xref: /linux/net/ipv4/inet_connection_sock.c (revision 9ffd93852fc66f2bdf61a574db107f106e9fb2ff)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Support for INET connection oriented protocols.
7  *
8  * Authors:	See the TCP sources
9  *
10  *		This program is free software; you can redistribute it and/or
11  *		modify it under the terms of the GNU General Public License
12  *		as published by the Free Software Foundation; either version
13  *		2 of the License, or(at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/jhash.h>
18 
19 #include <net/inet_connection_sock.h>
20 #include <net/inet_hashtables.h>
21 #include <net/inet_timewait_sock.h>
22 #include <net/ip.h>
23 #include <net/route.h>
24 #include <net/tcp_states.h>
25 #include <net/xfrm.h>
26 #include <net/tcp.h>
27 #include <net/sock_reuseport.h>
28 #include <net/addrconf.h>
29 
30 #ifdef INET_CSK_DEBUG
31 const char inet_csk_timer_bug_msg[] = "inet_csk BUG: unknown timer value\n";
32 EXPORT_SYMBOL(inet_csk_timer_bug_msg);
33 #endif
34 
35 #if IS_ENABLED(CONFIG_IPV6)
36 /* match_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
37  *                          only, and any IPv4 addresses if not IPv6 only
38  * match_wildcard == false: addresses must be exactly the same, i.e.
39  *                          IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
40  *                          and 0.0.0.0 equals to 0.0.0.0 only
41  */
42 static int ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
43 				const struct in6_addr *sk2_rcv_saddr6,
44 				__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
45 				bool sk1_ipv6only, bool sk2_ipv6only,
46 				bool match_wildcard)
47 {
48 	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
49 	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
50 
51 	/* if both are mapped, treat as IPv4 */
52 	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
53 		if (!sk2_ipv6only) {
54 			if (sk1_rcv_saddr == sk2_rcv_saddr)
55 				return 1;
56 			if (!sk1_rcv_saddr || !sk2_rcv_saddr)
57 				return match_wildcard;
58 		}
59 		return 0;
60 	}
61 
62 	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
63 		return 1;
64 
65 	if (addr_type2 == IPV6_ADDR_ANY && match_wildcard &&
66 	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
67 		return 1;
68 
69 	if (addr_type == IPV6_ADDR_ANY && match_wildcard &&
70 	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
71 		return 1;
72 
73 	if (sk2_rcv_saddr6 &&
74 	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
75 		return 1;
76 
77 	return 0;
78 }
79 #endif
80 
81 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
82  * match_wildcard == false: addresses must be exactly the same, i.e.
83  *                          0.0.0.0 only equals to 0.0.0.0
84  */
85 static int ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
86 				bool sk2_ipv6only, bool match_wildcard)
87 {
88 	if (!sk2_ipv6only) {
89 		if (sk1_rcv_saddr == sk2_rcv_saddr)
90 			return 1;
91 		if (!sk1_rcv_saddr || !sk2_rcv_saddr)
92 			return match_wildcard;
93 	}
94 	return 0;
95 }
96 
97 int inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
98 			 bool match_wildcard)
99 {
100 #if IS_ENABLED(CONFIG_IPV6)
101 	if (sk->sk_family == AF_INET6)
102 		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
103 					    inet6_rcv_saddr(sk2),
104 					    sk->sk_rcv_saddr,
105 					    sk2->sk_rcv_saddr,
106 					    ipv6_only_sock(sk),
107 					    ipv6_only_sock(sk2),
108 					    match_wildcard);
109 #endif
110 	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
111 				    ipv6_only_sock(sk2), match_wildcard);
112 }
113 EXPORT_SYMBOL(inet_rcv_saddr_equal);
114 
115 void inet_get_local_port_range(struct net *net, int *low, int *high)
116 {
117 	unsigned int seq;
118 
119 	do {
120 		seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
121 
122 		*low = net->ipv4.ip_local_ports.range[0];
123 		*high = net->ipv4.ip_local_ports.range[1];
124 	} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
125 }
126 EXPORT_SYMBOL(inet_get_local_port_range);
127 
128 static int inet_csk_bind_conflict(const struct sock *sk,
129 				  const struct inet_bind_bucket *tb,
130 				  bool relax, bool reuseport_ok)
131 {
132 	struct sock *sk2;
133 	bool reuse = sk->sk_reuse;
134 	bool reuseport = !!sk->sk_reuseport && reuseport_ok;
135 	kuid_t uid = sock_i_uid((struct sock *)sk);
136 
137 	/*
138 	 * Unlike other sk lookup places we do not check
139 	 * for sk_net here, since _all_ the socks listed
140 	 * in tb->owners list belong to the same net - the
141 	 * one this bucket belongs to.
