1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Support for INET connection oriented protocols. 7 * 8 * Authors: See the TCP sources 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or(at your option) any later version. 14 */ 15 16 #include <linux/module.h> 17 #include <linux/jhash.h> 18 19 #include <net/inet_connection_sock.h> 20 #include <net/inet_hashtables.h> 21 #include <net/inet_timewait_sock.h> 22 #include <net/ip.h> 23 #include <net/route.h> 24 #include <net/tcp_states.h> 25 #include <net/xfrm.h> 26 #include <net/tcp.h> 27 #include <net/sock_reuseport.h> 28 #include <net/addrconf.h> 29 30 #ifdef INET_CSK_DEBUG 31 const char inet_csk_timer_bug_msg[] = "inet_csk BUG: unknown timer value\n"; 32 EXPORT_SYMBOL(inet_csk_timer_bug_msg); 33 #endif 34 35 #if IS_ENABLED(CONFIG_IPV6) 36 /* match_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6 37 * only, and any IPv4 addresses if not IPv6 only 38 * match_wildcard == false: addresses must be exactly the same, i.e. 39 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY, 40 * and 0.0.0.0 equals to 0.0.0.0 only 41 */ 42 static int ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6, 43 const struct in6_addr *sk2_rcv_saddr6, 44 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 45 bool sk1_ipv6only, bool sk2_ipv6only, 46 bool match_wildcard) 47 { 48 int addr_type = ipv6_addr_type(sk1_rcv_saddr6); 49 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED; 50 51 /* if both are mapped, treat as IPv4 */ 52 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) { 53 if (!sk2_ipv6only) { 54 if (sk1_rcv_saddr == sk2_rcv_saddr) 55 return 1; 56 if (!sk1_rcv_saddr || !sk2_rcv_saddr) 57 return match_wildcard; 58 } 59 return 0; 60 } 61 62 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY) 63 return 1; 64 65 if (addr_type2 == IPV6_ADDR_ANY && match_wildcard && 66 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED)) 67 return 1; 68 69 if (addr_type == IPV6_ADDR_ANY && match_wildcard && 70 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED)) 71 return 1; 72 73 if (sk2_rcv_saddr6 && 74 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6)) 75 return 1; 76 77 return 0; 78 } 79 #endif 80 81 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 82 * match_wildcard == false: addresses must be exactly the same, i.e. 83 * 0.0.0.0 only equals to 0.0.0.0 84 */ 85 static int ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 86 bool sk2_ipv6only, bool match_wildcard) 87 { 88 if (!sk2_ipv6only) { 89 if (sk1_rcv_saddr == sk2_rcv_saddr) 90 return 1; 91 if (!sk1_rcv_saddr || !sk2_rcv_saddr) 92 return match_wildcard; 93 } 94 return 0; 95 } 96 97 int inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, 98 bool match_wildcard) 99 { 100 #if IS_ENABLED(CONFIG_IPV6) 101 if (sk->sk_family == AF_INET6) 102 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr, 103 inet6_rcv_saddr(sk2), 104 sk->sk_rcv_saddr, 105 sk2->sk_rcv_saddr, 106 ipv6_only_sock(sk), 107 ipv6_only_sock(sk2), 108 match_wildcard); 109 #endif 110 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr, 111 ipv6_only_sock(sk2), match_wildcard); 112 } 113 EXPORT_SYMBOL(inet_rcv_saddr_equal); 114 115 void inet_get_local_port_range(struct net *net, int *low, int *high) 116 { 117 unsigned int seq; 118 119 do { 120 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock); 121 122 *low = net->ipv4.ip_local_ports.range[0]; 123 *high = net->ipv4.ip_local_ports.range[1]; 124 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq)); 125 } 126 EXPORT_SYMBOL(inet_get_local_port_range); 127 128 static int inet_csk_bind_conflict(const struct sock *sk, 129 const struct inet_bind_bucket *tb, 130 bool relax, bool reuseport_ok) 131 { 132 struct sock *sk2; 133 bool reuse = sk->sk_reuse; 134 bool reuseport = !!sk->sk_reuseport && reuseport_ok; 135 kuid_t uid = sock_i_uid((struct sock *)sk); 136 137 /* 138 * Unlike other sk lookup places we do not check 139 * for sk_net here, since _all_ the socks listed 140 * in tb->owners list belong to the same net - the 141 * one this bucket belongs to. 142 */ 143 144 sk_for_each_bound(sk2, &tb->owners) { 145 if (sk != sk2 && 146 (!sk->sk_bound_dev_if || 147 !sk2->sk_bound_dev_if || 148 sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) { 149 if ((!reuse || !sk2->sk_reuse || 150 sk2->sk_state == TCP_LISTEN) && 151 (!reuseport || !sk2->sk_reuseport || 152 rcu_access_pointer(sk->sk_reuseport_cb) || 153 (sk2->sk_state != TCP_TIME_WAIT && 154 !uid_eq(uid, sock_i_uid(sk2))))) { 155 if (inet_rcv_saddr_equal(sk, sk2, true)) 156 break; 157 } 158 if (!relax && reuse && sk2->sk_reuse && 159 sk2->sk_state != TCP_LISTEN) { 160 if (inet_rcv_saddr_equal(sk, sk2, true)) 161 break; 162 } 163 } 164 } 165 return sk2 != NULL; 166 } 167 168 /* 169 * Find an open port number for the socket. Returns with the 170 * inet_bind_hashbucket lock held. 171 */ 172 static struct inet_bind_hashbucket * 173 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret) 174 { 175 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; 176 int port = 0; 177 struct inet_bind_hashbucket *head; 178 struct net *net = sock_net(sk); 179 int i, low, high, attempt_half; 180 struct inet_bind_bucket *tb; 181 u32 remaining, offset; 182 183 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0; 184 other_half_scan: 185 inet_get_local_port_range(net, &low, &high); 186 high++; /* [32768, 60999] -> [32768, 61000[ */ 187 if (high - low < 4) 188 attempt_half = 0; 189 if (attempt_half) { 190 int half = low + (((high - low) >> 2) << 1); 191 192 if (attempt_half == 1) 193 high = half; 194 else 195 low = half; 196 } 197 remaining = high - low; 198 if (likely(remaining > 1)) 199 remaining &= ~1U; 200 201 offset = prandom_u32() % remaining; 202 /* __inet_hash_connect() favors ports having @low parity 203 * We do the opposite to not pollute connect() users. 204 */ 205 offset |= 1U; 206 207 other_parity_scan: 208 port = low + offset; 209 for (i = 0; i < remaining; i += 2, port += 2) { 210 if (unlikely(port >= high)) 211 port -= remaining; 212 if (inet_is_local_reserved_port(net, port)) 213 continue; 214 head = &hinfo->bhash[inet_bhashfn(net, port, 215 hinfo->bhash_size)]; 216 spin_lock_bh(&head->lock); 217 inet_bind_bucket_for_each(tb, &head->chain) 218 if (net_eq(ib_net(tb), net) && tb->port == port) { 219 if (!inet_csk_bind_conflict(sk, tb, false, false)) 220 goto success; 221 goto next_port; 222 } 223 tb = NULL; 224 goto success; 225 next_port: 226 spin_unlock_bh(&head->lock); 227 cond_resched(); 228 } 229 230 offset--; 231 if (!(offset & 1)) 232 goto other_parity_scan; 233 234 if (attempt_half == 1) { 235 /* OK we now try the upper half of the range */ 236 attempt_half = 2; 237 goto other_half_scan; 238 } 239 return NULL; 240 success: 241 *port_ret = port; 242 *tb_ret = tb; 243 return head; 244 } 245 246 static inline int sk_reuseport_match(struct inet_bind_bucket *tb, 247 struct sock *sk) 248 { 249 kuid_t uid = sock_i_uid(sk); 250 251 if (tb->fastreuseport <= 0) 252 return 0; 253 if (!sk->sk_reuseport) 254 return 0; 255 if (rcu_access_pointer(sk->sk_reuseport_cb)) 256 return 0; 257 if (!uid_eq(tb->fastuid, uid)) 258 return 0; 259 /* We only need to check the rcv_saddr if this tb was once marked 260 * without fastreuseport and then was reset, as we can only know that 261 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the 262 * owners list. 263 */ 264 if (tb->fastreuseport == FASTREUSEPORT_ANY) 265 return 1; 266 #if IS_ENABLED(CONFIG_IPV6) 267 if (tb->fast_sk_family == AF_INET6) 268 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr, 269 &sk->sk_v6_rcv_saddr, 270 tb->fast_rcv_saddr, 271 sk->sk_rcv_saddr, 272 tb->fast_ipv6_only, 273 ipv6_only_sock(sk), true); 274 #endif 275 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr, 276 ipv6_only_sock(sk), true); 277 } 278 279 /* Obtain a reference to a local port for the given sock, 280 * if snum is zero it means select any available local port. 281 * We try to allocate an odd port (and leave even ports for connect()) 282 */ 283 int inet_csk_get_port(struct sock *sk, unsigned short snum) 284 { 285 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 286 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; 287 int ret = 1, port = snum; 288 struct inet_bind_hashbucket *head; 289 struct net *net = sock_net(sk); 290 struct inet_bind_bucket *tb = NULL; 291 kuid_t uid = sock_i_uid(sk); 292 293 if (!port) { 294 head = inet_csk_find_open_port(sk, &tb, &port); 295 if (!head) 296 return ret; 297 if (!tb) 298 goto tb_not_found; 299 goto success; 300 } 301 head = &hinfo->bhash[inet_bhashfn(net, port, 302 hinfo->bhash_size)]; 303 spin_lock_bh(&head->lock); 304 inet_bind_bucket_for_each(tb, &head->chain) 305 if (net_eq(ib_net(tb), net) && tb->port == port) 306 goto tb_found; 307 tb_not_found: 308 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, 309 net, head, port); 310 if (!tb) 311 goto fail_unlock; 312 tb_found: 313 if (!hlist_empty(&tb->owners)) { 314 if (sk->sk_reuse == SK_FORCE_REUSE) 315 goto success; 316 317 if ((tb->fastreuse > 0 && reuse) || 318 sk_reuseport_match(tb, sk)) 319 goto success; 320 if (inet_csk_bind_conflict(sk, tb, true, true)) 321 goto fail_unlock; 322 } 323 success: 324 if (!hlist_empty(&tb->owners)) { 325 tb->fastreuse = reuse; 326 if (sk->sk_reuseport) { 327 tb->fastreuseport = FASTREUSEPORT_ANY; 328 tb->fastuid = uid; 329 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 330 tb->fast_ipv6_only = ipv6_only_sock(sk); 331 #if IS_ENABLED(CONFIG_IPV6) 332 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 333 #endif 334 } else { 335 tb->fastreuseport = 0; 336 } 337 } else { 338 if (!reuse) 339 tb->fastreuse = 0; 340 if (sk->sk_reuseport) { 341 /* We didn't match or we don't have fastreuseport set on 342 * the tb, but we have sk_reuseport set on this socket 343 * and we know that there are no bind conflicts with 344 * this socket in this tb, so reset our tb's reuseport 345 * settings so that any subsequent sockets that match 346 * our current socket will be put on the fast path. 347 * 348 * If we reset we need to set FASTREUSEPORT_STRICT so we 349 * do extra checking for all subsequent sk_reuseport 350 * socks. 351 */ 352 if (!sk_reuseport_match(tb, sk)) { 353 tb->fastreuseport = FASTREUSEPORT_STRICT; 354 tb->fastuid = uid; 355 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 356 tb->fast_ipv6_only = ipv6_only_sock(sk); 357 #if IS_ENABLED(CONFIG_IPV6) 358 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 359 #endif 360 } 361 } else { 362 tb->fastreuseport = 0; 363 } 364 } 365 if (!inet_csk(sk)->icsk_bind_hash) 366 inet_bind_hash(sk, tb, port); 367 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb); 368 ret = 0; 369 370 fail_unlock: 371 spin_unlock_bh(&head->lock); 372 return ret; 373 } 374 EXPORT_SYMBOL_GPL(inet_csk_get_port); 375 376 /* 377 * Wait for an incoming connection, avoid race conditions. This must be called 378 * with the socket locked. 379 */ 380 static int inet_csk_wait_for_connect(struct sock *sk, long timeo) 381 { 382 struct inet_connection_sock *icsk = inet_csk(sk); 383 DEFINE_WAIT(wait); 384 int err; 385 386 /* 387 * True wake-one mechanism for incoming connections: only 388 * one process gets woken up, not the 'whole herd'. 389 * Since we do not 'race & poll' for established sockets 390 * anymore, the common case will execute the loop only once. 391 * 392 * Subtle issue: "add_wait_queue_exclusive()" will be added 393 * after any current non-exclusive waiters, and we know that 394 * it will always _stay_ after any new non-exclusive waiters 395 * because all non-exclusive waiters are added at the 396 * beginning of the wait-queue. As such, it's ok to "drop" 397 * our exclusiveness temporarily when we get woken up without 398 * having to remove and re-insert us on the wait queue. 399 */ 400 for (;;) { 401 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 402 TASK_INTERRUPTIBLE); 403 release_sock(sk); 404 if (reqsk_queue_empty(&icsk->icsk_accept_queue)) 405 timeo = schedule_timeout(timeo); 406 sched_annotate_sleep(); 407 lock_sock(sk); 408 err = 0; 409 if (!reqsk_queue_empty(&icsk->icsk_accept_queue)) 410 break; 411 err = -EINVAL; 412 if (sk->sk_state != TCP_LISTEN) 413 break; 414 err = sock_intr_errno(timeo); 415 if (signal_pending(current)) 416 break; 417 err = -EAGAIN; 418 if (!timeo) 419 break; 420 } 421 finish_wait(sk_sleep(sk), &wait); 422 return err; 423 } 424 425 /* 426 * This will accept the next outstanding connection. 