCK_RCU_FREE); 1251 1252 inet_sk(newsk)->mc_list = NULL; 1253 1254 newsk->sk_mark = inet_rsk(req)->ir_mark; 1255 atomic64_set(&newsk->sk_cookie, 1256 atomic64_read(&inet_rsk(req)->ir_cookie)); 1257 1258 newicsk->icsk_retransmits = 0; 1259 newicsk->icsk_backoff = 0; 1260 newicsk->icsk_probes_out = 0; 1261 newicsk->icsk_probes_tstamp = 0; 1262 1263 /* Deinitialize accept_queue to trap illegal accesses. */ 1264 memset(&newicsk->icsk_accept_queue, 0, 1265 sizeof(newicsk->icsk_accept_queue)); 1266 1267 inet_sk_set_state(newsk, TCP_SYN_RECV); 1268 1269 inet_clone_ulp(req, newsk, priority); 1270 1271 security_inet_csk_clone(newsk, req); 1272 1273 return newsk; 1274 } 1275 1276 /* 1277 * At this point, there should be no process reference to this 1278 * socket, and thus no user references at all. Therefore we 1279 * can assume the socket waitqueue is inactive and nobody will 1280 * try to jump onto it. 1281 */ 1282 void inet_csk_destroy_sock(struct sock *sk) 1283 { 1284 WARN_ON(sk->sk_state != TCP_CLOSE); 1285 WARN_ON(!sock_flag(sk, SOCK_DEAD)); 1286 1287 /* It cannot be in hash table! */ 1288 WARN_ON(!sk_unhashed(sk)); 1289 1290 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */ 1291 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); 1292 1293 sk->sk_prot->destroy(sk); 1294 1295 sk_stream_kill_queues(sk); 1296 1297 xfrm_sk_free_policy(sk); 1298 1299 tcp_orphan_count_dec(); 1300 1301 sock_put(sk); 1302 } 1303 EXPORT_SYMBOL(inet_csk_destroy_sock); 1304 1305 void inet_csk_prepare_for_destroy_sock(struct sock *sk) 1306 { 1307 /* The below has to be done to allow calling inet_csk_destroy_sock */ 1308 sock_set_flag(sk, SOCK_DEAD); 1309 tcp_orphan_count_inc(); 1310 } 1311 1312 /* This function allows to force a closure of a socket after the call to 1313 * tcp_create_openreq_child(). 1314 */ 1315 void inet_csk_prepare_forced_close(struct sock *sk) 1316 __releases(&sk->sk_lock.slock) 1317 { 1318 /* sk_clone_lock locked the socket and set refcnt to 2 */ 1319 bh_unlock_sock(sk); 1320 sock_put(sk); 1321 inet_csk_prepare_for_destroy_sock(sk); 1322 inet_sk(sk)->inet_num = 0; 1323 } 1324 EXPORT_SYMBOL(inet_csk_prepare_forced_close); 1325 1326 static int inet_ulp_can_listen(const struct sock *sk) 1327 { 1328 const struct inet_connection_sock *icsk = inet_csk(sk); 1329 1330 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone) 1331 return -EINVAL; 1332 1333 return 0; 1334 } 1335 1336 int inet_csk_listen_start(struct sock *sk) 1337 { 1338 struct inet_connection_sock *icsk = inet_csk(sk); 1339 struct inet_sock *inet = inet_sk(sk); 1340 int err; 1341 1342 err = inet_ulp_can_listen(sk); 1343 if (unlikely(err)) 1344 return err; 1345 1346 reqsk_queue_alloc(&icsk->icsk_accept_queue); 1347 1348 sk->sk_ack_backlog = 0; 1349 inet_csk_delack_init(sk); 1350 1351 /* There is race window here: we announce ourselves listening, 1352 * but this transition is still not validated by get_port(). 1353 * It is OK, because this socket enters to hash table only 1354 * after validation is complete. 1355 */ 1356 inet_sk_state_store(sk, TCP_LISTEN); 1357 err = sk->sk_prot->get_port(sk, inet->inet_num); 1358 if (!err) { 1359 inet->inet_sport = htons(inet->inet_num); 1360 1361 sk_dst_reset(sk); 1362 err = sk->sk_prot->hash(sk); 1363 1364 if (likely(!err)) 1365 return 0; 1366 } 1367 1368 inet_sk_set_state(sk, TCP_CLOSE); 1369 return err; 1370 } 1371 1372 static void inet_child_forget(struct sock *sk, struct request_sock *req, 1373 struct sock *child) 1374 { 1375 sk->sk_prot->disconnect(child, O_NONBLOCK); 1376 1377 sock_orphan(child); 1378 1379 tcp_orphan_count_inc(); 1380 1381 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) { 1382 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req); 1383 BUG_ON(sk != req->rsk_listener); 1384 1385 /* Paranoid, to prevent race condition if 1386 * an inbound pkt destined for child is 1387 * blocked by sock lock in tcp_v4_rcv(). 1388 * Also to satisfy an assertion in 1389 * tcp_v4_destroy_sock(). 