142 	 */
143 
144 	sk_for_each_bound(sk2, &tb->owners) {
145 		if (sk != sk2 &&
146 		    (!sk->sk_bound_dev_if ||
147 		     !sk2->sk_bound_dev_if ||
148 		     sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
149 			if ((!reuse || !sk2->sk_reuse ||
150 			    sk2->sk_state == TCP_LISTEN) &&
151 			    (!reuseport || !sk2->sk_reuseport ||
152 			     rcu_access_pointer(sk->sk_reuseport_cb) ||
153 			     (sk2->sk_state != TCP_TIME_WAIT &&
154 			     !uid_eq(uid, sock_i_uid(sk2))))) {
155 				if (inet_rcv_saddr_equal(sk, sk2, true))
156 					break;
157 			}
158 			if (!relax && reuse && sk2->sk_reuse &&
159 			    sk2->sk_state != TCP_LISTEN) {
160 				if (inet_rcv_saddr_equal(sk, sk2, true))
161 					break;
162 			}
163 		}
164 	}
165 	return sk2 != NULL;
166 }
167 
168 /*
169  * Find an open port number for the socket.  Returns with the
170  * inet_bind_hashbucket lock held.
171  */
172 static struct inet_bind_hashbucket *
173 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
174 {
175 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
176 	int port = 0;
177 	struct inet_bind_hashbucket *head;
178 	struct net *net = sock_net(sk);
179 	int i, low, high, attempt_half;
180 	struct inet_bind_bucket *tb;
181 	u32 remaining, offset;
182 
183 	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
184 other_half_scan:
185 	inet_get_local_port_range(net, &low, &high);
186 	high++; /* [32768, 60999] -> [32768, 61000[ */
187 	if (high - low < 4)
188 		attempt_half = 0;
189 	if (attempt_half) {
190 		int half = low + (((high - low) >> 2) << 1);
191 
192 		if (attempt_half == 1)
193 			high = half;
194 		else
195 			low = half;
196 	}
197 	remaining = high - low;
198 	if (likely(remaining > 1))
199 		remaining &= ~1U;
200 
201 	offset = prandom_u32() % remaining;
202 	/* __inet_hash_connect() favors ports having @low parity
203 	 * We do the opposite to not pollute connect() users.
204 	 */
205 	offset |= 1U;
206 
207 other_parity_scan:
208 	port = low + offset;
209 	for (i = 0; i < remaining; i += 2, port += 2) {
210 		if (unlikely(port >= high))
211 			port -= remaining;
212 		if (inet_is_local_reserved_port(net, port))
213 			continue;
214 		head = &hinfo->bhash[inet_bhashfn(net, port,
215 						  hinfo->bhash_size)];
216 		spin_lock_bh(&head->lock);
217 		inet_bind_bucket_for_each(tb, &head->chain)
218 			if (net_eq(ib_net(tb), net) && tb->port == port) {
219 				if (!inet_csk_bind_conflict(sk, tb, false, false))
220 					goto success;
221 				goto next_port;
222 			}
223 		tb = NULL;
224 		goto success;
225 next_port:
226 		spin_unlock_bh(&head->lock);
227 		cond_resched();
228 	}
229 
230 	offset--;
231 	if (!(offset & 1))
232 		goto other_parity_scan;
233 
234 	if (attempt_half == 1) {
235 		/* OK we now try the upper half of the range */
236 		attempt_half = 2;
237 		goto other_half_scan;
238 	}
239 	return NULL;
240 success:
241 	*port_ret = port;
242 	*tb_ret = tb;
243 	return head;
244 }
245 
246 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
247 				     struct sock *sk)
248 {
249 	kuid_t uid = sock_i_uid(sk);
250 
251 	if (tb->fastreuseport <= 0)
252 		return 0;
253 	if (!sk->sk_reuseport)
254 		return 0;
255 	if (rcu_access_pointer(sk->sk_reuseport_cb))
256 		return 0;
257 	if (!uid_eq(tb->fastuid, uid))
258 		return 0;
259 	/* We only need to check the rcv_saddr if this tb was once marked
260 	 * without fastreuseport and then was reset, as we can only know that
261 	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
262 	 * owners list.
263 	 */
264 	if (tb->fastreuseport == FASTREUSEPORT_ANY)
265 		return 1;
266 #if IS_ENABLED(CONFIG_IPV6)
267 	if (tb->fast_sk_family == AF_INET6)
268 		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
269 					    &sk->sk_v6_rcv_saddr,
270 					    tb->fast_rcv_saddr,
271 					    sk->sk_rcv_saddr,
272 					    tb->fast_ipv6_only,
273 					    ipv6_only_sock(sk), true);
274 #endif
275 	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
276 				    ipv6_only_sock(sk), true);
277 }
278 
279 /* Obtain a reference to a local port for the given sock,
280  * if snum is zero it means select any available local port.