427 */ 428 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern) 429 { 430 struct inet_connection_sock *icsk = inet_csk(sk); 431 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 432 struct request_sock *req; 433 struct sock *newsk; 434 int error; 435 436 lock_sock(sk); 437 438 /* We need to make sure that this socket is listening, 439 * and that it has something pending. 440 */ 441 error = -EINVAL; 442 if (sk->sk_state != TCP_LISTEN) 443 goto out_err; 444 445 /* Find already established connection */ 446 if (reqsk_queue_empty(queue)) { 447 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 448 449 /* If this is a non blocking socket don't sleep */ 450 error = -EAGAIN; 451 if (!timeo) 452 goto out_err; 453 454 error = inet_csk_wait_for_connect(sk, timeo); 455 if (error) 456 goto out_err; 457 } 458 req = reqsk_queue_remove(queue, sk); 459 newsk = req->sk; 460 461 if (sk->sk_protocol == IPPROTO_TCP && 462 tcp_rsk(req)->tfo_listener) { 463 spin_lock_bh(&queue->fastopenq.lock); 464 if (tcp_rsk(req)->tfo_listener) { 465 /* We are still waiting for the final ACK from 3WHS 466 * so can't free req now. Instead, we set req->sk to 467 * NULL to signify that the child socket is taken 468 * so reqsk_fastopen_remove() will free the req 469 * when 3WHS finishes (or is aborted). 470 */ 471 req->sk = NULL; 472 req = NULL; 473 } 474 spin_unlock_bh(&queue->fastopenq.lock); 475 } 476 out: 477 release_sock(sk); 478 if (req) 479 reqsk_put(req); 480 return newsk; 481 out_err: 482 newsk = NULL; 483 req = NULL; 484 *err = error; 485 goto out; 486 } 487 EXPORT_SYMBOL(inet_csk_accept); 488 489 /* 490 * Using different timers for retransmit, delayed acks and probes 491 * We may wish use just one timer maintaining a list of expire jiffies 492 * to optimize. 493 */ 494 void inet_csk_init_xmit_timers(struct sock *sk, 495 void (*retransmit_handler)(unsigned long), 496 void (*delack_handler)(unsigned long), 497 void (*keepalive_handler)(unsigned long)) 498 { 499 struct inet_connection_sock *icsk = inet_csk(sk); 500 501 setup_timer(&icsk->icsk_retransmit_timer, retransmit_handler, 502 (unsigned long)sk); 503 setup_timer(&icsk->icsk_delack_timer, delack_handler, 504 (unsigned long)sk); 505 setup_timer(&sk->sk_timer, keepalive_handler, (unsigned long)sk); 506 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 507 } 508 EXPORT_SYMBOL(inet_csk_init_xmit_timers); 509 510 void inet_csk_clear_xmit_timers(struct sock *sk) 511 { 512 struct inet_connection_sock *icsk = inet_csk(sk); 513 514 icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0; 515 516 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 517 sk_stop_timer(sk, &icsk->icsk_delack_timer); 518 sk_stop_timer(sk, &sk->sk_timer); 519 } 520 EXPORT_SYMBOL(inet_csk_clear_xmit_timers); 521 522 void inet_csk_delete_keepalive_timer(struct sock *sk) 523 { 524 sk_stop_timer(sk, &sk->sk_timer); 525 } 526 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer); 527 528 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len) 529 { 530 sk_reset_timer(sk, &sk->sk_timer, jiffies + len); 531 } 532 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer); 533 534 struct dst_entry *inet_csk_route_req(const struct sock *sk, 535 struct flowi4 *fl4, 536 const struct request_sock *req) 537 { 538 const struct inet_request_sock *ireq = inet_rsk(req); 539 struct net *net = read_pnet(&ireq->ireq_net); 540 struct ip_options_rcu *opt = ireq->opt; 541 struct rtable *rt; 542 543 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 544 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, 545 sk->sk_protocol, inet_sk_flowi_flags(sk), 546 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 547 ireq->ir_loc_addr, ireq->ir_rmt_port, 548 htons(ireq->ir_num), sk->sk_uid); 549 security_req_classify_flow(req, flowi4_to_flowi(fl4)); 550 rt = ip_route_output_flow(net, fl4, sk); 551 if (IS_ERR(rt)) 552 goto no_route; 553 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 554 goto route_err; 555 return &rt->dst; 556 557 route_err: 558 ip_rt_put(rt); 559 no_route: 560 