1390 */ 1391 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL); 1392 } 1393 inet_csk_destroy_sock(child); 1394 } 1395 1396 struct sock *inet_csk_reqsk_queue_add(struct sock *sk, 1397 struct request_sock *req, 1398 struct sock *child) 1399 { 1400 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 1401 1402 spin_lock(&queue->rskq_lock); 1403 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1404 inet_child_forget(sk, req, child); 1405 child = NULL; 1406 } else { 1407 req->sk = child; 1408 req->dl_next = NULL; 1409 if (queue->rskq_accept_head == NULL) 1410 WRITE_ONCE(queue->rskq_accept_head, req); 1411 else 1412 queue->rskq_accept_tail->dl_next = req; 1413 queue->rskq_accept_tail = req; 1414 sk_acceptq_added(sk); 1415 } 1416 spin_unlock(&queue->rskq_lock); 1417 return child; 1418 } 1419 EXPORT_SYMBOL(inet_csk_reqsk_queue_add); 1420 1421 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, 1422 struct request_sock *req, bool own_req) 1423 { 1424 if (own_req) { 1425 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 1426 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req); 1427 1428 if (sk != req->rsk_listener) { 1429 /* another listening sk has been selected, 1430 * migrate the req to it. 1431 */ 1432 struct request_sock *nreq; 1433 1434 /* hold a refcnt for the nreq->rsk_listener 1435 * which is assigned in inet_reqsk_clone() 1436 */ 1437 sock_hold(sk); 1438 nreq = inet_reqsk_clone(req, sk); 1439 if (!nreq) { 1440 inet_child_forget(sk, req, child); 1441 goto child_put; 1442 } 1443 1444 refcount_set(&nreq->rsk_refcnt, 1); 1445 if (inet_csk_reqsk_queue_add(sk, nreq, child)) { 1446 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS); 1447 reqsk_migrate_reset(req); 1448 reqsk_put(req); 1449 return child; 1450 } 1451 1452 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); 1453 reqsk_migrate_reset(nreq); 1454 __reqsk_free(nreq); 1455 } else if (inet_csk_reqsk_queue_add(sk, req, child)) { 1456 return child; 1457 } 1458 } 1459 /* Too bad, another child took ownership of the request, undo. */ 1460 child_put: 1461 bh_unlock_sock(child); 1462 sock_put(child); 1463 return NULL; 1464 } 1465 1466 /* 1467 * This routine closes sockets which have been at least partially 1468 * opened, but not yet accepted. 1469 */ 1470 void inet_csk_listen_stop(struct sock *sk) 1471 { 1472 struct inet_connection_sock *icsk = inet_csk(sk); 1473 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 1474 struct request_sock *next, *req; 1475 1476 /* Following specs, it would be better either to send FIN 1477 * (and enter FIN-WAIT-1, it is normal close) 1478 * or to send active reset (abort). 1479 * Certainly, it is pretty dangerous while synflood, but it is 1480 * bad justification for our negligence 8) 1481 * To be honest, we are not able to make either 1482 * of the variants now. --ANK 1483 */ 1484 while ((req = reqsk_queue_remove(queue, sk)) != NULL) { 1485 struct sock *child = req->sk, *nsk; 1486 struct request_sock *nreq; 1487 1488 local_bh_disable(); 1489 bh_lock_sock(child); 1490 WARN_ON(sock_owned_by_user(child)); 1491 sock_hold(child); 1492 1493 nsk = reuseport_migrate_sock(sk, child, NULL); 1494 if (nsk) { 1495 nreq = inet_reqsk_clone(req, nsk); 1496 if (nreq) { 1497 refcount_set(&nreq->rsk_refcnt, 1); 1498 1499 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) { 1500 __NET_INC_STATS(sock_net(nsk), 1501 LINUX_MIB_TCPMIGRATEREQSUCCESS); 1502 reqsk_migrate_reset(req); 1503 } else { 1504 __NET_INC_STATS(sock_net(nsk), 1505 LINUX_MIB_TCPMIGRATEREQFAILURE); 1506 reqsk_migrate_reset(nreq); 1507 __reqsk_free(nreq); 1508 } 1509 1510 /* inet_csk_reqsk_queue_add() has already 1511 * called inet_child_forget() on failure case. 1512 */ 1513 goto skip_child_forget; 1514 } 1515 } 1516 1517 inet_child_forget(sk, req, child); 1518 skip_child_forget: 1519 reqsk_put(req); 1520 bh_unlock_sock(child); 1521 local_bh_enable(); 1522 sock_put(child); 1523 1524 cond_resched(); 1525 } 1526 if (queue->fastopenq.rskq_rst_head) { 1527 /* Free all the reqs queued in rskq_rst_head. */ 1528 spin_lock_bh(&queue->fastopenq.lock); 1529 req = queue->fastopenq.rskq_rst_head; 1530 queue->fastopenq.rskq_rst_head = NULL; 1531 spin_unlock_bh(&queue->fastopenq.lock); 1532 while (req != NULL) { 1533 next = req->dl_next; 1534 reqsk_put(req); 1535 req = next; 1536 } 1537 } 1538 WARN_ON_ONCE(sk->sk_ack_backlog); 1539 } 1540 EXPORT_SYMBOL_GPL(inet_csk_listen_stop); 1541 1542 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl) 1543 { 1544 const struct inet_sock *inet = inet_sk(sk); 1545 struct flowi4 *fl4; 1546 struct rtable *rt; 1547 1548 rcu_read_lock(); 1549 fl4 = &fl->u.ip4; 1550 inet_sk_init_flowi4(inet, fl4); 1551 rt = ip_route_output_flow(sock_net(sk), fl4, sk); 1552 if (IS_ERR(rt)) 1553 rt = NULL; 1554 if (rt) 1555 sk_setup_caps(sk, &rt->dst); 1556 rcu_read_unlock(); 1557 1558 return &rt->dst; 1559 } 1560 1561 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu) 1562 { 1563 struct dst_entry *dst = __sk_dst_check(sk, 0); 1564 struct inet_sock *inet = inet_sk(sk); 1565 1566 if (!dst) { 1567 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1568 if (!dst) 1569 goto out; 1570 } 1571 dst->ops->update_pmtu(dst, sk, NULL, mtu, true); 1572 1573 dst = __sk_dst_check(sk, 0); 1574 if (!dst) 1575 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1576 out: 1577 return dst; 1578 } 1579