281  * We try to allocate an odd port (and leave even ports for connect())
282  */
283 int inet_csk_get_port(struct sock *sk, unsigned short snum)
284 {
285 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
286 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
287 	int ret = 1, port = snum;
288 	struct inet_bind_hashbucket *head;
289 	struct net *net = sock_net(sk);
290 	struct inet_bind_bucket *tb = NULL;
291 	kuid_t uid = sock_i_uid(sk);
292 
293 	if (!port) {
294 		head = inet_csk_find_open_port(sk, &tb, &port);
295 		if (!head)
296 			return ret;
297 		if (!tb)
298 			goto tb_not_found;
299 		goto success;
300 	}
301 	head = &hinfo->bhash[inet_bhashfn(net, port,
302 					  hinfo->bhash_size)];
303 	spin_lock_bh(&head->lock);
304 	inet_bind_bucket_for_each(tb, &head->chain)
305 		if (net_eq(ib_net(tb), net) && tb->port == port)
306 			goto tb_found;
307 tb_not_found:
308 	tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
309 				     net, head, port);
310 	if (!tb)
311 		goto fail_unlock;
312 tb_found:
313 	if (!hlist_empty(&tb->owners)) {
314 		if (sk->sk_reuse == SK_FORCE_REUSE)
315 			goto success;
316 
317 		if ((tb->fastreuse > 0 && reuse) ||
318 		    sk_reuseport_match(tb, sk))
319 			goto success;
320 		if (inet_csk_bind_conflict(sk, tb, true, true))
321 			goto fail_unlock;
322 	}
323 success:
324 	if (!hlist_empty(&tb->owners)) {
325 		tb->fastreuse = reuse;
326 		if (sk->sk_reuseport) {
327 			tb->fastreuseport = FASTREUSEPORT_ANY;
328 			tb->fastuid = uid;
329 			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
330 			tb->fast_ipv6_only = ipv6_only_sock(sk);
331 #if IS_ENABLED(CONFIG_IPV6)
332 			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
333 #endif
334 		} else {
335 			tb->fastreuseport = 0;
336 		}
337 	} else {
338 		if (!reuse)
339 			tb->fastreuse = 0;
340 		if (sk->sk_reuseport) {
341 			/* We didn't match or we don't have fastreuseport set on
342 			 * the tb, but we have sk_reuseport set on this socket
343 			 * and we know that there are no bind conflicts with
344 			 * this socket in this tb, so reset our tb's reuseport
345 			 * settings so that any subsequent sockets that match
346 			 * our current socket will be put on the fast path.
347 			 *
348 			 * If we reset we need to set FASTREUSEPORT_STRICT so we
349 			 * do extra checking for all subsequent sk_reuseport
350 			 * socks.
351 			 */
352 			if (!sk_reuseport_match(tb, sk)) {
353 				tb->fastreuseport = FASTREUSEPORT_STRICT;
354 				tb->fastuid = uid;
355 				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
356 				tb->fast_ipv6_only = ipv6_only_sock(sk);
357 #if IS_ENABLED(CONFIG_IPV6)
358 				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
359 #endif
360 			}
361 		} else {
362 			tb->fastreuseport = 0;
363 		}
364 	}
365 	if (!inet_csk(sk)->icsk_bind_hash)
366 		inet_bind_hash(sk, tb, port);
367 	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
368 	ret = 0;
369 
370 fail_unlock:
371 	spin_unlock_bh(&head->lock);
372 	return ret;
373 }
374 EXPORT_SYMBOL_GPL(inet_csk_get_port);
375 
376 /*
377  * Wait for an incoming connection, avoid race conditions. This must be called
378  * with the socket locked.
379  */
380 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
381 {
382 	struct inet_connection_sock *icsk = inet_csk(sk);
383 	DEFINE_WAIT(wait);
384 	int err;
385 
386 	/*
387 	 * True wake-one mechanism for incoming connections: only
388 	 * one process gets woken up, not the 'whole herd'.
389 	 * Since we do not 'race & poll' for established sockets
390 	 * anymore, the common case will execute the loop only once.
391 	 *
392 	 * Subtle issue: "add_wait_queue_exclusive()" will be added
393 	 * after any current non-exclusive waiters, and we know that
394 	 * it will always _stay_ after any new non-exclusive waiters
395 	 * because all non-exclusive waiters are added at the
396 	 * beginning of the wait-queue. As such, it's ok to "drop"
397 	 * our exclusiveness temporarily when we get woken up without
398 	 * having to remove and re-insert us on the wait queue.