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 561 return NULL; 562 } 563 EXPORT_SYMBOL_GPL(inet_csk_route_req); 564 565 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, 566 struct sock *newsk, 567 const struct request_sock *req) 568 { 569 const struct inet_request_sock *ireq = inet_rsk(req); 570 struct net *net = read_pnet(&ireq->ireq_net); 571 struct inet_sock *newinet = inet_sk(newsk); 572 struct ip_options_rcu *opt; 573 struct flowi4 *fl4; 574 struct rtable *rt; 575 576 fl4 = &newinet->cork.fl.u.ip4; 577 578 rcu_read_lock(); 579 opt = rcu_dereference(newinet->inet_opt); 580 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 581 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, 582 sk->sk_protocol, inet_sk_flowi_flags(sk), 583 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 584 ireq->ir_loc_addr, ireq->ir_rmt_port, 585 htons(ireq->ir_num), sk->sk_uid); 586 security_req_classify_flow(req, flowi4_to_flowi(fl4)); 587 rt = ip_route_output_flow(net, fl4, sk); 588 if (IS_ERR(rt)) 589 goto no_route; 590 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 591 goto route_err; 592 rcu_read_unlock(); 593 return &rt->dst; 594 595 route_err: 596 ip_rt_put(rt); 597 no_route: 598 rcu_read_unlock(); 599 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 600 return NULL; 601 } 602 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock); 603 604 #if IS_ENABLED(CONFIG_IPV6) 605 #define AF_INET_FAMILY(fam) ((fam) == AF_INET) 606 #else 607 #define AF_INET_FAMILY(fam) true 608 #endif 609 610 /* Decide when to expire the request and when to resend SYN-ACK */ 611 static inline void syn_ack_recalc(struct request_sock *req, const int thresh, 612 const int max_retries, 613 const u8 rskq_defer_accept, 614 int *expire, int *resend) 615 { 616 if (!rskq_defer_accept) { 617 *expire = req->num_timeout >= thresh; 618 *resend = 1; 619 return; 620 } 621 *expire = req->num_timeout >= thresh && 622 (!inet_rsk(req)->acked || req->num_timeout >= max_retries); 623 /* 624 * Do not resend while waiting for data after ACK, 625 * start to resend on end of deferring period to give 626 * last chance for data or ACK to create established socket. 627 */ 628 *resend = !inet_rsk(req)->acked || 629 req->num_timeout >= rskq_defer_accept - 1; 630 } 631 632 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req) 633 { 634 int err = req->rsk_ops->rtx_syn_ack(parent, req); 635 636 if (!err) 637 req->num_retrans++; 638 return err; 639 } 640 EXPORT_SYMBOL(inet_rtx_syn_ack); 641 642 /* return true if req was found in the ehash table */ 643 static bool reqsk_queue_unlink(struct request_sock_queue *queue, 644 struct request_sock *req) 645 { 646 struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo; 647 bool found = false; 648 649 if (sk_hashed(req_to_sk(req))) { 650 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash); 651 652 spin_lock(lock); 653 found = __sk_nulls_del_node_init_rcu(req_to_sk(req)); 654 spin_unlock(lock); 655 } 656 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer)) 657 reqsk_put(req); 658 return found; 659 } 660 661 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req) 662 { 663 if (reqsk_queue_unlink(&inet_csk(sk)->icsk_accept_queue, req)) { 664 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 665 reqsk_put(req); 666 } 667 } 668 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop); 669 670 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req) 671 { 672 inet_csk_reqsk_queue_drop(sk, req); 673 reqsk_put(req); 674 } 675 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put); 676 677 static void reqsk_timer_handler(unsigned long data) 678 { 679 struct request_sock *req = (struct request_sock *)data; 680 struct sock *sk_listener = req->rsk_listener; 681 struct net *net = sock_net(sk_listener); 682 struct inet_connection_sock *icsk = inet_csk(sk_listener); 683 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 684 int qlen, expire = 0, resend = 0; 685 int max_retries, thresh; 686 u8 defer_accept; 687 688 if (sk_state_load(sk_listener) != TCP_LISTEN) 689 goto drop; 690 691 max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries; 692 thresh = max_retries; 693 /* Normally all the openreqs are young and become mature 694 * (i.e. converted to established socket) for first timeout. 