399 	 */
400 	for (;;) {
401 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
402 					  TASK_INTERRUPTIBLE);
403 		release_sock(sk);
404 		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
405 			timeo = schedule_timeout(timeo);
406 		sched_annotate_sleep();
407 		lock_sock(sk);
408 		err = 0;
409 		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
410 			break;
411 		err = -EINVAL;
412 		if (sk->sk_state != TCP_LISTEN)
413 			break;
414 		err = sock_intr_errno(timeo);
415 		if (signal_pending(current))
416 			break;
417 		err = -EAGAIN;
418 		if (!timeo)
419 			break;
420 	}
421 	finish_wait(sk_sleep(sk), &wait);
422 	return err;
423 }
424 
425 /*
426  * This will accept the next outstanding connection.
427  */
428 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
429 {
430 	struct inet_connection_sock *icsk = inet_csk(sk);
431 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
432 	struct request_sock *req;
433 	struct sock *newsk;
434 	int error;
435 
436 	lock_sock(sk);
437 
438 	/* We need to make sure that this socket is listening,
439 	 * and that it has something pending.
440 	 */
441 	error = -EINVAL;
442 	if (sk->sk_state != TCP_LISTEN)
443 		goto out_err;
444 
445 	/* Find already established connection */
446 	if (reqsk_queue_empty(queue)) {
447 		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
448 
449 		/* If this is a non blocking socket don't sleep */
450 		error = -EAGAIN;
451 		if (!timeo)
452 			goto out_err;
453 
454 		error = inet_csk_wait_for_connect(sk, timeo);
455 		if (error)
456 			goto out_err;
457 	}
458 	req = reqsk_queue_remove(queue, sk);
459 	newsk = req->sk;
460 
461 	if (sk->sk_protocol == IPPROTO_TCP &&
462 	    tcp_rsk(req)->tfo_listener) {
463 		spin_lock_bh(&queue->fastopenq.lock);
464 		if (tcp_rsk(req)->tfo_listener) {
465 			/* We are still waiting for the final ACK from 3WHS
466 			 * so can't free req now. Instead, we set req->sk to
467 			 * NULL to signify that the child socket is taken
468 			 * so reqsk_fastopen_remove() will free the req
469 			 * when 3WHS finishes (or is aborted).
470 			 */
471 			req->sk = NULL;
472 			req = NULL;
473 		}
474 		spin_unlock_bh(&queue->fastopenq.lock);
475 	}
476 out:
477 	release_sock(sk);
478 	if (req)
479 		reqsk_put(req);
480 	return newsk;
481 out_err:
482 	newsk = NULL;
483 	req = NULL;
484 	*err = error;
485 	goto out;
486 }
487 EXPORT_SYMBOL(inet_csk_accept);
488 
489 /*
490  * Using different timers for retransmit, delayed acks and probes
491  * We may wish use just one timer maintaining a list of expire jiffies
492  * to optimize.
493  */
494 void inet_csk_init_xmit_timers(struct sock *sk,
495 			       void (*retransmit_handler)(unsigned long),
496 			       void (*delack_handler)(unsigned long),
497 			       void (*keepalive_handler)(unsigned long))
498 {
499 	struct inet_connection_sock *icsk = inet_csk(sk);
500 
501 	setup_timer(&icsk->icsk_retransmit_timer, retransmit_handler,
502 			(unsigned long)sk);
503 	setup_timer(&icsk->icsk_delack_timer, delack_handler,
504 			(unsigned long)sk);
505 	setup_timer(&sk->sk_timer, keepalive_handler, (unsigned long)sk);
506 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
507 }
508 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
509 
510 void inet_csk_clear_xmit_timers(struct sock *sk)
511 {
512 	struct inet_connection_sock *icsk = inet_csk(sk);
513 
514 	icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
515 
516 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
517 	sk_stop_timer(sk, &icsk->icsk_delack_timer);
518 	sk_stop_timer(sk, &sk->sk_timer);
519 }
520 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
521 
522 void inet_csk_delete_keepalive_timer(struct sock *sk)
523 {
524 	sk_stop_timer(sk, &sk->sk_timer);
525 }
526 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
527 
528 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
529 {
530 	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
531 }
532 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
533 
534 struct dst_entry *inet_csk_route_req(const struct sock *sk,
535 				     struct flowi4 *fl4,
536 				     const struct request_sock *req)
537 {
538 	const struct inet_request_sock *ireq = inet_rsk(req);
539 	struct net *net = read_pnet(&ireq->ireq_net);
540 	struct ip_options_rcu *opt = ireq->opt;
541 	struct rtable *rt;
542 
543 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
544 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
545 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
546 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
547 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
548 			   htons(ireq->ir_num), sk->sk_uid);
549 	security_req_classify_flow(req, flowi4_to_flowi(fl4));
550 	rt = ip_route_output_flow(net, fl4, sk);
551 	if (IS_ERR(rt))
552 		goto no_route;
553 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
554 		goto route_err;
555 	return &rt->dst;
556 
557 route_err:
558 	ip_rt_put(rt);
559 no_route:
560 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
561 	return NULL;
562 }
563 EXPORT_SYMBOL_GPL(inet_csk_route_req);
564 
565 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
566 					    struct sock *newsk,
567 					    const struct request_sock *req)
568 {
569 	const struct inet_request_sock *ireq = inet_rsk(req);
570 	struct net *net = read_pnet(&ireq->ireq_net);
571 	struct inet_sock *newinet = inet_sk(newsk);
572 	struct ip_options_rcu *opt;
573 	struct flowi4 *fl4;
574 	struct rtable *rt;
575 
576 	fl4 = &newinet->cork.fl.u.ip4;
577 
578 	rcu_read_lock();
579 	opt = rcu_dereference(newinet->inet_opt);
580 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
581 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
582 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
583 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
584 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
585 			   htons(ireq->ir_num), sk->sk_uid);
586 	security_req_classify_flow(req, flowi4_to_flowi(fl4));
587 	rt = ip_route_output_flow(net, fl4, sk);
588 	if (IS_ERR(rt))
589 		goto no_route;
590 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
591 		goto route_err;
592 	rcu_read_unlock();
593 	return &rt->dst;
594 
595 route_err:
596 	ip_rt_put(rt);
597 no_route:
598 	rcu_read_unlock();
599 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
600 	return NULL;
601 }
602 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
603 
604 #if IS_ENABLED(CONFIG_IPV6)
605 #define AF_INET_FAMILY(fam) ((fam) == AF_INET)
606 #else
607 #define AF_INET_FAMILY(fam) true
608 #endif
609 
610 /* Decide when to expire the request and when to resend SYN-ACK */
611 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
612 				  const int max_retries,
613 				  const u8 rskq_defer_accept,
614 				  int *expire, int *resend)
615 {
616 	if (!rskq_defer_accept) {
617 		*expire = req->num_timeout >= thresh;
618 		*resend = 1;
619 		return;
620 	}
621 	*expire = req->num_timeout >= thresh &&
622 		  (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
623 	/*
624 	 * Do not resend while waiting for data after ACK,
625 	 * start to resend on end of deferring period to give
626 	 * last chance for data or ACK to create established socket.
627 	 */
628 	*resend = !inet_rsk(req)->acked ||
629 		  req->num_timeout >= rskq_defer_accept - 1;
630 }
631 
632 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
633 {
634 	int err = req->rsk_ops->rtx_syn_ack(parent, req);
635 
636 	if (!err)
637 		req->num_retrans++;
638 	return err;
639 }
640 EXPORT_SYMBOL(inet_rtx_syn_ack);
641 
642 /* return true if req was found in the ehash table */
643 static bool reqsk_queue_unlink(struct request_sock_queue *queue,
644 			       struct request_sock *req)
645 {
646 	struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
647 	bool found = false;
648 
649 	if (sk_hashed(req_to_sk(req))) {
650 		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
651 
652 		spin_lock(lock);
653 		found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
654 		spin_unlock(lock);
655 	}
656 	if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
657 		reqsk_put(req);
658 	return found;
659 }
660 
661 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
662 {
663 	if (reqsk_queue_unlink(&inet_csk(sk)->icsk_accept_queue, req)) {
664 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
665 		reqsk_put(req);
666 	}
667 }
668 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
669 
670 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
671 {
672 	inet_csk_reqsk_queue_drop(sk, req);
673 	reqsk_put(req);
674 }
675 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
676 
677 static void reqsk_timer_handler(unsigned long data)
678 {
679 	struct request_sock *req = (struct request_sock *)data;
680 	struct sock *sk_listener = req->rsk_listener;
681 	struct net *net = sock_net(sk_listener);
682 	struct inet_connection_sock *icsk = inet_csk(sk_listener);
683 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
684 	int qlen, expire = 0, resend = 0;
685 	int max_retries, thresh;
686 	u8 defer_accept;
687 
688 	if (sk_state_load(sk_listener) != TCP_LISTEN)
689 		goto drop;
690 
691 	max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
692 	thresh = max_retries;
693 	/* Normally all the openreqs are young and become mature
694 	 * (i.e. converted to established socket) for first timeout.