695 * If synack was not acknowledged for 1 second, it means 696 * one of the following things: synack was lost, ack was lost, 697 * rtt is high or nobody planned to ack (i.e. synflood). 698 * When server is a bit loaded, queue is populated with old 699 * open requests, reducing effective size of queue. 700 * When server is well loaded, queue size reduces to zero 701 * after several minutes of work. It is not synflood, 702 * it is normal operation. The solution is pruning 703 * too old entries overriding normal timeout, when 704 * situation becomes dangerous. 705 * 706 * Essentially, we reserve half of room for young 707 * embrions; and abort old ones without pity, if old 708 * ones are about to clog our table. 709 */ 710 qlen = reqsk_queue_len(queue); 711 if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) { 712 int young = reqsk_queue_len_young(queue) << 1; 713 714 while (thresh > 2) { 715 if (qlen < young) 716 break; 717 thresh--; 718 young <<= 1; 719 } 720 } 721 defer_accept = READ_ONCE(queue->rskq_defer_accept); 722 if (defer_accept) 723 max_retries = defer_accept; 724 syn_ack_recalc(req, thresh, max_retries, defer_accept, 725 &expire, &resend); 726 req->rsk_ops->syn_ack_timeout(req); 727 if (!expire && 728 (!resend || 729 !inet_rtx_syn_ack(sk_listener, req) || 730 inet_rsk(req)->acked)) { 731 unsigned long timeo; 732 733 if (req->num_timeout++ == 0) 734 atomic_dec(&queue->young); 735 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX); 736 mod_timer(&req->rsk_timer, jiffies + timeo); 737 return; 738 } 739 drop: 740 inet_csk_reqsk_queue_drop_and_put(sk_listener, req); 741 } 742 743 static void reqsk_queue_hash_req(struct request_sock *req, 744 unsigned long timeout) 745 { 746 req->num_retrans = 0; 747 req->num_timeout = 0; 748 req->sk = NULL; 749 750 setup_pinned_timer(&req->rsk_timer, reqsk_timer_handler, 751 (unsigned long)req); 752 mod_timer(&req->rsk_timer, jiffies + timeout); 753 754 inet_ehash_insert(req_to_sk(req), NULL); 755 /* before letting lookups find us, make sure all req fields 756 * are committed to memory and refcnt initialized. 757 */ 758 smp_wmb(); 759 refcount_set(&req->rsk_refcnt, 2 + 1); 760 } 761 762 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, 763 unsigned long timeout) 764 { 765 reqsk_queue_hash_req(req, timeout); 766 inet_csk_reqsk_queue_added(sk); 767 } 768 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add); 769 770 /** 771 * inet_csk_clone_lock - clone an inet socket, and lock its clone 772 * @sk: the socket to clone 773 * @req: request_sock 774 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 775 * 776 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 777 */ 778 struct sock *inet_csk_clone_lock(const struct sock *sk, 779 const struct request_sock *req, 780 const gfp_t priority) 781 { 782 struct sock *newsk = sk_clone_lock(sk, priority); 783 784 if (newsk) { 785 struct inet_connection_sock *newicsk = inet_csk(newsk); 786 787 newsk->sk_state = TCP_SYN_RECV; 788 newicsk->icsk_bind_hash = NULL; 789 790 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port; 791 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num; 792 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num); 793 794 /* listeners have SOCK_RCU_FREE, not the children */ 795 sock_reset_flag(newsk, SOCK_RCU_FREE); 796 797 inet_sk(newsk)->mc_list = NULL; 798 799 newsk->sk_mark = inet_rsk(req)->ir_mark; 800 atomic64_set(&newsk->sk_cookie, 801 atomic64_read(&inet_rsk(req)->ir_cookie)); 802 803 newicsk->icsk_retransmits = 0; 804 newicsk->icsk_backoff = 0; 805 newicsk->icsk_probes_out = 0; 806 807 /* Deinitialize accept_queue to trap illegal accesses. */ 808 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue)); 809 810 security_inet_csk_clone(newsk, req); 811 } 812 return newsk; 813 } 814 EXPORT_SYMBOL_GPL(inet_csk_clone_lock); 815 816 /* 817 * At this point, there should be no process reference to this 818 * socket, and thus no user references at all. Therefore we 819 * can assume the socket waitqueue is inactive and nobody will 820 * try to jump onto it. 821 */ 822 void inet_csk_destroy_sock(struct sock *sk) 823 { 824 WARN_ON(sk->sk_state != TCP_CLOSE); 825 WARN_ON(!sock_flag(sk, SOCK_DEAD)); 826 827 /* It cannot be in hash table! */ 828 WARN_ON(!sk_unhashed(sk)); 829 830 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */ 831 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); 832 833 sk->sk_prot->destroy(sk); 834 835 sk_stream_kill_queues(sk); 836 837 xfrm_sk_free_policy(sk); 838 839 sk_refcnt_debug_release(sk); 840 841 percpu_counter_dec(sk->sk_prot->orphan_count); 842 843 sock_put(sk); 844 } 845 EXPORT_SYMBOL(inet_csk_destroy_sock); 846 847 /* This function allows to force a closure of a socket after the call to 848 * tcp/dccp_create_openreq_child(). 849 */ 850 void inet_csk_prepare_forced_close(struct sock *sk) 851 __releases(&sk->sk_lock.slock) 852 { 853 /* sk_clone_lock locked the socket and set refcnt to 2 */ 854 bh_unlock_sock(sk); 855 sock_put(sk); 856 857 /* The below has to be done to allow calling inet_csk_destroy_sock */ 858 sock_set_flag(sk, SOCK_DEAD); 859 percpu_counter_inc(sk->sk_prot->orphan_count); 860 inet_sk(sk)->inet_num = 0; 861 } 862 EXPORT_SYMBOL(inet_csk_prepare_forced_close); 863 864 int inet_csk_listen_start(struct sock *sk, int backlog) 865 { 866 struct inet_connection_sock *icsk = inet_csk(sk); 867 struct inet_sock *inet = inet_sk(sk); 868 int err = -EADDRINUSE; 869 870 reqsk_queue_alloc(&icsk->icsk_accept_queue); 871 872 sk->sk_max_ack_backlog = backlog; 873 sk->sk_ack_backlog = 0; 874 inet_csk_delack_init(sk); 875 876 /* There is race window here: we announce ourselves listening, 877 * but this transition is still not validated by get_port(). 878 * It is OK, because this socket enters to hash table only 879 * after validation is complete. 880 */ 881 sk_state_store(sk, TCP_LISTEN); 882 if (!sk->sk_prot->get_port(sk, inet->inet_num)) { 883 inet->inet_sport = htons(inet->inet_num); 884 885 sk_dst_reset(sk); 886 err = sk->sk_prot->hash(sk); 887 888 if (likely(!err)) 889 return 0; 890 } 891 892 sk->sk_state = TCP_CLOSE; 893 return err; 894 } 895 EXPORT_SYMBOL_GPL(inet_csk_listen_start); 896 897 static void inet_child_forget(struct sock *sk, struct request_sock *req, 898 struct sock *child) 899 { 900 sk->sk_prot->disconnect(child, O_NONBLOCK); 901 902 sock_orphan(child); 903 904 percpu_counter_inc(sk->sk_prot->orphan_count); 905 906 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) { 907 BUG_ON(tcp_sk(child)->fastopen_rsk != req); 908 BUG_ON(sk != req->rsk_listener); 909 910 /* Paranoid, to prevent race condition if 911 * an inbound pkt destined for child is 912 * blocked by sock lock in tcp_v4_rcv(). 913 * Also to satisfy an assertion in 914 * tcp_v4_destroy_sock(). 915 */ 916 tcp_sk(child)->fastopen_rsk = NULL; 917 } 918 inet_csk_destroy_sock(child); 919 reqsk_put(req); 920 } 921 922 struct sock *inet_csk_reqsk_queue_add(struct sock *sk, 923 struct request_sock *req, 924 struct sock *child) 925 { 926 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 927 928 spin_lock(&queue->rskq_lock); 929 if (unlikely(sk->sk_state != TCP_LISTEN)) { 930 inet_child_forget(sk, req, child); 931 child = NULL; 932 } else { 933 req->sk = child; 934 req->dl_next = NULL; 935 if (queue->rskq_accept_head == NULL) 936 queue->rskq_accept_head = req; 937 else 938 queue->rskq_accept_tail->dl_next = req; 939 queue->rskq_accept_tail = req; 940 sk_acceptq_added(sk); 941 } 942 spin_unlock(&queue->rskq_lock); 943 return child; 944 } 945 EXPORT_SYMBOL(inet_csk_reqsk_queue_add); 946 947 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, 948 struct request_sock *req, bool own_req) 949 { 950 if (own_req) { 951 inet_csk_reqsk_queue_drop(sk, req); 952 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 953 if (inet_csk_reqsk_queue_add(sk, req, child)) 954 return child; 955 } 956 /* Too bad, another child took ownership of the request, undo. */ 957 bh_unlock_sock(child); 958 sock_put(child); 959 return NULL; 960 } 961 EXPORT_SYMBOL(inet_csk_complete_hashdance); 962 963 /* 964 * This routine closes sockets which have been at least partially 965 * opened, but not yet accepted. 