695 	 * If synack was not acknowledged for 1 second, it means
696 	 * one of the following things: synack was lost, ack was lost,
697 	 * rtt is high or nobody planned to ack (i.e. synflood).
698 	 * When server is a bit loaded, queue is populated with old
699 	 * open requests, reducing effective size of queue.
700 	 * When server is well loaded, queue size reduces to zero
701 	 * after several minutes of work. It is not synflood,
702 	 * it is normal operation. The solution is pruning
703 	 * too old entries overriding normal timeout, when
704 	 * situation becomes dangerous.
705 	 *
706 	 * Essentially, we reserve half of room for young
707 	 * embrions; and abort old ones without pity, if old
708 	 * ones are about to clog our table.
709 	 */
710 	qlen = reqsk_queue_len(queue);
711 	if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) {
712 		int young = reqsk_queue_len_young(queue) << 1;
713 
714 		while (thresh > 2) {
715 			if (qlen < young)
716 				break;
717 			thresh--;
718 			young <<= 1;
719 		}
720 	}
721 	defer_accept = READ_ONCE(queue->rskq_defer_accept);
722 	if (defer_accept)
723 		max_retries = defer_accept;
724 	syn_ack_recalc(req, thresh, max_retries, defer_accept,
725 		       &expire, &resend);
726 	req->rsk_ops->syn_ack_timeout(req);
727 	if (!expire &&
728 	    (!resend ||
729 	     !inet_rtx_syn_ack(sk_listener, req) ||
730 	     inet_rsk(req)->acked)) {
731 		unsigned long timeo;
732 
733 		if (req->num_timeout++ == 0)
734 			atomic_dec(&queue->young);
735 		timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
736 		mod_timer(&req->rsk_timer, jiffies + timeo);
737 		return;
738 	}
739 drop:
740 	inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
741 }
742 
743 static void reqsk_queue_hash_req(struct request_sock *req,
744 				 unsigned long timeout)
745 {
746 	req->num_retrans = 0;
747 	req->num_timeout = 0;
748 	req->sk = NULL;
749 
750 	setup_pinned_timer(&req->rsk_timer, reqsk_timer_handler,
751 			    (unsigned long)req);
752 	mod_timer(&req->rsk_timer, jiffies + timeout);
753 
754 	inet_ehash_insert(req_to_sk(req), NULL);
755 	/* before letting lookups find us, make sure all req fields
756 	 * are committed to memory and refcnt initialized.
757 	 */
758 	smp_wmb();
759 	refcount_set(&req->rsk_refcnt, 2 + 1);
760 }
761 
762 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
763 				   unsigned long timeout)
764 {
765 	reqsk_queue_hash_req(req, timeout);
766 	inet_csk_reqsk_queue_added(sk);
767 }
768 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
769 
770 /**
771  *	inet_csk_clone_lock - clone an inet socket, and lock its clone
772  *	@sk: the socket to clone
773  *	@req: request_sock
774  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
775  *
776  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
777  */
778 struct sock *inet_csk_clone_lock(const struct sock *sk,
779 				 const struct request_sock *req,
780 				 const gfp_t priority)
781 {
782 	struct sock *newsk = sk_clone_lock(sk, priority);
783 
784 	if (newsk) {
785 		struct inet_connection_sock *newicsk = inet_csk(newsk);
786 
787 		newsk->sk_state = TCP_SYN_RECV;
788 		newicsk->icsk_bind_hash = NULL;
789 
790 		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
791 		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
792 		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
793 
794 		/* listeners have SOCK_RCU_FREE, not the children */
795 		sock_reset_flag(newsk, SOCK_RCU_FREE);
796 
797 		inet_sk(newsk)->mc_list = NULL;
798 
799 		newsk->sk_mark = inet_rsk(req)->ir_mark;
800 		atomic64_set(&newsk->sk_cookie,
801 			     atomic64_read(&inet_rsk(req)->ir_cookie));
802 
803 		newicsk->icsk_retransmits = 0;
804 		newicsk->icsk_backoff	  = 0;
805 		newicsk->icsk_probes_out  = 0;
806 
807 		/* Deinitialize accept_queue to trap illegal accesses. */
808 		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
809 
810 		security_inet_csk_clone(newsk, req);
811 	}
812 	return newsk;
813 }
814 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
815 
816 /*
817  * At this point, there should be no process reference to this
818  * socket, and thus no user references at all.  Therefore we
819  * can assume the socket waitqueue is inactive and nobody will
820  * try to jump onto it.
821  */
822 void inet_csk_destroy_sock(struct sock *sk)
823 {
824 	WARN_ON(sk->sk_state != TCP_CLOSE);
825 	WARN_ON(!sock_flag(sk, SOCK_DEAD));
826 
827 	/* It cannot be in hash table! */
828 	WARN_ON(!sk_unhashed(sk));
829 
830 	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
831 	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
832 
833 	sk->sk_prot->destroy(sk);
834 
835 	sk_stream_kill_queues(sk);
836 
837 	xfrm_sk_free_policy(sk);
838 
839 	sk_refcnt_debug_release(sk);
840 
841 	percpu_counter_dec(sk->sk_prot->orphan_count);
842 
843 	sock_put(sk);
844 }
845 EXPORT_SYMBOL(inet_csk_destroy_sock);
846 
847 /* This function allows to force a closure of a socket after the call to
848  * tcp/dccp_create_openreq_child().
849  */
850 void inet_csk_prepare_forced_close(struct sock *sk)
851 	__releases(&sk->sk_lock.slock)
852 {
853 	/* sk_clone_lock locked the socket and set refcnt to 2 */
854 	bh_unlock_sock(sk);
855 	sock_put(sk);
856 
857 	/* The below has to be done to allow calling inet_csk_destroy_sock */
858 	sock_set_flag(sk, SOCK_DEAD);
859 	percpu_counter_inc(sk->sk_prot->orphan_count);
860 	inet_sk(sk)->inet_num = 0;
861 }
862 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
863 
864 int inet_csk_listen_start(struct sock *sk, int backlog)
865 {
866 	struct inet_connection_sock *icsk = inet_csk(sk);
867 	struct inet_sock *inet = inet_sk(sk);
868 	int err = -EADDRINUSE;
869 
870 	reqsk_queue_alloc(&icsk->icsk_accept_queue);
871 
872 	sk->sk_max_ack_backlog = backlog;
873 	sk->sk_ack_backlog = 0;
874 	inet_csk_delack_init(sk);
875 
876 	/* There is race window here: we announce ourselves listening,
877 	 * but this transition is still not validated by get_port().
878 	 * It is OK, because this socket enters to hash table only
879 	 * after validation is complete.
880 	 */
881 	sk_state_store(sk, TCP_LISTEN);
882 	if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
883 		inet->inet_sport = htons(inet->inet_num);
884 
885 		sk_dst_reset(sk);
886 		err = sk->sk_prot->hash(sk);
887 
888 		if (likely(!err))
889 			return 0;
890 	}
891 
892 	sk->sk_state = TCP_CLOSE;
893 	return err;
894 }
895 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
896 
897 static void inet_child_forget(struct sock *sk, struct request_sock *req,
898 			      struct sock *child)
899 {
900 	sk->sk_prot->disconnect(child, O_NONBLOCK);
901 
902 	sock_orphan(child);
903 
904 	percpu_counter_inc(sk->sk_prot->orphan_count);
905 
906 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
907 		BUG_ON(tcp_sk(child)->fastopen_rsk != req);
908 		BUG_ON(sk != req->rsk_listener);
909 
910 		/* Paranoid, to prevent race condition if
911 		 * an inbound pkt destined for child is
912 		 * blocked by sock lock in tcp_v4_rcv().
913 		 * Also to satisfy an assertion in
914 		 * tcp_v4_destroy_sock().
915 		 */
916 		tcp_sk(child)->fastopen_rsk = NULL;
917 	}
918 	inet_csk_destroy_sock(child);
919 	reqsk_put(req);
920 }
921 
922 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
923 				      struct request_sock *req,
924 				      struct sock *child)
925 {
926 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
927 
928 	spin_lock(&queue->rskq_lock);
929 	if (unlikely(sk->sk_state != TCP_LISTEN)) {
930 		inet_child_forget(sk, req, child);
931 		child = NULL;
932 	} else {
933 		req->sk = child;
934 		req->dl_next = NULL;
935 		if (queue->rskq_accept_head == NULL)
936 			queue->rskq_accept_head = req;
937 		else
938 			queue->rskq_accept_tail->dl_next = req;
939 		queue->rskq_accept_tail = req;
940 		sk_acceptq_added(sk);
941 	}
942 	spin_unlock(&queue->rskq_lock);
943 	return child;
944 }
945 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
946 
947 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
948 					 struct request_sock *req, bool own_req)
949 {
950 	if (own_req) {
951 		inet_csk_reqsk_queue_drop(sk, req);
952 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
953 		if (inet_csk_reqsk_queue_add(sk, req, child))
954 			return child;
955 	}
956 	/* Too bad, another child took ownership of the request, undo. */
957 	bh_unlock_sock(child);
958 	sock_put(child);
959 	return NULL;
960 }
961 EXPORT_SYMBOL(inet_csk_complete_hashdance);
962 
963 /*
964  *	This routine closes sockets which have been at least partially
965  *	opened, but not yet accepted.