966 */ 967 void inet_csk_listen_stop(struct sock *sk) 968 { 969 struct inet_connection_sock *icsk = inet_csk(sk); 970 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 971 struct request_sock *next, *req; 972 973 /* Following specs, it would be better either to send FIN 974 * (and enter FIN-WAIT-1, it is normal close) 975 * or to send active reset (abort). 976 * Certainly, it is pretty dangerous while synflood, but it is 977 * bad justification for our negligence 8) 978 * To be honest, we are not able to make either 979 * of the variants now. --ANK 980 */ 981 while ((req = reqsk_queue_remove(queue, sk)) != NULL) { 982 struct sock *child = req->sk; 983 984 local_bh_disable(); 985 bh_lock_sock(child); 986 WARN_ON(sock_owned_by_user(child)); 987 sock_hold(child); 988 989 inet_child_forget(sk, req, child); 990 bh_unlock_sock(child); 991 local_bh_enable(); 992 sock_put(child); 993 994 cond_resched(); 995 } 996 if (queue->fastopenq.rskq_rst_head) { 997 /* Free all the reqs queued in rskq_rst_head. */ 998 spin_lock_bh(&queue->fastopenq.lock); 999 req = queue->fastopenq.rskq_rst_head; 1000 queue->fastopenq.rskq_rst_head = NULL; 1001 spin_unlock_bh(&queue->fastopenq.lock); 1002 while (req != NULL) { 1003 next = req->dl_next; 1004 reqsk_put(req); 1005 req = next; 1006 } 1007 } 1008 WARN_ON_ONCE(sk->sk_ack_backlog); 1009 } 1010 EXPORT_SYMBOL_GPL(inet_csk_listen_stop); 1011 1012 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr) 1013 { 1014 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr; 1015 const struct inet_sock *inet = inet_sk(sk); 1016 1017 sin->sin_family = AF_INET; 1018 sin->sin_addr.s_addr = inet->inet_daddr; 1019 sin->sin_port = inet->inet_dport; 1020 } 1021 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr); 1022 1023 #ifdef CONFIG_COMPAT 1024 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname, 1025 char __user *optval, int __user *optlen) 1026 { 1027 const struct inet_connection_sock *icsk = inet_csk(sk); 1028 1029 if (icsk->icsk_af_ops->compat_getsockopt) 1030 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname, 1031 optval, optlen); 1032 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 1033 optval, optlen); 1034 } 1035 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt); 1036 1037 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname, 1038 char __user *optval, unsigned int optlen) 1039 { 1040 const struct inet_connection_sock *icsk = inet_csk(sk); 1041 1042 if (icsk->icsk_af_ops->compat_setsockopt) 1043 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname, 1044 optval, optlen); 1045 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 1046 optval, optlen); 1047 } 1048 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt); 1049 #endif 1050 1051 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl) 1052 { 1053 const struct inet_sock *inet = inet_sk(sk); 1054 const struct ip_options_rcu *inet_opt; 1055 __be32 daddr = inet->inet_daddr; 1056 struct flowi4 *fl4; 1057 struct rtable *rt; 1058 1059 rcu_read_lock(); 1060 inet_opt = rcu_dereference(inet->inet_opt); 1061 if (inet_opt && inet_opt->opt.srr) 1062 daddr = inet_opt->opt.faddr; 1063 fl4 = &fl->u.ip4; 1064 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, 1065 inet->inet_saddr, inet->inet_dport, 1066 inet->inet_sport, sk->sk_protocol, 1067 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if); 1068 if (IS_ERR(rt)) 1069 rt = NULL; 1070 if (rt) 1071 sk_setup_caps(sk, &rt->dst); 1072 rcu_read_unlock(); 1073 1074 return &rt->dst; 1075 } 1076 1077 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu) 1078 { 1079 struct dst_entry *dst = __sk_dst_check(sk, 0); 1080 struct inet_sock *inet = inet_sk(sk); 1081 1082 if (!dst) { 1083 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1084 if (!dst) 1085 goto out; 1086 } 1087 dst->ops->update_pmtu(dst, sk, NULL, mtu); 1088 1089 dst = __sk_dst_check(sk, 0); 1090 if (!dst) 1091 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1092 out: 1093 return dst; 1094 } 1095 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu); 1096