966  */
967 void inet_csk_listen_stop(struct sock *sk)
968 {
969 	struct inet_connection_sock *icsk = inet_csk(sk);
970 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
971 	struct request_sock *next, *req;
972 
973 	/* Following specs, it would be better either to send FIN
974 	 * (and enter FIN-WAIT-1, it is normal close)
975 	 * or to send active reset (abort).
976 	 * Certainly, it is pretty dangerous while synflood, but it is
977 	 * bad justification for our negligence 8)
978 	 * To be honest, we are not able to make either
979 	 * of the variants now.			--ANK
980 	 */
981 	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
982 		struct sock *child = req->sk;
983 
984 		local_bh_disable();
985 		bh_lock_sock(child);
986 		WARN_ON(sock_owned_by_user(child));
987 		sock_hold(child);
988 
989 		inet_child_forget(sk, req, child);
990 		bh_unlock_sock(child);
991 		local_bh_enable();
992 		sock_put(child);
993 
994 		cond_resched();
995 	}
996 	if (queue->fastopenq.rskq_rst_head) {
997 		/* Free all the reqs queued in rskq_rst_head. */
998 		spin_lock_bh(&queue->fastopenq.lock);
999 		req = queue->fastopenq.rskq_rst_head;
1000 		queue->fastopenq.rskq_rst_head = NULL;
1001 		spin_unlock_bh(&queue->fastopenq.lock);
1002 		while (req != NULL) {
1003 			next = req->dl_next;
1004 			reqsk_put(req);
1005 			req = next;
1006 		}
1007 	}
1008 	WARN_ON_ONCE(sk->sk_ack_backlog);
1009 }
1010 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1011 
1012 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1013 {
1014 	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1015 	const struct inet_sock *inet = inet_sk(sk);
1016 
1017 	sin->sin_family		= AF_INET;
1018 	sin->sin_addr.s_addr	= inet->inet_daddr;
1019 	sin->sin_port		= inet->inet_dport;
1020 }
1021 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1022 
1023 #ifdef CONFIG_COMPAT
1024 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1025 			       char __user *optval, int __user *optlen)
1026 {
1027 	const struct inet_connection_sock *icsk = inet_csk(sk);
1028 
1029 	if (icsk->icsk_af_ops->compat_getsockopt)
1030 		return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1031 							    optval, optlen);
1032 	return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1033 					     optval, optlen);
1034 }
1035 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1036 
1037 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1038 			       char __user *optval, unsigned int optlen)
1039 {
1040 	const struct inet_connection_sock *icsk = inet_csk(sk);
1041 
1042 	if (icsk->icsk_af_ops->compat_setsockopt)
1043 		return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1044 							    optval, optlen);
1045 	return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1046 					     optval, optlen);
1047 }
1048 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1049 #endif
1050 
1051 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1052 {
1053 	const struct inet_sock *inet = inet_sk(sk);
1054 	const struct ip_options_rcu *inet_opt;
1055 	__be32 daddr = inet->inet_daddr;
1056 	struct flowi4 *fl4;
1057 	struct rtable *rt;
1058 
1059 	rcu_read_lock();
1060 	inet_opt = rcu_dereference(inet->inet_opt);
1061 	if (inet_opt && inet_opt->opt.srr)
1062 		daddr = inet_opt->opt.faddr;
1063 	fl4 = &fl->u.ip4;
1064 	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1065 				   inet->inet_saddr, inet->inet_dport,
1066 				   inet->inet_sport, sk->sk_protocol,
1067 				   RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1068 	if (IS_ERR(rt))
1069 		rt = NULL;
1070 	if (rt)
1071 		sk_setup_caps(sk, &rt->dst);
1072 	rcu_read_unlock();
1073 
1074 	return &rt->dst;
1075 }
1076 
1077 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1078 {
1079 	struct dst_entry *dst = __sk_dst_check(sk, 0);
1080 	struct inet_sock *inet = inet_sk(sk);
1081 
1082 	if (!dst) {
1083 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1084 		if (!dst)
1085 			goto out;
1086 	}
1087 	dst->ops->update_pmtu(dst, sk, NULL, mtu);
1088 
1089 	dst = __sk_dst_check(sk, 0);
1090 	if (!dst)
1091 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1092 out:
1093 	return dst;
1094 }
1095 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1096